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Abstract 

Although network neuropsychology is a promising approach to the study of clinical profiles, the 

link between Alzheimer’s disease biomarkers and neuropsychological networks is still 

undetermined. We hypothesised that network differences would exist between biomarker-positive 

and biomarker-negative participants, and that these would be driven by network nodes 

corresponding to performance on tests of episodic memory, as this is the cognitive domain most 

distinctively affected by Alzheimer’s disease since the earliest clinical stages. 

In this case-control study, we investigated sub-cohorts of individuals who had been 1) enrolled in 

the National Alzheimer’s Coordinating Center initiative, and 2) tested with Version 3 of the 

Uniform Data Set neuropsychological battery (i.e., consisting of 11 tests). These included 1,263 

“β-amyloid positive” (A+), 1,594 “β-amyloid negative” (A-), 442 “β-amyloid and 

hyperphosphorylated tau positive” (A+T+), and 734 “β -amyloid and hyperphosphorylated tau 

negative” (A-T-) participants. We first calculated neuropsychological residuals by regressing out 

age, years of education, sex, Clinical Dementia Rating scores, and timepoint distance between 

neuropsychological and biomarker assessment. Secondly, we used rank-based correlations to 

define conditional associations across all pairs of test scores (i.e., the nodes of the network). 

Thirdly, we imposed a penalty (i.e., via the Least Absolute Shrinkage and Selection Operator 
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method) to control for network sparsity. We then tested for differences in global network metrics 

and node centrality between A+ and A-, and between A+T+ and A-T- participants using 

permutation-based inferential models. 

Differences were found between biomarker-positive and biomarker-negative sub-cohorts in global 

network metrics but, contrarily to our hypothesis, no differences were found in relation to episodic 

memory nodes. A significant node difference, however, was instead found in relation to Category 

Fluency (i.e., a test of semantic memory), with increased centrality observed among A+ 

participants. A similar, yet nonsignificant trend was also observed between A+T+ and A-T- 

participants. 

Network neuropsychology can complement and expand the study of cognitive performance carried 

out via “traditional” univariate approaches. While univariate analyses reveal episodic memory 

decline in people with Alzheimer’s disease, this is not accompanied by any abnormalities at a 

neuropsychological network level. Our findings, however, highlight the importance of semantic 

memory alterations in A+ individuals. The wide set of neural and cognitive resources that sustain 

semantic memory may play a supportive role in the presence of neuropathology. 
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Introduction 

As the leading cause of dementia worldwide,1 the pursuit for earlier identification of Alzheimer’s 

disease (AD) remains at the forefront of research. Diagnostic protocols have recently shifted from 

classic clinical approaches towards biomarker definition. The ATN framework,2,3 where “A” = 

Amyloid β (Aβ), “T” = tau, and “N” = neurodegeneration, outlines an unbiased biological 

construct for classifying AD based on pathological markers at symptomatic and pre-symptomatic 

disease stages. More recently, plasma biomarkers have shown similar promise for identifying AD 

pathology in-vivo.4 However, the application of biological frameworks in clinical settings is 

subject to significant debate, owing to uncertainty surrounding prognosis of biomarker-positive 

cognitively unimpaired individuals who may never develop the clinical syndrome.5,6 While the 

criteria of the National Institute of Aging-Alzheimer’s Association define Aβ-positive 

asymptomatic individuals as having preclinical AD,2,3 clinical recommendations from the 

International Working Group consider biomarker positivity in asymptomatic individuals an 

indication of AD risk rather than diagnosis.7-9 Accumulation of AD biomarkers decades prior to 

observable changes in cognition emphasises the enduring need for sensitive phenotypic correlates 

of biomarker positivity to corroborate diagnosis in the earliest stages.6 

In clinical stages, the relationship between AD pathology burden and cognitive function is most 

heavily mediated by neurofibrillary tangles (NFT), an aggregate of hyperphosphorylated tau.8-12 

Although studies often fail to demonstrate a linear relationship between Aβ burden and cognitive 

impairment, Aβ positivity is a significant predictor of later cognitive impairment and disease 

progression in prodromal and preclinical populations,13,14 emphasising its utility in identifying 

AD-related pathologic change and dementia risk. Cognitive measures have also demonstrated an 

ability to predict progression to Aβ positivity in individuals with sub-threshold evidence of 
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pathology,15,16 evidencing the bidirectional benefits of neuropsychological markers over 

biomarkers alone.  

Evidence shows that biomarker-positive individuals often exceed thresholds of cognitive 

‘normality’, owing to a range of physiological, psychological and strategic compensatory 

mechanisms.17-21 Significant correlations have been found between early NFT deposition and 

cognition in otherwise unimpaired older adults,22,23 despite early histopathological studies 

suggesting these stages are asymptomatic,24,25 demonstrating the propensity for proteinopathies to 

influence cognitive function at a sub-clinical level. Cognitive reserve has been proposed as a 

potential mechanism involved in this process; inter-individual variance in capacity, efficiency, or 

flexibility of neural functions, that can support normal cognition despite age or disease-related 

neuronal insult.26 Aside from pre-morbid factors such as education,17 this may manifest through 

greater flexibility in the use of cognitive strategies,27 or neural compensation, particularly within 

networks underlying executive control.19,28,29 In preclinical AD, normal cognitive performance 

may therefore reflect reorganisation in both cognitive and neural processes. Nuanced cognitive 

change may, therefore, be best identified not by domain specific tasks but at the level of the 

cognitive network. 

Cognition is far from a purely segregated set of processes. Rather, successful cognitive functioning 

requires a dynamic interplay between cognitive domains. Characterisation of cognitive profiles 

according to network analysis has given rise to the development of a sub-discipline known as 

“network neuropsychology”.30 This has revealed observable and measurable differences in 

cognitive network topology at clinical, prodromal and even preclinical AD stages.31-37 The benefit 

of network models lies in their ability to detect highly nuanced changes beyond that of the test 

scores that typically contribute towards clinical diagnosis. Taking a non-reductionist approach 
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allows for the identification of AD-related changes in network-level phenomena which, at a 

preclinical stage, may be facilitating normal performance. It is on these premises that multivariate 

network-based approaches can expand the study of neuropsychological functioning that is 

normally carried out with more standard univariate analyses. 

The aim of this study was to identify differences in cognitive networks related to Aβ and tau 

positivity. We hypothesised that differences in network topology exist between individuals testing 

positive and negative for AD biomarkers relating to their increased risk of dementia. Based on 

extensive evidence showing episodic memory to be the domain most heavily and consistently 

impacted by AD pathology,23,38 we expected the largest differences in network metrics to be 

identified in tasks evaluating this function. 

Material and methods 

A case-cohort study was designed to test the study hypothesis. Methods are reported in line with 

guidelines on psychological network analyses.39 

Cohort Selection 

The National Alzheimer’s Coordinating Center (NACC) initiative (https://naccdata.org/) is a 

freely-available repository of data coordinated and curated by the National Institute of Aging, via 

the NIA Alzheimer's Disease Research Centers (ADRC) programme. Established in 1999, NACC 

integrates and harmonises clinical data from over 42 current or former ADRC across the USA. 

