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INTRODUCTION
Acinetobacter baumannii is a nosocomial pathogen highly proficient at colonizing surfaces in healthcare settings. These colonized 
surfaces can act as A. baumannii reservoirs, leading to outbreaks associated with high costs, prolonged patient hospitalization and 
reduced quality of life [1, 2]. A major determinant of A. baumannii’s persistence on surfaces is its outstanding ability to survive 
long-term desiccation [3, 4]. A range of environmental and intrinsic factors impact this behaviour, including relative humidity, 
temperature, nutrients and oxygen availability, growth phase and cell size [5–9]. Additional contributors to this recalcitrant 
behaviour are lipid A acetylation, capsule production, compatible solutes and protein aggregation prevention resulting from the 
protective function of DtpA and DtpB hydrophilins [5, 10–17]. There is a growing body of evidence showing that A. baumannii 
enters a viable but non-culturable (VBNC) state when impacted by water-limited conditions and that this is a key mediator of 
its capacity for prolonged desiccation tolerance [18, 19]. VBNC cells have increased tolerance to antimicrobials and retain their 
virulence [18, 19] while also leading to false assessment of successful decontamination procedures due to the lack of culturability 
under standard laboratory conditions. Thus, A. baumannii VBNC cells pose a great risk of persistence and dissemination of 
this pathogen in healthcare settings. However, the regulatory cues governing A. baumannii’s entry into the VNBC state during 
desiccation remain elusive.

In this study, we assessed the global transcriptional response to desiccation in nutrient-limiting conditions in an effort to recreate 
the nosocomial desiccation scenario. Analyses of these datasets uncovered the phenylacetic acid (PAA) catabolic pathway as a 
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Desiccation tolerance is central to the pathogenic success of the opportunistic pathogen Acinetobacter baumannii, allowing 
its survival on hospital surfaces in the absence of water and nutrients for months at a time, compromising surface 
decontamination and aiding cross-contamination between staff and patients. Despite the importance of desiccation tolerance, 
the regulation underpinning this behaviour remains largely elusive. In this work, transcriptomic analyses of desiccated cells 
revealed phenylacetic acid (PAA) catabolism as an essential mediator of desiccation tolerance. We subsequently demonstrate 
that deletion of the paa operon abolished the clonogenicity of desiccated cells. Strikingly, these A. baumannii cells remained 
viable by entering the viable but non-culturable (VBNC) state, a means to survive extreme stressors like antibiotic exposure. 
Furthermore, we uncover that PAA catabolism is necessary to mediate PAA-driven biofilm regulation. These findings highlight 
PAA catabolism as a modulator of biofilm formation and a key pathway for entry into the VBNC state in response to desiccation. 
This reveals PAA catabolism as a target for novel infection prevention strategies.
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regulator of VBNC state under desiccation in this pathogen, with the genes encoding this pathway being the most upregulated 
in these conditions. We subsequently demonstrate that a Δpaa operon deletion mutant, which accumulates PAA, is entirely 
non-culturable after 72-h desiccation but critically remains as viable as the WT strain. Taken together, this work establishes a 
regulatory link between the PAA catabolic pathway, the VBNC state and desiccation tolerance in A. baumannii.

Bacterial strains and growth conditions
A mixed culture of both phase variants of A. baumannii AB5075 [20] strain was used for assessing the transcriptome of desiccated 
and non-desiccated cells and opaque variants of the WT AB5075 and the Δpaa mutant were used for the subsequent assays (Table 
S3, available in the online Supplementary Material). Strains were grown in M9 minimal medium supplemented with sodium 
succinate (40 mM), lysogeny broth (LB) or their solid versions with 15 g l−1 agar. Host Escherichia coli strains were routinely 
grown in LB broth or agar.

