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Abstract

Although network neuropsychology is a promising approach to the study of clinical profiles, the
link between Alzheimer’s disease biomarkers and neuropsychological networks is still
undetermined. We hypothesised that network differences would exist between biomarker-positive
and biomarker-negative participants, and that these would be driven by network nodes
corresponding to performance on tests of episodic memory, as this is the cognitive domain most

distinctively affected by Alzheimer’s disease since the earliest clinical stages.

In this case-control study, we investigated sub-cohorts of individuals who had been 1) enrolled in
the National Alzheimer’s Coordinating Center initiative, and 2) tested with Version 3 of the
Uniform Data Set neuropsychological battery (i.e., consisting of 11 tests). These included 1,263
“B-amyloid positive” (A+), 1,594 “B-amyloid negative” (A-), 442 “B-amyloid and
hyperphosphorylated tau positive” (A+T+), and 734 “B -amyloid and hyperphosphorylated tau
negative” (A-T-) participants. We first calculated neuropsychological residuals by regressing out
age, years of education, sex, Clinical Dementia Rating scores, and timepoint distance between
neuropsychological and biomarker assessment. Secondly, we used rank-based correlations to
define conditional associations across all pairs of test scores (i.e., the nodes of the network).

Thirdly, we imposed a penalty (i.e., via the Least Absolute Shrinkage and Selection Operator



method) to control for network sparsity. We then tested for differences in global network metrics
and node centrality between A+ and A-, and between A+T+ and A-T- participants using

permutation-based inferential models.

Differences were found between biomarker-positive and biomarker-negative sub-cohorts in global
network metrics but, contrarily to our hypothesis, no differences were found in relation to episodic
memory nodes. A significant node difference, however, was instead found in relation to Category
Fluency (i.e., a test of semantic memory), with increased centrality observed among A+
participants. A similar, yet nonsignificant trend was also observed between A+T+ and A-T-

participants.

Network neuropsychology can complement and expand the study of cognitive performance carried
out via “traditional” univariate approaches. While univariate analyses reveal episodic memory
decline in people with Alzheimer’s disease, this is not accompanied by any abnormalities at a
neuropsychological network level. Our findings, however, highlight the importance of semantic
memory alterations in A+ individuals. The wide set of neural and cognitive resources that sustain

semantic memory may play a supportive role in the presence of neuropathology.
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Introduction

As the leading cause of dementia worldwide,' the pursuit for earlier identification of Alzheimer’s
disease (AD) remains at the forefront of research. Diagnostic protocols have recently shifted from
classic clinical approaches towards biomarker definition. The ATN framework,”® where “A” =
Amyloid B (AP), “T” = tau, and “N” = neurodegeneration, outlines an unbiased biological
construct for classifying AD based on pathological markers at symptomatic and pre-symptomatic
disease stages. More recently, plasma biomarkers have shown similar promise for identifying AD
pathology in-vivo.* However, the application of biological frameworks in clinical settings is
subject to significant debate, owing to uncertainty surrounding prognosis of biomarker-positive
cognitively unimpaired individuals who may never develop the clinical syndrome.”® While the
criteria of the National Institute of Aging-Alzheimer’s Association define Ap-positive
asymptomatic individuals as having preclinical AD,”’ clinical recommendations from the
International Working Group consider biomarker positivity in asymptomatic individuals an
indication of AD risk rather than diagnosis.”” Accumulation of AD biomarkers decades prior to
observable changes in cognition emphasises the enduring need for sensitive phenotypic correlates

of biomarker positivity to corroborate diagnosis in the earliest stages.’

In clinical stages, the relationship between AD pathology burden and cognitive function is most
heavily mediated by neurofibrillary tangles (NFT), an aggregate of hyperphosphorylated tau.*-'
Although studies often fail to demonstrate a linear relationship between AP burden and cognitive
impairment, AP positivity is a significant predictor of later cognitive impairment and disease

progression in prodromal and preclinical populations,'®'*

emphasising its utility in identifying
AD-related pathologic change and dementia risk. Cognitive measures have also demonstrated an

ability to predict progression to AP positivity in individuals with sub-threshold evidence of
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pathology, evidencing the bidirectional benefits of neuropsychological markers over

biomarkers alone.

Evidence shows that biomarker-positive individuals often exceed thresholds of cognitive
‘normality’, owing to a range of physiological, psychological and strategic compensatory
mechanisms.'’?! Significant correlations have been found between early NFT deposition and
cognition in otherwise unimpaired older adults,”*** despite early histopathological studies
suggesting these stages are asymptomatic,”**> demonstrating the propensity for proteinopathies to
influence cognitive function at a sub-clinical level. Cognitive reserve has been proposed as a
potential mechanism involved in this process; inter-individual variance in capacity, efficiency, or
flexibility of neural functions, that can support normal cognition despite age or disease-related

t.”° Aside from pre-morbid factors such as education,'’ this may manifest through

neuronal insul
greater flexibility in the use of cognitive strategies,”’ or neural compensation, particularly within
networks underlying executive control.'’?®* In preclinical AD, normal cognitive performance
may therefore reflect reorganisation in both cognitive and neural processes. Nuanced cognitive

change may, therefore, be best identified not by domain specific tasks but at the level of the

cognitive network.

Cognition is far from a purely segregated set of processes. Rather, successful cognitive functioning
requires a dynamic interplay between cognitive domains. Characterisation of cognitive profiles
according to network analysis has given rise to the development of a sub-discipline known as
“network neuropsychology”.’® This has revealed observable and measurable differences in
cognitive network topology at clinical, prodromal and even preclinical AD stages.’'*” The benefit
of network models lies in their ability to detect highly nuanced changes beyond that of the test

scores that typically contribute towards clinical diagnosis. Taking a non-reductionist approach



allows for the identification of AD-related changes in network-level phenomena which, at a
preclinical stage, may be facilitating normal performance. It is on these premises that multivariate
network-based approaches can expand the study of neuropsychological functioning that is

normally carried out with more standard univariate analyses.

The aim of this study was to identify differences in cognitive networks related to AP and tau
positivity. We hypothesised that differences in network topology exist between individuals testing
positive and negative for AD biomarkers relating to their increased risk of dementia. Based on
extensive evidence showing episodic memory to be the domain most heavily and consistently
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impacted by AD pathology, we expected the largest differences in network metrics to be

identified in tasks evaluating this function.