To address the study question, we searched the entire NACC database at one of its most recent 

data freezes (consisting of 44,359 unique participants and, collectively, 162,249 study visits) for 

study visits that included information on AD biomarkers. The main milestones of the entire process 

https://naccdata.org/
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of selection are shown in Figure 1. We initially focussed on Aβ only, relying on the “AMYLPET” 

and “AMYLCSF” variables; these indicate “abnormally elevated amyloid on PET” and 

“abnormally low amyloid in CSF”, respectively (i.e., definitions taken from the NACC researchers 

data dictionary, available at https://files.alz.washington.edu/documentation/uds3-rdd.pdf). This 

resulted in 7,447 study visits with information on Aβ (obtained from 3,643 unique participants) 

being retained. We defined as “Aβ positive” (A+) all study visits with at least one (i.e., CSF or 

PET) Aβ abnormality. This led to 3,662 (49.17%) visits marked as Aβ+ and 3,785 (50.83%) visits 

marked as Aβ negative (A-). The total number of study visits attended by these 3,643 participants 

was equal to n = 15,093. 

As information on Aβ status for these participants was available for 1-to-8 study visits, we selected 

the first one to define group membership (i.e., A+ or A-). We then classified the 7,447 study visits 

to quantify those with information on phosphorylated tau status too. To do so, we focussed on the 

“TAUPETAD” and “CSFTAU” variables, with the same approach as that adopted for “AMYLPET” 

and “AMYLCSF”. A total of 3,491 study visits out of 7,447 (46.88%) had information on tau, with 

1,542 being tau positive (T+) and 1,949 being tau negative (T-). The study visits with information 

on both biomarkers thus distributed as follows: A-T-: n = 1,567; A -T+: n = 259; A+T-: n = 382; 

A+T+: n = 1,283. 

We then reviewed all group memberships by identifying those with information on Aβ status only 

that also had a subsequent study visit with information on both Aβ and tau status, and replaced 

biomarker information accordingly (i.e., 95 cases in total). 

All activities carried out as part of the NACC initiative comply with the Declaration of Helsinki 

on ethical principles regarding human experimentation. Ethical approval was obtained from a 

dedicated institutional review board at each ADRC, and written informed consent was collected 

https://files.alz.washington.edu/documentation/uds3-rdd.pdf


8 
 

from each recruited participant (https://naccdata.org/requesting-data/nacc-data). Local ethical 

approval for secondary data analyses was received by the College of Health, Medicine and Health 

Sciences Ethics Committee at Brunel University of London (Review Reference: 50702-NER-

Mar/2025-53965-1). 

Please insert Figure 1 about here 

Three different batteries of neuropsychological tests have been used over the years to characterise 

cognitive performance of NACC participants. As per the identification of biomarker status, we 

identified the first available set of neuropsychological test scores for each participant. This 

corresponded to the first study visit for all participants. Of these assessments, 188 had been carried 

out using Version 1, 1,059 using Version 2, and 2,396 using Version 3 of the Uniform Data Set 

neuropsychological battery.40 As most cognitive assessments had been carried out using Version 

3, we reviewed the database to identify the first Version-3 assessment for those originally tested 

with Version 1 or 2 at study visit 1. 

The neuropsychological battery included 11 test scores. These are listed and briefly described in 

Table 1 (i.e., this highlights the three tests of episodic memory targeted by the study hypothesis). 

All cognitive profiles were reviewed to count the number of missing datapoints. Consistent with 

our previous work,31 we removed all participants who had more than one missing score. This was 

to ascertain that each participant would contribute to the calculation of network descriptors and 

metrics in a balanced way. A total of 2,857 participants were retained (A-: n = 1,594; A+: n = 

1,263). The resulting analyses used data from 30 ADRCs. Of those with information on tau, their 

status distributed as follows: A-T-: n = 734; A -T+: n = 104; A+T-: n = 157; A+T+: n = 442). As 

network modelling requires adequately large samples, the two groups with discordant biomarker 

https://naccdata.org/requesting-data/nacc-data
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status were not further considered. While the A+T- configuration defines the “initial” biological 

stage of disease (or “Stage A”),3 an A-T+ status reflects a “non-AD pathologic change”,2 and were 

discarded for this reason. As the sub-cohort of A+T- participants was not sufficiently large for the 

planned analyses, we focussed on the biological presence vs. absence of disease, and not on any 

intermediate disease stage. The demographic and clinical characteristics of the final set of cohorts 

is described in Table 2. 

Please insert Table 1 and Table 2 about here 

Figure 1 also includes information on the exact NACC timepoints at which biomarker status 

information and Uniform Data Set -Version 3 cognitive assessment were selected. In the majority 

of cases (81.6%), the two were extracted from the same timepoint or at a distance of 1 timepoint 

only, while 9.5%, 5.6%, 2.5%, 0.6% and 0.1% were extracted at a distance of 2, 3, 4, 5 or 6 

timepoints, respectively. 

Neuropsychological profiles 

As performance in neuropsychological tests is influenced by demographic characteristics and by 

clinical status, linear regression models were carried out to calculate neuropsychological residuals. 

Before these calculations, TMT-A and TMT-B scores were multiplied by -1, to align with the 

pattern among other cognitive measures where higher values indicate better performance. Age, 

years of education, sex, the global CDR® Dementia Staging Instrument (CDR) score, and the 

difference (expressed in timepoints) between biomarker and cognitive assessment were regressed 

out to this end. A+ participants scored significantly worse than A- participants on 9 out of 11 

residuals at p < 0.001. No differences were observed in relation to LFT (t2839 = 1.653, p = 0.098) 
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or MINT (t2500.434 = 1.658, p = 0.097). In the sub-cohort of participants with Aβ and tau information, 

A+T+ participants scored significantly worse than A-T- participants on 8 out of 11 residuals at a 

p < 0.001, on 1 residual at a p = 0.002, and on 1 further residual at a p = 0.008. No differences 

between A+T+ and A-T- individuals were found on MINT (t1425 = 1.151, p = 0.250). All these 

descriptives were obtained via two-tailed t-tests. 

Network Creation 

We followed the methodology described by Epskamp and colleagues,41,42 and already applied in 

our previous publication,31 to calculate four distinct neuropsychological networks, i.e., in A+, A-, 

A+T+, and A-T- individuals. The R processing environment (version 4.2.1; https://www.r-

project.org) with the bootnet (version 1.6; https://cran.r-

project.org/web/packages/bootnet/index.html) and the qgraph (version 1.9.8; https://cran.r-

project.org/web/packages/qgraph/qgraph.pdf) libraries were used for this purpose. 

As data were not normally distributed, we used Spearman’s rho coefficients of correlation to 

calculate pairwise nonconditional associations. Spearman’s rho was also used to calculate 

conditional associations, i.e., pairwise statistical associations that are partialised for all remaining 

test scores, in line with recommendations.43 As 11 tests (i.e., the nodes of the network) were 

included in the procedures, a total of 55 (n × (n– 1) / 2) associations (i.e., the edges of the network) 

were calculated. It is widely established in the neuropsychological literature that test performance 

tends to be positively correlated across cognitive domains,44,45 and the calculation of 

nonconditional associations reported in Supplementary Table S1 confirms this trend. Conversely, 

conditional associations were considerably weaker, with only 57 of the 220 measures calculated 

across all 4 sub-cohorts being above 0.1 or below -0.1, (Supplementary Table S1; 

https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/web/packages/bootnet/index.html
https://cran.r-project.org/web/packages/bootnet/index.html
https://cran.r-project.org/web/packages/qgraph/qgraph.pdf
https://cran.r-project.org/web/packages/qgraph/qgraph.pdf
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Supplementary Figure S1): A procedure was applied at this stage to control for the degree of 

sparsity and discard edges that are irrelevant to the network.41,42 Least Absolute Shrinkage and 

Selection Operator (LASSO) is a method that minimises the equation that consists of the sum of 

the statistical residuals plus a λ penalty applied to the (absolute value of the) statistical coefficient.46 

The choice of the adequate λ is based on the value that minimises the Extended Bayesian 

Information Criterion (EBIC). EBIC is an extended family of the Bayesian Information Criterion 

(BIC) that adds to its formula a component accounting for the size of the collection of models. 

