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Abstract

Desertification is the impoverishment of fertile land, caused by various factors and envi-
ronmental effects, such as temperature and humidity. An appropriate Internet of Things
(IoT) architecture, routing algorithms based on artificial intelligence (Al), and emerging
technologies are essential to monitor and avoid desertification. However, the classical
Al algorithms usually suffer from falling into local optimum issues and consuming more
energy. This research proposed an improved multi-objective routing protocol, namely, the
efficient quantum (EQ) artificial rabbit optimisation (ARO) based on edge computing (EC)
and a software-defined network (SDN) concept (EQARO-ECS), which provides the best
cluster table for the IoT network to avoid desertification. The methodology of the proposed
EQARO-ECS protocol reduces energy consumption and improves data analysis speed by
deploying new technologies, such as the Cloud, SDN, EC, and quantum technique-based
ARO. This protocol increases the data analysis speed because of the suggested iterated quan-
tum gates with the ARO, which can rapidly penetrate from the local to the global optimum.
The protocol avoids desertification because of a new effective objective function that considers
energy consumption, communication cost, and desertification parameters. The simulation re-
sults established that the suggested EQARO-ECS procedure increases accuracy and improves
network lifetime by reducing energy depletion compared to other algorithms.

Keywords: ARO; desertification; edge computing; [oT; network lifetime; objective function;
quantum gates; SDN; WSN

1. Introduction

The IoT refers to the physical connection of any nodes to the Internet. A wireless
sensor network (WSN) is a main structure for IoT networking because it undertakes the
mission of monitoring, gathering, and uploading data. However, in the traditional IoT
networks, core processing is implemented by centralised servers that may be located far
away from the associated nodes in the Cloud. Therefore, EC must be involved with the IoT
architecture in which distributed processing brings data storage and calculation closer to
the sources of data [1-5]. By analytically accomplishing calculations and computation at
the EC, the communications bandwidth required between the control system and sensors
at a centre is reduced. Pushing computation, calculation, and control near devices has
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numerous benefits, such as lowering transmission cost, latency, and consequent traffic,
while enhancing performance, security, and reliability [6,7].

The two trendy paradigms of the Cloud and EC are essential for data processing and
making decisions. However, each occupies different duties and cannot replace the other [8].
Cloud computing is useful for no-time-triggered data processing, whereas EC is useful
for time-essential data processing. The Cloud framework supports inventors to easily
manage, deploy, and create their applications. By scaling the evolution of the applications,
the Cloud acts as an application data platform, which is associated with millions of end-
user communications, and so on [6,9]. This framework can conduct analytics, store huge
amounts of information, and create powerful visualisations. The EC paradigm is out of a
centralised data centre, where it makes decisions using local servers and resources instead
of sending the data to the Cloud. Generally, EC implements software, analyses, and process
data closer to the end-user [8].

Al has also played a significant role in the past few years in relation to numerous
issues [10-12]. Its main component is the optimisation of any problem and finding the
best solution for such problem by minimising or maximising the optimal solution [13].
An efficient technique, called the quantum parallel technique, has become indispensable
due to its ability to improve the accuracy of the solutions with the minimum required time
and population size compared to other techniques [14]. Where measurements from these
networks can be delivered in qubits instead of binary bits, and the best solution is kept in
quantum computers without losing any of its characteristics, and then transferred within
the available quantum networks [13].

Recent Al techniques, such as genetic algorithm (GA) [15,16], simulated annealing
(SA) [17,18], and particle swarm optimisation (PSO) [19-22], have been widely used to con-
trol WSNs to improve and enhance the accuracy of the solution. However, these techniques
continue to suffer from issues such as the consumption of extra energy, requiring additional
control nodes, requiring location calculation, and being stuck in the local optimum. In com-
parison to other traditional low-energy adaptive clustering hierarchies (LEACHSs) and PSO,
the quantum technique is varied. Local optimal resolution passes over and reaches the
global optimal resolution by employing the effect of quantum parallelism. Therefore, it can
deliver higher performance solutions than other traditional techniques.

Some available state-of-the-art clustering algorithms only consider residual energy
and cluster distances between nodes. They ignore other important parameters, such as de-
sertification avoidance. The area of deserts and dryness increases due to human behaviour,
such as causing fires in the desert or dry areas due to carelessness. Monitoring these areas
using the IoT for collecting data and early detection of temperature changes or humidity
levels can stop or avoid desertification [23]. Weather parameters, such as humidity and
temperature, affect the performance of WSN. Therefore, an efficient multi-objective function
based on energy, communication cost, and environment is developed. This study proposed
an improved multi-objective routing protocol, namely, efficient quantum ARO routing
protocol based on EC and the SDN concept (EQARO-ECS), which controls IoT devices and
avoids desertification. The proposed protocol architecture includes various emerging tech-
nologies, which are the Cloud, EC, SDN, ARO [12], and quantum computing, to provide
energy-efficient techniques suitable for desertification areas. To identify the best solution,
the proposed protocol considers two essential directions, which are presented below.

The first direction is the consideration of the objective function, in which the key issue
with the development and IoT technologies is the sensor energy restriction due to the
absence of stationary power sources [23]. Desert enlargement has become one of the main
problems in dry areas for many reasons, such as increasing wildfires and temperatures.
Therefore, the establishment of IoT technologies in such areas can improve and accelerate
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environmental observation by transmitting information, such as temperature, smoke, fire,
and humidity, to the base station (BS) and controller to make quick decisions for such
areas [24]. The other direction, the merging of Al techniques in IoT routing protocols, has
the advantages of offering the best solution with lower computation complexity, but still
has the issue of falling into the local optimum. Accordingly, this paper merges the latest
optimisation technologies, which are the quantum concept and gates, to improve the
performance of ARO, and to gain the best solutions. The major contributions of the
proposed EQARO-ECS can be summarised as follows:

1. A new clustering technique-based ARO is deliberated. However, ARO still has some
limitations as a research gap, such as easily falling into local optima, long processing
time, and weak exploitation capability. Thus, the proposed technique merges quantum
computing with ARO (QARO) to improve the speed and accuracy of the solution and
to identify the best set of cluster nodes.

