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ARTICLE INFO ABSTRACT

Keywords: Global navigation satellite system (GNSS)/micro-electro-mechanical systems inertial navigation system (MEMS

GNSS INS) algorithm is widely used in agricultural machinery navigation. However, several issues remain noteworthy,

MEMS INfS uneven terrain induces more high-frequency noise than other environments, which severely affects the accuracy

Random forest of MEMS INS. In addition, occlusion environment, such as field windbreak, degrades GNSS signal quality.

Butterworth filter . . . . .

. . Although Butterworth filter and non-holonomic constraints (NHC) have been validated as effective solutions for

Non-holonomic constraints . R . R K R R L
these issues, which still face the following limitations in agricultural scenarios. This is because the power spectral
density (PSD) of MEMS INS data exhibits distinct energy distribution among different states, therefore it is
unreasonable to apply uniform cutoff frequency same as classic Butterworth filter. Additionally, jumping and
slipping frequently occur, which can invalidate the zero-velocity assumption of NHC. Therefore, given the
limitations of previous studies, this paper proposes a random forest (RF)-based model to identify machinery
states and predict body-frame (right and up) velocities. Then, adaptive cutoff frequencies are selected for the
Butterworth filter. Furthermore, the measurement and stochastic models of NHC are optimized by states and
body-frame velocities. Experiments show that the proposed algorithm can achieve centimeter-level positioning
accuracy and the heading angle error of only 0.33°.

1. Introduction Time Kinematic (RTK) and Precise Point Positioning (PPP) techniques,
the positioning accuracy can normally achieve centimeter-level in ideal
conditions (Cui et al., 2025; Huang et al., 2023; Wang et al., 2023).

However, it dramatically decreases in obstructed agricultural environ-

With the growth of population, agricultural modernization has
become increasingly important while high-precision navigation systems

are essential to achieve this target (Li et al., 2021a). Currently,
commonly used navigation systems include Global Navigation Satellite
Systems (GNSS), Inertial Navigation Systems (INS), LiDAR navigation
systems, vision navigation systems, and combination in between them
(Xie et al., 2023). However, LiDAR- and vision-based navigation systems
are less preferrable in agricultural machinery navigation, due to either
high cost (Lii et al., 2018; Jiang and Ahamed, 2025), or sensitivity to
lighting conditions (Lii et al., 2022).

GNSS, thanks to its real-time capability, has been widely adopted in
many areas (Li et al., 2021b, c; Lai et al., 2025). Enhanced by the Real-
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ments (Guo et al., 2018). On the other hand, INS is an independent
navigation system with high short-term accuracy, although its errors
accumulate over time. Therefore, integrating INS with GNSS can
potentially establish a robust navigation system and become a popular
solution in agricultural applications (Feng et al., 2023; Huang et al.,
2022).

Due to the lower price and the smaller size than high-precise INS
(Sun et al., 2022), micro-electro-mechanical systems (MEMS) INS is
widely used in many areas despite its higher error accumulation rate
(Rafatnia et al., 2019). Consequently, research has focused on advanced
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algorithms to overcome the limitations of the hardware. For example,
dual-antenna GNSS/MEMS INS integration can achieve centimeter-level
positioning accuracy and heading accuracy within 1 ° (Zhang et al.,
2015; Zhang et al., 2021). Notably, those are all based on the loosely
coupled (LC) algorithms and the robustness is still questionable. The
tightly coupled (TC) algorithms can offer superior robustness, thanks to
directly integrating raw observations measurements of GNSS with INS
(Niu et al., 2016). However, they still face limitations in complex agri-
cultural scenarios, which are mainly from the following two aspects:

On the one hand, because irregular field topography is a high-
vibration environment, MEMS INS exhibits considerable high-
frequency noise, which must be removed. To reduce the influence,
time-domain high-frequency noise removal algorithms were employed,
however the effectiveness of these algorithms is limited (Rohac et al.,
2011). Therefore, researchers have applied frequency-domain based
low-pass filtering algorithm, such as Wavelet de-noising (Wu and Yang,
2007; Xu et al., 2018) and Butterworth (Hu et al., 2020a). The wavelet
de-noising algorithm has low computational efficiency. Classic Butter-
worth has higher computational efficiency; however, this method does
not distinguish different vehicle behavioral states. In vehicle navigation,
due to smooth road surfaces and uniform states, the power spectral
density (PSD) of INS data exhibits similar energy distribution patterns
across different states. Therefore, setting a uniform cutoff frequency
without distinguishing states is reasonable. However, it has limitations
in agricultural machinery navigation, where uneven field surfaces and
unique motion states cause significant variations in PSD energy distri-
bution across frequency bands under different states. For instance, when
agricultural machinery operates on bumpy terrain, genuine high-
frequency changes occur in angular velocity and velocity, resulting in
noticeably higher energy distribution in mid-frequency ranges. In this
case, applying a low cutoff frequency would filter out these real motion
signals, leading to distorted navigation results. Hence, accurate recog-
nition of machinery behavioral states is crucial to overcoming this
limitation.

On the other hand, non-holonomic constraints (NHC) assume that
right and up velocities are near zero, meaning the vehicle rarely jumps
and slips (Niu et al., 2007). NHC is widely used in vehicle navigation,
especially where GNSS signals are weak, such as urban canyons and
tunnels (Sun et al., 2020; Wang et al., 2022; Jing et al., 2025). Some
studies suggest using different neural networks to predict velocities for
straight driving and turning, since slipping is more likely during turns
(Li et al., 2023). The influence of varying behavioral states on NHC is
even more critical in agricultural machinery navigation due to soft soil
and uneven terrain, which increases the probability of jumping and
slipping during turns and bumps. In summary, the assumptions under-
lying NHC present significant limitations in agricultural navigation, and
the key to overcoming these limitations lies in accurate prediction of
machinery behavioral states and velocities.