This additional component is regulated by the hyperparameter γ, which can range between 0 and 

1.47 When γ is 0, the additional component is equal to 0 and EBIC = BIC, while a value of 0.5 (the 

value we selected) typically prioritises specificity and is used as the default value.43 

The application of the LASSO resulted in ~32% of all edges being discarded (see Supplementary 

Table S1 for the entire set of unconditional associations, conditional associations, and edge 

weights). To assess variability of network edges, a simulation study was carried out within each 

sub-cohort, by bootstrapping edge weight via n = 1,000 random-sampling repetitions.41 The results 

indicate an excellent overlap between the model value and the bootstrapped mean and only modest 

variability (Supplementary Figure S2). 

Calculation of Network Centrality 

Network centrality can be thought of as the amount of connectivity a node shares within the 

network system. While a wide number of path-based centrality metrics such as Degree or 

Betweenness Centrality are commonly applied to unweighted networks such as those typically 

estimated from resting-state functional MRI,48 centrality metrics that are based on edge weights 

are instead particularly suited (and easy to interpret) for characterising weighted networks.49 In 
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this study, we calculated global and nodal one-step Expected Influence (EI) and Strength (ST) as 

measures of network centrality. When computed on a node, EI consists of the arithmetical sum of 

all weights of the edges that link that node to other nodes, with negative edges retaining their 

negative sign in this calculation.50 Nodal ST is conceptually similar to Nodal EI, but the 

arithmetical sum is calculated on the absolute value of all edge weights. Despite the very small 

number of negative edges, i.e., 11 out of all 220 edges calculated across all sub-cohorts 

(Supplementary Table S1), we decided to investigate both EI and ST to characterise their impact. 

Global EI is the sum of all edge weights, with positive and negative signs maintained in the 

network, whereas Global ST is the absolute sum of all edge weights.  

Stability of centrality metrics was assessed by re-calculating these in n = 1,000 random samples 

subjected to a progressively increasing (i.e., 5% to 75%) case drop.41,42 The correlation between 

model centralities and centralities obtained from random sampling was very high (Supplementary 

Figure S3), with very limited variability, indicating excellent stability. 

Additionally, as inter-node correlations (and, in turn, centrality) can be affected by differential 

node variability,51 we inspected the correlations between node standard deviation and both ST and 

EI (Supplementary Table S2). All correlations were non-significant (Supplementary Table S3), 

ruling out any effect of this mechanism. 

To explore subdivision of neuropsychological profiles into communities, an exploratory graph 

analysis was run for each network using the Louvain community-defining algorithm.52 This 

method separates subsets of highly-interconnected nodes by identifying the solution (out of 1,000 

iterations) that maximises network modularity, i.e., a value ranging between -1 and +1 that 

leverages between-community and within-community edge density. A confirmatory factor 
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analysis was then run to evaluate the fit of the community structure. The output indicated poor fit 

of communities, with root mean square error of approximation values exceeding 0.09, i.e., A+: 

0.117; A-: 0.094; A+T+: 0.116; A-T-: 0.098. As communities were not meaningful in these sub-

cohorts, these results were not analysed further. 

Statistical Analysis 

The network comparison test (NCT) was used to statistically compare global and nodal centrality 

metrics across the network models for A+ and A- (Model 1) and those for A+T+ and A-T- (Model 

2) individuals.53 The permutation-based NCT works by first estimating and comparing network 

models and accompanying graph theory metrics (i.e., global network invariance, and Global and 

Nodal ST/EI) for two groups (e.g., A+ and A- individuals). This gives rise to a test-statistic (see 

Table 3 for an explanation of the test statistics reported in this study). Next the two data sets are 

merged into one larger data set and participants are randomly reassigned to two new groups, 

irrespective of their A+ or A- (or A+T+ / A-T-) status. Two new network models, with 

corresponding graph theory metrics, are re-estimated, and compared. This permutation process is 

performed 1,000 times, giving rise to a null distribution which the test statistic (i.e., a difference 

between the two original network models) is compared against. An alpha level of 0.05 was set and 

Holm-Bonferroni correction for multiple comparisons was used. This latter correction was applied 

to accommodate all comparisons, and not just those associated with the three episodic memory 

nodes (i.e., Fig. DR, Story IR, and Story DR). 

Please insert Table 3 about here 
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Results 

Model 1: Effect of amyloid positivity on cognitive networks 

A significant difference was found between the two groups in the general structure of the network 

(M = 0.232, p < 0.001). Density (0.673 versus 0.709) and average edge weight (0.081 versus 0.079) 

were descriptively very similar across A+ and A- models. No difference was found in Global EI 

(S = 0.106, p = 0.140) or Global ST (S = 0.231, p = 0.200). The three episodic-memory nodes 

showed no differences in Nodal EI or ST between the two groups (all p-values > 0.05). Edge 

weights between Story IR and Story DR (p = 0.055), Story IR and CFT (p = 0.055), and Story DR 

and Fig. DR (p = 0.055) were marginally significantly stronger in the A+ model compared to the 

A- model after correction for multiple comparisons. A statistically significant centrality difference 

was found in relation to CFT: A+ individuals showed higher levels of both Nodal ST and Nodal 

EI than A- individuals (p = 0.022 for both centrality metrics, Holm-Bonferroni corrected). 

Networks are shown in Figure 2, and non-standardised centrality for this and the other nodes are 

shown in Figure 3 (while standardised centralities are shown in Supplementary Figure S4). 

To characterise the nature of this difference in nodal centrality, we used the NCT to analyse the 

between-group differences in CFT edges. Although a pattern of differences was found (Figure 

4A), no edge reached statistical significance. A trend of significance was noted in correspondence 

to the CFT-Story IR edge (E = 0.093, p = 0.055, Figure 4B-C). 

Please insert Figure 2, Figure 3 and Figure 4 about here 
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Model 2: Effect of amyloid and tau positivity on cognitive networks 

A significant difference was found between the two groups in the general structure of the network 

(M = 0.222, p = 0.004). Density (0.636 versus 0.618) and average edge weight (0.080 versus 0.077) 

were descriptively very similar across A+T+ and A-T- models. No difference was found in Global 

EI (S = 0.152, p = 0.264) or Global ST (S = 0.332, p = 0.320). As can be seen from Figure 3, the 

patterns shown by Model 2 groups were very similar to those shown by Model 1 groups. No 

between-group differences in EI or ST, however, were found for any of the nodes. Edge weights 

between Story IR and Story DR (p = 0.055), Story IR and CFT (p = 0.055), and Story DR and Fig. 