Material and methods

A case-cohort study was designed to test the study hypothesis. Methods are reported in line with

guidelines on psychological network analyses.*’

Cohort Selection

The National Alzheimer’s Coordinating Center (NACC) initiative (https://naccdata.org/) is a

freely-available repository of data coordinated and curated by the National Institute of Aging, via
the NIA Alzheimer's Disease Research Centers (ADRC) programme. Established in 1999, NACC

integrates and harmonises clinical data from over 42 current or former ADRC across the USA.

To address the study question, we searched the entire NACC database at one of its most recent
data freezes (consisting of 44,359 unique participants and, collectively, 162,249 study visits) for

study visits that included information on AD biomarkers. The main milestones of the entire process
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of selection are shown in Figure 1. We initially focussed on A only, relying on the “AMYLPET”
and “AMYLCSF” variables; these indicate “abnormally elevated amyloid on PET” and
“abnormally low amyloid in CSF”, respectively (i.e., definitions taken from the NACC researchers

data dictionary, available at https://files.alz.washington.edu/documentation/uds3-rdd.pdf). This

resulted in 7,447 study visits with information on AP (obtained from 3,643 unique participants)
being retained. We defined as “Ap positive” (A+) all study visits with at least one (i.e., CSF or
PET) AP abnormality. This led to 3,662 (49.17%) visits marked as AR+ and 3,785 (50.83%) visits
marked as A negative (A-). The total number of study visits attended by these 3,643 participants

was equal to n = 15,093.

As information on A status for these participants was available for 1-to-8 study visits, we selected
the first one to define group membership (i.e., A+ or A-). We then classified the 7,447 study visits
to quantify those with information on phosphorylated tau status too. To do so, we focussed on the
“TAUPETAD” and “CSFTAU” variables, with the same approach as that adopted for “AMYLPET”
and “AMYLCSF”. A total of 3,491 study visits out of 7,447 (46.88%) had information on tau, with
1,542 being tau positive (T+) and 1,949 being tau negative (T-). The study visits with information
on both biomarkers thus distributed as follows: A-T-: n = 1,567; A -T+: n=259; A+T-: n=382;

A+T+: n=1,283.

We then reviewed all group memberships by identifying those with information on A status only
that also had a subsequent study visit with information on both AB and tau status, and replaced

biomarker information accordingly (i.e., 95 cases in total).

All activities carried out as part of the NACC initiative comply with the Declaration of Helsinki
on ethical principles regarding human experimentation. Ethical approval was obtained from a

dedicated institutional review board at each ADRC, and written informed consent was collected
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from each recruited participant (https://naccdata.org/requesting-data/nacc-data). Local ethical

approval for secondary data analyses was received by the College of Health, Medicine and Health
Sciences Ethics Committee at Brunel University of London (Review Reference: 50702-NER-

Mar/2025-53965-1).

Please insert Figure 1 about here

Three different batteries of neuropsychological tests have been used over the years to characterise
cognitive performance of NACC participants. As per the identification of biomarker status, we
identified the first available set of neuropsychological test scores for each participant. This
corresponded to the first study visit for all participants. Of these assessments, 188 had been carried
out using Version 1, 1,059 using Version 2, and 2,396 using Version 3 of the Uniform Data Set
neuropsychological battery.”” As most cognitive assessments had been carried out using Version
3, we reviewed the database to identify the first Version-3 assessment for those originally tested

with Version 1 or 2 at study visit 1.

The neuropsychological battery included 11 test scores. These are listed and briefly described in
Table 1 (i.e., this highlights the three tests of episodic memory targeted by the study hypothesis).
All cognitive profiles were reviewed to count the number of missing datapoints. Consistent with
our previous work,’! we removed all participants who had more than one missing score. This was
to ascertain that each participant would contribute to the calculation of network descriptors and
metrics in a balanced way. A total of 2,857 participants were retained (A-: n = 1,594; A+: n =
1,263). The resulting analyses used data from 30 ADRCs. Of those with information on tau, their
status distributed as follows: A-T-: n=734; A -T+: n=104; A+T-: n=157; A+T+: n=442). As

network modelling requires adequately large samples, the two groups with discordant biomarker
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status were not further considered. While the A+T- configuration defines the “initial” biological
stage of disease (or “Stage A”),” an A-T+ status reflects a “non-AD pathologic change”,” and were
discarded for this reason. As the sub-cohort of A+T- participants was not sufficiently large for the
planned analyses, we focussed on the biological presence vs. absence of disease, and not on any
intermediate disease stage. The demographic and clinical characteristics of the final set of cohorts

1s described in Table 2.

Please insert Table 1 and Table 2 about here

Figure 1 also includes information on the exact NACC timepoints at which biomarker status
information and Uniform Data Set -Version 3 cognitive assessment were selected. In the majority
of cases (81.6%), the two were extracted from the same timepoint or at a distance of 1 timepoint
only, while 9.5%, 5.6%, 2.5%, 0.6% and 0.1% were extracted at a distance of 2, 3, 4, 5 or 6

timepoints, respectively.

Neuropsychological profiles

As performance in neuropsychological tests is influenced by demographic characteristics and by
clinical status, linear regression models were carried out to calculate neuropsychological residuals.
Before these calculations, 7TM7-A and TMT-B scores were multiplied by -1, to align with the
pattern among other cognitive measures where higher values indicate better performance. Age,
years of education, sex, the global CDR® Dementia Staging Instrument (CDR) score, and the
difference (expressed in timepoints) between biomarker and cognitive assessment were regressed
out to this end. A+ participants scored significantly worse than A- participants on 9 out of 11

residuals at p < 0.001. No differences were observed in relation to LFT (¢2s39 = 1.653, p = 0.098)
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or MINT (t2500.434=1.658, p =0.097). In the sub-cohort of participants with AP and tau information,
A+T+ participants scored significantly worse than A-T- participants on 8 out of 11 residuals at a
p < 0.001, on 1 residual at a p = 0.002, and on 1 further residual at a p = 0.008. No differences
between A+T+ and A-T- individuals were found on MINT (t;425 = 1.151, p = 0.250). All these

descriptives were obtained via two-tailed #-tests.

Network Creation

41,42

We followed the methodology described by Epskamp and colleagues, and already applied in
our previous publication,’' to calculate four distinct neuropsychological networks, i.e., in A+, A-,
A+T+, and A-T- individuals. The R processing environment (version 4.2.1; https://www.r-
project.org) with the bootnet (version 1.6; https://cran.r-

project.org/web/packages/bootnet/index.html) and the ggraph (version 1.9.8; https://cran.r-

project.org/web/packages/qgraph/qgraph.pdf) libraries were used for this purpose.