2. A strong objective function for the QARO is developed to cover the research gap of
providing the best clusters used for quickly processing the sensed information. This
objective function provided the best solution by considering the costs of three factors.
These factors are the communication between nodes, energy consumption, and the
diversification avoidance costs that have not been covered by previous research, such
as humidity and temperature. Thus, this objective function can prolong network
lifetime to avoid the desertification.

3. Asuitable architecture, based on emerging technologies, such as EC, Cloud computing,
Al, and quantum computing for IoT networks, has been developed (See Figure 1).

4. Aninnovative, efficient routing protocol named EQARO-ECS is suggested to enhance
the performance of the proposed clustering protocol by offering an accurate and best
solution of the clusters table (CT) for the IoT networking. Finding an accurate solution
for the best clustering is one of the main research gaps in WSN routing protocols.
This accurate solution is obtained by integrating quantum mechanics with various
quantum probability amplitudes to recover the best solution.

5. Animprovement on the quantum mechanics of finding the optimal CT is provided.
This improvement covers a research gap by updating the quantum values of the
amplitude probability multiple times. This is implemented by proposing a rotated
quantum gate and an iterated quantum T-gate. In this case, if the operators fail to
present population diversity, the proposed iterated T-gate offers different solutions
instead of the first few solutions that are temporarily optimal. The proposed iterated
T-gate reduces the probability of falling into a local optimum dilemma because of the
utilisation of a large scale of high probability.

6.  The results with comprehensive simulations are accompanied and compared to other
techniques to validate the effectiveness of the suggested EQARO-ECS routing protocol.

The remainder of this research is structured as follows: In Section 2, a selection of
related research by other scientists is discussed. The proposed work is divided into two
categories: clustering-based classical algorithms and clustering-based Al and emerging
technologies. Then, the proposed EQARO-ECS network architecture is clarified in Section 3.
Then, the proposed objective function, methodology, measurement calculation, EQARO-
ECS gates, and radio model of the proposed protocol are presented in Sections 4, 5, 6, 7
and 8, respectively. Section 9 outlines the comprehensive simulation and results. Finally,
this study is summarised by the conclusion and commentary on potential future work in
Section 10.
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Figure 1. The proposed EQARO-ECS Architecture.

2. Literature Review

To understand the relevance of the suggested technique, it is important to exam-
ine some well-known state-of-the-art techniques, such as EC, bio-inspired optimisation,
quantum techniques, and some other inspiring applications. Clustering techniques have
been broadly developed for the performance enhancement of IoT networking. However,
to understand the work presented by EQARO-ECS, the literature review in this section is
organised into two categories. The first category introduces the classical clustering algo-
rithms, while the other describes those algorithms based on optimisation, meta-heuristic,
and emerging technologies, such as techniques based on quantum algorithms (see Table 1).
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Table 1. This is the related work overview.

Category Reference Brief Description

Algorithm-based probability method. The main measuring unit of those methodologies is rounds.

During each round, each device has a probability (p) of being a cluster head (CH). Accordingly, the CHs are
Classical clustering algorithms [25-32] elected based on their p-value. All CHs broadcast an announcement message to the adjacent devices.

The non-CH devices transmit their data by electing a CH with the highest signal power. However, all the
approaches have been published with a few differences

Clustering based Al and emerging technologies [33-35]

Reinforcement learning (RL)-based routing protocol for WSN
Federated learning (FL), which trains the model locally to improve efficiency and security without sharing

[36]
any row data
[37,38] Bio-inspired techniques based on ant colony optimisation
[5,7] Future search algorithm (FSA)-based SDN and cloud using energy, communication cost and temperature for
’ identifying the best set of clusters
[39] WOA-based SDN and cloud energy using communication, energy and node density to find best clustering
[15,16] GA to find the shortest path and clusters
[40] The protocol offered an energy-aware routing algorithm for cluster formulation based
on density (EA-DBCRP)
The authors presented a technique for forest fire discovery by developing an environmental technique for
[41] associating fault-tolerant routing algorithms that identify network reply time to an incident and network
lifetime, taking into consideration network attributes
[42] Offered the utilisation of a quantum genetic algorithm (QGA) to elect routes among nodes and create
connections for the purpose of packet exchanging
[16,43] Studied the implementation of quantum theory to enhance the performance of GA and
! evolutionary techniques
[44] QPSOEEC protocol is proposed, which uses a quantum-based technique for cluster formulation using a PSO
[45] Utilised the QPSO to find the optimal set of clusters and enhance the correctness of the node position
Proposed EQARO-ESC EQARO-ESC Proposes the ARO with a quantum technique, based on an EC and supported by an efficient objective

function to find the best CT for IoT networking that avoids desertification factors

https://doi.org/10.3390/526030824


https://doi.org/10.3390/s26030824

Sensors 2026, 26, 824

60f 24

2.1. Classical Clustering Algorithms

LEACH [25] is a single-hop-based probability method. The main measuring unit of
this methodology is rounds. During each round, each device has a probability (p) of being
a cluster head (CH). Accordingly, the CHs are elected based on their p-value. All CHs
broadcast an announcement message to the adjacent devices. The non-CH devices transmit
their data by electing a CH with the highest signal power.

Many similar approaches have been published with a few differences, such as the
centralised LEACH (CLEACH) approach developed by Heinzelman et al. [26], stable
election protocol (SEP) [27], threshold stable election protocol (TSEP) [28], and hybrid
energy-efficient distributed clustering (HEED) [29]. More details and other approaches are
presented in [46].

The authors in [30] suggest a methodology for distinguishing forest fires by including
an element for controlling nodes remotely. The GSM unit is used for generating and sending
an alert. In addition, the data aggregation process is performed using the Arduino board
and then remotely transferred to a sink or a BS.