DR (p = 0.055) were marginally significantly stronger in the A+T+ model compared to the A-T- 

model after correction for multiple comparisons. 

Discussion 

Patterns of neuropsychological network topology related to Aβ and tau positivity were tested. 

Retrospective examination of the NACC dataset identified 2,857 participants with available 

biomarker and neuropsychological data. Networks created using data from 11 neuropsychological 

tests after controlling for demographic and clinical variables were compared between A+ and A- 

groups, and A+T+ and A-T- groups. In both cases, biomarker positivity was associated with a 

significant difference in general network structure. Contrary to our initial hypothesis, we found no 

significant differences in network metrics related to episodic memory. A significant difference in 

centrality was evident between A+ and A- groups for the CFT, with a trend indicating this was 

largely driven by edge weight between CFT and Story IR in the context of the wider network 

model. Such a finding was evident for both ST and EI, reflecting the absence of negative edges in 
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relation to CFT. Although this finding only emerged as a trend approaching significance in the 

model including tau, the pattern of edges contributing to CFT centrality was similar in both models. 

Network analysis literature on cognition in AD is currently in the relatively nascent stages. As 

such our hypothesis that episodic nodes will demonstrate the greatest between-group differences 

was theoretically formed on the basis of the widely reported declines in episodic memory related 

to AD pathology.23,38 In the current study, significant differences were observed between 

biomarker-negative and biomarker-positive groups across all cognitive domains, including every 

episodic memory task. What these findings therefore emphasise is the utility of network metrics 

in capturing characteristic differences in cognitive profiles beyond the level of numerical 

differences in task scores. Previous network studies have similarly identified comparable strength 

centralities of episodic memory nodes within cognitively normal older adults as in clinical AD 

groups.32,34 Such findings therefore suggest that episodic memory performance may be influential 

in the cognitive network of healthy older adults even in the absence of observable declines in task 

performance.  

CFTs show moderate-to-high EI,31 ST,32,34 closeness and/or betweenness centrality,34,35,37 in 

cognitive network models of clinical AD dementia. High centrality of CFTs in cognitive networks 

may reflect how multifaceted this task is. CFTs are characterised by their interrogation of both 

semantic memory and executive functions,54 e.g., writing a shopping list in by shifting across 

different categories. Semantic processing alone depends on converging multi-modal information 

from widespread modality-specific cortical areas.55 In their Hub-and-Spoke model,55 Lambon 

Ralph and colleagues indicate that semantic knowledge is represented in a distributed network of 

modality-specific brain regions, sending and receiving information to and from an amodal anterior 

temporal hub. This highlights the large-scale topology (and cytoarchitectural diversity) of the 
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resources sustaining semantic processing. In addition, CFTs also, require semantic control. 

Controlled retrieval processes rely on an interacting but largely separate network, cross-talking 

with working memory and executive functions, distributed within prefrontal and temporoparietal 

areas.55 That CFTs elicit such widespread cortical activations,56 indicates a pivotal role of 

semantic-executive processing in supporting neuropsychological functioning at a wider network 

level. Accordingly, common areas of neural activity have been identified during episodic, semantic 

and working memory tasks,57-59 and processing speed and executive functioning are suggested to 

contribute to verbal fluency performance and impairments in older adults.60,61 The multifaceted 

nature of CFTs may further explain why similar group differences in centrality metrics were not 

identified in the MINT, a task which specifically interrogates semantic knowledge. The MINT task, 

which, unlike the CFT, involves the presentation of an external visual cue, may elicit a purer 

semantic recognition response that is more readily dissociable from executive contributions to the 

controlled retrieval aspect of verbal fluency tasks.55 Similarly, despite the shared retrieval 

processes of CFTs and LFTs, the lack of a semantic component may explain why the centrality of 

the LFT showed no meaningful differences between groups. The two tests have different 

diagnostic properties, with CFT scores classifying controls and people with AD more accurately 

than LFT.62  In the present study, the main edge contributing to differences in CFT centrality 

between both A+ and A- and A+T+ and A-T-, was between CFT and Story IR, with the edge 

between the CFT and MINT demonstrating the second largest difference. Despite classic 

representations of semantic and episodic memory as dissociable processes,63 they are now more 

typically understood as being interdependent,64,65 with episodic memory deficits being found to 

influence CFT in individuals with mediotemporal lobe amnesia.66 Centrality differences in CFT 
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between biomarker groups, appear then, to be largely related to the overlap in episodic and 

semantic memory function, which LFTs do not tap into. 

Recognising the richness and complexity of neurological and neuropsychological functioning is 

of crucial importance in the context of AD research. When AD pathology affects the nervous 

system, it induces cognitive changes that reflect the complexity of the underlying neural substrate, 

and how this “responds” to pathology. Although Aβ and tau both demonstrate a propensity to 

disrupt the semantic network, influencing CFT performance at very early disease stages,22,67 the 

widely-distributed and multifaceted networks that sustain performance on CFTs will allow for part 

of these resources to remain available. In this respect, greater CFT centrality may be explained by 

the mutual interaction it shares with other domains affected in AD, such as episodic memory. 

Experimental and neuroimaging research in conjunction with cognitive theory may clarify the 

source of the association between greater CFT centrality in the A+ group.30 

In the present study, the main edge contributing to differences in CFT centrality between both A+ 

and A- and A+T+ and A-T- (although not statistically significant), was between CFT and Story 

IR, with edges between CFT and MINT and DSF demonstrating the second and third largest 

difference, respectively. Earlier research similarly reported that the edge between the CFT and 

immediate recall on a list-learning task was stronger in the network of early AD patients compared 

with prodromal AD and cognitively-normal controls.32,36 Moreover, dimensionality analysis 

suggested that CFT formed a cluster with age, confrontation naming and immediate list-learning 

recall in early AD, while forming a cluster with tests sensitive to attention, processing speed, and 

executive functioning in the cognitively-normal model.68 The cognitive network model of AD in 

Nevado et al. similarly displayed links amongst CFT and confrontation naming tests (both 

requiring semantic memory) and logical memory, while a control model featured links among 
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CFTs and tasks sensitive to attention, processing speed, and executive functioning.32 Consistent 

associations between CFTs, confrontation naming and list-learning or logical memory tasks among 

AD groups may be explained by mechanisms of compensation reliant on the mutual interaction of 

semantic and episodic memory. Semantic resources, if available, can be used, consciously or 

unconsciously, in support of encoding. Since Craik and Lockhart’s seminal paper,69 it has been 

widely accepted that semantically-mediated encoding facilitates memory performance even in 

anterograde memory paradigms such as immediate logical memory recall, e.g.,70 Given A+ 

individuals are subjected to the effects of a pathology not present in A- individuals, they may 

benefit from increased crosstalk between verbal encoding and semantic processing, paralleling the 

compensatory neural activity that has been identified in A+ groups.18 Greater compensatory 

activation of the semantic network, identified in clinical AD stages,71 may similarly explain 

differences in edge weight between semantic naming and CFT tasks. Ferguson,32,67 hypothesised 

that semantic networks underlying CFT performance support the acquisition of word-list 

memoranda in early AD. This could also apply to logical memory, given that the information to 

be remembered is semantically rich and often consists of memoranda characterised by “semantic 

relatedness”, a property of verbal material that people with AD dementia may benefit from during 

the learning phase.72 However, stronger associations between CFT and episodic memory variables 

in network models could also reflect shared mediotemporal pathological substrates of semantic 

and episodic memory deficits, rather than compensatory relationships per se.67 Indeed, Tosi et al.35 

suggested that the high centrality of category fluency in their AD network reflected temporal-lobe 

semantic-degradation.54,73 

Despite A+ vs. A- comparisons aligning clearly with studies of clinically manifest AD groups,32-

