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Abstract—In this paper, the secrecy of the physical layer
of an reconfigurable intelligent surface (RIS)-assisted wireless
communications system over extended α-η-F composite fading
channels is analyzed. The extended α-η-F composite fading
model is introduced in this work as a generalization of the
versatile extended η-F and α-µ distributions. Accordingly, this
model encompasses as special cases most of the generalized fading
distributions, such as extended α-η-µ, extended η-F , and α-η-
F . To this effect, the probability density functions (PDFs) of a
single random variable (RV) and product of two non-identically
distributed variates of extended α-η-F composite fading model
are provided first. Thereafter, we derive mathematically tractable
expressions of the average secrecy capacity (ASC), secure outage
probability (SOP), lower bound of SOP (SOPL), and effective
secrecy throughput (EST) of RIS-assisted wireless communica-
tions system over correlated extended α-η-F composite fading
channels. In addition, the asymptotic expressions of the ASC,
SOP, and SOPL at high average SNR regime are also presented
to explain the impact of both the number of the RIS elements
and fading parameters on the secrecy performance metrics. The
validity of our analytical results is confirmed through Monte
Carlo (MC) simulations as well as a comparison with some special
cases of the extended α-η-F composite fading channels.

Index Terms—Average secrecy capacity, effective secrecy
throughput, extended α-η-F composite fading, reconfigurable
intelligent surface, secure outage probability.

I. INTRODUCTION

RECENTLY, reconfigurable intelligent surface (RIS) has
been given a special attention as a promising technology

for sixth generation (6G) wireless communications systems.
This is because the RIS improves the quality of the received
signals via controlling the effect of the propagation environ-
ment by using passive intelligent elements [1]. Accordingly,
several works have been dedicated to analyze the performance
of RIS-aided the physical layer security (PLS) that leverages
the physical properties of the wireless propagation medium
which would lead to enhance the secrecy of the transmission
in the presence of the wiretap channel [2]. For example, the
authors in [3] studied the secure outage probability (SOP)
over Rayleigh fading channels via applying the central limit
theorem (CLT) that is widely utilized to approximate the prob-
ability density function (PDF) of the received instantaneous
signal-to-noise ratio (SNR) when the number of the elements
of the RIS is large. In [4], the analysis of the SOP over
Rayleigh fading condition was based on assuming the RIS
includes large number of elements as well as employing a
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Gamma distribution. This distribution was also utilized in [5]
and [6] to derive the SOP of a RIS-enabled system via tightly
approximating the sum of the identically distributed cascaded
Rayleigh and Nakagami-m fading channel coefficients, respec-
tively. In [7], the Gamma and CLT approaches were used
to provide the SOP and average secrecy rate (ASR) over
Rayleigh fading channels in terms of the multivariate Fox’s H-
function FHF (mFHF). The authors of [8] analyzed the SOP
and average secrecy capacity (ASC) of RIS-aided wireless
network over identical Rician fading channels via employing
the stochastic geometry to approximate the formulations of
the PDF and CDF of the received instantaneous SNRs at the
legitimate user and randomly located eavesdroppers.

To obtain better fitting to the practical measurements in
comparison with the classical distributions, like Rayleigh
and Nakagami-m, the performance indicators of RIS-assisted
wireless systems were analyzed over different generalized
fading channels. In particular, the secrecy performance of RIS-
aided system over uncorrelated FS-F fading channels was
studied in [9] by using a Gamma approximation approach.
Conversely, the authors in [10] derived the exact and asymp-
totic expressions of the ASC and SOP over correlated FS-
F fading channels via applying a copula theory to obtain
the joint statistics of the Bob and Eve channels’ coefficients.
On the contrary of [9] and [10], the secrecy performance
enhancement using a RIS technique over non-identical FS-F
fading conditions was achieved in [11] where the performance
metrics were expressed in terms of the mFHF. A mixture
Gamma (MG) distribution based analysis of the ASC, ASR,
and SOP of a RIS-improved PLS over unified identically
distributed channel coefficients was investigated in [12].

Motivated by the observed enhancement in the performance
of the PLS that is occurred via using a RIS technology [2], [11]
as well as the correlation among fading parameters, the secrecy
of RIS-aided communications system over correlated extended
α-η-F composite fading channels is analyzed in this paper. In
contrast to α - µ fading [13], in this non-line-of-sight (NLoS)
fading model, the multiple paths, shadowing, non-linearity of
the propagation medium and imbalance clustering between the
in-phase and quadrature (I/Q) components are simultaneously
affected the received signals. This scenario can be noticed
in several real-world wireless communication systems. For
instance, in satellite communication systems, the signal may
be reflected off the building which would lead to weak some
signal paths that cause the differences in the power and
number of the clusters between I/Q components. Moreover,
the shadowing may occur when obstacles moving close to
the receiver whereas the non-linearity of the environment may
be attended due to the propagating the sound waves in the
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atmosphere [14]. Consequently, the extended α-η-F composite
fading distribution integrates α-η-F [15] and extended η-
F [16] distributions in unified composite fading model that
characterizes comprehensive propagation mediums.

The main contributions of this paper are multifold, which
are summarized as follows:

• The secrecy performance of the RIS aided wireless
communications systems over correlated extended α-η-
F composite fading channels is analyzed. To achieve
this analysis, novel exact mathematically tractable PDF
of the received signal envelope over extended α-η-F
composite fading channel is derived first. To the best
of our knowledge, the extended α-η-F composite fading
channel model has not been yet presented in the literature.

• Providing the PDF of the product of two non-identically
distributed extended α-η-F composite fading variates.
Moreover, general simple analytically acceptable joint
PDF (JPDF) of the channel coefficients of the Bob and
Eve is also given.

• Capitalizing on the above, unified expressions of the
ASC, SOP, SOPL, and effective secrecy throughput (EST)
of RIS enabled systems are derived. Unlike [13] and
[10] in which the fading channels are special cases
of the extended α-η-F composite fading scenario, our
performance measures are derived in existence of a RIS
technology and with low mathematical intricacy.

• Further insightful observations into the influence of the
number of the elements of RIS and fading parameters of
the channel on the performance metrics are revealed via
the asymptotic behavior at high SNR values.

Organization: Section II explains the system and channel
models are explained. Moreover, this section provides the PDF
of both the single variate and product of two non-identically
distributed random variables (RVs) of extended α-η-F com-
posite fading model. The exact and asymptotic expressions
of the secrecy performance metrics are derived in Sections
III and IV, respectively. In Section V, the numerical and
simulation results are presented. Finally, Section VI highlights
some conclusions about the analysis of this work.