Mutant strain construction
For constructing a Δpaa clean deletion mutant in the paa operon, we used the strategy described by de Dios et al. [21]. Initially, 
1 kb homologous regions upstream and downstream of the paa operon were amplified from AB5075 genomic DNA using paaOpr 
up fw/rv and paaOpr down fw/rv primer pairs, respectively (Table S3). The two fragments were joined together by overlapping 
PCR and cloned in SmaI-digested pEMGT vector, resulting in pEMGT-paa derivative.

To construct the Δpaa mutant, the pEMGT-paa plasmid was transferred to AB5075 by triparental mating using pRK2013 as 
helper and a first recombination event was selected on LB agar with ampicillin (100 µg ml−1) and tellurite (30 µg ml−1) and verified 
by PCR using Tel fw/rv oligos pair. A second recombination was triggered by transferring the pSW-Apr plasmid to the AB5075/
pEMGT-paa cointegrate strain and selecting on LB agar with ampicillin (100 µg ml−1) and apramycin (200 µg ml−1). The deletion 
of the paa operon was validated by PCR using paaOpr up fw/down rv oligos. The pSW-Apr was removed from the final Δpaa 
mutant by serial passaging.

To fluorescently label the WT AB5075 and its derivative Δpaa mutant, strains carrying a miniTn7-Tc-mChartreuse insertion 
were constructed as described by Ducas-Mowchun et al. [22, 23]. First, we modified the pUC18T-miniTn7T-Gm plasmid [24] 
(Addgene, #63121) to be used according to the antibiotic resistance profile of AB5075. For this, the tetracycline resistance 
cassette from pUC18T-miniTn7T-Tc-lacIq-Ptac [25] was amplified by PCR using the primer pair tetA fw/tetA rv [21] and cloned 
in pUC18T-miniTn7T-Gm cut with EagI and BsrGI and blunted with Klenow. This resulted in pUC18T-miniTn7T-Tc. After 
this, we cloned the coding sequence of the fluorescent protein mChartreuse constitutively expressed from a non-repressed Ptac 
promoter. The mChartreuse coding sequence was amplified from plasmid pNF02-mChartreuse [23] using primers Ptac RBS 
pNF02 fw HindIII, which included the Ptac promoter and a ribosome binding site, and pNF02 rv KpnI. The resulting PCR 
product was digested with HindIII and KpnI and cloned in pUC18T-miniTn7T-Tc digested with the same enzymes, generating 
pUC18T-miniTn7T-Tc-Ptac::mChartreuse.

The miniTn7T-Tc-Ptac::mChartreuse construct was inserted in the attTn7 site of the WT AB5075 and its derivative Δpaa mutant 
through four-parental mating, as described by Ducas-Mowchun et al. [22], using pRK2013 and pTNS2 as helper plasmids [26, 27]. 
Transconjugants were selected on LB agar supplemented with tetracycline (5 mg l−1) and chloramphenicol (15 mg l−1). The resulting 
fluorescently labelled strains were validated by PCR using primers AB5075 glmS fw and Tn7R [21].

Plasmids and oligonucleotides used in this work are listed in Table S3. All constructs were validated by Sanger sequencing.

RNA extraction and sequencing
Bacterial cultures grown in M9-succinate were washed three times with distilled water and then split in two. Each bacterial 
suspension was equalized to OD600=3 in distilled water or M9-succinate (1 : 250, v:v dilution). Cells were harvested from 1 ml of 
the bacterial suspension adjusted in water and resuspended in RNAlater™ for RNA integrity preservation, subsequently used as 
control non-desiccated cells. Five hundred microlitres of each OD-adjusted sample was dropped on Petri dish lids and aseptically 
air-dried. All samples were desiccated in a closed chamber for 24 h at room temperature (19±2 °C) and 10±2% relative humidity, 
maintained with Drierite desiccant. Cells were rehydrated directly in 1.5 ml RNAlater™, harvested by gentle scraping and pipetting 
and stored at −80 °C until RNA extraction. The experiment was done in three independent biological replicates.

