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A B S T R A C T

Facilitating producer-consumer P2P energy exchange is a viable paradigm in the era of decentralized energy. 
Energy trading requires the development of a fair pricing mechanism, but when numerous energy systems are 
involved in the transaction, the problem can get complicated. Through the decentralized coordination of 
distributed microgrid energy systems and shiftable microgrid appliances, this article introduces a decentralized 
EMS that facilitates P2P energy trading among prosumers in community. This lowers the energy costs per 
microgrid compared to operating each microgrid separately. A Chance-Constrained cooperative model con
necting manufacturing, commercial, and residential prosumers with guaranteed trade fairness serves as foun
dation for suggested approach. The model is expanded to take into account several demand-side management 
strategies and widely utilized energy supply systems. This study offers a more succinct method for figuring out 
fair prices for multi-energy trading than earlier research. A comparison between chance-constrained optimiza
tion outcomes obtained results is implemented utilizing Improved Sparrow Search Algorithm (ISSA), and without 
optimization techniques. The results show that recommended strategy for microgrid demand control is appro
priate and workable. Fair electricity pricing practices are used to minimize energy costs for prosumers in resi
dential, commercial, and industrial sectors. The suggested solution improves overall electricity bills for the home, 
company, and factory by 80.34%, 61.429%, and 54.069%, respectively.

1. Introduction

Recent developments in digital technology have made it possible for 
prosumers to transact directly with the UG and other prosumers, 
opening the door for grid digitization. Energy is sold directly to peers at 
a higher price than it was sold to UG, and buyers buy energy directly 
from peers at a cheaper price than they paid when they bought it from 
UG. The fundamental idea behind P2P energy trading is this. P2P energy 
trading has attracted increased attention in this area of research in 

recent years since encouraging P2P trade can be viewed as a way to use 
spark spread to boost use of renewable energy and lower carbon dioxide 
emissions.

By establishing energy trading environment where all parties can 
freely compete and work together, P2P energy trading aims to enhance 
social welfare in general. According to a number of studies, prosumers 
may benefit greatly from P2P sharing. But in reality, it’s rarely easy to 
put up a P2P energy trading market. Since extensive sensing and 
communication infrastructures are needed to provide essential 
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Table 1 
The most recent research based Optimization techniques in energy management, 
P2P energy trading frameworks, Demand-side management approaches, Multi- 
microgrid coordination strategies.

Categories Literature References Objective

Optimization techniques 
in energy management

[2] Uncertainties and effective demand 
response strategies were considered in 
authors’ home EMS.

[3] Writers presented an IoE-based optimum 
multi-agent control technique for 
microgrids utilizing renewable energy 
sources.

[4] Authors provided the ideal position for 
DG in active distribution networks, a new 
smart charging electric vehicle, and 
optimally performing batteries.

[5] The authors presented Energy 
management in microgrid and multi- 
microgrid

[6] The authors discussed how deep 
reinforcement learning and specialized 
expertise are used in microgrid energy 
management.

[7] Authors developed an IoT-based 
optimization technique based on BPSO 
and BSA for a home DSMS.

[8] Writers introduced a fog-based IoE 
architecture for trans active EMS.

[9] Writers obtainable optimization model 
for EMS.

[10] The authors developed IoT-based EMS in 
smart cities to save energy and lessen 
peak demand.

[11] The writers described an advanced 
microgrid EMS technique that used a 
real-time monitoring interface.

[12] For household EMS, authors proposed an 
improved multi-objective cockroach 
swarm algorithm approach.

[13] The authors create a cost-effective 
dispatch in standalone scheme by 
utilizing butterfly optimization method.

[14] Writers introduced a technique for DSMs 
in smart homes that combines microgrid 
management and energy optimization.

[15] In accordance with a two-stage 
optimization model described by 
authors, several HEMS concurrently 
optimize their individual energy 
consumption patterns and compute their 
flexibility provision, which is transmitted 
to local distribution companies (LDCs).