II. SYSTEM AND CHANNEL MODELS

A. System Model

In this paper, the RIS technology is employed to assist the
PLS of the wireless communications system via reducing the
impact of the obstacle that is located in the direct link between
the Alice and Bob. In addition, the Eve is supposed to be
closed to the Bob. Consequently, the coefficients of the fading
channels of the Bob andEve may be correlated. Moreover,
the RIS system is assumed to include N elements whereas
the Alice, Bob, and Eve are supposed to be equipped with
a single antenna. Hence, the transmitted signal from the n-th
element of RIS system is received by both users as explained
in Fig. 1. In the same context, {hA,n(m), hB,n(m)} ∈ C with
n = 1, 2, · · · , N stand for the arbitrarily distributed extended
α-η-F composite fading channel gains from the Alice to the
n-th element with parameters (αA,n, ηA,n, µA,n, pA,n, msA,n,
r̂A,n). For the n-element of the RIS to the Bob and Eve, the

parameters are denoted by (αl,n, ηl,n, µl,n, msl,n, pl,n, r̂l,n)
with l ∈ {B,E} and αl,n, ηl,n, µl,n, msl,n, and pl,n are
the index of the non-linearity propagation environment, ratio
of the powers of I/Q components, total number of the multi-
path clusters, clustering imbalance between I/Q components,
and shadowing severity parameter, respectively. Furthermore,
r̂αl,n = ζ/d

σl,n
l,n is the average power of the fading envelope

with ζ = (λ/4π)2 represents the near field path loss factor
at a reference distance of 1 m and λ stands for the carrier
wavelength, σl,n is the path loss exponent, and dl,n denotes
either the RIS-B and RIS-E distances. Thus, the distance
between the Bob and Eve, namely, dBE can be computed by
the cosine law, i.e., d2BE = d2B,n + d2E,n − 2dB,ndE,n cosϕ
where ϕ is the angle between the RIS-B and RIS-E links [8],
[17]. Besides, to achieve maximum SNR through phase shift
correction, the RIS has full access to channel state information
(CSI) of both links [17]. Thus, the received signal at both the
Bob and Eve, yl(m) is given as [6]

yl(m) = x(m)
N∑
n=1

hAl,n(m) + wl(m), (1)

where x(m) is the transmitted signal from the Alice,
hAl,n(m) ≜ hA,n(m)hl,n(m) is the total extended α-η-F
composite fading channel gain from the Alice to the l-th user
through n-element with amplitude |hAl,n| = |hA,n||hl,n| and
wl(m) is the additive white Gaussian noise (AWGN) that is
assumed to have zero-mean and fixed variance.

B. Channel Model

Theorem 1: Let α, η, µ, ms, p, r̂α, r ∈ R+ where r is a
RV that represents the instantaneous signal power of the fading
envelope, R, over extended α-η-F composite fading channel,
the PDF of R is determined as

fR(r) =
αrαµ−1

(
p
η

)ϑ
2F1

(
ϑ, µ+ms;µ;− Ξrα

[rα/ϖ+r̂α]

)
ϖµr̂−αmsB(µ,ms)[rα/ϖ + r̂α]µ+ms

, (2)

where Ξ = (p − η)/ηϖ, ϑ = µp/(1 + p), In addition, r̂α =
E[Rα] is the average power of the fading envelope with E[.]
stands for the expectation operator, 2F1(.; .; .) represents the
generalized Gauss hypergeometric function [18, eq. (1.4.1)]
and B(., .) denotes the Beta function [18, eq. (1.1.43)] and

ϖ =

(
B(µ,ms)

(
η
p

)ϑ
B(µ+ 2

α ,ms − 2
α )2F1

(
ϑ, µ+ 2

α ;µ;
η−p
η

))α
2

, (3)

with ms > 2/α.
Proof: See Appendix A.A.

It is interesting to mention that the extended α-η-F com-
posite fading channel encompasses several generalized fading
models as special cases as shown in Table I. From this
table, when p = 1, our proposed fading model becomes
the α-η-F composite fading condition [15]. Accordingly, the
conventional distributions, namely, Rayleigh and Nakagami-
m are also considered as special scenarios of the extended
α-η-F composite fading model. However, in the extended α-
η-F composite fading, the number of the clusters of the in-
phase and quadrature components are different. Additionally,
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fΛ(r) = α1

∞∑
n1,n2=0

∆n1,n2ϖ
−µ1

1 run1
−1

ϖ
un1

/α2−n2

2 (r̂1r̂2)
un1

H2,2
2,2

[
ϖ

−α1
α2

2 rα1

ϖ1(r̂1r̂2)α1

∣∣∣∣(1−ms2 − un1
/α2, α1/α2), (1− µ1 −ms1 − n1, 1)

(0, 1), (−un1
/α2 + µ2 + n2, α1/α2)

]
. (4)

Fig. 1. System model of RIS-aided system in presence of the eavesdropper.

TABLE I
SPECIAL CASES OF THE EXTENDED α-η-F COMPOSITE FADING MODEL.

Fading Models Parameters of Extended α-η-F Fading

η-µ/IG [19] p = 1, α = 2, η = η, µ = µ, ms = ms

FS-F [20] p = η, α = 2, η = p, µ = m, ms = ms

Extended η-F [16] p = p, α = 2, η = η, µ = m, ms = ms

Extended η-µ [21] p = p, α = 2, η = η, µ = µ, ms → ∞
α-F [22] p = η, α = α, η = p, µ = µ, ms = ms

α-µ [13] p = η, α = α, η = p, µ = µ, ms → ∞
α-η-F [15] p = 1, α = α, η = η, µ = m, ms = ms

Extended α-η-µ p = p, α = α, η = η, µ = µ, ms → ∞
[23]

Extended α-F p = p, α = α, η = 1, µ = m, ms = ms

the impacts of both the shadowing and non-linearity of the
propagation medium are taken into account.

C. PDF of the Product of Two Non-Identically Distributed
Extended α-η-F Composite RVs

Theorem 2: For two arbitrarily distributed extended α-η-F
RVs R1 and R2 with parameters (α1, η1, µ1, ms1 , p1, r̂1) and
(α2, η2, µ2, ms2 , p2, r̂2), respectively, the PDF of Λ = R1R2

is obtained in (4) that is presented at the top of this page. In
(4), uni = αi(µi + ni) for i = 1, 2, (.)n is the Pochhammer
symbol [18, eq. (1.1.53)], Ha,b

c,d [.] is the univariate FHF [18 ,
eq. (1.5.15)], and

∆n1,n2
=

2∏
i=1

(ϑi)ni(−Ξi)
ni
(
pi
ηi

)ϑi
Γ(µi)Γ(msi)(µi)nini!