Total RNA from each sample was isolated using Qiagen RNAeasy Kit according to the manufacturer’s instructions. Samples were 
treated with on-column DNase digestion (Qiagen) and additionally treated with RNase-free DNase (Invitrogen). RNA quality 
was checked using Bioanalyzer. The library was prepared with Illumina Stranded Total RNA Prep Ligation with Ribo-Zero Plus 
kit and 10 bp IDT for Illumina indices. NovaSeq 6000 was used for the sequencing, giving 2×51 bp reads. Differentially expressed 
genes were defined by log2 (fold change) ≥ 1 or ≤ −1 and significance (P value) < 0.05. Gene set enrichment analysis (GSEA) 
was performed using FUNAGE-Pro with default settings [28]. Data was represented in volcano plots using VolcaNoseR [29]. 
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The resulting transcriptomic datasets are available at the Gene Expression Omnibus repository (NCBI) with accession number 
GSE229096.

Growth curves and biofilm assay
Bacterial growth and biofilm formation were measured as previously described [30]. Cultures were grown overnight (~18 h) 
in LB broth or M9-succinate at 37 °C 180 r.p.m. OD600 was measured and adjusted to 0.1 in each corresponding medium. For 
continuous growth assessment, 200 µl of OD-adjusted culture was transferred per well in a standard 96-well plate and absorbance 
was measured at 600 nm (OD600) every 30 min over a 16-h period at 37 °C 200 r.p.m. Bacterial growth was measured by the area 
under the curve [31] calculated using GraphPad Prism. For the biofilm assay, 150 µl of each adjusted culture was used to inoculate 
the corresponding wells of a 96-well plate. Following 24-h growth at 37 °C 180 r.p.m., all biofilms were washed three times with 
distilled water, stained with 200 µl 0.1% Crystal violet for 15 min and washed five times to remove excess stain. All biofilms were 
then air-dried and the Crystal violet was resolubilized in 99% ethanol for at least 3 h. Absorbance was measured after that at 
570 nm (OD570).

Desiccation and viable/culturable cell quantification assay
The desiccation tolerance of A. baumannii AB5075 and the Δpaa mutant was tested as previously described [32] with slight 
modifications. Overnight cultures of the fluorescently labelled WT AB5075/miniTn7-Tc-mChartreuse and Δpaa/miniTn7-
Tc-mChartreuse mutant were grown in M9-succinate. Bacterial cells from 1 ml of each overnight culture were harvested by 
centrifugation and washed twice with distilled water. All bacterial suspensions were adjusted to OD600=1 in water. Five microlitres 
were diluted in 20 µl sterile PBS, 10 µl of which were used to determine culturable cells by serial dilutions, spot plating on 
M9-succinate agar and overnight incubation at 37 °C, while the remaining 10 µl was diluted in 500 µl PBS and used to determine 
the viable cell count using flow cytometry. Five microlitres of OD-adjusted samples was pipetted on a plastic surface, aseptically 
air-dried and desiccated in a closed chamber in the dark at 5.7±1.5% relative humidity and 21±0.5 °C ambient temperature. Samples 
were rehydrated for 5 min in 20 µl PBS. Half of this volume was used for determining culturable cells and half of the volume was 
used for determining the viable cells as described above.

To determine cell viability using fluorescence as a proxy, samples were run in an ACEA Novocyte Flow Cytometer 3000 (Agilent 
Technologies). The event detection threshold was set to 2000 on FSC (forward scatter). The mChartreuse fluorescent signal was 
detected through the FITC channel (excitation/emission: 495/519 nm). Fluorescent events in 100 µl of the 500 µl cell suspensions 
indicated above were measured to determine viable cells.

Data analysis
Each assay was performed in biological triplicate. Statistical analyses were performed using GraphPad Prism (v10.4.2, San Diego, 
CA, USA, https://www.graphpad.com/) and are specified in the figure legends.