36,68 no significant centrality differences were seen between A+T+ and A-T- subgroups. At both 
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node and edge levels however, the pattern of findings was similar across both biomarker-positive 

groups. The greatest difference in centrality compared with biomarker-negative groups was in CFT 

in both A+ and A+T+ and the largest edge-weight differences underlying this were seen in the 

same three edges between the CFT and Story IR, MINT and DSF. It is possible, therefore, that the 

limited findings reflect a methodological aspect rather than a true negative result. Firstly, our 

A+T+ sample comprised a sub-group of the larger A+ group, for which tau measurements were 

not all available. It is likely that a large proportion categorised as A+ who did not have tau data 

were also T+. We cannot, therefore, assume that findings in the A+ group do not reflect similar 

differences in A+T+. Secondly, the smaller size of the Model 2 sub-cohort may have impacted the 

strength of network comparisons. Importantly, however, this is not necessarily because of a small 

effect. At the level of pairwise correlations, in fact, we found highly similar coefficients produced 

in biomarker-positive groups, even when Model 2 sub-cohorts were reduced by as much as 75%, 

indicating that the basic building blocks of this methodology were replicated even with more 

modest sample sizes. This also suggests good generalisability of these results. Overall, the trends 

observed in our A+T+ versus A-T- analyses require replication in larger samples. 

Previous network studies have indicated that the centrality of nodes within psychopathology 

networks may be indicative of features that may be predictive of future decline or be influential 

targets for intervention.74 Similarly, the translational relevance of node centrality in cognitive 

networks lies in the potential to provide a quantitative approach to determine the relevance of 

specific cognitive functions within the wider network. Degradation of highly central, and therefore 

highly influential nodes,74 may be hypothesised to be of greater detriment to global cognitive 

function. Conversely, preservation of influential cognitive functions may serve to improve or 

stabilise function in other domains. The clinical relevance of node centrality in cognitive network 
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remains to be determined. However, investigation into the predictive value of highly central 

cognitive domains for either dementia onset or improvements associated with cognitive 

stimulation provide meaningful avenues for future clinical research. The findings of the present 

study indicate that semantic fluency tasks may be of particular relevance in predicting or slowing 

progressive global cognitive decline in individuals testing positive for AD biomarkers. 

The analyses also reported significant differences between biomarker-positive and biomarker-

negative participants in global network invariance. Although this finding results from an omnibus 

test (and, therefore, cannot be pinpointed to specific nodes or edges), it can be seen as an indicator 

that AD pathology acts as a general disturbance to the neuropsychological network, presumably 

due to the effect it has on functional connectivity within and between large-scale brain networks.  

Some limitations should be considered. As this is the first study to investigate the link between 

neuropsychological networks and biological markers of AD recognised by the latest diagnostic 

criteria,2,3,7 we exclusively adhered to core biological diagnostic criteria to categorise our sub-

cohorts. It is possible that an imbalance in the distribution of participant clinical status between 

groups (which is to be expected, as there is often convergence between biomarker and clinical 

status) may have influenced the findings. To account for this, a marker of clinical severity, the 

global CDR score, was controlled for and, as outlined, the pattern of results across Model 1 and 

Model 2 were highly similar. Moreover, despite highly significant differences in cognitive function 

emerging from univariate comparisons between biomarker positive and negative groups (with 

many effect sizes being medium or high, as shown in Table 2), these did not translate into vastly 

different cognitive networks, suggesting that changes in network metrics such as node centrality 

are not necessarily proportionate to cognitive deficits.75 While this study does not specifically 

address the preclinical phase of AD (as this would require additional evidence, e.g., in vivo 
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evidence of tau pathology limited to the transentorhinal region,24,25 and/or longitudinal evidence 

of disease progression), we argue that network-based approaches could be useful to detect nuanced 

phenotypic markers of the preclinical disease stage that anticipate the onset of objective 

performance decline in individual tests. 

A second limitation is the inability to account for the range of AD variants and mixed aetiologies 

that may be present within our dataset. Concurrent vascular pathology or other neurodegenerative 

aetiologies impacting network topology may have diluted effects specific to AD biomarker 

positivity.76 An avenue for future work will therefore be to validate these findings while accounting 

for possible co-morbidities. 

A third limitation is represented by the temporal misalignment between neuropsychological testing 

(carried out at study visit 1) and biomarker measurement. While this had no effect on the 

biomarker-negative sub-cohorts (as those negative at a follow-up were also negative at study visit 

1), it might have resulted into a small proportion of biomarker-negative individuals being 

misclassified as biomarker-positive, leading to the analyses being slightly more conservative. 

Fourthly, although we limited the structure of our network to residualised test scores (i.e., by 

regressing out demographic characteristics prior to network calculation), other studies have instead 

added these variables as additional nodes.32,33,35 On this note, no methodological gold standard has 

yet been defined for selecting network variables. Studies that focus on neurological profiles, for 

instance, may define heterogeneous networks that include demographic, neuropsychological, 

behavioural and other clinical variables.77 Along these similar lines, for instance, we could have 

incorporated amyloid and tau status as further nodes, to test the study hypothesis via a within-

network design. It is to address these methodological alternatives that road maps to the study of 

neuropsychological networks are currently being planned.78 
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In conclusion, the present study aimed to determine whether AD biomarker positivity is associated 

with observable differences in graph-theory-informed network-based cognitive profiles. This 

study is the first to investigate the link between AD pathophysiology and neuropsychological 

networks and the findings align with neurological changes occurring with the deposition of 

pathology. These suggest that not only are neuropsychological networks influenced by biomarkers 

at a general structural level, but that specific alterations in nodal centrality and edge weight reflect 

similar changes identified across the AD clinical spectrum. Such observations in biologically-

classified groups, independent of clinical severity, indicates that cognitive network topology may 

provide a clinically meaningful measure of change related to biomarkers among otherwise 

cognitively-normal groups. 
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Figure legends 

Figure 1. Flowchart illustrating the process of cohort selection. The NACC database was 

initially scrutinised as a function of biomarker availability. Availability of neuropsychological test 

scores and biomarker information were then cross-tabulated as a function of timepoint (TP), in 

order to define TP distances between the two clinical measures. The most commonly used version 

of the Uniform Data Set (UDS) battery of test was then selected for consistency across the cohort. 

Finally, additional criteria were applied to discard datasets with excessive missing data and 

discordant biomarkers. Temporal distance between TP1 and subsequent timepoints (i.e., TP2 to 

TP7) was calculated over the entire NACC cohort, and these averaged to 15, 29, 42, 56, 69, and 

82 months. A+: Amyloid positive; A-: Amyloid negative; AD: Alzheimer’s disease. 

“NACCVNUM” indicates the visit number at which biomarker (i.e., “NACCVNUM-BIOM”) and 

cognitive (i.e., “NACCVNUM-COGN”) profiles were assessed, as indexed by the NACC research 

data dictionary. 