. (5)

Proof: See Appendix A.B.
Lemma 1: The expected value of Λ to power k is derived

as

E[Λk] =
2∏
i=1

Φi(k), (6)

where

Φi(k) =
B
(
µi +

k
αi
,msi − k

αi

)
2F1

(
ϑi, µi +

k
αi
;µi;−ϖiΞi

)
B(µi,msi)

(
pi
ηi

)−ϑi
ϖ

− k
αi

i r̂−ki

.

(7)

Proof: See Appendix A.C.

D. RIS-Aided PLS over Correlated Composite Extended α-η-
F Fading Channels

According to (1), it can be noticed that the PDF of |hAl,n|
can be deduced via recalling the result of Theorem 2, i.e.,
f|hAl,n|(r) = fΛ(r). Furthermore, the sum of |hAl,n| of all
elements of RIS, namely, |hl| =

∑N
n=1 |hAl,n|, provides the

total amplitude of the channel gain from the Alice to the l-th
user. Therefore, based on (6), the PDF of the sum of i.n.d.
of |hAl,n| are required. However, the PDF of |hAl,n| may be
expressed in terms of the double infinite series and FHF. Thus,
to avoid the multiple infinite series and mFHF expressions
of the PDF of |hl| as well as due to the proximity of the
Eve from the Bob, all the cascaded channel gains |hAl,n| are
assumed to be identically distributed1. Also, to overcome the
aforementioned mathematical challenges, the first term of a
Laguerre expansion [24] is employed to approximate with high
accuracy the distribution of |hl| for the exponential model.
This approximation would lead to obtain the performance
metrics in simple analytically tractable expressions. Hence,
the PDF of γ is expressed as [10, eq. (5)]

fl(γ) ≈
γ
al−1

2

2bal+1
l Γ(al + 1)γ̄

1+al
2

l

e
−

√
γ

bl
√
γ̄l , (8)

where the parameters al and bl are computed by

al =
NE
[
|hAl|

]2
E
[
|hAl|2

]
− E

[
|hAl|

]2 − 1, and bl =
NE
[
|hAl|

]
al + 1

,

(9)

with

E
[
|hAl|k

] (t1)
= ΦA(k)Φl(k), (10)

where (t1) obtains with the aid of (6) and Φl(k) for l ∈
{B,E} are provided in (7).

1Without loss of generality, we have used |hl| = N |hAl| where |hAl| =
|hAl,n| and (αl, ηl, µl, msl, pl, r̂l) = (αl,n, ηl,n, µl,n, msl,n, pl,n, r̂l,n)
for n = 1, · · · , N and l ∈ {A,B}.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TVT.2026.3655009,



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 00, NO. 00, JUNE 2025 4

Pc =
Ψ
√

θa

θ−1

2

∞∑
n=0

(
1

ΥE

√
1− 1

θ

)ψn
ρn

(a+ 1)nn!
H1,0:2,0;1,1

0,1:2,2;1,1

[√
θ − 1

ΥB
,

√
θ − 1√
θΥE

∣∣∣∣ − : (1, 1);−; (− 1+ψn
2 , 12 )

(−ψn
2 ; 1

2 ,
1
2 ) : (ψn, 1), (0, 1); (0, 1), (0, 1)

]
. (19)

For correlated fading channels |hB | and |hE | that have the
PDF given in (8), the JPDF is written as

f(γB , γE)
(t2)
=

(1− ρ)a+1

4Γ(a+ 1)ρ
a
2 (ΥBΥE)

a
2+1

γ
a−2
4

B γ
a−2
4

E

× exp

(
−
(√

γB

ΥB
+

√
γE

ΥE

))
Ia

(
2

√
ρ
√
γBγE

ΥBΥE

)
, (11)

where (t2) follows [25, eq. (28)] after applying a suitable
change of the variables, a = al and Υl = (1 − ρ)bl

√
γ̄l with

l ∈ {B,E}, γB and γE are the instantaneous SNR at the
Bob and Eve, respectively. Moreover, 0 ≤ ρ < 1 represents
the correlation coefficient with ρ = 0 stands for uncorrelated
fading channels and Ia(.) is the modified Bessel function of
the first kind of the order a [18, eq. (1.4.12)].

Lemma 2: It is worthy to mention that the function Ia(.)
of (11) is expressed in terms of an infinite series in this work.
Hence, the derived expressions of the secrecy performance
metrics are written in terms of an infinite series. Consequently,
this series should be truncated for a certain number of terms,
M , that satisfies the required figure of accuracy with the
truncation error, ε(M), which is expressed as

ε(M) = 1− (1− ρ)a+1
M∑
n=0

ρn
(1 + a)n

n!
. (12)

Proof: See Appendix A.D.

III. EXACT SECRECY PERFORMANCE ANALYSIS

In this section, the secrecy performance metrics of RIS-
enabled system over correlated extended α-η-F composite
fading channels are provided. In particular, tractable expres-
sions of the ASC, SOP, SOPL, and EST are derived.

A. ASC

The ASC is an important performance metric that mea-
sures the average of the instantaneous secrecy capacity
Cs(γB , γE) = CB − CE in which CB and CE indicate the
capacity of the Bob and Eve, respectively. In other words, the
ASC can be calculated by [26, eq. (17)]

C̄s =

∫ ∞

0

∫ γB

0

log2

(
1 + γB
1 + γE

)
f(γB , γE)dγEdγB (13)

where f(γB , γE) is the JPDF of γB and γE ,
Corollary 1: The ASC over correlated fading channels can

be evaluated by

C̄s =
Ψ

ln(2)

∞∑
n=0

(
ΥB
ΥE

)ψn
ρn

(a+ 1)nn!
(J ′

1 − J ′
2), (14)

where Ψ = (1 − ρ)a+1/Γ2(1 + a), ψn = a + n + 1 whereas
J ′
1 and J ′

2 are respectively expressed by

J ′
1 = H0,1:1,2;1,1

1,0:2,2;1,2

[
Υ2
B ,

ΥB
ΥE

∣∣∣∣(1− 2ψn; 2, 1) :
− :

(1, 1), (1, 1); (1− ψn, 1)
(1, 1), (0, 1); (0, 1), (−ψn, 1)

]
, (15)

and

J ′
2 = H0,2:1,2;1,0

2,1:2,2;0,1

[
Υ2
B ,

ΥB
ΥE

∣∣∣∣(1− 2ψn; 2, 1)
(−ψn; 2, 1) :

, (1− ψn; 2, 1) : (1, 1), (1, 1);−
(1, 1), (0, 1); (0, 1)

]
, (16)

where Ha1,b1:c1,d1;e1,f1
a2,b2:c2,d2;e2,f2

[.] is the bivariate FHF (BFHF) [27,
eq. (2.57)].