RESULTS
A. baumannii upregulates the PAA catabolic pathway under desiccation
To understand the global gene expression changes during the adaptation of A. baumannii AB5075 to desiccation, we performed 
differential RNA sequencing (dRNA-seq) comparing A. baumannii cells suspended either in water or diluted M9-succinate 
minimal medium and desiccated for 24 h to cells sampled before desiccation (Fig. 1a). We selected these conditions to more 
accurately recapitulate desiccation on fomites in a nosocomial environment. We decided to include cells suspended in diluted 
M9-succinate in the experiment to differentiate between genes regulated by desiccation and genes regulated by the lack of 
nutrients while avoiding the precipitation of media components during the drying process. As a result, 588 and 947 genes were 
differentially expressed comparing cells desiccated in water and cells desiccated in diluted M9-succinate, respectively, to the 
control (Fig. 1b, c). Five hundred sixty-nine genes were differentially expressed between the samples desiccated in water and 
diluted minimal medium (Table S1).

In agreement with previous studies [14], our transcriptomic experiment showed a downregulation of lon and dnaK, which prevent 
protein aggregation, in cells desiccated in diluted M9-succinate (Fig. 1c). Furthermore, cells desiccated in water and in diluted 
M9-succinate showed an upregulation of the chaperones clpB and skp, respectively (Fig. 1c). skp is involved in the production of 
lipid A, which is crucial for A. baumannii desiccation tolerance [12]. This aligns with our results, which show an upregulation 
of the lipid A biosynthetic genes fabZ, lpxA and lpxC (log2(FC)=1.7, 1.3 and 1.4, respectively). Consistent with previous findings 
[12], we saw upregulation of RND efflux pumps encoding genes adeA and adeN in water-dried cells (log2(FC)=2.4, 1.2, 1.3, 
respectively), as well as adeABC (log2(FC)=3.8, 2.3 and 2.2, respectively) in diluted M9-succinate desiccated cells (Fig. 1c).

There was one pathway, the PAA catabolic pathway (gene organization shown in Fig. S1), whose expression was consistently 
upregulated in both conditions, indicative of a desiccation-specific response. In water-desiccated cells, paaB, caiD, paaH, paaK, 
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paaG, paaN, paaJ and paaI2 were upregulated by >7-log2(FC) compared to non-desiccated cells. paaE and paaC expression was 
increased by >6 fold, while paaF, paaI1, paaY and paaX were upregulated by 3.9, 2.2, 1.8 and 2.4-log2(FC), respectively, compared 
to control cells (Fig. 1b). Similarly, in the cells desiccated in diluted M9-succinate, paaB, caiD, paaJ, paaK, paaI2, paaN, paaG 
and paaH were upregulated >7-log2(FC) compared to non-desiccated cells, while the other paa operon genes paaC, paaE, paaF, 
paaX, paaI1 and paaY were upregulated by 7, 6, 5, 3.6, 3.5 and 3-log2(FC), respectively (Fig. 1c).

To further assess gene expression trends for each comparison, we performed a GSEA. The results showed that, among the 
upregulated pathways, the PAA catabolic pathway was the most enriched in cells desiccated in water or diluted M9-succinate 
compared to non-desiccated cells (Table S2). Meanwhile, fatty acid catabolism and nucleotide biosynthesis were the most enriched 
pathways among the significantly downregulated genes in both desiccation conditions (Table S2). Altogether, our transcriptomic 
results suggest that low levels of PAA are required for the early adaptation to desiccation, linking the PAA catabolic pathway and 
this recalcitrant A. baumannii behaviour.

