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A B S T R A C T

Global navigation satellite system (GNSS)/micro-electro-mechanical systems inertial navigation system (MEMS 
INS) algorithm is widely used in agricultural machinery navigation. However, several issues remain noteworthy, 
uneven terrain induces more high-frequency noise than other environments, which severely affects the accuracy 
of MEMS INS. In addition, occlusion environment, such as field windbreak, degrades GNSS signal quality. 
Although Butterworth filter and non-holonomic constraints (NHC) have been validated as effective solutions for 
these issues, which still face the following limitations in agricultural scenarios. This is because the power spectral 
density (PSD) of MEMS INS data exhibits distinct energy distribution among different states, therefore it is 
unreasonable to apply uniform cutoff frequency same as classic Butterworth filter. Additionally, jumping and 
slipping frequently occur, which can invalidate the zero-velocity assumption of NHC. Therefore, given the 
limitations of previous studies, this paper proposes a random forest (RF)-based model to identify machinery 
states and predict body-frame (right and up) velocities. Then, adaptive cutoff frequencies are selected for the 
Butterworth filter. Furthermore, the measurement and stochastic models of NHC are optimized by states and 
body-frame velocities. Experiments show that the proposed algorithm can achieve centimeter-level positioning 
accuracy and the heading angle error of only 0.33◦.

1. Introduction

With the growth of population, agricultural modernization has 
become increasingly important while high-precision navigation systems 
are essential to achieve this target (Li et al., 2021a). Currently, 
commonly used navigation systems include Global Navigation Satellite 
Systems (GNSS), Inertial Navigation Systems (INS), LiDAR navigation 
systems, vision navigation systems, and combination in between them 
(Xie et al., 2023). However, LiDAR- and vision-based navigation systems 
are less preferrable in agricultural machinery navigation, due to either 
high cost (Lü et al., 2018; Jiang and Ahamed, 2025), or sensitivity to 
lighting conditions (Lü et al., 2022).

GNSS, thanks to its real-time capability, has been widely adopted in 
many areas (Li et al., 2021b, c; Lai et al., 2025). Enhanced by the Real- 

Time Kinematic (RTK) and Precise Point Positioning (PPP) techniques, 
the positioning accuracy can normally achieve centimeter-level in ideal 
conditions (Cui et al., 2025; Huang et al., 2023; Wang et al., 2023). 
However, it dramatically decreases in obstructed agricultural environ
ments (Guo et al., 2018). On the other hand, INS is an independent 
navigation system with high short-term accuracy, although its errors 
accumulate over time. Therefore, integrating INS with GNSS can 
potentially establish a robust navigation system and become a popular 
solution in agricultural applications (Feng et al., 2023; Huang et al., 
2022).

Due to the lower price and the smaller size than high-precise INS 
(Sun et al., 2022), micro-electro-mechanical systems (MEMS) INS is 
widely used in many areas despite its higher error accumulation rate 
(Rafatnia et al., 2019). Consequently, research has focused on advanced 
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algorithms to overcome the limitations of the hardware. For example, 
dual-antenna GNSS/MEMS INS integration can achieve centimeter-level 
positioning accuracy and heading accuracy within 1 ◦ (Zhang et al., 
2015; Zhang et al., 2021). Notably, those are all based on the loosely 
coupled (LC) algorithms and the robustness is still questionable. The 
tightly coupled (TC) algorithms can offer superior robustness, thanks to 
directly integrating raw observations measurements of GNSS with INS 
(Niu et al., 2016). However, they still face limitations in complex agri
cultural scenarios, which are mainly from the following two aspects:

On the one hand, because irregular field topography is a high- 
vibration environment, MEMS INS exhibits considerable high- 
frequency noise, which must be removed. To reduce the influence, 
time-domain high-frequency noise removal algorithms were employed, 
however the effectiveness of these algorithms is limited (Rohac et al., 
2011). Therefore, researchers have applied frequency-domain based 
low-pass filtering algorithm, such as Wavelet de-noising (Wu and Yang, 
2007; Xu et al., 2018) and Butterworth (Hu et al., 2020a). The wavelet 
de-noising algorithm has low computational efficiency. Classic Butter
worth has higher computational efficiency; however, this method does 
not distinguish different vehicle behavioral states. In vehicle navigation, 
due to smooth road surfaces and uniform states, the power spectral 
density (PSD) of INS data exhibits similar energy distribution patterns 
across different states. Therefore, setting a uniform cutoff frequency 
without distinguishing states is reasonable. However, it has limitations 
in agricultural machinery navigation, where uneven field surfaces and 
unique motion states cause significant variations in PSD energy distri
bution across frequency bands under different states. For instance, when 
agricultural machinery operates on bumpy terrain, genuine high- 
frequency changes occur in angular velocity and velocity, resulting in 
noticeably higher energy distribution in mid-frequency ranges. In this 
case, applying a low cutoff frequency would filter out these real motion 
signals, leading to distorted navigation results. Hence, accurate recog
nition of machinery behavioral states is crucial to overcoming this 
limitation.

On the other hand, non-holonomic constraints (NHC) assume that 
right and up velocities are near zero, meaning the vehicle rarely jumps 
and slips (Niu et al., 2007). NHC is widely used in vehicle navigation, 
especially where GNSS signals are weak, such as urban canyons and 
tunnels (Sun et al., 2020; Wang et al., 2022; Jing et al., 2025). Some 
studies suggest using different neural networks to predict velocities for 
straight driving and turning, since slipping is more likely during turns 
(Li et al., 2023). The influence of varying behavioral states on NHC is 
even more critical in agricultural machinery navigation due to soft soil 
and uneven terrain, which increases the probability of jumping and 
slipping during turns and bumps. In summary, the assumptions under
lying NHC present significant limitations in agricultural navigation, and 
the key to overcoming these limitations lies in accurate prediction of 
machinery behavioral states and velocities.