Figure 2. Visual representation of the four networks estimated from the NACC database. 

Negative edges are indicated in red. The thickness of the line is proportional to the weight of the 

edge. Nodes are represented with 11 different colours to facilitate consultation. The diameter of 

the node is proportional to non-standardised expected influence. All test abbreviations are defined 

in Table 1. (A): Sub-cohorts with amyloid information. A- sub-cohort: n = 1,594; A+ sub-cohort: 

n = 1,263; (B) Sub-cohorts with amyloid and tau information. A-T- sub-cohort: n = 734; A+T+ 

sub-cohort: n = 442. 

* Example outlining the difference between the two measures of centrality calculated in relation 

to the Story DR node, in the sub-cohort of A- participants (Story DR edge weights: CFT = 0.051; 
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MINT = 0.057; TMT-A = -0.018; TMT-B = 0; Story IR = 0.793; DSB = 0.003; DSF = 0; Fig. Copy 

= -0.038; Fig. DR = 0.155; LFT = 0). 

𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷 = ∑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 = 1.003; 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷 =  ∑|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡| = 1.115. 

Figure 3. Node centrality in each sub-cohort. Centrality is shown separately in relation to Model 

1 (i.e., A+ vs. A-) and Model 2 (i.e., A+T+ vs. A-T-). Colour coding follows the separation of test 

scores into distinct cognitive domains, as done in Figure 2. Centrality measures are indicated on 

the y axis, i.e., EI in the upper half of the graph (A), ST in the lower half of the graph (B). The 

image shows nonstandardised centrality metrics. For standardised centrality metrics, please see 

Supplementary Figure S4. All test abbreviations are defined in Table 1. A+: amyloid positive; 

A-: amyloid negative; T+: tau positive; T-: tau negative. Sub-cohort information: A- sub-cohort: 

n = 1,594; A+ sub-cohort: n = 1,263; A-T- sub-cohort: n = 734; A+T+ sub-cohort: n = 442. 

Figure 4. Post-hoc characterisation of CFT node. (A) Star plots showing edge weights in 

relation to the only Model-1 node showing a statistically significant between-group difference. 

The CFT node is at the centre of the decagon, and the maximum weight of the circumradius is 

indicated below (i.e., 0.4). The figure does not show any inferential test but is simply a descriptive 

visualisation of edge weights that are calculated prior to inferential modelling. EW: edge weights. 

(B) Star plot illustrating the size of the E Statistic (i.e., the absolute value of the difference in edge 

weight between the two groups). The largest (non-significant) difference was found in 

correspondence to the Story IR-CFT edge (E = 0.093, p = 0.098). The original non-conditional 

associations driving the differences in this edge weight is shown in (C). This image shows the 

slope of the regression lines corresponding to the rank-based correlations between CFT and IR 

performance in the A+ and A- sub-cohorts. 
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All test abbreviations are defined in Table 1. A+: amyloid positive; A-: amyloid negative.  

Sub-cohort information: A- sub-cohort: n = 1,594; A+ sub-cohort: n = 1,263. 



Table 1. List and description of the neuropsychological variables included in this study 

Variable Acronym NACC Descriptor Associated cognitive 

ability 

 
Category Fluency 

Task 
CFT 

"Total number of category-related words 

named in 60 seconds" 

Semantic verbal 

fluency  
Digit Span 

Forward 
DSF 

"Number Span Test: Forward - Number 

of correct trials" 

Verbal attention 

Digit Span 

Backward 
DSB 

"Number Span Test: Backward - Number 

of correct trials" 

Verbal attention/ 

Working memory 
Trail Making Test 

Part A 
TMT-A 

"Trail Making Test Part A - Total number 

of seconds to complete" 

Visual attention 

Trail Making Test 

Part B 
TMT-B 

"Trail Making Test Part B - Total number 

of seconds to complete" 

Visual attention/task 

switching 
Craft Story 21 

Immediate Recall 
Story IR *** 

"Craft Story 21 Recall (Immediate) - 

Total story units recalled, verbatim 

 

Episodic memory  

Craft Story 21 

Delayed Recall 
Story DR *** 

"Craft Story 21 Recall (Delayed) - Total 

story units recalled, verbatim scoring" 

Episodic memory 

Multilingual 

Naming Test 
MINT "Multilingual Naming Test - Total score" Semantic 

memory/knowledge 
Benson Figure 

Copy 
Fig. Copy "Total score for copy of Benson figure" Visuospatial 

functioning 
Benson Figure 

Delayed Recall 
Fig. DR *** 

"Total score for 10- to 15-minute delayed 

drawing of Benson figure" 

Episodic memory 

Letter Fluency 

Task 
LFT 

"Total number of correct F-words and L-

words" 

Phonemic fluency 

*** identifies the measures of episodic memory against which the study hypothesis was 

tested 

 



Table 2. Description of demographic and clinical variables of the selected cohort 

Variable A+ A- 
Missing 

Data 
p η²ₚ A+T+ A-T- 

Missing 

Data 
p η²ₚ 

Age (years) 70.32 (8.73) 69.18 (8.86)  ***  67.73 (9.41) 68.14 (9.60)  0.471  

Education (years) 16.31 (2.79) 16.32 (2.78) 
 

0.390  17.52 (9.94) 16.98 (7.96) 
 

0.300  

Sex (F/M) 616/647 835/759 
 

0.055  202/240 375/359 
 

0.189  

Handedness (L/R/A/M) 132/1098/21/0 158/1398/26/0  0.882  50/376/9/7 81/635/11/7  0.614  

CDR-Global (0/0.5/1/2/3) 257/697/270/36/3 887/580/101/24/2 
 

***  59/263/104/14/2 403/269/49/12/1 
 

***  

MoCA 20.17 (5.95) 24.31 (4.52) 17/6 ***  19.21 (6.02) 24.27 (4.60) 9/4 ***  

CFT 12.67 (5.80) 16.07 (5.85) 0/0 *** 0.077 11.82 (5.69) 16.03 (6.10) 0/0 *** 0.101 

DSF 7.15 (2.44) 7.84 (2.50) 0/0 *** 0.019 6.81 (2.49) 7.79 (2.47) 0/0 *** 0.039 

DSB 5.44 (2.43) 6.45 (2.37) 0/2 *** 0.042 5.09 (2.35) 6.38 (2.44) 0/1 *** 0.063 

TMT-A 52.99 (36.42) 37.39 (22.68) 0/2 *** 0.064 58.42 (40.48) 36.94 (23.83) 0/2 *** 0.100 

TMT-B 143.64 (87.60) 98.64 (64.01) 177/73 *** 0.080 152.15 (89.03) 97.88 (66.57) 81/47 *** 0.106 



Story IR 12.78 (8.23) 19.14 (8.20) 0/0 *** 0.129 11.25 (7.57) 18.55 (8.29) 0/0 *** 0.163 

Story DR 8.70 (8.50) 15.95 (8.46) 0/0 *** 0.153 7.49 (7.60) 15.65 (8.43) 0/0 *** 0.192 

MINT 27.09 (5.43) 28.75 (4.64) 5/16 *** 0.026 26.54 (5.85) 28.89 (4.48) 3/12 *** 0.049 

Fig. Copy 13.99 (3.76) 15.33 (1.78) 0/0 *** 0.053 13.36 (4.23) 15.30 (1.89) 0/0 *** 0.090 