Although (14) is novel, its expressed in terms of the BFHF
which is a result of the interactions of different factors that
are related to intricacy of the fading channel. Thus, this
expression does not give clear insights about the impact of
the channel parameters and RIS technology on the system
behavior. Accordingly, to cope this challenge, the asymptotic
expressions at high average SNR are derived in the next section
via employing the result of Corollary 1.

Proof: See Appendix B.A.

B. SOP

The SOP is introduced as the probability of reducing the
instantaneous secrecy capacity, Cs(γB , γE), to less than the
target secrecy threshold value, Rs, i.e., Pr{Cs(γB , γE) <
Rs}. Hence, the SOP can be computed by [26, eq. (23)]

SOP = 1− Pc, (17)

where Pc is the complementary secrecy outage probability
(CSOP) and computed by [26, eq. (24)]

Pc =

∫ ∞

0

∫ ∞

θγE+θ−1

f(γB , γE)dγBγE , (18)

with θ = exp(Rs) ≥ 1.
Corollary 2: The Pc over correlated fading channels is

provided in (19) shown at the top of this page.
Proof: See Appendix B.B.

C. SOPL

The SOPL can be deduced from (17) via inserting γE → ∞
in (18) as follows

SOPL = 1− PLc , (20)

with

PLc =

∫ ∞

0

∫ ∞

θγE

f(γB , γE)dγBγE . (21)
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PAsy
c ≃ Ψ(

√
θ − 1)a

2
√
θΥa+1

E

∞∑
n=0

ρn

(a+ 1)nn!

(√
θ − 1

ΥE
√
θ

)n{
Γ(ψn)

{
Γ

(
ψn
2

)
Γ

(
− ψn

2

)
+ Γ(ψn)

(
θΥE√
θ − 1

)ψn}

− 1

ψn

(√
θ − 1

ΥB

)ψn{Γ(−ψn)Γ
(
ψn
2

)
Γ
(
− ψn

2

) + Γ(2ψn)

(
θΥE√
θ − 1

)2ψn}}
. (27)

Corollary 3: The SOPL over correlated fading channels is
obtained as

PLc = Ψ
∞∑
n=0

ρn

(1 + a)nn!
H2,1

2,2

[√
θΥE
ΥB

∣∣∣∣(1− ψn, 1), (1, 1)
(ψn, 1), (0, 1)

]
.

(22)

Proof: See Appendix B.C.

D. EST

The EST is an important behavior metric that obviously
includes the constraints of both the reliability and secrecy
of the tapping channel. It basically measures the rate of the
average secure information that is transmitted from the Alice
to the Bob in absence of the Eve. Mathematically, the EST
can be written as [28, eq. (60)]

EST = Rs(1− SOP). (23)

Combining (17) and (19) alongside with (23), the result is
the EST over correlated fading channels.

IV. ASYMPTOTIC SECRECY PERFORMANCE ANALYSIS

In this section, similar to [13], the asymptotic expressions
of the ASC, SOP, and SOPL when γ̄B and γ̄B tend to ∞
are given. These expressions can be used to earn further
insightful onto the impact of the fading parameters on the
secrecy behavior of the system.

A. Asymptotic ASC

Corollary 4: The asymptotic expression of the ASC at γ̄l →
∞ with l ∈ {B,E}, C̄Asy

s , is expressed as

C̄Asy
s ≃ Ψ

ln(2)

∞∑
n=0

(
ΥB
ΥE

)ψn
ρn

(a+ 1)nn!
(J ′

1
Asy − J ′

2
Asy

), (24)

where

J ′
1

Asy
= Θn − 1

ψnΥ
2ψn
B

{
Γ(ψn)Γ(−ψn) +

Γ(2ψn)Υ
2ψn
E

Γ(1− 2ψn)

}
,

(25)

and

J ′
2

Asy
= Θn −

Γ(ψn)Γ(−ψn
2 )

ΥψnB

{
Γ

(
ψn
2

)
+

Γ(1 + ψn)

2
Υ2ψn
E

}
,

(27)

with Θn = Γ2(ψn)
(

ΥE
ΥB

)ψn
.

Proof: See Appendix C.A.

B. Asymptotic SOP

Corollary 5: When γ̄B and γ̄E go to ∞, the asymptotic of
the CSOP that is given in (19), PAsyc , is derived as in (27)
provided at the top of this page.

Proof: See Appendix C.B.

C. Asymptotic SOPL

Corollary 6: The expression of SOPL,Asy when both γ̄B and
γ̄E approach ∞ is obtained as

SOPL,Asy ≃ 1−Ψ
∞∑
n=0

ρn

(1 + a)nn!

×
{
Γ2(ψn)−

Γ(2ψn)

ψn

(√
θΥE
ΥB

)ψn}
. (28)

Proof: See Appendix C.C.

V. NUMERICAL AND SIMULATION RESULTS

In this section, the influences of the parameters α, η, µ,
ms, and p of the correlated extended α-η-F composite fading
channels on the secrecy performance metrics of RIS-aided
wireless communications systems are explained. Furthermore,
the impacts of the correlation coefficient, ρ, number of the
elements of a RIS technique, N , as well as the distance
between the Bob and Eve, dBE , and angle ϕ are also analyzed.
The accuracy of the analytical results is verified through the
Monte-Carlo simulations where the former are represented by
the markers whereas the latter are demonstrated by the solid
lines 2. Further validations of the correctness of our derived
expressions have been performed via the comparison with the
results of some previous works as well as special cases of the
extended α-η-F composite fading channels that are illustrated
in Table 1. Additionally, the asymptotic behaviors at high
average SNR are depicted by the dashed lines3. Besides, the
fading parameters of each link are set to (αl, ηl, msl , pl) =
(1.5, 2, 2.5, 0.1) for l ∈ {A,B,E}, µA = 1.5, µB = µE = 2.5,
dBE = 15 m, ϕ = 70◦, dE,n = 15 m and σ = 2. Moreover, in
all our results, the number of terms of the infinite series, M , is
chosen to be 25 which is sufficient to achieve ε(M) ≤ 10−6

via using (12).
Fig. 2 illustrates the ASC versus λ = γ̄B/γ̄E for ρ = 0.1,

γ̄E = 0 dB and different ms and N . In this figure, the cases
of light, moderate, and heavy shadowing that are represented

2In this work, the results are evaluated via developing the MATLAB code
that is presented in: https://github.com/hugerles/extended.git. Additionally, the
BFHF has been numerically calculated by the code of [29].