Based on the above discussion, if the behavioral states and velocities 
of agricultural machinery can be accurately predicted, both Butterworth 
filtering and NHC can be optimized. Currently, in the field of vehicle 
navigation, extensive research has been conducted on identifying states 
using INS data (Gao and Zhao, 2016). However, in the agricultural 
domain, INS-based behavioral state recognition studies have mainly 
focused on livestock (Rahman et al., 2018; Peng et al., 2020; Kirsch 
et al., 2025), with limited research on agricultural machinery behavior 
recognition. Existing animal behavior recognition algorithms commonly 
employ complex machine learning methods such as Long Short-Term 
Memory (LSTM) networks and Convolutional Neural Networks (CNN), 
which, despite their high accuracy, suffer from poor real-time perfor
mance (Li et al., 2024). Compared to the above-mentioned algorithms, 

some machine learning methods, such as Support Vector Machines 
(SVM), Decision Trees and Random Forests (RF), offer higher compu
tational efficiency. Especially, RF is an ensemble classifier, which can 
achieve high accuracy and robustness without complex data pre
processing, which has attracted extensive attention from researchers 
(Zhou et al., 2023). Moreover, RF can also construct regression trees, 
enabling not only the recognition of behavioral states but also accurate 
prediction of body-frame velocities. These advantages make RF partic
ularly well-suited for agricultural machinery navigation scenarios.

Selecting a suitable data fusion algorithm is also a crucial step. The 
GNSS/MEMS INS tightly coupled (TC) integration algorithm represents 
a typical nonlinear system, and existing data fusion methods for such 
models can generally be categorized into two groups: 1) Lie group/Lie 
algebra-based filtering methods. For example, Hu et al. (2025) applied 
this approach to strapdown inertial navigation system (SINS)/Doppler 
velocity log (DVL) TC integration, and demonstrated that the method is 
immune to the initial attitude error and offers advantages in both 
convergence speed and steady-state accuracy. 2) Kalman filter variants, 
including the extended Kalman filter (EKF), unscented Kalman filter 
(UKF), and cubature Kalman filter (CKF) (Gao et al., 2020). Gao et al. 
(2023a) realized INS/CNS/SRS TC integration based on EKF and 
improved the filtering accuracy by incorporating a chi-square test-based 
covariance estimation method. To address the linearization errors of 
EKF, Hu et al. (2019) proposed a robust UKF and applied it to GNSS/INS 
TC integration. Considering the high computational burden of UKF, Hu 
et al. (2015a; 2015b) introduced a derivative UKF to improve efficiency. 
Further studies have developed a variety of improved UKF algorithms 
(Gao et al., 2015, 2017, Hu et al., 2015c, 2018, 2020b, c; Yang et al., 
2016) to enhance adaptability and robustness against uncertainties in 
kinematic and measurement models. Meanwhile, Hu et al. (2023)
established a decentralized multi-sensor information fusion framework 
based on robust UKF, achieving INS/GNSS/CNS integration. In terms of 
CKF, Gao et al. (2023b) proposed a closed-loop covariance feedback- 
based INS/GNSS TC integration method, and further developed a 
cubature rule-based distributed optimal fusion algorithm for MIMU/ 
GNSS/CNS integration (Gao et al., 2021a, b). Other improved CKF 
methods mainly focus on optimizing noise statistics and enhancing 
robustness (Gao et al., 2021a, b, 2022; Hu et al., 2024; Zhang et al., 
2019). Although extensive research has been conducted on Lie group 
methods, UKF, and CKF, most of these studies target high-dynamic 
platforms such as UAVs and hypersonic vehicles, and the algorithms 
often involve higher computational complexity. Therefore, in this work, 
EKF is selected as the data fusion algorithm, considering both compu
tational efficiency and engineering applicability.

In this paper, RF-based GNSS/MEMS INS TC algorithm is proposed to 
optimize both the Butterworth filtering and NHC models, as well as to 
enhance accuracy and robustness in agricultural machinery navigation. 
The contribution of the proposed algorithm are as follows: 1) A RF 
model is employed to predict both the behavioral states and the body- 
frame velocities; 2) The influence of behavioral states on the PSD en
ergy distribution of INS data is fully considered, and a novel state-based 
Butterworth filtering strategy is designed to prevent signal distortion 
caused by excessive filtering; 3) To address the inaccuracy of the NHC 
model, the RF-predicted body-frame velocities are used to replace the 
zero velocity assumption. In addition, a measurement noise adjustment 
function is introduced, which is based on the behavioral states, to 
further optimize the stochastic model of the NHC.

The rest of the paper is organized as follows: Section 2 describes the 
proposed algorithm, including the framework, TC model, RF algorithm, 
and the optimized Butterworth and NHC methods. Section 3 presents 
experimental analysis and discussion. Section 4 concludes the paper.

Y. Feng et al.                                                                                                                                                                                                                                     Computers and Electronics in Agriculture 242 (2026) 111350 

2 



2. Methods

In this section, a framework of the proposed GNSS/MEMS INS TC 
algorithm is illustrated, followed by detailed explanation of the TC 
model, RF algorithm, and the optimized Butterworth and NHC methods 
in the framework.

2.1. Framework

As shown in Fig. 1, there are four steps in the proposed framework: 1) 
Training data Preparation: this step includes two parts: (a) feature 
extraction from MEMS INS data, and (b) process high-precision Position 
and Orientation System (POS) data via IE Software® to generate labels, 
including body-frame velocities and behavioral states. 2) RF models 
training: use features and labels obtained in Step 1 to train the RF models 
and save them. 3) Input Preparation: prepare the input features through 
feature extraction. 4) Butterworth and NHC Optimization: use the 
behavioral states predicted by the RF model to optimize the Butterworth 
filter via decreasing the noise of MEMS INS data. Additionally, both the 
predicted states and body-frame velocities are utilized to refine the NHC 
model. Finally, all information is fused by an Extended Kalman Filter 
(EKF) to obtain the final navigation solution.

2.2. Tightly coupled (TC) model

2.2.1. System model
The tightly coupled state-space model of GNSS/INS can be written as 

(Feng et al., 2025): 

δx =
[
δψe

eb δve
eb δre

eb δba δbg Δ∇Nrb
]

(1) 

where the superscript e represents Earth-centered and Earth-fixed 
(ECEF) frame, subscript b denotes body-frame, δψe

eb, δve
eb, and δre

eb are 
attitude, velocity, and position errors, respectively. δba and δbg are INS 
accelerometer and gyroscope biases, and Δ∇Nrb is the double-difference 
ambiguities between the GNSS rover and base stations.