Fig. DR 5.89 (4.87) 10.08 (4.09) 7/9 *** 0.179 5.21 (4.71) 10.25 (4.09) 2/6 *** 0.241 

LFT 23.48 (9.62) 25.39 (9.72) 7/9 *** 0.010 22.34 (10.00) 25.63 (10.12) 4/5 *** 0.025 

Means and standard deviations are shown. Between-group differences were tested with between-sample ANOVAs. A: ambidextrous; L: left; M: 

missing; R: right; η²ₚ: partial eta squared; ***: p < 0.001 



Table 3. Summary of NCT statistics 

Test 

Statistic Use Formula Explanation 

M 
NCT-based comparison of 

global network structure 
𝑀𝑀𝜔𝜔1𝜔𝜔2 = max

𝑖𝑖𝑖𝑖
|𝜔𝜔𝑖𝑖𝑖𝑖

1 − 𝜔𝜔𝑖𝑖𝑖𝑖
2 | 

An omnibus test. Largest absolute value indicating 

between-group differences in edge weights (i.e., E-

statistics) 

S 
NCT-based comparison of 

global centrality 
𝑆𝑆𝜔𝜔1𝜔𝜔2 = �� � (|𝜔𝜔𝑖𝑖𝑖𝑖

1 |
𝑗𝑗>𝑖𝑖

− �𝜔𝜔𝑖𝑖𝑖𝑖
2 �)

𝑝𝑝

𝑖𝑖=1
� 

Invariant global ST/EI: Absolute difference in global 

ST/EI between groups 

E 
NCT-based comparison of 

edge weights 
𝐸𝐸𝜔𝜔1𝜔𝜔2 = |𝜔𝜔1 − 𝜔𝜔2| 

Between-group absolute difference in edge weights 

ω1 and ω2 indicate the same edge of two different networks (e.g., that of the A+ and that of the A- groups). EI: Expected influence; NCT: 

Network comparison test; ST: Strength 

 











Supplementary Figure S1 

 

Effect of partialisation on test-to-test dependencies. The diagonal dotted line separates 

decreases from increases in correlational strength. The two horizontal dotted lines mark the 

interval of conditional associations between rho = -0.1 and rho = 0.1. Nonconditional and 

conditional associations are indicated in Supplementary Table S1 as “NCD” and “CD”, 

respectively. A+: Amyloid positive; A-: Amyloid negative; T+: Tau positive; T-: Tau 

negative. Data points (i.e., n = 220) represent the 4 set of 55 edges calculated across all sub-

cohorts. As this is a descriptive scatterplot, no statistical association is shown between the 

two variables.  



Supplementary Figure S2 

 

Simulation studies (n = 1,000 repetitions) showing stability of edge weights (x-axis). The 55 

edges (reported on the y-axis, i.e., labels have not been included to avoid cluttering) are 

sorted by decreasing edge weight. The bootstrapped 95% confidence interval (shown in grey) 

indicates modest variability.  



Supplementary Figure S3 

 

Simulation studies (n = 1,000 repetitions) testing stability of centrality metrics. A case-drop 

approach was used. The findings indicate robustness of EI metrics even with a drop as large 

as 75% of the initial sample size. A 95% confidence interval is shown around the 

correlational values.  



Supplementary Figure S4 

 

Standardised node centrality in each sub-cohort. Centrality is shown separately in relation to 

Model 1 (i.e., A+ vs. A-) and Model 2 (i.e., A+T+ vs. A-T-). Colour coding follows the 

separation of test scores into distinct cognitive domains, as done in Figure 2. Centrality 

measures are indicated on the y axis, i.e., EI in the upper half of the graph (A), ST in the lower 

half of the graph (B). For nonstandardised centrality metrics, please see Figure 3. All test 

abbreviations are defined in Table 1. A+: amyloid positive; A-: amyloid negative; T+: tau 

positive; T-: tau negative. Sub-cohort information: A- sub-cohort: n = 1,594; A+ sub-cohort: n 

= 1,263; A-T- sub-cohort: n = 734; A+T+ sub-cohort: n = 442.  



Supplementary Table S1. Test-to-test (i.e., internodal) associations in the four sub-cohorts 

Edge 
 A+   A-  A+T+-  A-T- 

NCA CA EW  NCA CA EW  NCA CA EW  NCA CA EW 

Story DR - CFT 0.39

 

0.038 0.023  0.34

 

0.055 0.051  0.41

 

0.064 0.030  0.36

 

0.068 0.067 

Story DR - MINT 0.21

 

-0.041 0  0.32

 

0.057 0.057  0.20

 

-0.083 0  0.32

 

0.050 0.063 

Story DR - TMT-A 0.03

 

-0.080 -0.066  0.10

 

-0.034 -0.018  0.04

 

-0.084 -0.054  0.09

 

-0.014 0 

Story DR - TMT-B 0.17

 

-0.026 0  0.17

 

-0.008 0  0.20

 

-0.010 0  0.15

 

-0.010 0 

Story IR - CFT 0.47

 

0.135 0.161  0.35

 

0.060 0.068  0.51

 

0.159 0.205  0.36

 

0.065 0.068 

Story IR - Story DR 0.78

 

0.706 0.663  0.85

 

0.817 0.793  0.78

 

0.678 0.638  0.87

 

0.836 0.792 

Story IR - DSB 0.28

 

0.048 0.059  0.21

 

0.011 0.036  0.33

 

0.024 0.046  0.23

 

0.042 0.038 

Story IR - DSF 0.20

 

0.014 0  0.17

 

0.065 0.022  0.26

 

0.017 0  0.17

 

0.015 0.011 

Story IR - MINT 0.32

 

0.117 0.071  0.31

 

0.044 0.042  0.33

 

0.112 0.036  0.30

 

0.031 0.021 

Story IR - TMT-A 0.14

 

0.004 0  0.13

 

0.000 0  0.15

 

-0.011 0  0.09

 

-0.006 0 

Story IR - TMT-B 0.27

 

0.082 0.066  0.20

 

0.034 0.018  0.32

 

0.128 0.094  0.15

 

0.007 0 

DSB - CFT 0.39

 

0.097 0.082  0.27

 

0.040 0.036  0.43

 

0.099 0.106  0.32

 

0.078 0.070 

DSB - Story DR 0.20

 

0.036 0  0.19

 

0.039 0.003  0.24

 

0.042 0  0.23

 

0.018 0.009 

DSB - MINT 0.24

 

-0.053 0  0.16

 

-0.051 0  0.31

 

0.044 0.044  0.18

 

-0.052 0 

DSB - TMT-A 0.37

 

0.080 0.059  0.28

 

0.023 0.008  0.39

 

0.116 0.078  0.29

 

0.044 0.032 

DSB - TMT-B 0.46

 

0.207 0.210  0.36

 

0.167 0.170  0.52

 

0.242 0.258  0.37

 

0.132 0.135 

DSF - CFT 0.35

 

0.069 0.069  0.21

 

0.000 0  0.40

 

0.106 0.090  0.22

 

-0.018 0 

DSF - Story DR 0.13

 

-0.016 0  0.13

 

-0.054 0  0.17

 