As data were not normally distributed, we used Spearman’s rho coefficients of correlation to
calculate pairwise nonconditional associations. Spearman’s rho was also used to calculate
conditional associations, i.e., pairwise statistical associations that are partialised for all remaining
test scores, in line with recommendations.* As 11 tests (i.e., the nodes of the network) were
included in the procedures, a total of 55 (n % (n— 1) / 2) associations (i.e., the edges of the network)
were calculated. It is widely established in the neuropsychological literature that test performance

4445 and the calculation of

tends to be positively correlated across cognitive domains,
nonconditional associations reported in Supplementary Table S1 confirms this trend. Conversely,

conditional associations were considerably weaker, with only 57 of the 220 measures calculated

across all 4 sub-cohorts being above 0.1 or below -0.1, (Supplementary Table SI;


https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/web/packages/bootnet/index.html
https://cran.r-project.org/web/packages/bootnet/index.html
https://cran.r-project.org/web/packages/qgraph/qgraph.pdf
https://cran.r-project.org/web/packages/qgraph/qgraph.pdf

11

Supplementary Figure S1): A procedure was applied at this stage to control for the degree of
sparsity and discard edges that are irrelevant to the network.*'*> Least Absolute Shrinkage and
Selection Operator (LASSO) is a method that minimises the equation that consists of the sum of
the statistical residuals plus a A penalty applied to the (absolute value of the) statistical coefficient.*®
The choice of the adequate 4 is based on the value that minimises the Extended Bayesian
Information Criterion (EBIC). EBIC is an extended family of the Bayesian Information Criterion
(BIC) that adds to its formula a component accounting for the size of the collection of models.
This additional component is regulated by the hyperparameter y, which can range between 0 and
1.* When y is 0, the additional component is equal to 0 and EBIC = BIC, while a value of 0.5 (the

value we selected) typically prioritises specificity and is used as the default value.*’

The application of the LASSO resulted in ~32% of all edges being discarded (see Supplementary
Table S1 for the entire set of unconditional associations, conditional associations, and edge
weights). To assess variability of network edges, a simulation study was carried out within each
sub-cohort, by bootstrapping edge weight via n = 1,000 random-sampling repetitions.*' The results
indicate an excellent overlap between the model value and the bootstrapped mean and only modest

variability (Supplementary Figure S2).

Calculation of Network Centrality

Network centrality can be thought of as the amount of connectivity a node shares within the
network system. While a wide number of path-based centrality metrics such as Degree or
Betweenness Centrality are commonly applied to unweighted networks such as those typically
estimated from resting-state functional MRL*® centrality metrics that are based on edge weights

are instead particularly suited (and easy to interpret) for characterising weighted networks.*’ In
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this study, we calculated global and nodal one-step Expected Influence (EI) and Strength (ST) as
measures of network centrality. When computed on a node, EI consists of the arithmetical sum of
all weights of the edges that link that node to other nodes, with negative edges retaining their
negative sign in this calculation.’” Nodal ST is conceptually similar to Nodal EI, but the
arithmetical sum is calculated on the absolute value of all edge weights. Despite the very small
number of negative edges, i.e., 11 out of all 220 edges calculated across all sub-cohorts
(Supplementary Table S1), we decided to investigate both EI and ST to characterise their impact.
Global EI is the sum of all edge weights, with positive and negative signs maintained in the

network, whereas Global ST is the absolute sum of all edge weights.

Stability of centrality metrics was assessed by re-calculating these in » = 1,000 random samples
subjected to a progressively increasing (i.e., 5% to 75%) case drop.*'*> The correlation between
model centralities and centralities obtained from random sampling was very high (Supplementary

Figure S3), with very limited variability, indicating excellent stability.

Additionally, as inter-node correlations (and, in turn, centrality) can be affected by differential
node variability,”' we inspected the correlations between node standard deviation and both ST and
EI (Supplementary Table S2). All correlations were non-significant (Supplementary Table S3),

ruling out any effect of this mechanism.

To explore subdivision of neuropsychological profiles into communities, an exploratory graph
analysis was run for each network using the Louvain community-defining algorithm.>” This
method separates subsets of highly-interconnected nodes by identifying the solution (out of 1,000
iterations) that maximises network modularity, i.e., a value ranging between -1 and +1 that

leverages between-community and within-community edge density. A confirmatory factor
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analysis was then run to evaluate the fit of the community structure. The output indicated poor fit
of communities, with root mean square error of approximation values exceeding 0.09, i.e., A+:
0.117; A-: 0.094; A+T+: 0.116; A-T-: 0.098. As communities were not meaningful in these sub-

cohorts, these results were not analysed further.

Statistical Analysis

The network comparison test (NCT) was used to statistically compare global and nodal centrality
metrics across the network models for A+ and A- (Model 1) and those for A+T+ and A-T- (Model
2) individuals.’® The permutation-based NCT works by first estimating and comparing network
models and accompanying graph theory metrics (i.e., global network invariance, and Global and
Nodal ST/EI) for two groups (e.g., A+ and A- individuals). This gives rise to a test-statistic (see
Table 3 for an explanation of the test statistics reported in this study). Next the two data sets are
merged into one larger data set and participants are randomly reassigned to two new groups,
irrespective of their A+ or A- (or A+T+ / A-T-) status. Two new network models, with
corresponding graph theory metrics, are re-estimated, and compared. This permutation process is
performed 1,000 times, giving rise to a null distribution which the test statistic (i.e., a difference
between the two original network models) is compared against. An alpha level of 0.05 was set and
Holm-Bonferroni correction for multiple comparisons was used. This latter correction was applied
to accommodate all comparisons, and not just those associated with the three episodic memory

nodes (i.e., Fig. DR, Story IR, and Story DR).

Please insert Table 3 about here
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Results

Model 1: Effect of amyloid positivity on cognitive networks

A significant difference was found between the two groups in the general structure of the network
(M=0.232,p<0.001). Density (0.673 versus 0.709) and average edge weight (0.081 versus 0.079)
were descriptively very similar across A+ and A- models. No difference was found in Global EI
(S =0.106, p = 0.140) or Global ST (S = 0.231, p = 0.200). The three episodic-memory nodes
showed no differences in Nodal EI or ST between the two groups (all p-values > 0.05). Edge
weights between Story IR and Story DR (p = 0.055), Story IR and CFT (p = 0.055), and Story DR
and Fig. DR (p = 0.055) were marginally significantly stronger in the A+ model compared to the
A- model after correction for multiple comparisons. A statistically significant centrality difference
was found in relation to CFT: A+ individuals showed higher levels of both Nodal ST and Nodal
EI than A- individuals (p = 0.022 for both centrality metrics, Holm-Bonferroni corrected).
Networks are shown in Figure 2, and non-standardised centrality for this and the other nodes are

shown in Figure 3 (while standardised centralities are shown in Supplementary Figure S4).