Then, the system model can be defined as (Zhang et al., 2017): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δψ̇e
eb = − Ce

bδbg −
(
ωe

ie ×
)
δψe

eb + ξψ

δv̇e
eb = Ce

bδba +
(
(Ce

bf
b
ib)×

)
δψe

eb −
(
2ωe

ie ×
)
δve

eb + ξv

δṙe
eb = δve

eb + ξr

δḃa = ξba

δḃg = ξbg

δΔ∇Ṅrb = ξN

(2) 

where the subscript i denote the inertial-frame, Ce
b is the attitude matrix 

relating the body-frame to the ECEF. ωe
ie is the projection of the angular 

rate of rotation of the Earth in the ECEF-frame. fb
ib is the projection of the 

force under the b system. ξ is the process noise associated with each state 
in the state-space model.

Furthermore, Eq. (2) can be written in the following matrix form 
(xiao et al., 2024): 

Fig. 1. Framework of the proposed GNSS/MEMS INS TC algorithm.
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δẋ=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
(
ωe

ie×
)

03×3 03×3 03×3 − Ce
b 03×n

(Ce
bf

b
ib)× −

(
2ωe

ie×
)

03×3 Ce
b 03×3 03×n

03×3 I3×3 03×3 03×3 03×3 03×n

03×3 03×3 03×3 03×3 03×3 03×n

03×3 03×3 03×3 03×3 03×3 03×n

03×3 03×3 03×3 03×3 03×3 03×n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δψe
eb

δve
eb

δre
eb

δba

δbg

Δ∇Nrb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ξψ

ξv

ξr

ξba

ξbg

ξN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=Fδx+w

(3) 

where F is the state transition matrix. δx is the state vector. w is the 
system noise vector formed by ξ, and the widespread successful appli
cations of EKF, UKF and CKF demonstrate that approximating the noise 
as Gaussian is a reasonable and effective assumption.

2.2.2. Measurement model
The double-difference (DD) observation equation of TC model is 

given as follows: 
{

δZP = Δ∇ρ̂ − Δ∇P
δZφ = Δ∇ρ̂ − Δ∇φ + λΔ∇Nrb

(4) 

where, δZP and δZφ represent the DD residuals of pseudorange and 
carrier phase, respectively. Δ∇P and Δ∇φ are DD observations of 
pseudorange and carrier phase, respectively. λ is the wavelength of the 
carrier observation. Δ∇ρ̂ is the double-difference observations derived 
from INS, and it involves squared terms and square root operations; 
therefore, the measurement model is inherently nonlinear.

Since the double-difference (DD) observation equation is nonlinear, 
and the data fusion algorithm adopted in this paper is the EKF, the 
double-difference (DD) observation equation must first be linearized, 
that is, the partial derivatives with respect to the state-space vector are 
computed to form the Jacobian matrix, which also named design matrix 
in EKF. After this process, the measurement model, Eq. (4) can be 
expressed as: 

δZP or φ = Hδx+RP or φ (5) 

where RP or φ represents the measurement noise matrix of the double- 
difference observations, which can be calculated using the elevation 
angle model (Bahadur and Schön, 2024. δZP or φ is the measurement 
vector, and H denotes the design matrix, and the detailed forms are 
shown in the following equation. 

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
ek − e1)

(
Ce

bl
b
×
)

⋮
(
ek − en− 1)

(
Ce

bl
b
×
)

(
ek − e1)

(
Ce

bl
b
×
)

⋮
(
ek − en− 1)

(
Ce

bl
b
×
)

0
⋮
0
0
⋮
0

e1 − ek

⋮
en− 1 − ek

e1 − ek

⋮
en− 1 − ek

0
⋮
0
0
⋮
0

0
⋮
0
0
⋮
0

0
⋮
0
λ1

⋮
λn− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6) 

δZP or φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Δ∇ρ̂1,k
− Δ∇P1,k

⋮
Δ∇ρ̂n− 1,k

− Δ∇Pn− 1,k

Δ∇ρ̂1,k
− Δ∇φ1,k + λΔ∇N1,k

rb

⋮
Δ∇ρ̂n− 1,k

− Δ∇φn− 1,k + λΔ∇Nn− 1,k
rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7) 

where ei denotes the line-of-sight direction vector for satellite i, and lb 

represents the lever arm. n represents the number of satellites, and λi is a 
row vector whose dimension corresponds to the number of satellites. Its 
value is λ for the reference satellite and − λ for the other satellites.

2.2.3. The EKF
The procedures of EKF include two steps, as follows:
1) Time update: 

δx̂k,k− 1 = ϕk,k− 1δx̂k− 1 (8) 

Pk,k− 1 = ϕk,k− 1Pk− 1ϕT
k,k− 1 +Qk− 1 (9) 

where, δx̂k,k− 1 denotes the predicted state-space vector, and Pk,k− 1 is 
state error covariance matrix at time k. ϕk,k− 1 expresses the state tran
sition matrix from time k − 1 to k. δx̂k− 1 and Pk− 1 represent the final 
estimation of the state-space vector and state error covariance matrix at 
time k − 1. Qk− 1 is the system noise matrix at time k − 1.

2) Measurements update: 

δx̂k = δx̂k,k− 1 +Kk
(
Zk − Hkδx̂k,k− 1

)
(10) 

Pk = (I − KkHk)Pk,k− 1 (11) 

where δx̂k and Pk represent the final estimation of the state-space vector 
and state error covariance matrix at time k. Kk denotes the Kalman gain 
matrix at time k, which is expressed in Eq. (11). Zk is the measurement 
vector at time k. Hk expresses the design matrix at time k. 

Kk = Pk,k− 1Hk
T (HkPk,k− 1Hk

T + Rk
)− 1 (12) 

where Rk is the measurement noise matrix covariance matrix at time k.

2.3. RF for agricultural machinery

The RF in this paper is used for two purposes: (1) classification of 
agricultural machinery behavioral states and (2) prediction of right and 
up velocities in the body-frame. Although RF has been widely applied, 
research on its use in agricultural machinery remains limited. Especially, 
feature selection for agricultural machinery remains to be investigated. 
Therefore, this study, for the first time, proposes a set of features for 
agricultural machinery carriers that are suitable for above two purposes.