[16] The authors presented multi-objective 
optimization procedure for solar and 
battery energy storage in EMS.

[17] The authors explained how household 
appliances are dynamically coordinated 
for DSM control in buildings using 
multiobjective energy optimization.

[18] The author reported a chance- 
constrained optimization in a HEMS.

[19] The authors explained how firefly 
hybridization and particle swarm 
optimization are used in DSM research.

[20] The authors introduced their effective 
DSM program for smart grid residential 
load that is based on optimization 
algorithms.

[21] Writers introduced a real-time optimal 
arrangement controller for a HEMS based 
on a binary backtracking search method.

[22] Based on GOA, writers proposed load- 
shedding strategy for islanded power 
system with dispersed energy sources.

[23] The writers presented using ITS-BF 
algorithm to schedule domestic electrical 
loads.

Table 1 (continued )

Categories Literature References Objective

[24] The authors explained how to use hybrid 
shuffling, frog-leaping, and pattern 
search algorithms to scale RES with 
micro grids to reduce costs.

[25] Utliize a hybrid gravitational search and 
pattern search approach, writers 
introduced EMS and optimal operation of 
microgrid-based EV.

[26] A hybrid crow and pattern search 
algorithm is a cost-oriented resource 
scheduling method proposed by the 
authors for a solar-powered micro grid.

[27] writers propose using a Dandelion 
Optimizer (DO) to accurately ascertain 
parameters of PEMFC model.

[28] The authors suggested an enhanced off- 
grid wind, photovoltaic, based on the 
Moth-Flame algorithm.

[29] Writers provided an effective DSM-based 
optimization strategy for intelligent 
buildings.

P2P energy trading 
frameworks

[30] Authors discussed P2P trade and energy 
management in smart grids.

[31] Writers introduced a P2P market 
mechanism that combines cooperative 
behaviours and multi-energy coupling.

[32] Demand-side management can be easily 
included into residential and commercial 
multi-energy systems thanks to the 
authors’ equitable P2P energy trading 
system.

[33] The writers presented Community-based 
and P2P microgrid systems markets

[34] Multi-agent based optimum scheduling 
and trading method for several micro 
grids connected to urban transportation 
networks was given by the authors.

[35] A P2P architecture was created by the 
author to construct islanded microgrids. 
P2P development is made possible by 
multi-layered, multi-agent systems and 
processes that achieve several objectives.

[36] The authors introduced blockchain-based 
decentralized framework for a P2P 
energy trading market.

[37] The authors introduced a distributed P2P 
energy transaction approach for range of 
prosumers in microgrid system.

[38] P2P energy trading under distribution 
network constraints while maintaining 
agents’ independence was introduced via 
writers.

[39] Writers used game-theoretic approach to 
develop a decentralized P2P energy 
trading strategy in an energy blockchain 
setting.

[40] P2P energy trading in microgrid was 
obtainable via writers.

[41–45] Writers presented a communication 
system based on blockchain topology

[46] The writers presented In smart 
communities, P2P renewable energy 
trading and sharing – trading pricing 
methods

[47] The writers presented an energy 
management and pricing technique for a 
P2P energy based on the Stackelberg 
game

[48] Advances in digitalization and machine 
learning for integrated building- 
transportation were presented by the 
authors.

[49] The writers presented optimizations for 
P2P trading in net-zero energy 
communities using battery and hydrogen 
energy storage

(continued on next page)
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information flows between different agents, it is imperative to accu
rately estimate the possible impact of P2P trading from an individual’s 
perspective beforehand. On-site distributed energy resources have the 
biggest influence on the P2P trading effect in a well-established micro
grid community. Because different prosumers own different kinds of 
DERs, it is more challenging to assess how DER ownership complex
ity—which encompasses type, location, configuration, and degree of 
energy supply-demand matching of each on-site DER system—affects 

Table 1 (continued )

Categories Literature References Objective

Demand-side 
management 
approaches

[50] Writers present a strategy for managing 
microgrid energy consumption that takes 
unpredictability into consideration and 
makes use of practical demand response 
methods.