To characterise the nature of this difference in nodal centrality, we used the NCT to analyse the
between-group differences in CFT edges. Although a pattern of differences was found (Figure
4A), no edge reached statistical significance. A trend of significance was noted in correspondence

to the CFT-Story IR edge (E =0.093, p = 0.055, Figure 4B-C).

Please insert Figure 2, Figure 3 and Figure 4 about here
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Model 2: Effect of amyloid and tau positivity on cognitive networks

A significant difference was found between the two groups in the general structure of the network
(M=0.222, p=10.004). Density (0.636 versus 0.618) and average edge weight (0.080 versus 0.077)
were descriptively very similar across A+T+ and A-T- models. No difference was found in Global
EI (§=0.152, p = 0.264) or Global ST (§=0.332, p = 0.320). As can be seen from Figure 3, the
patterns shown by Model 2 groups were very similar to those shown by Model 1 groups. No
between-group differences in EI or ST, however, were found for any of the nodes. Edge weights
between Story IR and Story DR (p = 0.055), Story IR and CFT (p = 0.055), and Story DR and Fig.
DR (p = 0.055) were marginally significantly stronger in the A+T+ model compared to the A-T-

model after correction for multiple comparisons.

Discussion

Patterns of neuropsychological network topology related to AP and tau positivity were tested.
Retrospective examination of the NACC dataset identified 2,857 participants with available
biomarker and neuropsychological data. Networks created using data from 11 neuropsychological
tests after controlling for demographic and clinical variables were compared between A+ and A-
groups, and A+T+ and A-T- groups. In both cases, biomarker positivity was associated with a
significant difference in general network structure. Contrary to our initial hypothesis, we found no
significant differences in network metrics related to episodic memory. A significant difference in
centrality was evident between A+ and A- groups for the CFT, with a trend indicating this was
largely driven by edge weight between CFT and Story IR in the context of the wider network

model. Such a finding was evident for both ST and EI, reflecting the absence of negative edges in
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relation to CFT. Although this finding only emerged as a trend approaching significance in the

model including tau, the pattern of edges contributing to CFT centrality was similar in both models.

Network analysis literature on cognition in AD is currently in the relatively nascent stages. As
such our hypothesis that episodic nodes will demonstrate the greatest between-group differences
was theoretically formed on the basis of the widely reported declines in episodic memory related
to AD pathology.”*® In the current study, significant differences were observed between
biomarker-negative and biomarker-positive groups across all cognitive domains, including every
episodic memory task. What these findings therefore emphasise is the utility of network metrics
in capturing characteristic differences in cognitive profiles beyond the level of numerical
differences in task scores. Previous network studies have similarly identified comparable strength
centralities of episodic memory nodes within cognitively normal older adults as in clinical AD
groups.’”** Such findings therefore suggest that episodic memory performance may be influential
in the cognitive network of healthy older adults even in the absence of observable declines in task

performance.

CFTs show moderate-to-high EIL*' ST,**** closeness and/or betweenness centrality,***>" in
cognitive network models of clinical AD dementia. High centrality of CFTs in cognitive networks
may reflect how multifaceted this task is. CFTs are characterised by their interrogation of both
semantic memory and executive functions,” e.g., writing a shopping list in by shifting across
different categories. Semantic processing alone depends on converging multi-modal information
from widespread modality-specific cortical areas.’” In their Hub-and-Spoke model,”> Lambon
Ralph and colleagues indicate that semantic knowledge is represented in a distributed network of

modality-specific brain regions, sending and receiving information to and from an amodal anterior

temporal hub. This highlights the large-scale topology (and cytoarchitectural diversity) of the
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resources sustaining semantic processing. In addition, CFTs also, require semantic control.
Controlled retrieval processes rely on an interacting but largely separate network, cross-talking
with working memory and executive functions, distributed within prefrontal and temporoparietal

areas.”> That CFTs elicit such widespread cortical activations,®

indicates a pivotal role of
semantic-executive processing in supporting neuropsychological functioning at a wider network
level. Accordingly, common areas of neural activity have been identified during episodic, semantic

and working memory tasks,’’~’

and processing speed and executive functioning are suggested to
contribute to verbal fluency performance and impairments in older adults.®”! The multifaceted
nature of CFTs may further explain why similar group differences in centrality metrics were not
identified in the MINT, a task which specifically interrogates semantic knowledge. The MINT task,
which, unlike the CFT, involves the presentation of an external visual cue, may elicit a purer
semantic recognition response that is more readily dissociable from executive contributions to the
controlled retrieval aspect of verbal fluency tasks.’” Similarly, despite the shared retrieval
processes of CFTs and LFTs, the lack of a semantic component may explain why the centrality of
the LFT showed no meaningful differences between groups. The two tests have different
diagnostic properties, with CFT scores classifying controls and people with AD more accurately
than LFT.> In the present study, the main edge contributing to differences in CFT centrality
between both A+ and A- and A+T+ and A-T-, was between CFT and Story IR, with the edge
between the CFT and MINT demonstrating the second largest difference. Despite classic
representations of semantic and episodic memory as dissociable processes,*’ they are now more

typically understood as being interdependent,’**> with episodic memory deficits being found to

influence CFT in individuals with mediotemporal lobe amnesia.°® Centrality differences in CFT
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between biomarker groups, appear then, to be largely related to the overlap in episodic and

semantic memory function, which LFTs do not tap into.

Recognising the richness and complexity of neurological and neuropsychological functioning is
of crucial importance in the context of AD research. When AD pathology affects the nervous
system, it induces cognitive changes that reflect the complexity of the underlying neural substrate,
and how this “responds” to pathology. Although AP and tau both demonstrate a propensity to
disrupt the semantic network, influencing CFT performance at very early disease stages,””° the
widely-distributed and multifaceted networks that sustain performance on CFTs will allow for part
of these resources to remain available. In this respect, greater CFT centrality may be explained by
the mutual interaction it shares with other domains affected in AD, such as episodic memory.
Experimental and neuroimaging research in conjunction with cognitive theory may clarify the

source of the association between greater CFT centrality in the A+ group.*’