2.3.1. Feature configuration
First, the features for behavioral state recognition are introduced, 

followed by the features for velocity prediction.
(1) Features for behavioral state recognition
According to the operational characteristics of agricultural machin

ery, behavioral states are divided into six types, as shown in Table 1. The 
principles for the setting of threshold parameters are described in Gao 
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and Zhao (2016) and these parameters are used to compare with the 
results of the high-precision reference system to generate labels.

The features used for state recognition are categorized by two types: 
time-domain features and frequency-domain features.

1) Time-domain features
Before introducing the time-domain features, the simple moving- 

average (SMA) will be introduced. This is a commonly used strategy in 
MEMS INS data processing, aimed at smoothing the raw data, as shown 
in Eq (13) (Redhyka et al., 2015). 

dataSMA,k =
∑k

k− n+1
dataraw,k

/

n (13) 

where dataraw,k represents the INS raw data and dataSMA,k is the data 
which is smoothed by SMA. n is the window size, in this paper, n is set as 
100.

The purpose of smoothing the data is to promote state identification. 
For example, as shown in Fig. 2(a), the standard deviation (Std) 
computed from the raw data is represented by the orange line, while the 
blue line shows the Std derived from smoothed data. It can be clearly 
observed that the orange line shows similar patterns between the 
braking/starting (purple shadow) and sharp turning (green shadow) 
states, making it difficult to distinguish the braking/starting state from 
sharp turning state. In contrast, the blue line exhibits clear character
istics during braking/starting as compared to sharp turning, which al
lows to easily distinguish between these two states.

Then, the time-domain features used for recognizing each state will 
be described. First, for the braking/starting states, the most intuitive 
features are the Mean and Std of the accelerometer’s y-axis data, as 
defined in Eqs. (14) and (15). 

Mean =
∑i

i− n+1
dataraw,i

/

n (14) 

Std =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑i

i− n+1

(
dataSMA,i − Mean

)2

/

(n − 1)

√
√
√
√ (15) 

As shown in Fig. 2(a), the Mean without smooth (green line) and Std 
with smooth (blue line) of the accelerometer y-axis data exhibit signifi
cant differences in the braking/starting state (purple shadow). This 
demonstrates that these features can effectively identify the braking/ 
starting state.

Secondly, the stop, straight driving, turning, and sharp turning, can 
be effectively distinguished using the integral of the gyroscope z-axis, 
calculated as follows: 

Integralgyroup
=
∑i

i− 2n+1
gyroup,raw,i*dt (16) 

where dt is the sampling time step, and gyroup,raw,i is the gyroscope raw 
data about the z-axis.

As shown in Fig. 2(b), during the stop, the value of this feature is 
close to zero; during straight driving, it remains at a low value; during 
turning, high values appear but last for a short duration; while during 
sharp turning, the feature maintains a high value and the duration is 
longer than turning. Therefore, this feature can effectively classify the 
four behavioral states.

Finally, during bumping state, the gyroscope x-axis data shows large 
value. Therefore, Mean without smooth and Std with smooth of it are 
employed, meanwhile, the smoothed data is adopted same as the 
braking/starting feature extraction. As shown in Fig. 2(c), in blue 
shadow, the Mean and Std have a significant difference. This indicates 
that the feature can effectively identify the bumping state.

2) frequency-domain features
Theoretically, the six behavioral states can be effectively distin

guished using above time-domain features. However, in some cases, it 
still faces challenges. For example, in Fig. 2(b), around 1.15x105 s, the 
integral values show similar characteristics between turning and sharp 
turning states.

As mentioned in the introduction, in the frequency-domain, different 
behavioral states exhibit distinct energy distribution patterns of the PSD. 
Therefore, this study uses energy ratios within 10 Hz intervals from 0 Hz 
to 50 Hz as new features. Feature extraction requires the use of the 
Fourier transform, with detailed principles provided in reference 
(Heideman et al., 1984).

Fig. 3 shows this new feature of turning and sharp turning states. And 
it shows a significant difference in the band of 30 Hz to 40 Hz, where the 
percentage of energy distribution during sharp turning significantly 
exceeds that of turning.

(2) Features for body-frame velocity prediction
The state of agricultural machinery is generally continuous and does 

Table 1 
The threshold parameters for different behavioral states.

State 
No.

Behavioral 
State Types

Corresponding 
practical scenarios

Principles for Threshold 
Parameters

1 Stop Initialization, rest velocity < 0.05 m/s
2 Straight driving Working heading rate < 4◦/s
3 Braking/ 

starting
Facing emergency front acceleration > 0.5 m/ 

s2

4 Turning U-shape turning heading rate >= 4◦/s
5 Sharp turning S-shape turning, 

Circular trajectory
heading rate >= 4◦/s and 
turning duration > 15 s

6 Bumping highly uneven field vertical velocity > 0.3 m/s

Fig. 2. The time-domain features used for behavioral state recognition.
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not change abruptly, whereas the body-frame velocity is affected by 
uneven terrain and turning, leading to significant variations over a short 
period. So there are some differences in their feature settings.

For the task of prediction of right and up velocities, this study ex

tracts the Mean and Std of INS raw data instead of smoothed data, 
because smoothed data may cause distortion in the predicted speed. The 
feature extraction methods are described in Eqs. (13) and (14), but the 
dataSMA,i in Eq (14) should be replaced by dataraw,i.

Fig. 3. Energy distribution in frequency domain during sharp turning and turning states.

Fig. 4. Flowchart of RF. Circles represent the randomly selected candidate factors and triangles are the optimal splitting factors.
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2.3.2. The step of RF
RF is an ensemble learning algorithm which obtains results through 

voting. In addition, the algorithm exhibits strong randomness in two 
aspects: 1) The first point lies in the randomness of sampling: n samples 
are drawn with replacement from the training set to form a subset, and 
this process is repeated L times to obtain L subsets; 2) The second point 
lies in the construction of decision trees, where not all features are used; 
instead, a random subset of the mentioned features is selected for 
splitting (Breiman, 2001).