-0.028 0  0.17

 

0.001 0 

DSF - DSB 0.51

 

0.369 0.356  0.50

 

0.431 0.415  0.56

 

0.401 0.372  0.49

 

0.389 0.368 



DSF - MINT 0.25

 

0.049 0.028  0.16

 

0.058 0.028  0.28

 

0.002 0.006  0.20

 

0.081 0.055 

DSF - TMT-A 0.23

 

-0.056 0  0.15

 

-0.028 0  0.22

 

-0.118 0  0.17

 

-0.030 0 

DSF - TMT-B 0.31

 

0.049 0.030  0.21

 

0.005 0  0.36

 

0.092 0.044  0.26

 

0.060 0.047 

MINT - CFT 0.50

 

0.309 0.294  0.41

 

0.223 0.226  0.55

 

0.373 0.349  0.37

 

0.197 0.191 

MINT - TMT-A 0.30

 

0.094 0.094  0.26

 

0.081 0.064  0.23

 

0.009 0.016  0.17

 

-0.014 0 

MINT - TMT-B 0.30

 

0.041 0.035  0.26

 

0.034 0.038  0.27

 

0.024 0.022  0.25

 

0.099 0.080 

TMT-A - CFT 0.32

 

0.051 0.036  0.31

 

0.087 0.076  0.30

 

0.073 0.033  0.28

 

0.098 0.069 

TMT-A - TMT-B 0.57

 

0.422 0.411  0.65

 

0.557 0.542  0.57

 

0.406 0.382  0.59

 

0.494 0.468 

TMT-B - CFT 0.38

 

0.050 0.066  0.33

 

0.039 0.052  0.34

 

-0.035 0  0.31

 

0.030 0.041 

Fig. Copy - CFT 0.18

 

-0.021 0  0.14

 

0.007 0  0.13

 

-0.003 0  0.12

 

-0.027 0 

Fig. Copy - Story DR 0.01

 

-0.098 -0.045  0.05

 

-0.083 -0.038  0.01

 

-0.071 -0.031  0.07

 

-0.056 -0.011 

Fig. Copy - Story IR 0.09

 

0.034 0  0.06

 

0.030 0  0.06

 

-0.005 0  0.06

 

0.008 0 

Fig. Copy - DSB 0.26

 

0.092 0.081  0.19

 

0.098 0.080  0.21

 

0.022 0.006  0.23

 

0.112 0.092 

Fig. Copy - DSF 0.17

 

0.030 0.004  0.10

 

-0.008 0  0.12

 

0.033 0  0.15

 

0.018 0.001 

Fig. Copy - MINT 0.18

 

0.045 0.027  0.14

 

0.019 0.006  0.11

 

0.012 0  0.13

 

0.000 0 

Fig. Copy - TMT-A 0.44
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TMT-A and TMT-B test score residuals were multiplied by -1 prior to the calculation of 

correlation coefficients. NCA: Non-Conditional Associations (Standard Spearman’s rho-

coefficient of correlation); CA: Conditional Associations (Spearman’s rho coefficient of 

partial correlation); EW: Edge Weight. Negative correlation coefficients and edge weights are 

indicated in bold.  



Supplementary Table S2. Node variability and centrality metrics 

 A+ A- A+T+ A-T- 

Node SD EI ST SD EI ST SD EI ST SD EI ST 

Node standard deviations and non-standardised centrality scores 

CFT 4.778 1.122 1.122 5.073 0.908 0.908 4.907 1.088 1.088 4.976 0.853 0.853 

DSF 2.359 0.654 0.681 2.415 0.591 0.591 2.394 0.698 0.698 2.384 0.572 0.572 

DSB 2.211 0.906 0.906 2.187 0.864 0.864 2.128 0.933 0.933 2.221 0.894 0.894 

TMT-A 31.558 0.946 1.077 20.334 0.858 0.894 35.291 0.946 1.053 21.122 0.762 0.762 

TMT-B 77.057 0.884 0.884 56.377 0.995 0.995 81.126 0.878 0.878 55.346 0.957 0.957 

Story IR 6.914 1.020 1.020 7.003 0.983 0.983 6.730 1.037 1.037 6.880 0.930 0.930 

Story DR 7.101 0.962 1.183 7.048 1.004 1.115 6.979 0.964 1.133 6.961 1.079 1.101 

MINT 4.959 0.624 0.624 4.302 0.642 0.642 5.494 0.576 0.576 4.221 0.600 0.600 

Fig. Copy 3.448 0.492 0.582 1.823 0.475 0.550 3.863 0.459 0.520 1.926 0.524 0.546 

Fig. DR 3.990 0.541 0.621 3.448 0.615 0.672 4.079 0.492 0.525 3.445 0.567 0.567 



LFT 8.874 0.735 0.787 8.915 0.741 0.799 9.198 0.747 0.780 9.187 0.773 0.773 

Node standard deviations and standardised centrality scores 

CFT 4.778 1.506 1.190 5.073 0.645 0.482 4.907 1.300 1.078 4.976 0.424 0.401 

DSF 2.359 -0.735 -0.831 2.415 -1.068 -1.241 2.394 -0.471 -0.606 2.384 -1.080 -1.096 

DSB 2.211 0.470 0.199 2.187 0.406 0.241 2.128 0.594 0.407 2.221 0.642 0.617 

TMT-A 31.558 0.660 0.983 20.334 0.373 0.406 35.291 0.653 0.927 21.122 -0.064 -0.085 

TMT-B 77.057 0.366 0.099 56.377 1.115 0.954 81.126 0.349 0.173 55.346 0.984 0.958 

Story IR 6.914 1.016 0.722 7.003 1.049 0.888 6.730 1.070 0.860 6.880 0.839 0.814 

Story DR 7.101 0.739 1.471 7.048 1.162 1.608 6.979 0.737 1.271 6.961 1.636 1.724 

MINT 4.959 -0.879 -1.091 4.302 -0.794 -0.966 5.494 -1.025 -1.133 4.221 -0.930 -0.947 

Fig. Copy 3.448 -1.515 -1.287 1.823 -1.694 -1.462 3.863 -1.552 -1.371 1.926 -1.338 -1.236 

Fig. DR 3.990 -1.277 -1.108 3.448 -0.939 -0.799 4.079 -1.406 -1.353 3.445 -1.110 -1.126 

LFT 8.874 -0.351 -0.346 8.915 -0.255 -0.111 9.198 -0.249 -0.253 9.187 -0.002 -0.023 

The correlations between SD and centrality metric are reported in Supplementary Table S3. EI: Expected influence; SD: Standard 

deviation ST: Strength 



Supplementary Table S3. Correlations between node standard deviation and centrality 

 A+ A- A+T+ A-T- 

Sub-Cohort 

SD 

EI ST EI ST EI ST EI ST 

Non-standardised centrality metrics 

A+ SD 0.182 0.222       

A- SD   0.432 0.472     

A+T+ SD     0.195 0.211   

A-T- SD       0.375 0.386 

Standardised centrality metrics 

A+ SD 0.182 0.222       

A- SD   0.432 0.473     

A+T+ SD     0.196 0.212   

A-T- SD       0.376 0.387 

Pearson’s r coefficients (and p-values) are indicated. n = 11 in these models. 

EI: Expected influence; SD: Standard deviation ST: Strength 
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