In the present study, the main edge contributing to differences in CFT centrality between both A+
and A- and A+T+ and A-T- (although not statistically significant), was between CFT and Story
IR, with edges between CFT and MINT and DSF demonstrating the second and third largest
difference, respectively. Earlier research similarly reported that the edge between the CFT and
immediate recall on a list-learning task was stronger in the network of early AD patients compared
with prodromal AD and cognitively-normal controls.’>** Moreover, dimensionality analysis
suggested that CFT formed a cluster with age, confrontation naming and immediate list-learning
recall in early AD, while forming a cluster with tests sensitive to attention, processing speed, and
executive functioning in the cognitively-normal model.*® The cognitive network model of AD in
Nevado et al. similarly displayed links amongst CFT and confrontation naming tests (both

requiring semantic memory) and logical memory, while a control model featured links among
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CFTs and tasks sensitive to attention, processing speed, and executive functioning.’” Consistent
associations between CF'Ts, confrontation naming and list-learning or logical memory tasks among
AD groups may be explained by mechanisms of compensation reliant on the mutual interaction of
semantic and episodic memory. Semantic resources, if available, can be used, consciously or

% it has been

unconsciously, in support of encoding. Since Craik and Lockhart’s seminal paper,
widely accepted that semantically-mediated encoding facilitates memory performance even in
anterograde memory paradigms such as immediate logical memory recall, e.g.,”” Given A+
individuals are subjected to the effects of a pathology not present in A- individuals, they may
benefit from increased crosstalk between verbal encoding and semantic processing, paralleling the
compensatory neural activity that has been identified in A+ groups.'® Greater compensatory

activation of the semantic network, identified in clinical AD stages,’’

may similarly explain
differences in edge weight between semantic naming and CFT tasks. Ferguson,’>°” hypothesised
that semantic networks underlying CFT performance support the acquisition of word-list
memoranda in early AD. This could also apply to logical memory, given that the information to
be remembered is semantically rich and often consists of memoranda characterised by “semantic
relatedness”, a property of verbal material that people with AD dementia may benefit from during
the learning phase.”” However, stronger associations between CFT and episodic memory variables
in network models could also reflect shared mediotemporal pathological substrates of semantic
and episodic memory deficits, rather than compensatory relationships per se.’’ Indeed, Tosi et al.*”
suggested that the high centrality of category fluency in their AD network reflected temporal-lobe

semantic-degradation.’*"?

Despite A+ vs. A- comparisons aligning clearly with studies of clinically manifest AD groups,’*

306% no significant centrality differences were seen between A+T+ and A-T- subgroups. At both
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node and edge levels however, the pattern of findings was similar across both biomarker-positive
groups. The greatest difference in centrality compared with biomarker-negative groups was in CFT
in both A+ and A+T+ and the largest edge-weight differences underlying this were seen in the
same three edges between the CFT and Story IR, MINT and DSF'. It is possible, therefore, that the
limited findings reflect a methodological aspect rather than a true negative result. Firstly, our
A+T+ sample comprised a sub-group of the larger A+ group, for which tau measurements were
not all available. It is likely that a large proportion categorised as A+ who did not have tau data
were also T+. We cannot, therefore, assume that findings in the A+ group do not reflect similar
differences in A+T+. Secondly, the smaller size of the Model 2 sub-cohort may have impacted the
strength of network comparisons. Importantly, however, this is not necessarily because of a small
effect. At the level of pairwise correlations, in fact, we found highly similar coefficients produced
in biomarker-positive groups, even when Model 2 sub-cohorts were reduced by as much as 75%,
indicating that the basic building blocks of this methodology were replicated even with more
modest sample sizes. This also suggests good generalisability of these results. Overall, the trends

observed in our A+T+ versus A-T- analyses require replication in larger samples.

Previous network studies have indicated that the centrality of nodes within psychopathology
networks may be indicative of features that may be predictive of future decline or be influential
targets for intervention.”* Similarly, the translational relevance of node centrality in cognitive
networks lies in the potential to provide a quantitative approach to determine the relevance of
specific cognitive functions within the wider network. Degradation of highly central, and therefore
highly influential nodes,” may be hypothesised to be of greater detriment to global cognitive
function. Conversely, preservation of influential cognitive functions may serve to improve or

stabilise function in other domains. The clinical relevance of node centrality in cognitive network



21

remains to be determined. However, investigation into the predictive value of highly central
cognitive domains for either dementia onset or improvements associated with cognitive
stimulation provide meaningful avenues for future clinical research. The findings of the present
study indicate that semantic fluency tasks may be of particular relevance in predicting or slowing

progressive global cognitive decline in individuals testing positive for AD biomarkers.

The analyses also reported significant differences between biomarker-positive and biomarker-
negative participants in global network invariance. Although this finding results from an omnibus
test (and, therefore, cannot be pinpointed to specific nodes or edges), it can be seen as an indicator
that AD pathology acts as a general disturbance to the neuropsychological network, presumably

due to the effect it has on functional connectivity within and between large-scale brain networks.

Some limitations should be considered. As this is the first study to investigate the link between
neuropsychological networks and biological markers of AD recognised by the latest diagnostic
criteria,””’ we exclusively adhered to core biological diagnostic criteria to categorise our sub-
cohorts. It is possible that an imbalance in the distribution of participant clinical status between
groups (which is to be expected, as there is often convergence between biomarker and clinical
status) may have influenced the findings. To account for this, a marker of clinical severity, the
global CDR score, was controlled for and, as outlined, the pattern of results across Model 1 and
Model 2 were highly similar. Moreover, despite highly significant differences in cognitive function
emerging from univariate comparisons between biomarker positive and negative groups (with
many effect sizes being medium or high, as shown in Table 2), these did not translate into vastly
different cognitive networks, suggesting that changes in network metrics such as node centrality
are not necessarily proportionate to cognitive deficits.”> While this study does not specifically

address the preclinical phase of AD (as this would require additional evidence, e.g., in vivo



22

evidence of tau pathology limited to the transentorhinal region,***’

and/or longitudinal evidence
of disease progression), we argue that network-based approaches could be useful to detect nuanced

phenotypic markers of the preclinical disease stage that anticipate the onset of objective

performance decline in individual tests.

A second limitation is the inability to account for the range of AD variants and mixed aetiologies
that may be present within our dataset. Concurrent vascular pathology or other neurodegenerative
aetiologies impacting network topology may have diluted effects specific to AD biomarker
positivity.”® An avenue for future work will therefore be to validate these findings while accounting

for possible co-morbidities.

A third limitation is represented by the temporal misalignment between neuropsychological testing
(carried out at study visit 1) and biomarker measurement. While this had no effect on the
biomarker-negative sub-cohorts (as those negative at a follow-up were also negative at study visit
1), it might have resulted into a small proportion of biomarker-negative individuals being

misclassified as biomarker-positive, leading to the analyses being slightly more conservative.