The construction processes of RF are shown in Fig. 4, including three 
main steps:

(1) Step 1: bootstrap resampling. The whole training dataset can be 
expressed as D = {(F1, y1), (F2, y2),⋯, (FN, yN) }, N > n. where Fi rep
resents a feature vector and its dimension is equal to the number of 
features. yi is the label used in RF training. In this step, n samples are 
randomly drawn with replacement from the full dataset to form a 
training subset, expressed as subseti = {D1,D2,⋯,Dn}, n ∈ [1,N],

i ∈ [1, L].
(2) Step 2: the construction of each decision tree. This step is based 

on the Classification and Regression Tree (CART) algorithm. For the 
behavioral state classification task, each decision tree splits in the di
rection that minimizes the Gini coefficient, which is calculated as fol
lows: 

Gini = 1 −

(
∑k

i=1
p2

i

)

(17) 

where pi is the conditional probability of each behavioral state, and k is 
the number of states.

For the prediction task of body-frame velocities, CART splits in the 
direction that minimizes the Mean Squared Error (MSE), which is shown 
as follows: 

MSE =
∑n

i=1
(vi − v)2

/

n (18) 

where vi is value of the predicted velocities, v is the value of true ve
locities.

(3) Step 3: the final prediction is obtained through soft voting, with 
the principle shown in the following equation: 

Y =
∑L

i=1
yi

/

L (19) 

where Y denotes the result of voting.

2.4. RF-based Butterworth filter

This filter was first proposed by Butterworth in 1930, and the prin
ciple is shown as follows: 

|H(ω)|
2
= 1

/(
1 + (ω/ωc)

N) (20) 

where ω is frequency, and ωc is cutoff frequency. H(ω) is the amplitude, 
and N is the order of the filter. Once the cutoff frequency is set, signals 
with frequencies higher than the cutoff frequency will be filtered out.

As discussed in introduction, among different behavioral states, the 
PSD of MEMS INS data exhibits different energy distribution charac
teristics. This causes some states to treat mid-high frequency signals as 
noise, while in others, the signals in mid-high frequency bands actually 
reflect the true motion.

To illustrate this point, Fig. 5 shows the PSD of the gyroscope y-axis 
data under straight driving and bumping states. During the bumping 
states, the gyroscope y-axis exhibits frequent fluctuations, having a 
significantly higher energy distribution around 10 Hz compared to the 
straight driving state. These signals genuinely reflect the roll angle 
variations during bumping and should not be filtered out. Therefore, the 
cutoff frequency must be set differently from that of the straight driving 
state.

To address this limitation, this study proposes, for the first time, a 
variable-cutoff-frequency Butterworth filter established for typical 
states in agricultural machinery. Based on the statistical analysis of the 
PSD of each state, the cutoff frequency settings for each behavioral state 
are summarized in Table 2. It is worth noting that the following cutoff 
frequencies are applicable only to agricultural machinery operating in 
field, and should be treated differently when applied to other scenarios.

Fig. 5. PSD of the gyroscope y-axis during go straight and bumps states.

Table 2 
The cutoff frequency of each behavior context.

Gyro 
right

Gyro 
front

Gyro 
up

Acc 
right

Acc 
front

Acc 
up

Straight 
driving

5 Hz 2 Hz 3 Hz 2.5 Hz 5 Hz 5 Hz

Turning 5 Hz 5 Hz 10 Hz 2.5 Hz 5 Hz 5 Hz
Stop 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz
Braking/ 

starting
5 Hz 2.5 Hz 3.5 Hz 3HZ 5 Hz 5 Hz

Sharp turning 5 Hz 5 Hz 10 Hz 2.5 Hz 5 Hz 5 Hz
Bumping 15 Hz 15 Hz 15 Hz 15 Hz 15 Hz 15 Hz
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2.5. RF-based NHC

In the field of urban vehicle navigation, the NHC assumes that the 
right and up velocities in the body-frame are approximately zero. 
However, in agricultural navigation, due to uneven terrain and specific 
behavioral states, agricultural machinery is more likely to experience 
jumping and slipping. Especially, the right and up velocities even can 
exceed 0.5 m/s, and the traditional NHC model cannot be directly 
applied.

Therefore, this section presents, for the first time, an improved NHC 
measurement model based on RF-predicted velocity, and a stochastic 
model refined according to the predicted states. The principles are 
detailed as follows:

We denote difference between the RF-predicted velocity (vrf ) and the 
velocity derived from the MEMS INS (vimu) as δZnhc, which can be 
expressed as follows: 

δZnhc = vrf − vimu = Hnhcδx+Rnhc (21) 

where Hnhc is the design matrix, which is obtained by computing the 
partial derivative of δZnhc with respect to the state vector (Cheng et al., 
2023). Rnhc is the measurement noise matrix of the RF-predicted 
velocity.

Different from Rnhc is usually set as constants matrix in traditional 
NHC algorithms, however, as shown in Figs. 7(b) and (c), the velocity 
prediction error of the RF (orange lines) is not constant and is strongly 
correlated with the motion state. Therefore, for the first time, we design 
a computation equation for Rnhc, expressed below: 

Rnhc =

⎧
⎪⎪⎨

⎪⎪⎩

[
0.01 0

0 0.01

]

state = 1

[
0.05(state − 1)β 0

0 0.03(state − 1)β

]

state = others

(22) 

where state represents the behavioral state, with values from 1 to 6 
corresponding to stop, straight driving, braking/starting, turning, sharp 
turning, and bumping, respectively. The parameter β is set as 0.75 in this 
study, which, according to test, yields R value that better matches the 
true errors of the prediction velocities across different behavioral states.

3. Results and discussion

To verify the accuracy of the proposed algorithm, two sets of data 
were collected, including six behavioral states: stop, straight driving, 
braking/starting, turning, sharp turning, and bumping. The bumping 
state was simulated by driving the machinery over bumpy road, as 
shown in Fig. 6(f). The trajectories of the two datasets are presented in 
Fig. 6(d) and Fig. 6(e), respectively. The data in Fig. 6(d), lasting 40 min, 
was used to train the RF model. While the data in Fig. 6(e), lasting 34 
min, were used for algorithm evaluation.