Another work, presented by Wang et al. [31], offered an advanced power-efficient
gathering in sensor information systems (EPEGASIS) methodology to decrease the hotspot
difficulty. The proposed methodology includes two phases. During the first phase, three
main operations are implemented. These operations define the best distance cost to decrease
energy depletion, localise the threshold to improve the lifetime of the vanishing sensors,
and utilise mobile sink machinery to implement balancing for the energy depletion among
the devices. The operation during the second phase is locating the communication distances
among sensors and the BS. The simulation results of the presented method revealed that
the suggested algorithm has an enhanced performance in comparison to other techniques
in raising the overall network lifetime and minimising latency and power depletion in
the network.

The authors in [32] deliberated on the improvement of using WSNs to recognise the fire
sources in Indonesian forests. In this protocol, the WSN nodes are used for aggregating the
environmental information and monitoring and recording any variations. The information
is then sent as a report to the data centre for analysis and for making decisions. The sensors
are fixed in numerous locations, especially where a fire has previously occurred, and
another probable fire site is expected. In this work, an analytical model was used to identify
the number of sensors required in the forested area.

All the above work used traditional techniques. In contrast, the work presented in this
paper implements Al and emerging techniques to obtain the best sets of clusters.

2.2. Clustering-Based Al and Emerging Technologies

Numerous Al-driven emerging approaches for IoT routing algorithms have been
provided, such as a reinforcement learning (RL)-based routing protocol for WSN [33-35],
in which the AI works on dynamically learning the best paths, following some network
circumstances [47]. Another algorithm is federated learning (FL) [36], which trains the
model locally to improve efficiency and security without sharing any row data. Other bio-
inspired techniques include ant colony optimisation [37,38]. Future search algorithm [5],
WOA [39], or GAs [15,16], all improved routing protocol efficiency for the IoT.

Researchers in [40] offered an energy-aware routing algorithm for cluster formula-
tion based on density (EA-DBCRP). This protocol, according to the collected WSNs data,
formulates CT and distributes the load among the nodes in the network. As a result,
the energy consumption is balanced among all nodes in the network, extending the lifetime
of the network.
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In [41], the authors presented a technique for forest fire discovery by developing an
environmental technique for associating fault-tolerant routing algorithms that identify
network reply time to an incident and network lifetime, taking into consideration network
attributes. To investigate this technique, the examiners implemented advanced ant-based
QoS routing technology in a heterogeneous WSN, called EAQHSeN, and a multi-level fault-
tolerant routing technique, disconnected heterogeneous routing technology, called HDMRP.

However, all the above Al algorithms still have some limitations on processing speed
and the exploration or exploitation stages. Therefore, this study employed ARO with a
quantum technique to improve the shortcomings of the above algorithms. The researchers
attempted to utilise the quantum principle or specific related constraints of the quantum
procedure to recommend efficient methods to enhance the performance of the WSNs.

For instance, in [42], the authors offered the utilisation of a quantum genetic algorithm
(QGA) to select routes among nodes and create connections for the purpose of packet
exchanging. The main concept was to combine both the GA and quantum theory, using
qubits to offer new genes that are normally applied to decide the best solution. The results
showed an improvement in energy consumption and good network connectivity. The
authors in [16,43] also studied the implementation of quantum theory to enhance the
performance of GA and evolutionary techniques and attain capable cluster construction.

The authors in [44] proposed the quantum-inspired particle swarm optimisation for
energy-efficient clustering (QPSOEEC) protocol, which uses a quantum-based technique for
cluster formulation using a PSO. In this research, the CH selection process was implemented
using the PSO technique, while quantum computing was utilised for position updating of
the nodes. Another study was reported in [45], which utilised the QPSO to find the optimal
set of clusters and enhance the correctness of the node position. However, this research is
different because it considers a heterogeneous network, in which the nodes initially had
various levels of energy and different communication capabilities.

With the above research improvements in computing optimisation and networking,
various optimisation mechanisms have arisen. New Al algorithms continue to be presented
to solve future complicated networking issues. This paper proposes the ARO with a
quantum technique, based on an EC algorithm and supported by an efficient objective
function to find the best set of clusters for IoT networking that avoids desertification factors.

3. The Proposed EQARO-ECS Network Architecture
3.1. Network Model

This study offers a desertification-based routing protocol for aggregating critical data
useful for controlling IoT networks. The main challenge for WSN is resource restriction,
especially relating to the energy power supply. Inadequate energy at these nodes is a major
concern in prolonging the lifetime of the networks. This study suggests optimising energy
depletion by considering energy consumption, communication cost, and desertification.

The main benefits of involving SDN in WSNs are energy efficiency, network reconfigu-
ration, flexibility, scalability, network programmability, and intelligent routing decisions.
In this case, the modifications of network management can be easily and flexibly imple-
mented by uploading new applications on a device [48]. As seen in Figure 1, the SDN
construction includes Application Programming Interfaces (APIs) that offer a working
interface among the data, control and application planes. The southbound APIs exist
between the data and control planes, while the northbound APIs are located among the
control and application planes. The flows of control traffic from the controller to the devices
in the infrastructure layer are implemented by the Southbound APISs.

The proposed architecture is based on the idea of SDN concept, combining the cloud,
EC, and SDN technologies facilitate the decrease in traffic. This traffic is the amount of
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data that needs to be transmitted and processed in the Cloud so that these technologies can
provide lower transmission costs and reduce latency. The SDN concept helps to improve
the protocol performance by installing the SDN controller in the control plane, over the
EC, to implement the necessary routing decisions. It is without any requirement for central
Cloud processing. While the data plane located in the infrastructure layer (see Figure 1).