Based on the above discussion, if the behavioral states and velocities
of agricultural machinery can be accurately predicted, both Butterworth
filtering and NHC can be optimized. Currently, in the field of vehicle
navigation, extensive research has been conducted on identifying states
using INS data (Gao and Zhao, 2016). However, in the agricultural
domain, INS-based behavioral state recognition studies have mainly
focused on livestock (Rahman et al., 2018; Peng et al., 2020; Kirsch
et al., 2025), with limited research on agricultural machinery behavior
recognition. Existing animal behavior recognition algorithms commonly
employ complex machine learning methods such as Long Short-Term
Memory (LSTM) networks and Convolutional Neural Networks (CNN),
which, despite their high accuracy, suffer from poor real-time perfor-
mance (Li et al., 2024). Compared to the above-mentioned algorithms,
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some machine learning methods, such as Support Vector Machines
(SVM), Decision Trees and Random Forests (RF), offer higher compu-
tational efficiency. Especially, RF is an ensemble classifier, which can
achieve high accuracy and robustness without complex data pre-
processing, which has attracted extensive attention from researchers
(Zhou et al., 2023). Moreover, RF can also construct regression trees,
enabling not only the recognition of behavioral states but also accurate
prediction of body-frame velocities. These advantages make RF partic-
ularly well-suited for agricultural machinery navigation scenarios.

Selecting a suitable data fusion algorithm is also a crucial step. The
GNSS/MEMS INS tightly coupled (TC) integration algorithm represents
a typical nonlinear system, and existing data fusion methods for such
models can generally be categorized into two groups: 1) Lie group/Lie
algebra-based filtering methods. For example, Hu et al. (2025) applied
this approach to strapdown inertial navigation system (SINS)/Doppler
velocity log (DVL) TC integration, and demonstrated that the method is
immune to the initial attitude error and offers advantages in both
convergence speed and steady-state accuracy. 2) Kalman filter variants,
including the extended Kalman filter (EKF), unscented Kalman filter
(UKF), and cubature Kalman filter (CKF) (Gao et al., 2020). Gao et al.
(2023a) realized INS/CNS/SRS TC integration based on EKF and
improved the filtering accuracy by incorporating a chi-square test-based
covariance estimation method. To address the linearization errors of
EKF, Hu et al. (2019) proposed a robust UKF and applied it to GNSS/INS
TC integration. Considering the high computational burden of UKF, Hu
etal. (2015a; 2015b) introduced a derivative UKF to improve efficiency.
Further studies have developed a variety of improved UKF algorithms
(Gao et al., 2015, 2017, Hu et al., 2015c, 2018, 2020b, c; Yang et al.,
2016) to enhance adaptability and robustness against uncertainties in
kinematic and measurement models. Meanwhile, Hu et al. (2023)
established a decentralized multi-sensor information fusion framework
based on robust UKF, achieving INS/GNSS/CNS integration. In terms of
CKF, Gao et al. (2023b) proposed a closed-loop covariance feedback-
based INS/GNSS TC integration method, and further developed a
cubature rule-based distributed optimal fusion algorithm for MIMU/
GNSS/CNS integration (Gao et al., 2021a, b). Other improved CKF
methods mainly focus on optimizing noise statistics and enhancing
robustness (Gao et al., 2021a, b, 2022; Hu et al., 2024; Zhang et al.,
2019). Although extensive research has been conducted on Lie group
methods, UKF, and CKF, most of these studies target high-dynamic
platforms such as UAVs and hypersonic vehicles, and the algorithms
often involve higher computational complexity. Therefore, in this work,
EKF is selected as the data fusion algorithm, considering both compu-
tational efficiency and engineering applicability.

In this paper, RF-based GNSS/MEMS INS TC algorithm is proposed to
optimize both the Butterworth filtering and NHC models, as well as to
enhance accuracy and robustness in agricultural machinery navigation.
The contribution of the proposed algorithm are as follows: 1) A RF
model is employed to predict both the behavioral states and the body-
frame velocities; 2) The influence of behavioral states on the PSD en-
ergy distribution of INS data is fully considered, and a novel state-based
Butterworth filtering strategy is designed to prevent signal distortion
caused by excessive filtering; 3) To address the inaccuracy of the NHC
model, the RF-predicted body-frame velocities are used to replace the
zero velocity assumption. In addition, a measurement noise adjustment
function is introduced, which is based on the behavioral states, to
further optimize the stochastic model of the NHC.

The rest of the paper is organized as follows: Section 2 describes the
proposed algorithm, including the framework, TC model, RF algorithm,
and the optimized Butterworth and NHC methods. Section 3 presents
experimental analysis and discussion. Section 4 concludes the paper.
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2. Methods

In this section, a framework of the proposed GNSS/MEMS INS TC
algorithm is illustrated, followed by detailed explanation of the TC
model, RF algorithm, and the optimized Butterworth and NHC methods
in the framework.

2.1. Framework

As shown in Fig. 1, there are four steps in the proposed framework: 1)
Training data Preparation: this step includes two parts: (a) feature
extraction from MEMS INS data, and (b) process high-precision Position
and Orientation System (POS) data via IE Software® to generate labels,
including body-frame velocities and behavioral states. 2) RF models
training: use features and labels obtained in Step 1 to train the RF models
and save them. 3) Input Preparation: prepare the input features through
feature extraction. 4) Butterworth and NHC Optimization: use the
behavioral states predicted by the RF model to optimize the Butterworth
filter via decreasing the noise of MEMS INS data. Additionally, both the
predicted states and body-frame velocities are utilized to refine the NHC
model. Finally, all information is fused by an Extended Kalman Filter
(EKF) to obtain the final navigation solution.

2.2. Tightly coupled (TC) model

2.2.1. System model
The tightly coupled state-space model of GNSS/INS can be written as
(Feng et al., 2025):

8x = Sy, 8V, 81 Sb, Sby AVN) (€))
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where the superscript e represents Earth-centered and Earth-fixed
(ECEF) frame, subscript b denotes body-frame, dy¢,, 6v¢,, and 6r¢, are
attitude, velocity, and position errors, respectively. éb, and 5b, are INS
accelerometer and gyroscope biases, and AV N, is the double-difference
ambiguities between the GNSS rover and base stations.