3Due to the linear relation between the two formats of the extended α-
η-F composite fading channels via η1 = (1 + η2)/(1 − η2) and p1 =
(1 + p2)/(1− p2) [23], all the curves are plotted by using Format 1.
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Fig. 2. ASC versus λ for dBE = 15 m, ϕ = 70◦, σ = 2, α = 1.5 and
different ms and N .

by ms → ∞, ms = 2.5, and ms → 1, respectively, are
studied. From Fig. 2, it can be noticed that the ASC improves
when ms and/or N increase. This is due to the fact that as
ms increases, the shadowing impact on the received signal of
the Bob becomes low whereas the phase error of this signal
decreases with the increasing in N . For instance, at constant
λ = 25 dB and N = 8, the values of ASC are 7.72 and 10.07
for ms → 1 and ms = 2.5, respectively. In the same context,
when N changes from 8 to 16 and 32, the ASC enhances by
roughly 24.63% and 43.09%, respectively. In Fig. 2, it can also
be observed that the ASC decreases with the increasing in the
correlation coefficient, ρ. This refers to the high similarity in
the behavior of both the channels of the Bob and Eve which
would reduce the likelihood of achieving the target secrecy rate
by the transmitter. For example, at fixed λ = 20 dB, ms = 2.5,
N = 8, the ASC falls by nearly 14.20% when ρ rises from 0.1
to 0.4. The ASC of correlated extended α-η-µ fading channels
is also showed in Fig. 2 by inserting ms → ∞ in (14) and
(24). In addition, the ASC when the links of both the Bob and
Eve undergo Nakagami-2.5 fading channel [6] that is obtained
via substituting α = 2, η = p = 2, ms → ∞, µA = 1.5, and
µB = µE = 2.5 is also provided in Fig. 2. Accordingly, α,
p, and ms → ∞ of Nakagami-2.5 fading model are higher
than that of the extended α-η-F composite fading channel.
Hence, Nakagami-2.5 outperforms both the extended α-η-µ
and extended α-η-F composite fading channels in terms of
the ASC as demonstrated in Fig. 2.

Fig. 3 shows the ASC against λ for N = 32, γ̄E = 0
dB and various values of dBE , ϕ and ρ for the case of
dBE = 25 m and ϕ = 70◦. As anticipated, the ASC fairly
reduces as dBE increases and/or ϕ decreases. This is because
the distance between the Bob and RIS, dB,n becomes long in
both scenarios. In other words, the Bob moves away the RIS.
For example, at λ = 25 dB and fixed ϕ = 70◦, the ASC drops
by approximately 23.66% when dBE changes from 15 m to
25 m. Moreover, at the same λ and constant dBE at 15 m, the
variation in ϕ from 70◦ to 30◦ would lead to drop the ASC by
roughly 9.98%. Similar to Fig. 2, Fig. 3 demonstrates that the
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Fig. 3. ASC versus λ for msA = 1.5, msB = msE = 2.5, N = 32,
σ = 2 and different dBE , ϕ, µ, and ρ.
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Fig. 4. SOP versus λ for dBE = 15 m, ϕ = 70◦, σ = 2, ρ = 0.25, Rs = 1
and different N and α.

degradation in ρ enhances the ASC. In addition, the decreasing
in µ would reduce the ASC, as anticipated. The reason refers to
the low number of the signal paths that reaches to the receiver
side which is consistent with [30]. Fig. 3 also includes the
ASC over extended η-F composite fading condition in which
α = 2 whereas in extended α-η-F composite fading model,
α = 1.5. Consequently, the increasing in α would improve the
secrecy performance of the system.

Figs. 4 and 5 respectively depict the SOP and SOPL versus
λ for γ̄E = −10 dB and various N . Furthermore, a comparison
with some fading models that are special cases of correlated
extended α-η-F composite fading channels is carried out in
these figures. From both figures, one can see that both the SOP
and SOPL degrades when N increases and/or ρ decreases. This
is because the high increasing in the instantaneous capacity of
the Bob in a comparison with the Eve as its demonstrated in
the analysis of Figs. 2 and 3. For instance, when λ is fixed at
15 dB and N changes from 16 to 32, the SOP and SOPL are
decreased by approximately 95.14% and 93.08%, respectively.
Additionally, as α increases from 1.5 to 2, the SOP decreases
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from 20.22×10−2 to 9.48×10−2. Furthermore, the SOPL for
ρ = 0.25 is 7.73×10−2 whilst its value for ρ = 0.1 is 6.26×
10−2. From Figs. 4 and 5, it can be observed that the SOPL

is always less than the corresponding SOP which is consistent
with the results of [30, eq. (20)]. Besides, Fig. 4 encompasses
the SOP when the links are subject to Nakagami-2.5 [6] and
Rayleigh [5] fading channels. As expected, Nakagami-2.5 has
lower SOP than Rayleigh due to the increasing in µ from 1
to 2.5. Moreover, Fig. 5 also explains the SOPL of correlated
FS-F [10] fading channel and η - µ fading scenario that has
not been yet reported by previous works.

The adherence between the numerical and simulation curves
can be perceived in all cases of the proposed scenarios. Also,
the asymptotic behaviors of Figs. 2-5 follow their analytical
counterparts at high γ̄B .

Fig. 6 portrays the EST versus Rs for different N , ρ, γ̄E ,
and γ̄B = 10 dB. In all cases, it can be noticed that the curve
of the EST has a convex shape. In other words, the EST rises
to a specific Rs and then drops afterward. To achieve lower
Rs, few security resources are required which would increase

the EST. Conversely, a higher Rs needs more resources which
would exacerbate the channel impairments that reduce the
EST. In the same figure, when N increases, γ̄E decreases,
or/and ρ drops at constant Rs, the EST becomes high and for
the same reasons that have been explained for Figs. 4 and 5.

VI. CONCLUSION

The secrecy performance of RIS-enabled communications
system over correlated extended α-η-F composite fading
channels was analyzed in this article. The exact expressions
of the PDF of both the signal envelope of single RV and
product of two i.n.d. extended α-η-F composite variates were
provided. Thereafter, the metrics ASC, SOP, SOPL, and EST
of RIS-assisted PLS over correlated extended α-η-F compos-
ite fading channels was accurately analyzed. Further insights
about the impact of the fading parameters as well as the
number of the elements of a RIS technology were deduced via
the asymptotic behavior of the ASC, SOP, and SOPL at high
average SNR values of the Bob and Eve. The results showed
that the PLS improves when the number of the elements of
RIS increases or/and the correlation coefficient decreases. The
behaviors of the secrecy performance metrics of some special
cases of extended α-η-F composite fading channels were also
presented. Hence, the derived expressions can be employed
for different generalized composite fading models that have
not been yet reported in the technical literature.