The merging of EC, SDN, and Al technologies in the network architecture to make
cluster decisions has a direct effect on energy consumption, data processing, and network
speed. To make the proposed EQARO-ECS routing protocol more realistic throughout
the CT design and process, this research assumed that, first, the BS is centralised with
no energy constrained; second, all the nodes are heterogeneous with two levels of initial
energies; and third, all the nodes are stationary with fixed locations. This section describes
how Cloud, EC, and SDN techniques have been founded and applied in the architecture of
the proposed work. EC is a decentralised data processing technique that has the capability
of enhancing the IoT performance, accessibility, and abilities.

Figure 1 shows a scheme for the proposed EQARO-ECS protocol. The figure is divided
into three layers: The first layer is the infrastructure layer, which usually collects and detects
data through small processing. In this layer, the nodes are collected and transmit data to
the BS according to a predefined set of networking clusters by the controller. The second
layer is edge computing with an SDN controller (ECS) layer. This layer is close to the
infrastructure layer and is responsible for handling urgent and necessary data, which it
processes in close to real time. The last layer is the Cloud layer, which is responsible for
controlling multiple edges and for substantial storage and computations. The following
subsections describe the three layers of the proposed work.

3.2. Cloud Layer

Cloud and edge technologies complement each other because the Cloud still has a
significant role in the overall EC processing, such as providing a solution for network
latency and congestion difficulties. Over the ECS layer, the proposed algorithm first
determines if the data can be processed locally or if the operation is complex and needs to
be moved and processed in the Cloud layer. Al processing is assumed to be implemented
in the Cloud and the ECS Layers. For increasing efficiency, this paper suggested that there
be fine-tuning of the computations in the ECS layer based on learning outcomes from
processing big data in the Cloud Layer. For example, periodically synchronising algorithms
and fine-tuning parameters between Cloud and the ECS Layers.

With normal operation, ECS also has to transfer critical or a portion of data to the
Cloud layer to accomplish complicated decisions and/or savings. The proposed combi-
nation in this study of the Cloud and the ECS layers for IoT networking is efficient and a
resourceful architecture.

3.3. Edge-Based SDN Concept Layer (ECS)

This layer, shown in Figure 1, involves EC servers and an SDN controller, which are
distributed in a larger area in comparison to the Cloud layer. The EC-based SDN (ECS)
layer provides lower latency, a lower amount of transmitted data, reduces the distance the
data must travel, and reduces the resulting traffic. Thus, during ECS operations, servers are
closer to the IoT nodes, which solves the speed and latency problems involved in processing
in Cloud computing. In the proposed architecture, the ECS layer is a core processing unit
for the entire network. This processing is performed by analysing the data received from
the IoT devices in the infrastructure layer and then either transferring the complicated
and huge information to the Cloud layer or responding to the infrastructure layer with
optimal CT. The ECS layer involves the implementation of QARO with an efficient objective
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function, using the SDN controller over EC to find the optimal CT depending on the
information collected from the devices. The analysed information is then forwarded to the
infrastructure layer and transmitted to the Cloud layer for further processing and saving.

3.4. Infrastructure Layer

As shown in Figure 1, the infrastructure layer comprises many heterogeneous devices
from small to large, such as mobile phones, temperature sensors, transportation, healthcare,
smart homes, and factories. In this layer, the devices gather and capture the required data
for making routing decisions or achieving the goal they are designed for. The location
information must be involved in the data attained by the devices; otherwise, the observing
information is insignificant. The devices send the data to the ECS or Cloud layers through
the BS. However, the nodes in the infrastructure layer must still perform some process-
ing, storage, or data analysis, which require energy resources but have the advantage of
processing significant data in real time.

4. Objective Function

The proposed objective function is implemented by the SDN controller at the ECS
layer. The controller calculates three essential factors, which are the residual energy, com-
munication cost, and desertification avoidance factors, such as humidity and temperature.
In each round, the average energy related to the live nodes is calculated, and then the nodes
are candidates for being CHs with energy greater than the average in a matrix named Lcp.
The SDN controller maximises the cost of the subsequent equations:

Coy £ Enge

mu)
fi= 1)
m=1 Zz‘j:l E”gpopwv)
f Cﬁ” YV dis(ny, BS) vV dis(i,, BS) "
2 = - :
m=1 Z-(I)\[;ﬂl dls(n(m,v)/ CHm) Zsfili] dlS(CHm, BS)
Egzzll\] Tempcpy, ):rcnzll\] Humcp,,
CH CH .
Teml’g\;vg + HumIng ’ lf C< Temppsr &
fa= Humpgy > R 3)
fopa HiiMang Otherwise
anill\] Tempcy, ):rcn:I]\] Humcp, !
CHy CHy
where .
Y.\ Tempcp,,
Temstrt = TemPavg - MW (4)
CH.
Y.,y Humcpy,
Humpg = Humavg - milCHN (5)
YY_| Temp )
Tempm}g = %, (6)
1%
_1 Hum
Hutgng — Loy Hutm ) -
\%
Cost =wf1+Bfa+1f3 (8)

where the coefficients for the energy, communication cost, and factors of desertification
are represented as w, B and T, respectively, and are shown in Table 2. The parameters
Pop and CHy denoted the populations presented in Equation (9) and number of CHs
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in Equation (11), respectively. C and R are selected to be 0 and 0.2, respectively and specify
the range of nodes to be CHs with perfect environmental temperature and humidity.

Table 2. EQARO-ECS parameters.

Symbol Quantity Description
K 40 ARO population size
Max;, 400 Maximum number of iteration
w 0.3 Energy parameter
B 0.3 Communication distance parameter
T 0.4 Desertification parameter
% 100 number of nodes
Engeiec 50nJ/b Energy dissipated to process one bit
CTR 0.0013 pJ /bit/m* Amplifier energy for multipath space
Crs 10 pJ/b/m? Amplifier energy for free space
Engpa 5 nJ /bit Energy for data aggregation
disy \/% Transmission distance threshold
Packet 4000 bit Data message size
0 4 T-gate iteration times

Weather conditions, such as humidity and temperature, affect the performance of
WSN. Therefore, an efficient multi-objective function based on energy, communication
cost, and environment was developed. The first function f; selects the CHs collection
with a higher energy level. The second function f, chooses cluster sets with the smallest
interior and exterior communication costs, where the interior communication cost is the
communication between CM and CH, and exterior communication is the communication
among the CHs and the BS. Finally, function f3 chooses the set of clusters with higher suit-
ability to avoid desertification. This function is proposed to nominate nodes with moderate
temperature (Temp,yg) and Humidity (Hum,,g) factors to be CHs. These two factors are
used in defining the desertification temperature (Tempps,¢) and humidity (Hump,,) that
consolidate the overall network to live, in average, for the same lifetime.