Fourthly, although we limited the structure of our network to residualised test scores (i.e., by
regressing out demographic characteristics prior to network calculation), other studies have instead
added these variables as additional nodes.*”***> On this note, no methodological gold standard has
yet been defined for selecting network variables. Studies that focus on neurological profiles, for
instance, may define heterogeneous networks that include demographic, neuropsychological,
behavioural and other clinical variables.”” Along these similar lines, for instance, we could have
incorporated amyloid and tau status as further nodes, to test the study hypothesis via a within-
network design. It is to address these methodological alternatives that road maps to the study of

neuropsychological networks are currently being planned.”



23

In conclusion, the present study aimed to determine whether AD biomarker positivity is associated
with observable differences in graph-theory-informed network-based cognitive profiles. This
study is the first to investigate the link between AD pathophysiology and neuropsychological
networks and the findings align with neurological changes occurring with the deposition of
pathology. These suggest that not only are neuropsychological networks influenced by biomarkers
at a general structural level, but that specific alterations in nodal centrality and edge weight reflect
similar changes identified across the AD clinical spectrum. Such observations in biologically-
classified groups, independent of clinical severity, indicates that cognitive network topology may
provide a clinically meaningful measure of change related to biomarkers among otherwise

cognitively-normal groups.
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Figure legends

Figure 1. Flowchart illustrating the process of cohort selection. The NACC database was
initially scrutinised as a function of biomarker availability. Availability of neuropsychological test
scores and biomarker information were then cross-tabulated as a function of timepoint (TP), in
order to define TP distances between the two clinical measures. The most commonly used version
of the Uniform Data Set (UDS) battery of test was then selected for consistency across the cohort.
Finally, additional criteria were applied to discard datasets with excessive missing data and
discordant biomarkers. Temporal distance between TP1 and subsequent timepoints (i.e., TP2 to
TP7) was calculated over the entire NACC cohort, and these averaged to 15, 29, 42, 56, 69, and
82 months. A+: Amyloid positive; A-: Amyloid negative; AD: Alzheimer’s disease.
“NACCVNUM?” indicates the visit number at which biomarker (i.e., “NACCVNUM-BIOM”) and
cognitive (i.e., “NACCVNUM-COGN?”) profiles were assessed, as indexed by the NACC research

data dictionary.

Figure 2. Visual representation of the four networks estimated from the NACC database.
Negative edges are indicated in red. The thickness of the line is proportional to the weight of the
edge. Nodes are represented with 11 different colours to facilitate consultation. The diameter of
the node is proportional to non-standardised expected influence. All test abbreviations are defined
in Table 1. (A): Sub-cohorts with amyloid information. A- sub-cohort: n = 1,594; A+ sub-cohort:
n = 1,263; (B) Sub-cohorts with amyloid and tau information. A-T- sub-cohort: n = 734; A+T+
sub-cohort: n = 442.

* Example outlining the difference between the two measures of centrality calculated in relation

to the Story DR node, in the sub-cohort of A- participants (Story DR edge weights: CFT = 0.051;
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MINT = 0.057; TMT-A =-0.018; TMT-B = 0; Story IR = 0.793; DSB = 0.003; DSF = 0; Fig. Copy
=-0.038; Fig. DR=0.155; LFT =0).

Elgtory pr = X edge weights = 1.003;

STstory pr = Xledge weights| = 1.115.

Figure 3. Node centrality in each sub-cohort. Centrality is shown separately in relation to Model
1 (i.e., A+ vs. A-) and Model 2 (i.e., A+T+ vs. A-T-). Colour coding follows the separation of test
scores into distinct cognitive domains, as done in Figure 2. Centrality measures are indicated on
the y axis, i.e., EI in the upper half of the graph (A), ST in the lower half of the graph (B). The
image shows nonstandardised centrality metrics. For standardised centrality metrics, please see
Supplementary Figure S4. All test abbreviations are defined in Table 1. A+: amyloid positive;
A-: amyloid negative; T+: tau positive; T-: tau negative. Sub-cohort information: A- sub-cohort:
n=1,594; A+ sub-cohort: n = 1,263; A-T- sub-cohort: n = 734; A+T+ sub-cohort: n = 442.
Figure 4. Post-hoc characterisation of CFT node. (A) Star plots showing edge weights in
relation to the only Model-1 node showing a statistically significant between-group difference.
The CFT node is at the centre of the decagon, and the maximum weight of the circumradius is
indicated below (i.e., 0.4). The figure does not show any inferential test but is simply a descriptive
visualisation of edge weights that are calculated prior to inferential modelling. EW: edge weights.
(B) Star plot illustrating the size of the £ Statistic (i.e., the absolute value of the difference in edge
weight between the two groups). The largest (non-significant) difference was found in
correspondence to the Story IR-CFT edge (E = 0.093, p = 0.098). The original non-conditional
associations driving the differences in this edge weight is shown in (C). This image shows the
slope of the regression lines corresponding to the rank-based correlations between CFT and IR

performance in the A+ and A- sub-cohorts.
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All test abbreviations are defined in Table 1. A+: amyloid positive; A-: amyloid negative.

Sub-cohort information: A- sub-cohort: n = 1,594; A+ sub-cohort: n = 1,263.



Table 1. List and description of the neuropsychological variables included in this study

Associated cognitive

Variable Acronym NACC Descriptor
ability
Category Fluency CFT "Total number of category-related words ~ Semantic verbal
Task named in 60 seconds" fluency
Digit Span "Number Span Test: Forward - Number ~ Verbal attention
DSF
Forward of correct trials"
Digit Span "Number Span Test: Backward - Number ~ Verbal attention/
DSB
Backward of correct trials" Working memory
Trail Making Test "Trail Making Test Part A - Total number  Visual attention
TMT-A
Part A of seconds to complete"
Trail Making Test "Trail Making Test Part B - Total number  Visual attention/task
TMT-B
Part B of seconds to complete" switching
Craft Story 21 "Craft Story 21 Recall (Immediate) - Episodic memory
i Story IR *#*
Immediate Recall Total story units recalled, verbatim
Craft Story 21 "Craft Story 21 Recall (Delayed) - Total ~ Episodic memory
Story DR #**
Delayed Recall story units recalled, verbatim scoring"
Multilingual MINT "Multilingual Naming Test - Total score" Semantic
Naming Test memory/knowledge
Benson Figure Fig. Copy "Total score for copy of Benson figure" Visuospatial
Copy functioning
Benson Figure "Total score for 10- to 15-minute delayed  Episodic memory
Fig. DR #**
Delayed Recall drawing of Benson figure"
Letter Fluency "Total number of correct F-words and L-  Phonemic fluency
LFT
Task words"