PAA accumulation augments biofilm formation despite abrogating desiccation tolerance
To explore the potential role of PAA catabolism in the physiology of A. baumannii AB5075, we constructed a clean-deletion mutant 
in the paa operon (Δpaa). Mutations in this catabolic pathway lead to PAA accumulation [33]. To assess if the accumulation of 
PAA directly affects A. baumannii fitness and if this could influence culturability, we compared the growth of the Δpaa mutant 
to that of the WT AB5075 in M9-succinate and LB (Fig. 2a). In M9-succinate, the Δpaa mutant showed a mildly higher growth 
rate than the WT, with areas under the curve (AUC) of 10.2 and 9.15, respectively. In contrast, both strains grew similarly in LB 
(AUCs of 18.80 and 18.76, respectively). To further potentiate the effect of PAA accumulation, we repeated the growth experiments 
supplementing the media with PAA 2 mM (Fig. 2a). Whereas PAA did not show a substantial impact on the growth of both the 
WT and the Δpaa mutant in LB, it produced a negative impact on their growth in minimal medium (AUCs of 8.33 and 8.24, 

Fig. 1. PAA catabolism is related to A. baumannii desiccation tolerance. (a) Experimental set-up of sample preparation for RNA extraction and sequencing. 
Overnight (ON) cultures grown in M9-succinate were desiccated in water or diluted M9-succinate (1:250, v:v) for 24 h at 10±2% relative humidity and 
ambient temperature (17–18 °C). Image was created using Biorender.com. (b, c) Volcano plots presenting dRNA-seq data of the transcriptomes of 
cells desiccated in water (b) and diluted M9-succinate (c). (b) Five hundred eighty-eight genes were differentially expressed in the water desiccated 
cells, of which 279 were downregulated (purple dots) and 309 were upregulated (orange dots). Highlighted are the upregulated genes related to PAA 
catabolism (paa operon), protein stabilization (clpB) and RND efflux pumps (adeA and adeN). (c) Nine hundred forty-seven genes were differentially 
expressed when cells were desiccated in diluted M9-succinate, 512 of which were down- and 435 were upregulated. Downregulated highlighted genes 
are linked to protein aggregation prevention (lon and dnaK), while the upregulated genes are involved in PAA catabolism (paa operon), outer membrane 
protein stabilization and lipid A production (skp, fabZ, lpxA and lpxC) and RND efflux pump (adeABC).
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respectively). This supports the idea that PAA has a greater effect on the physiology of A. baumannii under nutrient-limiting 
conditions.

To assess the effect of PAA catabolism on A. baumannii desiccation, we performed a standard desiccation assay [7–9, 34] where 
cells of the Δpaa mutant were kept in dry conditions (8.5±3% relative humidity) over 72 h before being rehydrated and assessed 
based on their clonogenicity. Our results showed that the absence of the paa operon abolished clonogenicity of A. baumannii 
after 72-h desiccation (Fig. 2c). This indicates that PAA accumulation negatively regulates desiccation tolerance in this pathogen.

Currently, the established paradigm is that biofilm formation is positively associated with desiccation tolerance [15]. Thus, we 
hypothesized that the observed effect of PAA accumulation on decreased desiccation tolerance could be associated with impaired 
biofilm formation. To test this for AB5075, we measured the biofilm formation of the WT AB5075 and its Δpaa mutant derivative 
in LB medium (M9-succinate medium supports a negligible amount of biofilm formation in our experimental conditions, as 
shown in Fig. S2). Deletion of the paa operon did not significantly alter the biofilm biomass compared to the WT (Fig. 2d). As 

Fig. 2. PAA accumulation affects A. baumannii fitness, desiccation and biofilm formation. (a, b) Growth curves of A. baumannii AB5075 WT and Δpaa 
mutant in M9-succinate (M9-Suc) or LB broth supplemented with exogenous 2 mM PAA. Overnight cultures in M9-Suc or LB broth were adjusted to 
OD

600
 0.1 and grown at 37 °C shaking. Continuous growth was assessed by measuring absorbance at 600 nm (OD

600
) every 30 min for 16 h, the AUC 

was calculated for each sample (a) and the reduction in the AUC following exposure to exogenous PAA was calculated (b). (c) Desiccation tolerance of 
WT and Δpaa mutant determined by the number of c.f.u. after 72-h desiccation at 19.5±1.5 °C and 8.5±3% RH. (d) Biofilms of the WT and Δpaa, grown 
in LB broth for 24 h, were stained with 0.1% Crystal violet which was subsequently resolubilized in 99% ethanol. Absorbance was measured at 570 nm 
(OD