APPENDIX A

A. Proof of Theorem 1

The envelope of the extended α-η-F composite fading
distribution, R, is expressed as

Rα =

µx∑
i=1

A2X2
i +

µy∑
j=1

A2Y 2
j , (29)

where A is the inverse Nakagami-m RV, X2
i stand for the in-

phase components of the cluster i with number of multipath
clusters µx and Y 2

j denote the quadrature components of the
cluster j with number of clusters µy . Additionally, X2

i and Y 2
j

are mutually independent Gaussian variates with zero mean,
i.e., E[Xi] = E[Yj ].

On the other side, the received signal envelope over ex-
tended η-F composite fading, RE,η−F , is given as [16]

R2
E,η−F =

µx∑
i=1

A2X2
i +

µy∑
j=1

A2Y 2
j . (30)

From (29) with (30), it can be noted that

Rα = R2
E,η−F . (31)

Now, let us consider

ZE,η−F = R2
E,η−F . (32)

Using the change of the variate of (32) in [16, eq. (4)], we
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fΛ(r) =
∞∑

n1,n2=0

( 2∏
i=1

αi

ϖµi
i r̂

uni
i

)
∆n1,n2

r1−un2

∫ ∞

0

xun1
−un2

−1
2∏
i=1

H1,1
1,1

[
rαi

ϖir̂
αi
i x

αi(i−1)

∣∣∣∣(1− µi −msi − ni, 1)
(0, 1)

]
dx. (38)

E[Λk] =
2∏
i=1

Γ
(
µi +

k
αi

)
Γ
(
msi − k

αi

)
Γ(µi)Γ(msi)

(
pi
ζi

)ϑi
ϖ

k
αi
i r̂i

∞∑
ni=0

(ϑi)ni

(
µi +

k
αi

)
ni

(µi)nini!

(
−ϖiΞi

)ni
. (40)

have

fZE,η−F (z) =
(µξ)µ[(ms − 1)r̂2]mszµ−1

B(µ,ms)[µξz + (ms − 1)r̂2]µ+ms

(
p

η

)ϑ
× 2F1

(
ϑ, µ+ms;µ;

µξ(η − p)z

η[µξz + (ms − 1)r̂2]

)
, (33)

where ξ = (1 + η)/(1 + p), µ = (µx + µy)/2, and r̂2 =
E[ZE,η−F ].

The expression of r under α-η-F model is expressed as

r =
r̂R√
E[R2]

=
r̂Z

1
α

E,η−F√
E[Z

2
α

E,η−F ]
, (34)

where E[Z
2
α

E,η−F ] is the 2
α -th moment of the RV ZE,η−F that

is derived as [20, eq. (11)]

E[Z
2
α

E,η−F ] =
B
(
µ+ 2

α ,ms − 2
α

)
2F1

(
ϑ, µ+ 2

α ;µ;
η−p
η

)
B(µ,ms)

(
(ms−1)r̂2

µξ

)− 2
α (η

p

)ϑ .

(35)

Using (35) and the concept of the RVs transformation in

fR(r) =
αrα−1

r̂α

(
E
[
Z

2
α

E,η−F

])α
2

fZE,η−F

(rα
r̂α

E
[
Z

2
α

E,η−F

]α
2
)
.

(36)

Thereafter, performing some mathematical manipulations,
(2) is yielded and this finishes the proof.

B. Proof of Theorem 2

The PDF of the envelope of the product of two i.n.d. RVs,
Λ = R1R2, can be computed by [31, eq. (3)]

fΛ(r) =

∫ ∞

0

1

x
fR1(x)fR2

(
r

x

)
dx. (37)

Substituting (2) into (37) and invoking [18, eq. (1.2.4)] as
well as [27, eq. (1.43)], we obtain (38) that is provided at the
top of this page.

Using the identity [27, eq. (1.58)] and the substitution
u = xα2 in (38), the integral of (38) can be computed
with the help of [27, eq. (2.3)]. Subsequently, doing some
mathematical manipulations that include the using of [18, eqs.
(1.1.5)/ (1.1.47)], the result is (4) and this ends the proof.

C. Proof of Lemma 1

The expectation of the variate Λ with power k over fΛ(r)
can be evaluated by

E[Λk] =

∫ ∞

0

rkfΛ(r)dr. (39)

Plugging (4) in (39) and employing z = rα1 and [27, eq.
(2.8)], the integral of (39) is calculated as in (40) given at the
top of this page.

With the help of the definition [18, eq. (1.2.4)] and identity
[18, eq. (1.1.47)], (6) is deduced and this ends the proof of
Lemma 1.

D. Proof of Lemma 2

The truncation error, ε(M), via employing [32, eq. (25)]

ε(M) =

∫ ∞

0

∫ ∞

0

(f(γB , γE)− f̂(γB , γE))dγBdγE , (41)

where f̂(γB , γE) is the truncated JPDF of (11) for M terms
that is obtained after using the identity [33, eq. (8.445)] for
the function Ia(.) as follows

f̂(γB , γE) =
(1− ρ)a+1

4Γ(a+ 1)
exp

(
−
(√

γB

ΥB
+

√
γE

ΥE

))
×

M∑
n=0

ρn

n!Γ(a+ n+ 1)(ΥBΥE)a+n+1
(γBγE)

a+n−1
2 . (42)

Now, with the help of
∫∞
0

∫∞
0
f(γB , γE)dγBdγE = 1 [34,

eq. (8)], the first double integrals of (42) is computed. The
second double integral can be evaluated separately as two
single integrals via invoking [33, eq. (3.478.1)] as follows∫ ∞

0

γ
a+n−1

2

l e
−

√
γl

Υl dγl = 2Υa+n+1
l Γ(a+ n+ 1), (43)

where l ∈ {B,E}.
Finally, inserting the result of (43) and doing some math-

ematical simplifications via recalling the identity [33, eq.
(1.1.15)], (12) is yielded and this concludes the proof.