*#% 1dentifies the measures of episodic memory against which the study hypothesis was

tested



Table 2. Description of demographic and clinical variables of the selected cohort

Missing Missing
Variable A+ A- ) n% A+T+ A-T- )2 "’
Data Data

Age (years) 70.32 (8.73) 69.18 (8.86) ook 67.73 (9.41) 68.14 (9.60) 0.471
Education (years) 16.31 (2.79) 16.32 (2.78) 0.390 17.52 (9.94) 16.98 (7.96) 0.300

Sex (F/M) 616/647 835/759 0.055 202/240 375/359 0.189
Handedness (L/R/A/M) 132/1098/21/0 158/1398/26/0 0.882 50/376/9/7 81/635/11/7 0.614
CDR-Global (0/0.5/1/2/3) 257/697/270/36/3  887/580/101/24/2 ook 59/263/104/14/2  403/269/49/12/1 ook

MoCA 20.17 (5.95) 24.31 (4.52) 17/6 ook 19.21 (6.02) 24.27 (4.60) 9/4 ook

CFT 12.67 (5.80) 16.07 (5.85) 0/0 ko 0.077  11.82(5.69) 16.03 (6.10) 0/0 *ak o 0.101
DSF 7.15 (2.44) 7.84 (2.50) 0/0 ko 0.019 6.81 (2.49) 7.79 (2.47) 0/0 ko 0.039
DSB 5.44 (2.43) 6.45 (2.37) 0/2 ko 0.042 5.09 (2.35) 6.38 (2.44) 0/1 ko 0.063
TMT-A 52.99 (36.42) 37.39 (22.68) 0/2 ko 0.064 58.42 (40.48) 36.94 (23.83) 0/2 ki 0.100
TMT-B 143.64 (87.60) 98.64 (64.01) 177/73 ko 0.080  152.15(89.03) 97.88 (66.57) 81/47 *rEk0.106



Story IR

Story DR
MINT
Fig. Copy
Fig. DR

LFT

12.78 (8.23)

8.70 (8.50)
27.09 (5.43)
13.99 (3.76)

5.89 (4.87)

23.48 (9.62)

19.14 (8.20)

15.95 (8.46)
28.75 (4.64)
15.33 (1.78)
10.08 (4.09)

25.39 (9.72)

0/0

0/0

5/16

0/0

7/9

7/9

skokok

dkkok

dkkok

skkok

dkokok

skokok

0.129

0.153

0.026

0.053

0.179

0.010

11.25 (7.57)

7.49 (7.60)
26.54 (5.85)
13.36 (4.23)
5.21 (4.71)

22.34 (10.00)

18.55 (8.29)

15.65 (8.43)
28.89 (4.48)
15.30 (1.89)
10.25 (4.09)

25.63 (10.12)

0/0

0/0

3/12

0/0

2/6

4/5

skkok

skkok

dkokok

dkkok

dkokok

skokok

0.163

0.192

0.049

0.090

0.241

0.025

Means and standard deviations are shown. Between-group differences were tested with between-sample ANOVAs. A: ambidextrous; L: left; M:

missing; R: right; #%: partial eta squared; ***: p <0.001



Table 3. Summary of NCT statistics

Test
Statistic Use Formula Explanation
An omnibus test. Largest absolute value indicating
NCT-based comparison of L )
M M 12 = mi?x W;j — Wij between-group differences in edge weights (i.e., E-

global network structure

statistics)

NCT-based comparison of

p
s Swtu? = ‘Z PR )
i=1 Jj>i

Invariant global ST/EI: Absolute difference in global

global centrality ST/EI between groups
NCT-based comparison of
E E i, = |0 — w?
edge weights Between-group absolute difference in edge weights

o' and o’ indicate the same edge of two different networks (e.g., that of the A+ and that of the A- groups). EI: Expected influence; NCT:

Network comparison test; ST: Strength



Entire
cohort

NACC database
Participants: n = 44,359

(Observations: n = 162,249)

v v
AD biomarkers available AD biomarkers not
(AB only, or AR and pTAU) available
g Participants: n = 3,643 (Observations: n = 7,447) Participants:
g Number of timepoints with biomarker availability n=40,716
& (Observations:
= One: n=1,732 Four: n =320 Seven:n=3 n = 154,802)
2 Two: n = 833 Five: n = 158 Eight: n=1
15 Three: n = 542 Six: n = 54
ks {
@ Timepoint of biomarker selection 2500
s P - TP11:n=25
|| TP:n=1,683 + TP6:n=148 =+ TP12:n=17 2000
£ « TP22n=672 =+ TP7:n=129 « TP13:n=7 || _
@ « TP3:n=310 =+ TP&n=102 - TP14:n=4 || S1s0
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32| [ TP2n=301 « TP6:n=114 . TP10:n=38 NACCVNUM-BIOM —
7 = + TP3: n=223 *« TP7:n=62 =« TP11:n=15 NACCVNUM-COGN
=] |° TP4:n=198 + TP8: n =56 distance (TPs)
22 [
€° ¥ 3
S Databases with < 1 missing test score Databases with > 1 missing test scores
(n =2,857) (n=786)
............................. L
0
5 v 1
o A+ A- No pTAU-related
3 Model 1 information available
§ (n=1,263) (n=1,594) (n =1,420)
g ................................................................................... A
[ — Frrreer e { L ............ !
? A+T+ A-T- : A-T+ (n=104)
i Model 2
S (n=442) (n=734) A+T- (n = 157)
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Supplementary Figure S1
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Effect of partialisation on test-to-test dependencies. The diagonal dotted line separates
decreases from increases in correlational strength. The two horizontal dotted lines mark the
interval of conditional associations between rho = -0.1 and rho = 0.1. Nonconditional and
conditional associations are indicated in Supplementary Table S1 as “NCD” and “CD”,
respectively. A+: Amyloid positive; A-: Amyloid negative; T+: Tau positive; T-: Tau
negative. Data points (i.e., n = 220) represent the 4 set of 55 edges calculated across all sub-
cohorts. As this is a descriptive scatterplot, no statistical association is shown between the

two variables.
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separation of test scores into distinct cognitive domains, as done in Figure 2. Centrality
measures are indicated on the y axis, i.e., EI in the upper half of the graph (A), ST in the lower
half of the graph (B). For nonstandardised centrality metrics, please see Figure 3. All test
abbreviations are defined in Table 1. A+: amyloid positive; A-: amyloid negative; T+: tau

positive; T-: tau negative. Sub-cohort information: A- sub-cohort: n = 1,594; A+ sub-cohort: n

=1,263; A-T- sub-cohort: n = 734; A+T+ sub-cohort: n = 442.