The tractor used was the John Deere 904, and the driving speed 
ranged from 2 to 3 m/s. Two sets of POS devices were installed inside of 
the cabin, as shown in Fig. 6(a). The high-precision POS called XW- 
G7680, was used for accuracy evaluation. It includes a fiber optic gy
roscope (FOG) INS, with detailed parameters listed in Table 3. Addi
tionally, the high-precision POS is equipped with a UB4B0 GNSS board, 
which can receive multi-frequency and multi-constellation signals, as 
shown in Table 4. The reference values for accuracy evaluation were 
computed by IE Software®.

The other POS, XW-G6615D6, has low-precision POS and was used to 
evaluate the accuracy of the proposed algorithm. This device consists of 
the same GNSS board, but a MEMS INS, with parameters listed in 
Table 3. The base station setup is shown in Fig. 6(b), with an open 
environment. The rover station antenna setup is illustrated in Fig. 6(c), 
where the antenna is obstructed by the cabin. This arrangement is 
intended to verify the robustness of the algorithm by simulating the 
occluded environment.

Fig. 6. Overview of the experimental data collection scenarios: (a) pos devices; (b) the environment of base station; (c) the position of GNSS antenna; (d) the 
trajectory of training data; (e) the trajectory of test data; (f) bumpy road.

Table 3 
IMU Parameters in XW-G7680 and XW-G6615D6.

XW-G6615D6 (MEMS 
INS)

XW-G7680 (FOG 
INS)

Bias instability of Gyro ( ◦

/h) 10 0.5
Random walk of Gyro (deg/ 

̅̅̅
h

√
)

0.7 −

Bias instability of Acc (mg) 0.1 0.1
Random walk of Acc 

(mg/
̅̅̅̅̅̅
Hz

√
)

0.5 0.5

Sampling Frequency (Hz) 100 100
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3.1. Performance of RF

The labels used for training the RF model were processed by the IE 
Software®, which ensures that the training labels are reliable. The basic 
computer information used for RF model processing are as follows: Intel 
(R) Core (TM) Ultra 9 CPU@2.30 GHz with 32.0 GB RAM. According to 
statistics, the average sample testing times for predicting the body-frame 
right and up velocities are 15.42 ms and 15.88 ms, respectively. The 
average sample testing time for behavioral state classification is 14.11 
ms. Therefore, given the time efficiency, it can meet the real-time re
quirements of agricultural machinery applications.

Fig. 7(a) illustrates the results of behavioral state recognition, which 
is based on the low-cost MEMS INS. It can be observed that most of the 
straight driving states are correctly identified, with only a few mis
classified as bumping. However, this does not indicate misclassification. 
As shown in the bottom-right of Fig. 7(a), some roads during this period 
were uneven, which may have caused bumping. Then, the turning states 
are accurately identified, and most sharp turning states are also correctly 
recognized. However, some misclassifications of sharp turning as 
normal turning do occur, due to the inherent similarity of features be
tween these two states, which sometimes makes them difficult to 
distinguish. Next, the recognition results for the braking/starting states 
are also reasonable. As shown in the top-right corner of Fig. 7(a), these 
periods exhibit significant fluctuations in front velocity. Then, the 
bumping state is mainly concentrated on the left side, corresponding to 
the tractor traversing a bumpy road, as shown in top-left corner of Fig. 7 
(a). Finally, the stop state is accurately identified by comparing the stop 
times. In total, 247,800 behavioral state predictions were obtained, and 
238,260 of them were correct, yielding an overall accuracy of 96.15 %. 
This result includes not only the test data but also 18 % of the validation 
samples from the training set. As shown in Table 5, the recognition ac
curacy of each state is also high.

The root mean square errors (RMSE) is given as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

/

n
∑n

i=1

(
yi − yi,true

)2

√
√
√
√ (23) 

where yi is the calculated value, and yi,true is the true value.
Table 6 shows the RMSE for the predicted right and up velocities, 

which is classified by state. First, the overall RMSE values are small, 
indicating that the RF achieves high accuracy in velocity prediction. 
Second, compared with the calculated values in Eq. (22), the RMSE 
values in each state are basically consistent, which further verifies the 
reasonable of the proposed algorithm. Finally, from Figs. 7(b) and (c), 
the true velocity (orange line) varies with the state. This suggests that 
assuming the right and up velocities are close to zero, as in the classic 
NHC model, is unreliable.

To further demonstrate the accuracy of the RF algorithm, it was 
applied to a second test dataset. This dataset was collected using the XW- 
G6615D6 mounted on a four-wheeled vehicle, which name is AgileX 
Hunter2. In addition, the data span is approximately 13 min and was 
collected in a campus playground environment, which is significantly 
different from field. The differences between the two datasets can pro
vide stronger evidence for the generalization capability of the RF 

Table 4 
Parameters of UB4B0.

Signal BDS B1I/B2I/B3I/B1C/B2a

​ GPS L1/L2C/L2P(Y)/L5
​ GLONASS G1/G2
​ Galileo E1/E5a/E5b
Observation Accuracy Pseudo-range 10 cm Carrier-phase 1 mm
Positioning Accuracy SPP 3 m RTK 1.5 cm + 1 ppm

Fig. 7. RF result for behavioral state and body-frame velocities.

Table 5 
The recognition accuracy of each state.

Straight driving 97.93 %

Turning 97.69 %
Stop 98.33 %
Braking/starting 94.50 %
Sharping turning 91.01 %
Bumping 99.79 %

Table 6 
The RMSE of for the predicted velocities.

RMSE (m/s)
Right Up

Total 0.05 0.03
Stop 0.01 0.01
Straight driving 0.05 0.02
Braking/starting 0.07 0.04
Turning 0.10 0.07
Sharp turning 0.15 0.08
Bumping 0.17 0.11
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algorithm.
Since the data were collected in a flat playground environment, only 

four behavioral states are involved: straight driving, turning, stopping, 
and braking/starting. As shown in Fig. 8(a), the majority of states were 
accurately recognized. Compared with the labels computed by the 
reference system, it was found that even with a different platform and 
data collection environment, the state recognition accuracy still reached 
94.79 %, with a total of 70,400 epochs, of which 66,733 were correctly 
recognized.

Figs. 8(b) and (c) present the velocity prediction error (orange lines) 
and the true velocity (blue lines), from which the following conclusions 
can be drawn: 1) From the blue lines, it can be observed that, compared 
with Figs. 7(b) and (c), the right and up velocities are significantly 
smaller because the data were collected in a flatter environment; 2) 
From the orange lines, it can be seen that the predicted velocity error 
remains at a low level. Statistical analysis shows that the RMSE of the 
right velocity is 2 cm/s and that of the up velocity is 1 cm/s.