APPENDIX B

A. Proof of Corollary 1

The ASC of (13) can be mathematically rewritten as [13,
eq. (4)]

C̄s =
1

ln(2)
(J1 − J2), (44)
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J1 = Ψ
∞∑
n=0

ρn
(

ΥB
ΥE

)ψn
n!(a+ 1)n

1

(2πj)2

∫
S

∫
Z

Γ(2ψn + 2s+ z)Γ(1− s)Γ2(s)Γ(−z)Γ(ψn + z)

Γ(1 + s)Γ(1 + ψn + z)
Υ2s
B

(
ΥB
ΥE

)z
dzds. (53)

J2 = Ψ
∞∑
n=0

ρn
(

ΥB
ΥE

)ψn
n!(a+ 1)n

1

(2πj)2

∫
S

∫
Z

Γ(2ψn + 2s+ z)Γ(ψn + 2s+ z)Γ(1− s)Γ2(s)Γ(−z)
Γ(1 + ψn + 2s+ z)Γ(1 + s)

Υ2s
B

(
ΥB
ΥE

)z
dzds. (57)

where

J1 =

∫ ∞

0

∫ γB

0

ln(1 + γB)f(γB , γE)dγEdγB , (45)

and

J2 =

∫ ∞

0

∫ γB

0

ln(1 + γE)f(γB , γE)dγEdγB . (46)

To derive J1, we firstly express Ia(.) of (11) in terms of
an infinite series via using [33, eq. (8.445)] and subsequently
insert the result of γE in (45). Thus, the following inner
integral is yielded

J11 =

∫ γB

0

γ
a+n−1

2

E e
−

√
γE

ΥE dγE . (47)

Re-expressing the exponential function of (47) in terms of
the FHF via using [27, eq. (1.39)] and its definition that is
provided in [27, eq. (1.2)] alongside with the change x =√
γ̄E , arrives the following result

J11 =
1

πj

∫
Z
Γ(−z)Υ−z

E

∫ √
γB

0

xa+n+zdxdz, (48)

where j =
√
−1 and Z is the suitable contour in the z-plane

from ϱ− j∞ to ϱ+ j∞ with ϱ is a constant value.

The linear integral of (48) can be readily calculated. Hence,
with the aid of the property [18, eq. (1.1.5)], we have

J11 =
γ
a+n+1

2

B

πj

∫
Z

Γ(−z)Γ(a+ n+ 1 + z)

Γ(a+ n+ 2 + z)

(√
γ
B

ΥE

)z
dz.

(49)

For the second integral of J1, we substitute the terms of the
variable γB from the JPDF that is given in (11) and (49) into
(45) to yield

J12 =

∫ ∞

0

γ
a+n+ z

2

B ln(1 + γB)e
−

√
γB

ΥB dγB . (50)

Replacing the natural logarithm function of (50) by the FHF
via utilizing the identity [30, eq. (34)]. Then, after using the
expansion principle for the FHF [27, eq. (1.2)], we obtains

J12 =
1

2πj

∫
S

Γ(1− s)Γ2(s)

Γ(1 + s)

∫ ∞

0

γ
a+n+s+ z

2

B e
−

√
γB

ΥB dγBds.

(51)

The inner integral of (51) is recorded in [33, eq. (3.478.1)].

Therefore, (51) becomes

J12 =
Υ2ψn
B

πj

∫
S

Γ(2ψn + 2s+ z)Γ(1− s)Γ2(s)

Γ(1 + s)
Υ2s+z
B ds.

(52)

Plugging J11, J12, and the remaining parts of (11) in (45)
with some simple manipulations, J1 is determined as in (53)
shown at the top of this page.

Making use of [27, eq. (2.57)] for the double contour
integrals of (53), J ′

1 of (14) is deduced.
For J2, we substitute the terms of γE of (11) into (46) and

utilize the variable representation x =
√
γ̄E alongside with

the identities [30, eq. (34)] and [27, eq. (1.39)] to write the
natural logarithm and exponential functions, respectively, in
terms of a single FHF. Hence, by recalling [27, eq. (1.2)], we
have

J21 =
1

(
√
2πj)2

∫
S

∫
Z

Γ(1− s)Γ2(s)Γ(−z)
Γ(1 + s)

Υ−z
E

×
∫ √

γB

0

xψn+2s+z−1dxdsdz. (54)

Evaluating the inner integral of (54) and invoking the
identity [18, eq. (1.1.5)], the result is

J21 =
1

(
√
2πj)2

∫
S

∫
Z

Γ(ψn + 2s+ z)Γ(1− s)Γ2(s)Γ(−z)
Γ(1 + ψn + 2s+ z)Γ(1 + s)

γ
ψn
2 +s

B

(√
γ
B

ΥE

)z
dsdz. (55)

Next, inserting the parts of γB of (11) and (55) in (50),
we have the following integral that is computed by [32, eq.
(3.478.1)] as

J22 =

∫ ∞

0

γ
ψn+s+

z
2−1

E e
−

√
γB

ΥB dγB =
2Γ(2ψn + 2s+ z)

Υ−2ψn−2s−z
B

.

(56)

Substituting J21 and J22 as well as the terms of (11) that
have not been employed in (54) and (56) into (46), we have
J2 as given in (57) presented at the top of this page.

With the assistance of the definition [27, eq. (2.57)], the
integrals of (57) can be written in terms of the BFHF as in J ′

2

of (14) which accomplishes the proof.

B. Proof of Corollary 2

Making utilize of [33, eq. (8.445)] for (11) and inserting the
result that includes the variate γB in (18), the inner integral
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can be computed with the help of [33, eq. (3.381.9)] as

I1 =

∫ ∞

θγE+θ−1

γ
ψn
2 −1

B e
−

√
γB

ΥB dγB =
2Γ
(
ψn,

√
θγE+θ−1

ΥB

)
Υ−ψn
B

.

(58)

To calculate the outer integral of (18), we plug the terms of
(11) and (58) that encompass γE . Therefore, this yields

I2 =

∫ ∞

0

γ
ψn
2 −1

E e
−

√
γE

ΥE Γ

(
ψn,

√
θγE + θ − 1

ΥB

)
dγE . (59)

Now, applying the properties [27, eq. (1.39)] and [35, eq.
(06.06.26.0005.01)] as well as introducing the definition of the
FHF [27, eq. (1.2)] and interchanging the order of contour and
linear integrals, (59) becomes

I2 =
1

(2πj)2

∫
S

∫
Z

Γ(ψn − s)Γ(−s)Γ(−z)
Γ(1− s)

Υ−s
B Υ−z

E

×
∫ ∞

0

γ
ψn+z

2 −1

E (
√
θγE + θ − 1)sdγEdzds. (60)

Computing the linear integral of (60) via using [33, eq.
(3.194.3)]. Afterward, recalling [18, eq. (1.1.47)], we obtain

I2 =

(
1− 1

θ

)ψn
2

(2πj)2

∫
S

∫
Z

Γ
(
− ψn+s+z

2

)
Γ(ψn − s)Γ(−s)

Γ(1− s)Γ(− s
2 )

× Γ(−z)Γ
(ψn + z

2

)(√
θ − 1

ΥB

)s(√
θ − 1

θΥE

)z
dzds. (61)

Substituting the term 2ΥψnB of (58) and I2 of (61) alongside
with the parts of (11) that have not been used in (58) and (59),
the result in (19) is concluded after recognizing the definition
of the BFHF [27, eq. (2.57)] which completes the proof.