Subsequently, the SDN controller organises the data transmission schedule using a
mechanism called time division multiple access (TDMA). Through this scheduler mecha-
nism, all the CMs transmit their related ID, residual energy, and data to their connected CH
throughout their identified time slot, while conserving energy by keeping their radio off
during all other time slots.

5. The Methodology of the Proposed Model

The resiliency in the real world is considered as an essential criterion during the
IoT protocol design. This paper aims to identify an efficient protocol responsible for
providing a CT to prolong the IoT network lifetime in the desertification areas. This is
because of the development of Equation (3) that attempts to choose the set of CHs with an
average weather temperature. The architecture of this protocol exploits edge and Cloud
resources in addition to the implementation of Al and quantum techniques by the SDN
controller to identify the best solution. The methodology of EQARO-ECS, presented in
Figure 2, is organised into many subsections, which are individual populations, quantum
state and probability amplitude generation, measurement and fitness calculations, QARO
implementation, and quantum gates. The cluster set construction is managed by the SDN
controller at the ECS layer by creating the CT using the EQARO-ECS algorithm.

https://doi.org/10.3390/s26030824


https://doi.org/10.3390/s26030824

Sensors 2026, 26, 824

11 of 24

Initialization of:
VK, Maxg, itr = 1, Pop(K V), random Temp(K V)
and Hum{K V), AM(K V) according to Eq.(14)

v

Find Pop.« according to to Eqg.(8)

v

Using AM values update Pobyeg according
to Eq.(30) and Eq.(8)

v

» Calculate Ag(itr) according to Eq.(29)

'l“f

Perform random hiding perform detour foraging
according to Eq .(25) according to Eq.(15)

Calculate the fitness and update
Popgezraccording to Eq.(8)

v

Quantum-Gate enhancement for Poppes
according to the algorithm in Figure 3

itr=itr + 1
o>

Yes

END

Figure 2. Flowchart for finding the best solution using the proposed EQARO-ECS.

For the first stage, the SDN controller constructs the CT using only the information
about the node coordinates. For the following stages (rounds), the SDN controller exploits
the aggregated data regarding the temperature, humidity, and the nodes’ remaining energy
and communication cost to find the best group of clusters. Then, the controller implements
QARO to identify the CT, which possesses scheduling information and the clusters set,
and transmits it to the IoT nodes in the infrastructure layer through the BS.

5.1. Individual Initialization

Initially, QARO-ECS randomly generates the value of each individual in a population
matrix, called Pop, with a set of zeros and ones. The size of the generated matrix is K x V,
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where K represents the number of individuals to be tested in the network, and V represents
the number of nodes in each individual and is equal to the number of nodes in the network.
The matrix Pop can be represented by Equation (9):

Popq 1 Pop1p, ... Popiv
Pop = : : - . )
Popx-11 Popx-12 ... Popg_1n
POPK,l POPK,Z . POPK,V

5.2. Qubit State Identification and Generation

Unlike the classical computer that uses only zero or one binary states, the data repre-
sentation with the quantum computer is represented by a qubit with various probability
values. The value of the qubit can be similar to that of a classical computer with only zero
or one states, or it can be a set of states by including different probability values, named
superposition. Equation (10) shows a 2" state kind that represents a qubit of size n:

AM = ( ) (10)

Generally, the number of CHs (CHy) for each Popkxy can be calculated by
Equation (11) as below:

X162 oy

!/
&y

Xy_—1
! !/ !
&q||&p Xy 1

14
CHN = 21 Popj'i(j:l,Z,...,K)' (11)
1=
Whereas the state of the quantum qubit can be represented by Equation (12):
|7) = &[0) + &'[1) (12)

where « and o’ represent the amplitude probabilities for the quantum states 0 and 1,
respectively. These probabilities have constraints presented in Equation (13):

|@)? + o'y =1 (13)

where |a)? and |a’)? signify the probability that a quantum state is perceived as a state zero
and state one, respectively. Each individual in the matrix Pob is equipped with an amplitude
probability AM; that can be generated according to the following pseudo-random number
generator in Equation (14):

(AM, mod 12) —1

AMos1 = 12

(v:1,2,...,V). (14)

Equation (14) provides a set of pseudo-random numbers between [0, 1]. Initially,
the seed value of AMj is a random number between [0, 12]. The benefit of applying such
pseudo-random numbers is to raise the consistency of the preliminary AM matrix, thus
earning a superior cluster set structure for the proposed EQARO-ECS.

5.3. ARO

Throughout this section, the idea and emulation behind the ARO technique are pre-
sented (see Algorithm 1). In the subsequent sections, the mathematical models and strate-
gies for implementing the energy model for the proposed QARO are presented.
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Algorithm 1 ARO Algorithm.

: Initialization of:
: Pop < Popy1...Popgyv
catr 1
Maxis,
: Find Popy.s; according to Equation (8)
: while itr < Max;;, do
for every Pop do
Select the guide rabbits from Pob
Calculate Aq(itr)
if Ag(itr) > 1 then
Update Popyes; according to Equation (15)
else
Update Popy,s according to Equation (25)
14: end if
15: end for
16: Update Popy,s; according to Equation (8)
17: end while

e S
@ NP2

5.4. ARO Mechanism

The ARO mechanism is inspired by the rabbit’s survival strategy, which is widely
spread as a common Chinese phrase, 'rabbits do not eat the grass near their own nest’ [12].