Then, the system model can be defined as (Zhang et al., 2017):

5'[/22; = 7C§5bg - (w?e X )&Ilgb + gv/
Vg, = Cyob + <(Cehf?b)><)&llzb — (205, x )ovg, + &,
ot = ov, + &

. 2
§ba = gba
by = &,
SAVNy, = &y

where the subscript i denote the inertial-frame, Cj is the attitude matrix
relating the body-frame to the ECEF. w{, is the projection of the angular

rate of rotation of the Earth in the ECEF-frame. f’-’,l7 is the projection of the
force under the b system. € is the process noise associated with each state
in the state-space model.

Furthermore, Eq. (2) can be written in the following matrix form
(xiao et al., 2024):
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Fig. 1. Framework of the proposed GNSS/MEMS INS TC algorithm.
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where F is the state transition matrix. éx is the state vector. w is the
system noise vector formed by &, and the widespread successful appli-
cations of EKF, UKF and CKF demonstrate that approximating the noise
as Gaussian is a reasonable and effective assumption.

2.2.2. Measurement model
The double-difference (DD) observation equation of TC model is
given as follows:

8Zp = AVp — AVP
{ P =AVP - AV @

0Z, = AVp — AV¢@ + LAVN,,

where, 6Zp and 6Z, represent the DD residuals of pseudorange and
carrier phase, respectively. AVP and AV¢ are DD observations of
pseudorange and carrier phase, respectively. A is the wavelength of the
carrier observation. AVp is the double-difference observations derived
from INS, and it involves squared terms and square root operations;
therefore, the measurement model is inherently nonlinear.

Since the double-difference (DD) observation equation is nonlinear,
and the data fusion algorithm adopted in this paper is the EKF, the
double-difference (DD) observation equation must first be linearized,
that is, the partial derivatives with respect to the state-space vector are
computed to form the Jacobian matrix, which also named design matrix
in EKF. After this process, the measurement model, Eq. (4) can be
expressed as:

OZp orp = Hox +Rp ore )

where Rp,r, represents the measurement noise matrix of the double-
difference observations, which can be calculated using the elevation
angle model (Bahadur and Schon, 2024. 6Zpo, is the measurement
vector, and H denotes the design matrix, and the detailed forms are
shown in the following equation.

(e —e) (Cilb x )
(e - e”’li (Cilb X )
(e —e") (Cglb x )

H . : : : .71
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~
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o
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(6)
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AVR" M — AV L AAVNT, T

where e denotes the line-of-sight direction vector for satellite i, and I’
represents the lever arm. n represents the number of satellites, and A' is a
row vector whose dimension corresponds to the number of satellites. Its
value is A for the reference satellite and —4 for the other satellites.

2.2.3. The EKF
The procedures of EKF include two steps, as follows:
1) Time update:

SXiek-1 = Prp_16Xk1 ®
Piior = g1 Pty + Qi )

where, 8Xyx_1 denotes the predicted state-space vector, and Py 1 is
state error covariance matrix at time k. ¢, ,_, expresses the state tran-
sition matrix from time k —1 to k. 6Xx_; and Py_; represent the final
estimation of the state-space vector and state error covariance matrix at
time k —1. Qx_; is the system noise matrix at time k —1.

2) Measurements update:

8%y = 8Xyge—1 + K (Zx — Hi6Xyep1) 10$)
P = (I — KxHy )Py 1 1)

where X\ and Py represent the final estimation of the state-space vector
and state error covariance matrix at time k. K denotes the Kalman gain
matrix at time k, which is expressed in Eq. (11). Zj is the measurement
vector at time k. Hy expresses the design matrix at time k.

1
Ky = Py 1 Hi" (HiPer 1 Hi" + Ry) 12)

where Ry, is the measurement noise matrix covariance matrix at time k.

2.3. RF for agricultural machinery

The RF in this paper is used for two purposes: (1) classification of
agricultural machinery behavioral states and (2) prediction of right and
up velocities in the body-frame. Although RF has been widely applied,
research on its use in agricultural machinery remains limited. Especially,
feature selection for agricultural machinery remains to be investigated.
Therefore, this study, for the first time, proposes a set of features for
agricultural machinery carriers that are suitable for above two purposes.

2.3.1. Feature configuration

First, the features for behavioral state recognition are introduced,
followed by the features for velocity prediction.

(1) Features for behavioral state recognition

According to the operational characteristics of agricultural machin-
ery, behavioral states are divided into six types, as shown in Table 1. The
principles for the setting of threshold parameters are described in Gao
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Table 1
The threshold parameters for different behavioral states.

State Behavioral Corresponding Principles for Threshold

No. State Types practical scenarios Parameters

1 Stop Initialization, rest velocity < 0.05 m/s

2 Straight driving ~ Working heading rate < 4°/s

3 Braking/ Facing emergency front acceleration > 0.5 m/

starting s2

4 Turning U-shape turning heading rate >= 4°/s

5 Sharp turning S-shape turning, heading rate >= 4°/s and
Circular trajectory turning duration > 15 s

6 Bumping highly uneven field vertical velocity > 0.3 m/s

and Zhao (2016) and these parameters are used to compare with the
results of the high-precision reference system to generate labels.

The features used for state recognition are categorized by two types:
time-domain features and frequency-domain features.

1) Time-domain features

Before introducing the time-domain features, the simple moving-
average (SMA) will be introduced. This is a commonly used strategy in
MEMS INS data processing, aimed at smoothing the raw data, as shown
in Eq (13) (Redhyka et al., 2015).

k
datasyax = dattranx / n (13)

k—n+1

where data,q, x represents the INS raw data and datagy, i is the data
which is smoothed by SMA. n is the window size, in this paper, n is set as
100.