570
). ns P>0.05, *P<0.05, ***P<0.001 (Two-Way ANOVA with Šídák post-hoc test).
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with the growth assays, to further potentiate the effect of PAA accumulation, we repeated the assays supplementing with 2 mM 
PAA. A. baumannii AB5075 formed significantly more biofilm in LB supplemented with PAA 2 mM (Fig. 2d). However, this 
effect of PAA supplementation on biofilm formation was abolished in the Δpaa mutant, indicating that PAA catabolization is 
needed to enhance biofilm formation. Altogether, our results challenge the established paradigm positively linking biofilm levels 
and desiccation tolerance.

PAA regulates VBNC state of desiccated cells in A. baumannii
Our data suggested that deletion of the paa operon abolished desiccation tolerance after 72 h (Fig. 2), but surprisingly, 
this was not related to decreased biofilm formation (Fig. 2). It was recently shown that the desiccation process can cause a 
proportion of the cell population to switch to the VBNC state [18, 19]. Furthermore, VBNC cells (non-clonogenic) retain 
fluorescence conferred by the production of a fluorescent protein as opposed to dead cells [19]. To test if PAA accumulation 

Fig. 3. PAA accumulation drives A. baumannii in a non-culturable state under desiccation. (a) Experimental set-up of the desiccation assay using culturing 
and flow cytometry to determine viable cells before and after desiccation of fluorescently labelled AB5075. Image was created using Biorender.com. 
(b) Effect of PAA catabolism on A. baumannii cells determined by the number of culturable (agar) and viable (flow cytometry) fluorescently labelled WT 
and Δpaa mutant before (0 h) and after (72 h) desiccation at controlled humidity (5.7±1.5%) and ambient temperature (21±0.5 °C). The experiment was 
done in triplicates; data represent mean±sd (represented by error bars). ns P>0.05, *P<0.05, **P<0.01, ***P<0.001, ****p<0.0001 (Two-Way ANOVA with 
Šídák post-hoc test).
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Fig. 4. Role of PAA catabolism in A. baumannii AB5075 biofilm formation and desiccation tolerance. Dried WT cells increase the expression of the 
paa operon, which enhances PAA degradation and lowers PAA concentrations, resulting in a dried population of predominantly viable and culturable 
cells. In contrast, the absence of the paa operon (Δpaa) and the catabolic pathway leads to increased PAA levels in the cells, which decreases biofilm 
formation and shifts the desiccated population to predominantly VBNC cells. Created in BioRender.com.
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affects desiccation-mediated entrance in VBNC state in A. baumannii, we generated fluorescently labelled derivatives of 
the WT AB5075 and the Δpaa mutant constitutively expressing the fluorescent protein mChartreuse. Then, we grew both 
fluorescently labelled strains in M9-succinate before being desiccated. The same samples were subjected to culture-based c.f.u. 
counting and flow cytometry (using fluorescence as a proxy for cell viability) before and after 72-h desiccation [5, 7, 8, 13, 19]. 
Strikingly, the direct detection of fluorescently labelled viable cells showed no significant difference in the cell counts between 
the WT and Δpaa mutant, before and after desiccation, whereas the culturability of the Δpaa mutant was abolished after 
desiccation (Fig. 3). Thus, our results demonstrate that, under nutrient-limiting conditions, PAA accumulation drives A. 
baumannii cells into the VBNC state during desiccation.