This strategy allows the rabbits to find food easily over a large area because of the
wide field of vision of rabbits. They focus on overhead scanning, so that they can easily find
food over a large area. This foraging strategy prevents rabbits from eating the grass close
to their rabbit holes and means that they always seek food far from their nests. Throughout
the ARO technology, the detour foraging strategy was considered as the exploration phase.

To escape tracking by hunters or predators, rabbits make nests by digging many bur-
rows near their nests and randomly selecting one as a haven from predators. This random
hiding behaviour of rabbits is a survival strategy. Rabbits have many strategies to escape
tracking by enemies, which raises the likelihood of their survival. These strategies are
running fast, escaping in zigzag motion, stopping unexpectedly, running back, and turning
around suddenly. The ARO also uses random hiding and a survival scheme as an exploita-
tion phase. Based on the high number of the rabbits’ predators, the rabbits must escape
danger by running fast and, based on their energy, having to adaptively change between
random hiding and detour foraging [12].

5.5. Model and Algorithm of ARO

Two main strategies were employed by the ARO: foraging and hiding approaches.
Transiting between those strategies according to their energy is termed the energy shrink
strategy. These strategies are described in the next subsections.

5.5.1. Detour Foraging (Exploration)

In detour foraging, rabbits leave the grass closest at hand and seek distantly for food.
ARO uses a similar methodology, where the working area is divided into regions with grass
and food. Each rabbit in the swarm has one region and V burrows. However, the rabbits
usually visit other areas randomly for foraging and gaining adequate food.
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The ARO’s detour foraging randomly updates each position towards the other areas
in the swarm and adds a perturbation. The mathematical representation of the rabbit’s
detour foraging is represented as follows [12]:

ori(t+1) = PBpj(t) +T x (Pop,(t) — PBpj(t))
+round(0.5(0.5 + hy))ny, (15)
i,j=1,...,K and jEI

I'=Axcq (16)
(A)Z

A = (e —e M=ir’ )sin(27thy) (17)

1, ifo==u(l)
c(v) = v=1,...,V and 1=1,...,[h3x V] (18)

0, otherwise

u = randperm(V) (19)
ny ~ K(0,1) (20)

where K, n1, A, dq, (hq, hp and hi3) and Max;;, are rabbit population size, standard normal
distribution, movement step length when implementing the detour foraging, problem
dimension, three random numbers in range (0, 1) and maximum iteration number, respec-
tively. The Papj(t) represents the ith rabbit location at time ¢, while 9¥;(t + 1) represents
the ith rabbit probable location at time ¢ + 1.

5.5.2. Random Hiding (Exploitation)

Like the rabbits’ behaviour of digging multiple burrows for hiding and survival,
at each iteration, ARO usually creates V burrows beside each search space dimension and
then randomly selects one of them for hiding to decrease the possibility of being preyed
upon. The subsequent equation is agreed upon in this respect. The generation of the jth
burrow for the ith rabbit is represented as the following [12]:

l;rilj(t) = PBPi(t) + Hg x u x Papi(t),

i=1,...,K and (21)
ji=1,...,V
_ Maxy, —t+1
Hg = ~ Max, X Ty (22)
np ~ K(0,1) (23)
1, ifo==j
u(v) = v=1,...,V (24)

0, otherwise.

From Equation (21), the V burrows are created in the vicinity of a rabbit alongside each
dimension, while H 1is the hiding factor that is linearly reduced from
1to ﬁxltr [49]. For survival, rabbits have to discover a safe residence for hiding because
they are regularly subjected to attack by predators. Thus, they randomly choose a burrow to
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avoid being caught. This random hiding approach can be mathematically modelled by the
following equations:

ar;(t+1) = Pop;(t) +T x (hy x br;,(t) — Pop;(t)) (25)
i=1,...,K
1, ifo==[hsx V]
Hr(v) = v=1,...,V (26)

0, otherwise
bri(t) = Pop,(t) + Hq x py x Pop,(t), (27)

where 714 and 75, which range in (0, 1), are two random numbers. While Eri,, signifies a
hiding burrow that is randomly chosen from its V burrows. The ith search individual in
Equation (25) modifies its location to the burrow locations that are randomly selected from
its V burrows. After achieving both detour foraging and random hiding, the ith rabbit
position is updated according to the following equation:

Pop(t),  f(Pop;(t)) < f(dri(t+1))

Popi(t+1) = ari(t+1), f(Pop(t)) > f(ri(t+1))

(28)

This equation explains that whenever the new probable location of the ith rabbit is
better than the present one, the rabbit leaves the present location and moves to the new
location produced by Equation (15) or Equation (25).

5.6. Energy Shrink (Switch from Exploration to Exploitation)

In ARO, rabbits are permanently inclined to regularly accomplish detour foraging in
the preliminary stage of repetitions and then regularly accomplish random hiding in the
late stage of reiterations. Depending on the energy of the rabbit, the search mechanism
shrinks steadily and moves between exploration and exploitation phases, following the
energy factor Aq(t), which is defined by the following equation:

t 1
Aq(t) =41 - Maxm)lnﬁ (29)

where Aq(t) and h represent an energy factor and a random number in the range (0, 1).

6. Measurement and Fitness Calculation

After initialisation and ARO implementation, measurement and fitness calculations are
implemented. During the measurement process, the quantum matrix with AM probabilities
must be measured according to certain criteria and function, in which each bit in the AM;,
is evaluated and measured as follows:

1, ovar > |a|

Msu., = (30)

0, wvar <|d|

where Msu., represents a binary solution for each (rabbit) for AM measurement. While var
is a random number € [0, 1]. The fitness function aims to identify the best solution (Popp,s;)
and to move all other individuals in the direction of that optimal solution. Each solution
is evaluated according to Equation (8) and represents a CT with CHs and their connected
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CMs. The best solution with a high fitness value represents the optimal cluster set with low
communication cost and high remaining energy, avoiding the desertification areas.