Std With Smooth Std Without Smooth

Mean Without Smooth Braking/Starting
Sharp Turning
15}
A
1} ! M,
Y [l“-h:" V‘Y’ Y
L 05¢f
S
0 N
051 1
Integral of Gyro Up Axis Turning Sharp Turning
Straight driving Stop
(b)
100 §
2 . |
] b b po
-100 F -
Mean of Gyro Right Axis State = Bumping
Std of Gyro Right Axis
4 =
©L 2F
3
a o
2 F
1.14 1.145 1.15 1.155 1.16
Time (s) %10°

Fig. 2. The time-domain features used for behavioral state recognition.
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The purpose of smoothing the data is to promote state identification.
For example, as shown in Fig. 2(a), the standard deviation (Std)
computed from the raw data is represented by the orange line, while the
blue line shows the Std derived from smoothed data. It can be clearly
observed that the orange line shows similar patterns between the
braking/starting (purple shadow) and sharp turning (green shadow)
states, making it difficult to distinguish the braking/starting state from
sharp turning state. In contrast, the blue line exhibits clear character-
istics during braking/starting as compared to sharp turning, which al-
lows to easily distinguish between these two states.

Then, the time-domain features used for recognizing each state will
be described. First, for the braking/starting states, the most intuitive
features are the Mean and Std of the accelerometer’s y-axis data, as
defined in Egs. (14) and (15).

Mean = Zi,nﬂdammwi / n (14

i

Std = Z (datagya; — Mean)z/(n -1) (15)

i-n+1

As shown in Fig. 2(a), the Mean without smooth (green line) and Std
with smooth (blue line) of the accelerometer y-axis data exhibit signifi-
cant differences in the braking/starting state (purple shadow). This
demonstrates that these features can effectively identify the braking/
starting state.

Secondly, the stop, straight driving, turning, and sharp turning, can
be effectively distinguished using the integral of the gyroscope z-axis,
calculated as follows:

Z gyroup.raw.i*dt (16)

i-2n+1

Integral,,, =

where dt is the sampling time step, and gyroy, raw,i is the gyroscope raw
data about the z-axis.

As shown in Fig. 2(b), during the stop, the value of this feature is
close to zero; during straight driving, it remains at a low value; during
turning, high values appear but last for a short duration; while during
sharp turning, the feature maintains a high value and the duration is
longer than turning. Therefore, this feature can effectively classify the
four behavioral states.

Finally, during bumping state, the gyroscope x-axis data shows large
value. Therefore, Mean without smooth and Std with smooth of it are
employed, meanwhile, the smoothed data is adopted same as the
braking/starting feature extraction. As shown in Fig. 2(c), in blue
shadow, the Mean and Std have a significant difference. This indicates
that the feature can effectively identify the bumping state.

2) frequency-domain features

Theoretically, the six behavioral states can be effectively distin-
guished using above time-domain features. However, in some cases, it
still faces challenges. For example, in Fig. 2(b), around 1.15x10° s, the
integral values show similar characteristics between turning and sharp
turning states.

As mentioned in the introduction, in the frequency-domain, different
behavioral states exhibit distinct energy distribution patterns of the PSD.
Therefore, this study uses energy ratios within 10 Hz intervals from 0 Hz
to 50 Hz as new features. Feature extraction requires the use of the
Fourier transform, with detailed principles provided in reference
(Heideman et al., 1984).

Fig. 3 shows this new feature of turning and sharp turning states. And
it shows a significant difference in the band of 30 Hz to 40 Hz, where the
percentage of energy distribution during sharp turning significantly
exceeds that of turning.

(2) Features for body-frame velocity prediction

The state of agricultural machinery is generally continuous and does
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Fig. 3. Energy distribution in frequency domain during sharp turning and turning states.

10

tracts the Mean and Std of INS raw data instead of smoothed data,
because smoothed data may cause distortion in the predicted speed. The
feature extraction methods are described in Egs. (13) and (14), but the
datagya; in Eq (14) should be replaced by datarq,;.

not change abruptly, whereas the body-frame velocity is affected by
uneven terrain and turning, leading to significant variations over a short
period. So there are some differences in their feature settings.

For the task of prediction of right and up velocities, this study ex-

Feature based
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Fig. 4. Flowchart of RF. Circles represent the randomly selected candidate factors and triangles are the optimal splitting factors.

6
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2.3.2. The step of RF

RF is an ensemble learning algorithm which obtains results through
voting. In addition, the algorithm exhibits strong randomness in two
aspects: 1) The first point lies in the randomness of sampling: n samples
are drawn with replacement from the training set to form a subset, and
this process is repeated L times to obtain L subsets; 2) The second point
lies in the construction of decision trees, where not all features are used;
instead, a random subset of the mentioned features is selected for
splitting (Breiman, 2001).

The construction processes of RF are shown in Fig. 4, including three
main steps:

(1) Step 1: bootstrap resampling. The whole training dataset can be
expressed as D = {(Fy,y1), (F2,Y2),, (Fn,¥n) }, N > n. where F; rep-
resents a feature vector and its dimension is equal to the number of
features. y; is the label used in RF training. In this step, n samples are
randomly drawn with replacement from the full dataset to form a
training subset, expressed as subset; = {Di;,Dy,-,D,}, n€[1,N],
ie[1,L].

(2) Step 2: the construction of each decision tree. This step is based
on the Classification and Regression Tree (CART) algorithm. For the
behavioral state classification task, each decision tree splits in the di-
rection that minimizes the Gini coefficient, which is calculated as fol-
lows:

- k
Gli‘ll—l—< ilpf)

where p; is the conditional probability of each behavioral state, and k is
the number of states.

For the prediction task of body-frame velocities, CART splits in the
direction that minimizes the Mean Squared Error (MSE), which is shown
as follows:

MSE=Y" (vi—v) / n

where v; is value of the predicted velocities, Vv is the value of true ve-
locities.

(3) Step 3: the final prediction is obtained through soft voting, with
the principle shown in the following equation:

Y= Zf:l‘yi L
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(18)
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where Y denotes the result of voting.
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2.4. RF-based Butterworth filter

This filter was first proposed by Butterworth in 1930, and the prin-
ciple is shown as follows:
H@)P =1/ (1 + (@/o.)") 20)
where o is frequency, and w, is cutoff frequency. H(w) is the amplitude,
and N is the order of the filter. Once the cutoff frequency is set, signals
with frequencies higher than the cutoff frequency will be filtered out.