Supplementary Table S1. Test-to-test (i.e., internodal) associations in the four sub-cohorts

Edge

A+

NCA CA EW NCA CA EW

A+TH+-

A-T-

NCA CA EW NCA CA EW

Story DR - CFT

Story DR - MINT

Story DR - TMT-A
Story DR - TMT-B
Story IR - CFT
Story IR - Story DR
Story IR - DSB
Story IR - DSF
Story IR - MINT
Story IR - TMT-A
Story IR - TMT-B
DSB - CFT

DSB - Story DR
DSB - MINT

DSB - TMT-A
DSB - TMT-B
DSF - CFT

DSF - Story DR

DSF - DSB

0.39 0.038

0.21-0.041

0.023

0.03 -0.080 -0.066

0.17-0.026

0.47 0.135

0.78 0.706

0.28 0.048

0.20 0.014

0.32 0.117

0.14 0.004

0.27 0.082

0.39 0.097

0.20 0.036

0.24 -0.053

0.37 0.080

0.46 0.207

0.35 0.069

0.13-0.016

0.51 0.369

0

0.161

0.663

0.059

0

0.071

0.066

0.082

0.059

0.210

0.069

0.356

0.34 0.055

0.32 0.057

0.10-0.034

0.17-0.008

0.35 0.060

0.85 0.817

0.21 0.011

0.17 0.065

0.31 0.044

0.13 0.000

0.20 0.034

0.27 0.040

0.19 0.039

0.16 -0.051

0.28 0.023

0.36 0.167

0.21 0.000

0.13-0.054

0.50 0.431

0.051

0.057

-0.018

0.068

0.793

0.036

0.022

0.042

0.018

0.036

0.003

0.008

0.170

0

0

0.415

0.41 0.064

0.20-0.083

0.04 -0.084

0.20-0.010

0.51 0.159

0.78 0.678

0.33 0.024

0.26 0.017

0.33 0.112

0.15-0.011

0.32 0.128

0.43 0.099

0.24 0.042

0.31 0.044

0.39 0.116

0.52 0.242

0.40 0.106
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TMT-A and TMT-B test score residuals were multiplied by -1 prior to the calculation of

correlation coefficients. NCA: Non-Conditional Associations (Standard Spearman’s rho-

coefficient of correlation); CA: Conditional Associations (Spearman’s rho coefficient of

partial correlation); EW: Edge Weight. Negative correlation coefficients and edge weights are

indicated in bold.



Supplementary Table S2. Node variability and centrality metrics

A+ A- A+T+ A-T-
Node SD El ST SD El ST SD El ST SD El ST
Node standard deviations and non-standardised centrality scores

CFT 4.778 1.122 1.122  5.073 0.908 0.908 4907 1.088 1.088  4.976 0.853  0.853
DSF 2.359 0.654 0.681  2.415 0.591 0.591 2394 0.698 0.698  2.384 0.572  0.572
DSB 2.211 0.906 0906  2.187 0.864 0.864 2.128 0933  0.933 2.221 0.894  0.894
TMT-A 31.558 0946  1.077 20.334 0.858 0.894 35291 0946 1.053 21.122 0.762  0.762
TMT-B 77.057  0.884  0.884 56.377 0.995 0.995 81.126 0.878 0.878 55346  0.957 0.957
Story IR 6.914 1.020  1.020  7.003 0.983 0983 6.730 1.037 1.037  6.880 0.930  0.930
Story DR 7.101 0962 1.183  7.048 1.004 1.115 6979 0964 1.133 6.961 1.079  1.101
MINT 4.959 0.624  0.624  4.302 0.642 0.642 5494 0576 0.576  4.221 0.600  0.600
Fig. Copy  3.448 0.492  0.582  1.823 0.475 0.550 3.863 0.459  0.520 1.926 0.524  0.546
Fig. DR 3.990 0.541  0.621  3.448 0.615 0.672  4.079 0.492  0.525 3.445 0.567  0.567



LFT 8.874 0.735  0.787  8.915 0.741 0.799 9.198 0.747  0.780 9.187 0.773  0.773

Node standard deviations and standardised centrality scores

CFT 4.778 1.506 1.190 5.073 0.645 0.482 4907 1300 1.078 4.976 0.424 0.401
DSF 2359  -0.735 -0.831 2415 -1.068  -1.241 2394 -0471 -0.606 2384  -1.080 -1.096
DSB 2211 0470 0.199  2.187 0.406 0.241  2.128 0.594  0.407 2.221 0.642 0.617

TMT-A 31.558  0.660 0983 20.334 0.373 0.406 35291 0.653 0927 21.122 -0.064 -0.085

TMT-B 77.057 0366 0.099 56.377 1.115 0954 81.126 0349 0.173 55346 0.984 0.958

Story IR 6.914 1.016 0.722  7.003 1.049 0.888 6.730 1.070  0.860 6.880 0.839 0.814

Story DR 7.101 0.739  1.471  7.048 1.162 1.608 6.979 0.737 1.271 6.961 1.636  1.724

MINT 4959  -0.879 -1.091 4.302 -0.794  -0.966 5494 -1.025 -1.133 4221  -0.930 -0.947

Fig. Copy  3.448  -1.515 -1.287 1.823 -1.694  -1.462 3.863 -1.552 -1.371 1.926  -1.338 -1.236

Fig. DR 3990 -1.277 -1.108  3.448 -0.939  -0.799 4.079 -1.406 -1.353  3.445 -1.110 -1.126

LFT 8.874  -0.351 -0.346 8.915 -0.255  -0.111  9.198 -0.249 -0.253  9.187  -0.002 -0.023

The correlations between SD and centrality metric are reported in Supplementary Table S3. EI: Expected influence; SD: Standard

deviation ST: Strength



Supplementary Table S3. Correlations between node standard deviation and centrality

A+ A- A+T+ A-T-
Sub-Cohort El ST El ST El ST El ST
SD
Non-standardised centrality metrics
A+ SD 0.182 0.222
A-SD 0.432 0.472
A+T+ SD 0.195 0.211
A-T- SD 0.375 0.386
Standardised centrality metrics
A+ SD 0.182 0.222
A-SD 0.432 0.473
A+T+ SD 0.196 0.212
A-T- SD 0.376 0.387

Pearson’s r coefficients (and p-values) are indicated. n» = 11 in these models.

EI: Expected influence; SD: Standard deviation ST: Strength
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