7. EQARO-ECS Quantum Gates

To solve the clustering problems of WSNs, the proposed EQARO-ECS modifies the
values of each qubit of individuals, rendering the best solution from the ARO operation.
Two essential gates are proposed, which are the rotation gate and the iterated T-gate.
However, for more space to discover the best and most accurate solution, an algorithm,
named iterated T-gate, which iterates the T-gate in various space directions, has been
suggested (see Figure 3).

Popeest, &Mpeer t =1_ p =4

v

Update AMp=s according to
Eq.(31)

v

Measure AMpzz using Eq(30)  |-#—

v

Evaluate the ocutcome of Eg.(30)
according to Eqg.(8) and update
FPoppes and AMpzs:

.

Update AMp==z according to Eqg_(40) |

‘r"es->| t = t+1 |

Mo

Figure 3. Flowchart for updating Popy,s; values using the proposed quantum gates to find a
better solution.
7.1. Rotation Gate

In EQARO-ECS, the final CTs are identified by updating each qubit amplitude of
individuals after obtaining the best amplitude solution (A Mp,;) using the ARO algorithm.
The modifying principle is presented as follows [50]:

l(xiupdate] _ [cos(ﬂi) —Sin(ﬂz‘)] [“i] (31)

wjupdate sin(d;)  cos(¥;) !
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where ¥; is the value of the updating phase used to modify the amplitude probability
according to the following formula:

19,‘ = Al91' X 5(061',1)(;) (32)

AY; = 5exp% (33)

where Ad;, t, and Max;;, control the period’s rotation speed, the period’s sequence, and the
maximum number of iterations, respectively. The formula §(«;, a}) is identified as follows:

defipest
(S(Déi, D‘;) = (%) (Eibest - eicurrent) (34)
ef icurrent
where .
Kibest
defibest = (35)
Xibest
/
Kicurrent
deficurrent = - (36)
Xicurrent
ol
Livest = arctan(—lbm) (37)
Xibest
ol
Licurrent = arCtan(M) (38)
Xicurrent

/

where &jcyrrent, & urrents

Kjpest, and lX;b o5t are the current and best probabilities of the ith qubit,
respectively.

7.2. Iterated T-Gate

The T-gate is a member of a single-phase shift family that keeps the single state |0) and
updates the |1) state with 7 phase, according to the following phase matrix representation:

1 0
TGatematrix = in (39)
0 exp4
Xypdate | 1 0 u (40)
= o
“;pdate 0 exp 4 o

where p, seen in Table 2, is the rotation iteration number for the iterated T-gate proposed to
be used in this paper, while ¢ is the phase gate equivalent to 7. The value of the p is chosen
to be four, such that a half-space investigation is performed. For further investigation,
the p value can be upgraded up to eight. However, in this research, four iterations were
chosen for less processing and complexity. This gate is equivalent to horizontally tracing
or rotating around the y — axis, like the Bloch sphere method. However, the probability
during this gate for measuring a |0) or |1) is higher due to the amplitude amplification.
As shown in Figure 3, after each iteration, a measurement on each quibit was applied, using
Equation (30), and then the fitness of the result, according to Equation (8). The value of
AMy,; is to keep updating according to Equation (40).

7.3. Complexity Analysis and Overhead

LEACH and SEP techniques have lower analytical complexity compared to other meta-
heuristic PSO and the proposed EQARO-ESC techniques that present significantly higher
analytical necessities. Therefore, this section only considered the computation complexity
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for PSO and EQARO-ESC protocols. The complexity of PSO is equivalent to the ARO
complexity and computed by identifying Max;,, V, and K and computed by Equation (41):

PSO = ARO = Maxy;, x V x K. (41)

Accordingly the ARO complexity can be represented by O(Maxy;, x V x K). Whereas
the computation complexity of the proposed EQARO-ESC primarily arises because of the
ARO and the proposed iterated quantum gates and it can be conveyed by the following
Equation (42):

quantuMyerared = Maxpy, X p X KX V. (42)

Hence, the overall complexity analysis of EQARO-ESC can be stated by Equation (43):
EQAROESCcomplexity = Maxyy; X V x K x (1+p). (43)

Compared to PSO, the suggested EQROA-ESC mostly increases the complexity ob-
tained from the iterated quantum machinist. However, the complexity analysis of the sug-
gested algorithm is still in a satisfactory range, because (1 + p) in Equation (43) is constant
and can be ignored, then EQAROESCc,ppiexity can be represented by O(Maxys, X V x K),
which is equivalent to the complexity presented by PSO algorithm.

The transmission of control massages is considered as the core causes of the overhead
during the CT formulation process. Therefore, the calculation of the overall overhead,
for the classical clustering algorithm, i.e., LEACH algorithm, can be implemented by
adding the energy spent by all devices for transmitting and receipting of three main control
messages. These messages are advertisement (ADV) broadcast by the candidate CH, join—
request (Join) transmitted by the nodes to join the appropriate CH, and TDMA (Schedule)
to schedule the cluster nodes transmissions.

While the overall overhead generated by the proposed protocol based optimization
algorithm can be calculated by adding only the energy spends by the ADV and Schedule
control messages without the requirement for the Join messages, which makes the proposed
EQARO-ECS protocol have lower overhead than others.

8. Radio Model

This study aimed to assess the average energy spent by a device, depending on various
constraints, such as the energy dissipated during transmission, reception and data collec-
tion. The first-order analytical model presented by [26] evaluates the energy consumed by
the proposed EQARO-ECS. Each device spends energy in data aggregation (Engp4), am-
plification (Engamp), reception (Engrx), transmission (Engrx), and desertification factors
effects (Engpgrt). To attain the specified ranks of signal-to-noise ratio for one bit sending
over a distance (dis), the Eng,m) is present as follows:

Ersdis?,  if dis < disg
Engump = (44)
Errdist,  if dis > disg

where Crg, TR, and disg are distinct in Table 2. However, the energy spent to transfer or
collect Ibits over dis is identified as follows:

EngTX(lrdiS) = lEngelec + lEngamp (45)

Eﬂgkx(l, dis) = lEngelec (46)
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(47)

Temppsrt + HumDsrt)

Engpsit = EngTX(l,des)< 7

where Eng,. is the energy spent per bit for broadcasting or receiving. Likewise, all other
radio factors are presented in Table 2.