As discussed in introduction, among different behavioral states, the
PSD of MEMS INS data exhibits different energy distribution charac-
teristics. This causes some states to treat mid-high frequency signals as
noise, while in others, the signals in mid-high frequency bands actually
reflect the true motion.

To illustrate this point, Fig. 5 shows the PSD of the gyroscope y-axis
data under straight driving and bumping states. During the bumping
states, the gyroscope y-axis exhibits frequent fluctuations, having a
significantly higher energy distribution around 10 Hz compared to the
straight driving state. These signals genuinely reflect the roll angle
variations during bumping and should not be filtered out. Therefore, the
cutoff frequency must be set differently from that of the straight driving
state.

To address this limitation, this study proposes, for the first time, a
variable-cutoff-frequency Butterworth filter established for typical
states in agricultural machinery. Based on the statistical analysis of the
PSD of each state, the cutoff frequency settings for each behavioral state
are summarized in Table 2. It is worth noting that the following cutoff
frequencies are applicable only to agricultural machinery operating in
field, and should be treated differently when applied to other scenarios.

Table 2
The cutoff frequency of each behavior context.
Gyro Gyro Gyro Acc Acc Acc
right front up right front up
Straight 5Hz 2Hz 3 Hz 2.5Hz 5Hz 5Hz
driving
Turning S5Hz 5Hz 10 Hz 2.5Hz 5Hz 5Hz
Stop 2Hz 2Hz 2Hz 2Hz 2Hz 2Hz
Braking/ 5 Hz 2.5 Hz 3.5Hz 3HZ 5Hz 5Hz
starting
Sharp turning 5 Hz 5Hz 10 Hz 2.5 Hz 5 Hz 5Hz
Bumping 15 Hz 15 Hz 15 Hz 15 Hz 15 Hz 15 Hz

Gyro Y PSD
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Fig. 5. PSD of the gyroscope y-axis during go straight and bumps states.
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2.5. RF-based NHC

In the field of urban vehicle navigation, the NHC assumes that the
right and up velocities in the body-frame are approximately zero.
However, in agricultural navigation, due to uneven terrain and specific
behavioral states, agricultural machinery is more likely to experience
jumping and slipping. Especially, the right and up velocities even can
exceed 0.5 m/s, and the traditional NHC model cannot be directly
applied.

Therefore, this section presents, for the first time, an improved NHC
measurement model based on RF-predicted velocity, and a stochastic
model refined according to the predicted states. The principles are
detailed as follows:

We denote difference between the RF-predicted velocity (v,s) and the
velocity derived from the MEMS INS (Vi) as 6Zu, which can be
expressed as follows:

6Znhc =Vif — Vinu = thcax + Rnhc (21)

where H,, is the design matrix, which is obtained by computing the
partial derivative of 6Z,;,. with respect to the state vector (Cheng et al.,
2023). Rype is the measurement noise matrix of the RF-predicted
velocity.

Different from Ry is usually set as constants matrix in traditional
NHC algorithms, however, as shown in Figs. 7(b) and (c), the velocity
prediction error of the RF (orange lines) is not constant and is strongly
correlated with the motion state. Therefore, for the first time, we design
a computation equation for Ry, expressed below:

0.01 0
state = 1
0 .01
Rupe = 5 (22)
0.05(state — 1) 0
state = others
0 0.03(state — 1)”

where state represents the behavioral state, with values from 1 to 6
corresponding to stop, straight driving, braking/starting, turning, sharp
turning, and bumping, respectively. The parameter f is set as 0.75 in this
study, which, according to test, yields R value that better matches the
true errors of the prediction velocities across different behavioral states.
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3. Results and discussion

To verify the accuracy of the proposed algorithm, two sets of data
were collected, including six behavioral states: stop, straight driving,
braking/starting, turning, sharp turning, and bumping. The bumping
state was simulated by driving the machinery over bumpy road, as
shown in Fig. 6(f). The trajectories of the two datasets are presented in
Fig. 6(d) and Fig. 6(e), respectively. The data in Fig. 6(d), lasting 40 min,
was used to train the RF model. While the data in Fig. 6(e), lasting 34
min, were used for algorithm evaluation.

The tractor used was the John Deere 904, and the driving speed
ranged from 2 to 3 m/s. Two sets of POS devices were installed inside of
the cabin, as shown in Fig. 6(a). The high-precision POS called XW-
G7680, was used for accuracy evaluation. It includes a fiber optic gy-
roscope (FOG) INS, with detailed parameters listed in Table 3. Addi-
tionally, the high-precision POS is equipped with a UB4B0 GNSS board,
which can receive multi-frequency and multi-constellation signals, as
shown in Table 4. The reference values for accuracy evaluation were
computed by IE Software®.

The other POS, XW-G6615D6, has low-precision POS and was used to
evaluate the accuracy of the proposed algorithm. This device consists of
the same GNSS board, but a MEMS INS, with parameters listed in
Table 3. The base station setup is shown in Fig. 6(b), with an open
environment. The rover station antenna setup is illustrated in Fig. 6(c),
where the antenna is obstructed by the cabin. This arrangement is
intended to verify the robustness of the algorithm by simulating the
occluded environment.

Table 3
IMU Parameters in XW-G7680 and XW-G6615D6.