In summary, using the RF algorithm for both behavioral state 
recognition and body-frame velocity prediction is feasible, meeting the 

requirements in terms of both time efficiency and accuracy.

3.2. Performance of RF-based Butterworth filter

This section evaluates the accuracy of three schemes: 1) TC algo
rithm using raw MEMS INS data; 2) TC algorithm using MEMS INS data, 
which is filtered by classic Butterworth filter; 3) TC algorithm, which is 
filtered by RF-based Butterworth filter. Note that the accuracy assess
ment is based on the NEU coordinate system, with the reference station 
as the origin. Here, N represents the north direction, E the east direction, 
and U the up direction.

From Fig. 9, the findings can be listed as follows: 

1) The state before 1.21x105s mainly corresponds to straight driving 
state. Under this condition, Schemes 2 and 3 exhibit similar accu
racy, both of them show better accuracy than Scheme 1. This is 
because straight driving state is the main state in the overall data. 
Therefore, the uniform cutoff frequency of classic Butterworth filter 
is close to the cutoff frequency of RF-based filter during straight 

Fig. 8. RF result for behavioral state and body-frame velocities (with additional data).

Fig. 9. Positioning and heading errors, for comparison with the RF-based Butterworth filter.

Y. Feng et al.                                                                                                                                                                                                                                     Computers and Electronics in Agriculture 242 (2026) 111350 

10 



driving. Therefore, both algorithms have similar accuracy in this 
state.

2) Between 1.21x105s and 1.215x105s, the navigation accuracy of 
Scheme 1 decreases. There are two main reasons: Firstly, As is well 
known, the accuracy of MEMS INS mechanization is highly corre
lated with the motion state of the vehicle, and it degrades signifi
cantly under sharp turning conditions; Then, the rover antenna was 
installed on the side of the cabin, as shown in Fig. 6(c). This 
arrangement caused frequent changes in the number of common- 
view satellites between the rover antenna and the base antenna 
during sharp turns. These two factors together led to the accuracy 
degradation of scheme 1.

3) Between 1.21x105s and 1.215x105s, a significant increase in posi
tioning errors was observed for Scheme 2, with positioning errors in 
the N and U directions even exceeding those of Scheme 1. As dis
cussed in Section 2.4, during this period tractor is in sharp turning 
and bumping states. When using the classic Butterworth filter, some 
mid-frequency signals, such as those around 10 Hz shown in Fig. 5, 
are filtered out. These signals objectively reflect the current varia
tions in tractor velocity and angular velocity. By removing these 
critical mid-frequency signals, Scheme 2 causes distortion in the 
positioning accuracy.

4) Between 1.21x105s and 1.215x105s, Scheme 3 employs RF-based 
Butterworth filter. During sharp turning and bumping states, it 
effectively preserves mid-frequency signals that reflect the true 
motion. As a result, it makes Scheme 3 have the best accuracy, 
demonstrating the superiority of the RF-based Butterworth filter.

5) Finally, analysis of the heading error leads to a similar conclusion: 
the classic Butterworth filter method improves accuracy during 
straight driving states but performs poorly during sharp turning and 
bumping states. The optimized algorithm achieves the best accuracy 
across all behavioral states.

Table 7 presents the RMSE of the positioning in the ENU direction 
and heading errors. The results show the following: 1) Scheme 2, 
compared with Scheme 1, does not improve positioning accuracy, and 
achieves a 20.3 % improvement in heading accuracy. 2) Scheme 3 
significantly outperforms Scheme 1, with positioning accuracy 
improved by 52.9 %, 54.5 %, and 83.3 % in the East, North, and Up 
directions, respectively. Additionally, heading accuracy is improved by 
23.3 %.

3.3. Performance of RF-based NHC

In this section, the MEMS INS data were processed using the RF- 
based Butterworth filter. Four Schemes were employed in this section: 
1) without NHC; 2) using the classic NHC (right and up velocities are 
setting as zero); 3) using the RF-predicted velocities (without adjusting 
the Rnhc); 4) RF-based NHC (the behavioral states are used to adjust the 
Rnhc).

Fig. 10 presents the errors of positioning, velocity, and heading for 
the four schemes, and the findings can be listed as follows: 

1) Before 1.21x105s, the main states of the tractor are straight driving. 
During this period, the positioning accuracy of all schemes, in 

descending order, is: Scheme 4, Scheme 3, Scheme 2, Scheme 1. 
There are some reasons for this order. At first, during the straight 
driving, the true right and up body-frame velocities are closer to zero 
than other states, making the zero-velocity assumption somewhat 
reasonable, which improves its positioning accuracy over Scheme 1. 
Secondly, Scheme 3 uses RF-predicted velocities, which provide a 
more accurate velocities than Scheme 2, thus yielding better accu
racy. Scheme 4 achieves the best accuracy due to the combination of 
both the optimized measurement model and the adaptive stochastic 
model.

2) Before 1.21x105s, velocity accuracy of Scheme 2 degrades mainly 
during turning, where large right velocity violates the zero-velocity 
assumption of the classic NHC. This causes incorrect corrections 
and reduces accuracy. As shown in Fig. 10, the velocity errors with 
classic NHC are clearly larger than those without NHC, especially 
during turning states.

3) Between 1.21x105s and 1.215x105s, corresponding to the sharp 
turning and bumping states. Unlike in the straight driving case, 
Scheme 2 performs worse than Scheme I. Reasons are as follows: as 
shown in Figs. 7(b) and 7(c), the average body-frame velocities reach 
approximately 0.5 m/s. Therefore, the measurement model of 
Scheme 2, which assumes velocities are close to zero, becomes 
entirely invalid, resulting in a significant decrease in accuracy.

4) From the velocity and heading error sequences, similar conclusions 
can be drawn: Schemes 2 and 3 exhibit better accuracy than Scheme 
1 before 1.21x105s. During sharp turning and bumping states, 
Schemes 2 and 3 suffer from inaccurate measurement or stochastic 
models, resulting in reduced accuracy, unfortunately sometimes 
even worse than Scheme 1. In contrast, Scheme 4, benefiting from 
accurate measurement and stochastic models, maintains the best 
accuracy throughout the entire period.