DISCUSSION
PAA is an emerging stress and virulence signalling molecule in A. baumannii [33, 35, 36]. It is involved in bacterial resistance to 
antibiotics, biofilm regulation and osmotic pressure, as well as in the immunomodulation of neutrophils. Additionally, the PAA 
catabolic pathway, which controls the levels of PAA, appears differentially regulated in A. baumannii during intramacrophage 
colonization [37]. Our transcriptomics data showed that the paa operon is the most significantly upregulated group of genes in 
the clinical isolate AB5075 during desiccation under nutrient-limiting conditions (Fig. 1). The established paradigm positively 
associates desiccation tolerance with biofilm levels, and previous studies have demonstrated that PAA accumulation promotes 
biofilm formation [15, 33]. Interestingly, while we validated the previously shown increase in biofilm formation in response to 
PAA exposure [33, 34], our data demonstrates that active PAA catabolization is required for this effect (Fig. 2). This suggests that 
the molecule involved in modulating A. baumannii biofilm formation is a metabolite generated during PAA breakdown, rather 
than the PAA itself. Moreover, we show that the absence of PAA degradation reduces culturability during desiccation despite not 
affecting biofilm formation (Figs 2 and 3), which challenges the current paradigm.

The presence of VBNC cells during desiccation prompts a shift in the assessment of A. baumannii’s capability to withstand 
the pressures of desiccation, which has thus far been based on the ability of viable cells to grow on laboratory media 
[7–9, 34]. A recent report showed that exogenous PAA increases the recovery of culturable A. baumannii MCC 2076 cells 
post-desiccation after being grown in rich media initially [34], which highlights the importance of nutrient availability 
when assessing desiccation tolerance. Intriguingly, another recent study established a link between desiccation tolerances 
and VBNCs in A. baumannii, highlighting that a proportion of cells lose culturability upon air-drying [19]. Building on 
these compelling findings, we validated the role of PAA degradation during desiccation by testing viability and culturability 
before and after desiccation of a fluorescently labelled Δpaa compared to the WT AB5075. This showed a direct link 
between the absence of the PAA catabolic pathway, and hence the accumulation of PAA, and entrance into the VBNC state 
of A. baumannii under desiccation. The mutation of the PAA catabolic pathway led to loss of culturability but not viability 
of AB5075, grown under nutrient-limiting conditions, thereby prompting entry into the VBNC state during desiccation 
(Fig. 4). This is particularly important as bacteria experience nutrient limitations by the human host [38] and patients are 
a major source of hospital surface contamination with pathogenic bacteria [1]. Thus, it is likely that A. baumannii cells 
persisting on hospital surfaces experience nutrient limitations both before and during desiccation. An important protective 
strategy in both desiccated and VBNC cells is preventing protein aggregation [14, 39]. Hence, it is plausible that PAA 
catabolism is related to the regulation of DtpA and DtpB hydrophilins, preventing the aggregation of proteins in desiccated 
VBNC A. baumannii cells. Importantly, upon rehydration and resuscitation in biological buffers and human biological 
fluids, the desiccated VBNC A. baumannii cells have been shown to retain virulence [19]. Although multiple A. baumannii 
strains have shown the ability to enter into a VBNC state, their capacity to do so varies depending on the stressor and 
happens in a strain-dependent manner [18]. Hence, based on our results linking VBNC state and desiccation tolerance via 
PAA regulation, it is possible that the difference among A. baumannii strains in their desiccation tolerance reported in the 
literature [3] could be due to variations in their capacity to enter into the VBNC state. Consequently, this could be attributed 
to strain-specific differences in intracellular PAA levels. Future work will focus on deleting the paa operon in different A. 
baumannii clinical isolates and evaluating the intracellular PAA concentrations, desiccation tolerance and VBNC entry 
during desiccation among mutants and the WT parental strains of these isolates. Uncovering the role of PAA as a mediator 
of VBNC state during desiccation also highlights a key metabolic vulnerability that could be targeted in future disinfection 
treatments and outbreak prevention strategies. This highlights the need for DNA-based detection methods, such as viable 
quantitative PCR (vqPCR) [40], which have improved VBNC accuracy for better detection of pathogens like the critically 
important pathogen A. baumannii.
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