XW-G6615D6 (MEMS XW-G7680 (FOG

INS) INS)
Bias instability of Gyro (" /h) 10 0.5
Random walk of Gyro (deg/ 0.7 -
vh)
Bias instability of Acc (mg) 0.1 0.1
Random walk of Acc 0.5 0.5
(mg/vHz)
Sampling Frequency (Hz) 100 100

(c)

|
Base station

Fig. 6. Overview of the experimental data collection scenarios: (a) pos devices; (b) the environment of base station; (c) the position of GNSS antenna; (d) the

trajectory of training data; (e) the trajectory of test data; (f) bumpy road.
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Table 4
Parameters of UB4B0.
Signal BDS B11/B21/B31/B1C/B2a
GPS L1/L2C/L2P(Y)/L5
GLONASS G1/G2

Galileo E1/E5a/E5b
Pseudo-range 10 cm Carrier-phase 1 mm
SPP 3m RTK 1.5 cm + 1 ppm

Observation Accuracy
Positioning Accuracy

3.1. Performance of RF

The labels used for training the RF model were processed by the IE
Software®, which ensures that the training labels are reliable. The basic
computer information used for RF model processing are as follows: Intel
(R) Core (TM) Ultra 9 CPU@2.30 GHz with 32.0 GB RAM. According to
statistics, the average sample testing times for predicting the body-frame
right and up velocities are 15.42 ms and 15.88 ms, respectively. The
average sample testing time for behavioral state classification is 14.11
ms. Therefore, given the time efficiency, it can meet the real-time re-
quirements of agricultural machinery applications.

Fig. 7(a) illustrates the results of behavioral state recognition, which
is based on the low-cost MEMS INS. It can be observed that most of the
straight driving states are correctly identified, with only a few mis-
classified as bumping. However, this does not indicate misclassification.
As shown in the bottom-right of Fig. 7(a), some roads during this period
were uneven, which may have caused bumping. Then, the turning states
are accurately identified, and most sharp turning states are also correctly
recognized. However, some misclassifications of sharp turning as
normal turning do occur, due to the inherent similarity of features be-
tween these two states, which sometimes makes them difficult to
distinguish. Next, the recognition results for the braking/starting states
are also reasonable. As shown in the top-right corner of Fig. 7(a), these
periods exhibit significant fluctuations in front velocity. Then, the
bumping state is mainly concentrated on the left side, corresponding to
the tractor traversing a bumpy road, as shown in top-left corner of Fig. 7
(a). Finally, the stop state is accurately identified by comparing the stop
times. In total, 247,800 behavioral state predictions were obtained, and
238,260 of them were correct, yielding an overall accuracy of 96.15 %.
This result includes not only the test data but also 18 % of the validation
samples from the training set. As shown in Table 5, the recognition ac-
curacy of each state is also high.

The root mean square errors (RMSE) is given as follows:

JPPte ¢
S A
PV .

North (m)
w
&
R

3.075 g Straight driving | Start
® Turning point - = >
Stop
® Braking/starting| End
3.07 || ® Sharp Turning point
® Bumping S et
1 1 L A L L T —
2950 3000 3050 3100 3150 3200 3250
East (m)
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Table 5

The recognition accuracy of each state.
Straight driving 97.93 %
Turning 97.69 %
Stop 98.33 %
Braking/starting 94.50 %
Sharping turning 91.01 %
Bumping 99.79 %

n 2
RMSE=,|1 /0" (yi - y,-,m) (23)
=)

where y; is the calculated value, and y; . is the true value.

Table 6 shows the RMSE for the predicted right and up velocities,
which is classified by state. First, the overall RMSE values are small,
indicating that the RF achieves high accuracy in velocity prediction.
Second, compared with the calculated values in Eq. (22), the RMSE
values in each state are basically consistent, which further verifies the
reasonable of the proposed algorithm. Finally, from Figs. 7(b) and (c),
the true velocity (orange line) varies with the state. This suggests that
assuming the right and up velocities are close to zero, as in the classic
NHC model, is unreliable.

To further demonstrate the accuracy of the RF algorithm, it was
applied to a second test dataset. This dataset was collected using the XW-
G6615D6 mounted on a four-wheeled vehicle, which name is AgileX
Hunter2. In addition, the data span is approximately 13 min and was
collected in a campus playground environment, which is significantly
different from field. The differences between the two datasets can pro-
vide stronger evidence for the generalization capability of the RF

Table 6
The RMSE of for the predicted velocities.
RMSE (m/s)
Right Up
Total 0.05 0.03
Stop 0.01 0.01
Straight driving 0.05 0.02
Braking/starting 0.07 0.04
Turning 0.10 0.07
Sharp turning 0.15 0.08
Bumping 0.17 0.11

T

True Velocity
+ | — Error of Right Axis

1 1

True Velocity
Error of Up Axis

T

1.2 1.205 1.21
Time (s)

1.215
x10°

Fig. 7. RF result for behavioral state and body-frame velocities.
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Fig. 8. RF result for behavioral state and body-frame velocities (with additional data).
algorithm. requirements in terms of both time efficiency and accuracy.

Since the data were collected in a flat playground environment, only
four behavioral states are involved: straight driving, turning, stopping,
and braking/starting. As shown in Fig. 8(a), the majority of states were
accurately recognized. Compared with the labels computed by the
reference system, it was found that even with a different platform and
data collection environment, the state recognition accuracy still reached
94.79 %, with a total of 70,400 epochs, of which 66,733 were correctly
recognized.

Figs. 8(b) and (c) present the velocity prediction error (orange lines)
and the true velocity (blue lines), from which the following conclusions
can be drawn: 1) From the blue lines, it can be observed that, compared
with Figs. 7(b) and (c), the right and up velocities are significantly
smaller because the data were collected in a flatter environment; 2)
From the orange lines, it can be seen that the predicted velocity error
remains at a low level. Statistical analysis shows that the RMSE of the
right velocity is 2 cm/s and that of the up velocity is 1 cm/s.

In summary, using the RF algorithm for both behavioral state
recognition and body-frame velocity prediction is feasible, meeting the

(E) " :

(V) |

©
-4.5

3.2. Performance of RF-based Butterworth filter

This section evaluates the accuracy of three schemes: 1) TC algo-
rithm using raw MEMS INS data; 2) TC algorithm using MEMS INS data,
which is filtered by classic Butterworth filter; 3) TC algorithm, which is
filtered by RF-based Butterworth filter. Note that the accuracy assess-
ment is based on the NEU coordinate system, with the reference station
as the origin. Here, N represents the north direction, E the east direction,
and U the up direction.