As shown in Table 8, the following conclusions can be drawn: 1) 
Compared to Scheme 1, Scheme 2 achieves 32.9 % improvement in 
heading accuracy. However, the positioning and velocity accuracy 
significantly degrades. This is because the incorrect velocity affects the 
accuracy; 2) Scheme 3 outperforms Schemes 1 and 2. However, due to 
the limited accuracy of the stochastic model during sharp turning and 
bumping states, compared to Scheme 1, the improvement in velocity is 
limited; 3) Scheme 4 shows significant improvements in positioning, 
velocity, and heading estimation compared to Scheme 1, with increases 
of 36.4 %, 22.3 %, and 78.7 %, respectively. These improvements are 
attributed to the comprehensive optimization of both the measurement 
and stochastic models.

To further demonstrate the performance of the RF-based NHC algo
rithm, this section adds a comparative experiment within the time in
terval from 1.21x105s to the end, using the following algorithms: 1) TC 
algorithm; 2) Classic NHC algorithm with the R matrix parameter set to 
0.1; 3) Classic NHC algorithm with the R matrix parameter set to 0.5; 4) 
Classic NHC algorithm with the R matrix parameter set to 1; 5) RF-based 
NHC.

Fig. 11 presents the errors of positioning and heading for the five 
schemes, and the findings can be listed as follows: 

1) Since this period corresponds to sharp turning and bumping of 
agricultural machinery, the velocities in the right and up directions 
are excessively large. Therefore, when the parameter of the R matrix 
was set to 0.1, the inaccurate observation model was overly trusted. 
As a result, the case with R = 0.1 (orange lines) exhibited many 
spikes, and its errors were even larger than those of the TC algorithm 
(blue lines) without NHC.

2) For R = 0.5 (purple lines) and R = 1 (green lines). As shown in the 
black enlarged view indicated by the black arrow, it can be clearly 
observed that at the time points when the TC algorithm (blue lines) 
exhibits large errors, the accuracy of these two methods is also poor, 
and the three methods show comparable accuracy. This is because 

Table 7 
RMSE of positioning and Heading errors. Note that percentage improvement is 
relative to Raw INS data.

East 
(cm)

North 
(cm)

Up (cm) 3D (cm) Heading 
(deg)

Raw INS data 17 11 30 36 2.02
Classic 

Butterworth
14(17.6 
%)

19 33 40 1.61(20.3 
%)

RF-based 
Butterworth

8(52.9 
%)

5(54.5 
%)

5(83.3 
%)

11(69.4 
%)

1.55(23.3 
%)
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when R is set to 0.5 and 1, the fusion algorithm no longer over-trusts 
the classic NHC observation model. Therefore, the accuracy becomes 
close to that of the TC algorithm.

3) The algorithm proposed in this paper (yellow lines) achieves the best 
performance in both positioning accuracy and heading accuracy, 
which demonstrates the correctness of its mathematical model.

From Table 9, the following conclusions can be drawn: 1) When R =
0.1, the positioning accuracy decreases, for the same reasons as analyzed 
in Fig. 10. Interestingly, however, the heading accuracy improves. 2) 
When R = 0.5, both positioning and heading accuracies show moderate 
improvement, indicating that the classic NHC can achieve a slight 

accuracy gain by increasing the R parameter. 3) When R = 1, since the 
fusion algorithm no longer trusts the NHC model, the accuracy remains 
almost unchanged. 4) The algorithm proposed in this paper achieves a 
significant improvement in both positioning and heading accuracy 
compared with the TC algorithm, which benefits from obtaining the 
most accurate mathematical model through RF-based prediction.

4. Conclusion

This study proposes a GNSS/MEMS INS tightly coupled navigation 
algorithm for agricultural environments with severe occlusions. To 
address the limitations of traditional Butterworth filter and NHC when 
applied to uneven farmland and the unique maneuvers of agricultural 
machinery, we introduce several targeted improvements.

First, we identify that accurate behavioral-state and body-frame 
velocity perception is essential for enhancing both algorithms. An RF- 
based behavioral awareness model is therefore developed, with 
distinct feature sets designed for state recognition and velocity predic
tion. Second, the Butterworth filter is adapted by assigning different 
cutoff frequencies according to RF-predicted states, mitigating the signal 
distortion commonly observed in traditional Butterworth filter. Finally, 
RF-predicted velocities are used to replace the inaccurate observation 
equation in traditional NHC, while its stochastic model is adaptively 
adjusted based on the recognized state. Using the proposed method, the 
agricultural vehicle attains centimeter-level positioning accuracy and a 
heading accuracy of 0.33 ◦ , which is sufficient for practical agricultural 
navigation tasks.

The accuracy of behavioral-state recognition and velocity prediction 
in the RF model is crucial to the performance of the proposed method. 

Fig. 10. Positioning, velocity and heading errors, for comparison with the RF-based NHC.

Table 8 
RMSE of positioning, velocity and heading errors. Note that percentage 
improvement is relative to TC.

East 
(cm)

North 
(cm)

Up 
(cm)

East 
(cm/ 
s)

North 
(cm/s)

Up 
(cm/ 
s)

Heading 
(deg)

TC 8 5 5 4 4 4 1.55
Classic 

NHC
6 
(25 
%)

7 8 5 8 8 1.04 
(33 %)

Predict- 
Velocity 
NHC

5 
(38 
%)

5 4 
(20 
%)

3 
(25 
%)

5 5 0.99 
(36 %)

RF-based 
NHC

3 
(63 
%)

5 4 
(20 
%)

2 
(25 
%)

3 
(25 %)

4 0.33 
(79 %)
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Although the RF model achieves high accuracy on the two available test 
sets, its generalization ability still requires further validation due to the 
limited amount of training data. Future work will focus on collecting 
more diverse datasets to improve the robustness and generality of the RF 
model. In addition, although the proposed method outperforms tradi
tional algorithms during sharp turning and bumping, its accuracy in 
highly dynamic scenarios is still limited by the linearization errors of the 
EKF framework. Future research will explore the use of UKF or CKF to 
address performance degradation under high-dynamic agricultural 
operations.
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