C. Proof of Corollary 3

Comparing the inner integral of the PLc in (21) with (58),
one can obtain the following expression

IL1 = 2ΥψnB Γ

(
ψn,

√
θγE
ΥB

)
. (62)

Based on (61), the outer integral of (21) can be deduced
from (59) after omitting the term θ− 1. Next, making employ
of [35, eq. (06.06.26.0005.01)] and [27, eq. (1.2)] for the upper
incomplete Gamma function, we have

IL2 =
1

2πj

∫
S

Γ(ψn − s)Γ(−s)
Γ(1− s)

(√
θ

ΥB

)s
×
∫ ∞

0

γ
ψn+s

2 −1

E e
−

√
γE

ΥE dγEds. (63)

Invoking [33, eq. (3.478.1)] to evaluate the integral of (63),
IL2 is expressed as

IL2 =
ΥE
πj

∫
S

Γ(ψn + s)Γ(ψn − s)Γ(−s)
Γ(1− s)

(√
θΥE
ΥB

)s
. (64)

Using [18, eq. (1.5.15] for (64) and inserting the result
alongside with (62) as well as the remaining terms of (11)
in (21), the expression of the PLc that is provided in (22) is
derived which accomplishes the proof.

APPENDIX C

A. Proof of Corollary 4

The expression of the ASC at high γB and γE depends
on the asymptotic of J ′

1 and J ′
2, namely, J ′

1
Asy and J ′

2
Asy,

respectively. However, both J ′
1 and J ′

2 are included the BFHF
that can be expressed in terms of double contour integrals as
shown in (53) and (57). Consequently, with the help of the
residue theorem that was extensively used in [36], the closed-
form expressions of J ′

1
Asy and J ′

2
Asy are derived.

According to the residue approach, when γ̄B → ∞, namely,
ΥB → ∞, the highest poles on the left of S of (53) which
occur at s = −ψn − z

2 and s = 0 can be calculated as

S =
1

2πj

∫
S

Γ(2ψn + 2s+ z)Γ(1− s)Γ2(s)

Γ(1 + s)
Υ2s
B ds

= Res
[
Γ(1− s)Γ2(s)Υ2s

B

Γ(1 + s)
,−ψn − z

2

]
+ Res

[
Γ(2ψn + 2s+ z)Γ(1− s)

Γ(1 + s)
Υ2s
B , 0

]
=

Γ
(
1 + ψn + z

2

)
Γ2
(
− ψn − z

2

)
Γ
(
1− ψn − z

2

)
Υ2ψn+z
B

+ Γ(2ψn + z). (65)

Next, substituting the result of (65) into (53), the following
two contour integrals are obtained

Z =
1

Υ2ψn
B

1

2πj

∫
Z

Γ
(
1 + ψn + z

2

)
Γ2
(
− ψn − z

2

)
Γ(−z)Γ(ψn + z)

Γ
(
1− ψn − z

2

)
Γ(1 + ψn + z)ΥzE

dz

+
1

2πj

∫
Z

Γ(2ψn + z)Γ(−z)Γ(ψn + z)

Γ(1 + ψn + z)

(
ΥB
ΥE

)z
dz. (66)

At high γ̄B , the most prominent pole on the right side of
the contour integral Z of the second term of (66) is obtained
at z = −ψn. Therefore, applying the residue method for the
second contour integral, we have

Z = Γ2(ψn)

(
ΥE
ΥB

)ψn
+

1

Υ2ψn
B

1

2πj

∫
Z

Γ
(
1 + ψn + z

2

)
Γ2
(
− ψn − z

2

)
Γ(−z)Γ(ψn + z)

Γ
(
1− ψn − z

2

)
Γ(1 + ψn + z)ΥzE

dz.

(67)

When γ̄E becomes high, (67) can be further approximated
via using the residue approach at z = 0 and z = −2ψn and
recalling the property [18, eq. (1.1.6)]. Hence, J ′

1
Asy that is

given in (25) is deduced.
Following the analogous methodology that is used for J ′

1
Asy,

the expression of J ′
2

Asy at ΥB → ∞ can be derived by first
computing the highest poles of S of (57) at s = 0 and s =
−ψn+z

2 . Thereafter, calculating the result at pole of the right
side of Z , i.e., z = −ψn, this yields

Z = Γ2(ψn)

(
ΥE
ΥB

)ψn
+

Γ(ψn)

ΥψnB

1

2πj

∫
Z

Γ2
(
− ψn+z

2

)
Γ
(
− z
)
Γ(1 + ψn

2 + z)

Γ
(
1− ψn+z

2

)
ΥzE

dz. (68)
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Similar to (67), when γ̄E → ∞, the residue theorem can be
applied for the contour integral of (68) at z = 0 and z = −ψn.
Accordingly, J ′

2
Asy that is provided in (26) is straightforwardly

obtained which achieves the proof.

B. Proof of Corollary 5

When γ̄B tends to infinity, namely, ΥB → ∞, the highest
poles of S of (61) can be computed at s = ψn and s = 0 via
utilizing the residue theorem. Thus, this yields

S =
Γ
(
− 2ψn+z

2

)
Γ(−ψn)

Γ(1− ψn)Γ(−ψn
2 )

(√
θ − 1

ΥB

)ψn
+ Γ(ψn)Γ

(
− ψn + z

2

)
. (69)

Plugging (69) in (61), leads to the following result

IAsy
2 =

(
1− 1

θ

)ψn
2

2πj

∫
Z

(√
θ − 1

θΥE

)z{(√
θ − 1

ΥB

)ψn
Γ(−ψn)

Γ(1− ψn)Γ(−ψn
2 )

Γ
(
− 2ψn + z

2

)
Γ(−z)Γ

(ψn + z

2

)
+ Γ(ψn)Γ

(
− ψn + z

2

)
Γ(−z)Γ

(ψn + z

2

)}
dz. (70)

For γ̄E approaches infinity, the residue method can be used
for (70) via substituting z = 0 and z = −ψn. Now, following
the same steps that are utilized in Appendix C.A, the proof of
(27) is accomplished.

C. Proof of Corollary 6

The asymptotic of (22) when γ̄B goes to infinity can be
derived via recalling the residue approach to evaluate the
highest poles of S of (64) at s = ψn and s = 0. Subsequently,
using the same procedure that is followed for (64) of Appendix
B.C, the result is (28) and this completes the proof.
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