From Fig. 9, the findings can be listed as follows:

1) The state before 1.21x10%s mainly corresponds to straight driving
state. Under this condition, Schemes 2 and 3 exhibit similar accu-
racy, both of them show better accuracy than Scheme 1. This is
because straight driving state is the main state in the overall data.
Therefore, the uniform cutoff frequency of classic Butterworth filter
is close to the cutoff frequency of RF-based filter during straight

2 T T T - T

Raw INS data ———— Classic Butterworth
RF-based Butterworth

1r 1 1

-1.5 :

1.2

1.205

1.21
Time (s)

1.215

x10°

(Heading) |

1.2

1.205 1.21
Time (s)

1.215
x10°

Fig. 9. Positioning and heading errors, for comparison with the RF-based Butterworth filter.
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driving. Therefore, both algorithms have similar accuracy in this
state.

Between 1.21x10% and 1.215x10%s, the navigation accuracy of
Scheme 1 decreases. There are two main reasons: Firstly, As is well
known, the accuracy of MEMS INS mechanization is highly corre-
lated with the motion state of the vehicle, and it degrades signifi-
cantly under sharp turning conditions; Then, the rover antenna was
installed on the side of the cabin, as shown in Fig. 6(c). This
arrangement caused frequent changes in the number of common-
view satellites between the rover antenna and the base antenna
during sharp turns. These two factors together led to the accuracy
degradation of scheme 1.

Between 1.21x10% and 1.215x105s, a significant increase in posi-
tioning errors was observed for Scheme 2, with positioning errors in
the N and U directions even exceeding those of Scheme 1. As dis-
cussed in Section 2.4, during this period tractor is in sharp turning
and bumping states. When using the classic Butterworth filter, some
mid-frequency signals, such as those around 10 Hz shown in Fig. 5,
are filtered out. These signals objectively reflect the current varia-
tions in tractor velocity and angular velocity. By removing these
critical mid-frequency signals, Scheme 2 causes distortion in the
positioning accuracy.

Between 1.21x10%s and 1.215x10%s, Scheme 3 employs RF-based
Butterworth filter. During sharp turning and bumping states, it
effectively preserves mid-frequency signals that reflect the true
motion. As a result, it makes Scheme 3 have the best accuracy,
demonstrating the superiority of the RF-based Butterworth filter.
Finally, analysis of the heading error leads to a similar conclusion:
the classic Butterworth filter method improves accuracy during
straight driving states but performs poorly during sharp turning and
bumping states. The optimized algorithm achieves the best accuracy
across all behavioral states.

2

—

3

-

4

-

5

-

Table 7 presents the RMSE of the positioning in the ENU direction
and heading errors. The results show the following: 1) Scheme 2,
compared with Scheme 1, does not improve positioning accuracy, and
achieves a 20.3 % improvement in heading accuracy. 2) Scheme 3
significantly outperforms Scheme 1, with positioning accuracy
improved by 52.9 %, 54.5 %, and 83.3 % in the East, North, and Up
directions, respectively. Additionally, heading accuracy is improved by
23.3 %.

3.3. Performance of RF-based NHC

In this section, the MEMS INS data were processed using the RF-
based Butterworth filter. Four Schemes were employed in this section:
1) without NHC; 2) using the classic NHC (right and up velocities are
setting as zero); 3) using the RF-predicted velocities (without adjusting
the Rpyxc); 4) RF-based NHC (the behavioral states are used to adjust the
Rune)-

Fig. 10 presents the errors of positioning, velocity, and heading for
the four schemes, and the findings can be listed as follows:

1) Before 1.21x10%s, the main states of the tractor are straight driving.
During this period, the positioning accuracy of all schemes, in

Table 7
RMSE of positioning and Heading errors. Note that percentage improvement is
relative to Raw INS data.

East North Up (cm) 3D (cm) Heading
(cm) (cm) (deg)
Raw INS data 17 11 30 36 2.02
Classic 14(17.6 19 33 40 1.61(20.3
Butterworth %) %)
RF-based 8(52.9 5(54.5 5(83.3 11(69.4 1.55(23.3
Butterworth %) %) %) %) %)
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descending order, is: Scheme 4, Scheme 3, Scheme 2, Scheme 1.
There are some reasons for this order. At first, during the straight
driving, the true right and up body-frame velocities are closer to zero
than other states, making the zero-velocity assumption somewhat
reasonable, which improves its positioning accuracy over Scheme 1.
Secondly, Scheme 3 uses RF-predicted velocities, which provide a
more accurate velocities than Scheme 2, thus yielding better accu-
racy. Scheme 4 achieves the best accuracy due to the combination of
both the optimized measurement model and the adaptive stochastic
model.

Before 1.21x10%s, velocity accuracy of Scheme 2 degrades mainly
during turning, where large right velocity violates the zero-velocity
assumption of the classic NHC. This causes incorrect corrections
and reduces accuracy. As shown in Fig. 10, the velocity errors with
classic NHC are clearly larger than those without NHC, especially
during turning states.

Between 1.21x10%s and 1.215x10°s, corresponding to the sharp
turning and bumping states. Unlike in the straight driving case,
Scheme 2 performs worse than Scheme 1. Reasons are as follows: as
shown in Figs. 7(b) and 7(c), the average body-frame velocities reach
approximately 0.5 m/s. Therefore, the measurement model of
Scheme 2, which assumes velocities are close to zero, becomes
entirely invalid, resulting in a significant decrease in accuracy.
From the velocity and heading error sequences, similar conclusions
can be drawn: Schemes 2 and 3 exhibit better accuracy than Scheme
1 before 1.21x10%. During sharp turning and bumping states,
Schemes 2 and 3 suffer from inaccurate measurement or stochastic
models, resulting in reduced accuracy, unfortunately sometimes
even worse than Scheme 1. In contrast, Scheme 4, benefiting from
accurate measurement and stochastic models, maintains the best
accuracy throughout the entire period.