9. Simulation Results

MATLAB 2014b was used throughout the implementation of the proposed protocol.
A total of 100 heterogeneous nodes were randomly distributed over a 100 x 100 m?
area. The nodes are assumed to be heterogeneous to emulate the diversity of IoT devices.
However, for simplicity, the network nodes are classified into two levels of heterogeneity,
where 50% of the nodes had 0.5 Joules/s of energy and the others were supplied with a
1 Joules/s battery (similar to the node classification presented by [51]). The sink node was
an unlimited power supply with no resource restrictions.

To prove the performance and correctness of the proposed EQARO-ECS, a compar-
ison with the intelligent technique of PSO [22] and other classical techniques including
LEACH [25] and SEP [27] were presented. However, the implementation of these tech-
niques needed to dissipate higher energy to gain a global best solution or they could
cause trapping in a local best solution issue. The concrete comprehension solution was to
obtain the local best solution by choosing a very small probability with the application of a
quantum technique.

Figure 4 evaluates the convergence property by displaying the best value F(t) of
EQARO-ECS and PSO versus the increasing number of iterations. It can be notice that
PSO start to be stable with about 350 iterations, while it only take about 290 iterations
for EQARO-ECS. This illustrates that EQARO-ECS has a quicker convergence proportion
than PSO.

Figure 5 shows a comparison of the fitness cost function (cost(t)) values between
the proposed EQARO-ECS with different R values. It can be noted from the figure that
most of the network are live approximately for the same time especially when R = 0.2,
this is because of the implementation of the overall average of Equations (6) and (7) that
utilised by Equation (8). This was due to the involvement of critical factors, such as the
association of quantum computing, edge technology, SDN, and efficient fitness function
when determining the best solution.

p -
# .
08 & o H
K .

L I [=wmmmem EQARGECS|
4 PSO

ool 1 1 L 1 L 1 1
50 100 150 200 250 300 350 400
No. of iteration

Figure 4. The convergence property of EQARO-ECS and PSO.
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Figure 5. The fitness cost function (cost(t)) values between the proposed EQARO-ECS and PSO.

Figure 6 demonstrates network lifetime. Where the lifetime in networking was consid-
ered as the number of nodes active over rounds (time) from the initiation of the communi-
cation till all nodes in the network were deactivated. In comparison to other algorithms,
EQARO-ECS presents a longer stability period and a longer lifetime. It is obvious from the
figure that the proposed protocol offers a longer network lifetime, especially in the stability
phase, in which all the nodes in the network are active. This enhancement is due to the
consideration of quantum techniques, ARO, an efficient objective function, and improved
quantum gates.

Energy depletion is similarly a significant indicator of the efficiency of WSN. The best
WSN routing is the network with the longest node lifetime, lowest maintenance cost, least
energy depletion, and least replacement of node batteries. Figure 7 shows that the energy
consumed by EQARO-ECS, for the entire nodes, is lower than that of other techniques. This
is, first, due to the advantage of quantum algorithm-based gates in Equations (31) and (40)
when searching for the optimal solution and, second, due to the efficient proposed fitness
function presented by Equation (8).

The EQARO-ECS improves the amount of data transmitted to the BS and then to the
ECS layer in comparison to the other implemented techniques, as presented in Figure 8.
This improvement is because of the growth in infrastructure lifespan and, principally,
the stationary phase. The suggested EQARO-ECS technique shows an improvement in
the amount of data sent of 30%, 56%, and 70% over the other Al algorithms of PSO, SEP,
and LEACH, respectively.

The reason for this improvement is the yield of the implementation of Equations (1)—(3)
by the presented network architecture and algorithms throughout the CT creation process.
In comparison with other clusters, which use traditional techniques, clusters may result in
higher energy depletion by transmitting the same amount of data as others. In conclusion,
there is a positive association between the increasing quantity of data sent and the Al,
objective function, and quantum techniques. All these techniques can improve network
lifetime and improve the overall number of packets sent.
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10. Conclusions

Whether the IoT protocols presented by other researchers follow traditional or Al
technologies, they still need to live longer lifetimes and avoid desertification, even with
environmental changes. Therefore, for the development of an appropriate algorithm, it is
essential that it considers temperature and humidity to prolong the network lifespan and
promise a trusted network for such an area. Whichever optimisation algorithms are used,
they still easily fall into a local optimum during the cluster formulation process, and it is
difficult to find the best solution with optimal energy consumption. Emerging technologies
should be applied during the cluster formulation process to solve such issues.

This research proposed an Al algorithm named QARO, based on efficient technologies,
which were quantum computing, ARO, EC, SDN, and Cloud for IoT networking. This
algorithm improves the capability of finding the accurate global optimum and expands
the network lifetime. For instance, the EC is used as a distributed computing pattern in
which most or all processing is achieved on distributed nodes. A developed quantum
technique within two gates (a rotation gate and an iterated T-gate) could be deployed to
prevent falling into the local optimum. The simulation results showed that compared with
traditional routing algorithms, such as PSO, and classical protocols, such as LEACH and
SEP, this algorithm has less energy consumption and more accuracy, which demonstrates
its efficiency in finding the optimal clustering technique.

Future work in IoT networking will be in the direction of merging the IoT and Lo-
RaWAN devices with 6G and Al for smarter techniques. This case is implemented by
addressing other challenges and limitations such as security (i.e., quantum methods),
efficient energy techniques (i.e., energy harvesting), and reliability (i.e., bio-inheritance
algorithms and designs), which enable innovative uses for smarter life applications and
produce almost independent control systems.
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