2

—

3

-

4)

As shown in Table 8, the following conclusions can be drawn: 1)
Compared to Scheme 1, Scheme 2 achieves 32.9 % improvement in
heading accuracy. However, the positioning and velocity accuracy
significantly degrades. This is because the incorrect velocity affects the
accuracy; 2) Scheme 3 outperforms Schemes 1 and 2. However, due to
the limited accuracy of the stochastic model during sharp turning and
bumping states, compared to Scheme 1, the improvement in velocity is
limited; 3) Scheme 4 shows significant improvements in positioning,
velocity, and heading estimation compared to Scheme 1, with increases
of 36.4 %, 22.3 %, and 78.7 %, respectively. These improvements are
attributed to the comprehensive optimization of both the measurement
and stochastic models.

To further demonstrate the performance of the RF-based NHC algo-
rithm, this section adds a comparative experiment within the time in-
terval from 1.21x10°s to the end, using the following algorithms: 1) TC
algorithm; 2) Classic NHC algorithm with the R matrix parameter set to
0.1; 3) Classic NHC algorithm with the R matrix parameter set to 0.5; 4)
Classic NHC algorithm with the R matrix parameter set to 1; 5) RF-based
NHC.

Fig. 11 presents the errors of positioning and heading for the five
schemes, and the findings can be listed as follows:

1) Since this period corresponds to sharp turning and bumping of
agricultural machinery, the velocities in the right and up directions
are excessively large. Therefore, when the parameter of the R matrix
was set to 0.1, the inaccurate observation model was overly trusted.
As a result, the case with R = 0.1 (orange lines) exhibited many
spikes, and its errors were even larger than those of the TC algorithm
(blue lines) without NHC.

For R = 0.5 (purple lines) and R = 1 (green lines). As shown in the
black enlarged view indicated by the black arrow, it can be clearly
observed that at the time points when the TC algorithm (blue lines)
exhibits large errors, the accuracy of these two methods is also poor,
and the three methods show comparable accuracy. This is because

2

—
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Fig. 10. Positioning, velocity and heading errors, for comparison with the RF-based NHC.

Table 8
RMSE of positioning, velocity and heading errors. Note that percentage
improvement is relative to TC.

East North Up East North Up Heading
(cm) (cm) (cm) (cm/ (cm/s) (cm/ (deg)
s) s)

TC 8 5 5 4 4 4 1.55

Classic 6 7 8 5 8 8 1.04
NHC (25 (33 %)

%)

Predict- 5 5 4 3 5 5 0.99
Velocity (38 (20 (25 (36 %)
NHC %) %) %)

RF-based 3 5 4 2 3 4 0.33
NHC (63 (20 (25 (25 %) (79 %)

%) %) %)

when R is set to 0.5 and 1, the fusion algorithm no longer over-trusts
the classic NHC observation model. Therefore, the accuracy becomes
close to that of the TC algorithm.

3) The algorithm proposed in this paper (yellow lines) achieves the best
performance in both positioning accuracy and heading accuracy,
which demonstrates the correctness of its mathematical model.

From Table 9, the following conclusions can be drawn: 1) When R =
0.1, the positioning accuracy decreases, for the same reasons as analyzed
in Fig. 10. Interestingly, however, the heading accuracy improves. 2)
When R = 0.5, both positioning and heading accuracies show moderate
improvement, indicating that the classic NHC can achieve a slight
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accuracy gain by increasing the R parameter. 3) When R = 1, since the
fusion algorithm no longer trusts the NHC model, the accuracy remains
almost unchanged. 4) The algorithm proposed in this paper achieves a
significant improvement in both positioning and heading accuracy
compared with the TC algorithm, which benefits from obtaining the
most accurate mathematical model through RF-based prediction.

4. Conclusion

This study proposes a GNSS/MEMS INS tightly coupled navigation
algorithm for agricultural environments with severe occlusions. To
address the limitations of traditional Butterworth filter and NHC when
applied to uneven farmland and the unique maneuvers of agricultural
machinery, we introduce several targeted improvements.

First, we identify that accurate behavioral-state and body-frame
velocity perception is essential for enhancing both algorithms. An RF-
based behavioral awareness model is therefore developed, with
distinct feature sets designed for state recognition and velocity predic-
tion. Second, the Butterworth filter is adapted by assigning different
cutoff frequencies according to RF-predicted states, mitigating the signal
distortion commonly observed in traditional Butterworth filter. Finally,
RF-predicted velocities are used to replace the inaccurate observation
equation in traditional NHC, while its stochastic model is adaptively
adjusted based on the recognized state. Using the proposed method, the
agricultural vehicle attains centimeter-level positioning accuracy and a
heading accuracy of 0.33°, which is sufficient for practical agricultural
navigation tasks.

The accuracy of behavioral-state recognition and velocity prediction
in the RF model is crucial to the performance of the proposed method.
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Fig. 11. Positioning and heading errors, for comparison with the Classic NHC algorithm with different R matrix.

Table 9
RMSE of positioning and heading errors. Note that percentage improvement is
relative to TC.

East (cm)  North Up (cm) 3D (cm) Heading
(cm) (deg)
TC 7 6 8 12 1.14
NHCR = 6 (14.3 8 11 15 0.61 (46.5
0.1 %) %)
NHCR = 5(28.6 5(16.7 7(12.5 10 (16.7 0.78 (31.6
0.5 %) %) %) %) %)
NHCR =1 7 6 7 (12.5 12 1.01 (11.4
%) %)
RF-based 3(57.2 3 (50 %) 4 (50 %) 6 (50 %) 0.41 (64.1
NHC %) %)

Although the RF model achieves high accuracy on the two available test
sets, its generalization ability still requires further validation due to the
limited amount of training data. Future work will focus on collecting
more diverse datasets to improve the robustness and generality of the RF
model. In addition, although the proposed method outperforms tradi-
tional algorithms during sharp turning and bumping, its accuracy in
highly dynamic scenarios is still limited by the linearization errors of the
EKF framework. Future research will explore the use of UKF or CKF to
address performance degradation under high-dynamic agricultural
operations.
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