[51] Writers offered multi-objective 
scheduling for EMS in IoT-enabled 
homes, based on arithmetic optimization 
techniques.

[52] A demand response-based multi-agent 
system was created and put into use for 
active network management of delivery 
networks.

[53] The authors introduced optimization- 
based hierarchical EMS.

[54] The authors introduced multi-agent 
approach to optimizing demand response 
aggregators for homes and businesses

[55] The authors presented the smart hybrid 
microgrid adaptive energy management 
system.

[56] The authors presented a framework for 
EMS. This gadget establishes a wireless 
network of several devices on each home 
via connecting to IP address-based IoT 
element.

[57] For power management, the authors 
provide a unique fog computing network 
service. Adoption of fog computing 
platform makes data safety, accessibility, 
flexibility, interoperability, and real-time 
EMS easier.

[58] Writers presented an effective smart grid 
EMS that took DRP and RES into account.

[59] Authors offered a comprehensive plan for 
demand reduction and intelligent EMS 
for IoE-based loads.

[60] Writers demonstrated how to develop 
and design a modular EMS and integrate 
it to a battery-powered micro grid that is 
connected to the grid.

[61] The authors provided distributed EMS 
based on ADMM for microgrid with high 
penetration of DES.

[62] In order to control consumption, the 
authors proposed time-of-use tariff plan 
for domestic energy users in Bangladesh.

[63] The authors argued that DSMS is an 
essential component for profitable 
functioning of residential and rural micro 
grid systems.

[64] A real-time community microgrid 
scheduling scheme was made available 
by writers.

[65] A novel system-based SCADA 
methodology was presented by the 
authors.

[66] Writers provided a novel approach to 
scheduling DER to supply loads within 
MG in case of a power outage.

[67] The authors suggested using a flat price 
system (FPS) to rationally distribute 
energy consumption in the SG in order to 
address the DSM problem.

[68] Microgrids for industries was one of 
improved EMS methods that the authors 
offered.

[69] In smart grid applications with a limited 
number of devices, the authors presented 
scenarios for controlling power demand.

[70] The authors suggested an algorithm 
aimed at planning smart device problem 
for avoiding load change in DSM.

[71] The authors suggested a bald eagle 
search optimization strategy based on 
IoT to solve day-ahead scheduling issues.

Table 1 (continued )

Categories Literature References Objective

[72] Demand-side scheduling of green energy 
Authors presented the concept of 
management in the smart grid.

[73] Writers used a RaspberryPi3 to introduce 
a SCADA-controlled loads.

[74] Authors described an EMS based on cloud 
computing and IoT.

[75] Utilizing an ANFIS technique, writers 
presented an on-grid/off-grid EMS.

[76] A work scheduling system for multi- 
objective DR to RTP was obtainable by 
writers.

[77] For cloud computing platforms, the 
authors developed a Smart EMS (SEMS) 
as a service for nano grid devices.

[78] A self-learning EMS was obtainable by 
writers.

[79] Writers demonstrated IoE-based real- 
time electricity scheduling system for 
HEMS.

[80] Integration of a grid-connected 
photovoltaic-wind hybrid system with 
adaption converters connected to a 
shared DC bus was discussed by the 
authors.

[81] In order to identify optimal microgrid 
topology in existing distribution systems, 
authors proposed a zonal-based optimal 
microgrid identification model by zoning 
network into several clusters.

[82] In smart manufacturing, the authors 
presented ANFIS for robust and effective 
source chain presentation.

[83] The writers concentrated on an 
integrated UG. Taking an imbalanced 
grid into consideration, a unique method 
for controlling the grid side inverter of a 
DPGS is created.

[84] The writers presented a decarbonized 
microgrid scheme with intelligent 
electrical markets

[85] Writer’s obtainable coalition-based 
game-theoretical building as-service- 
over-fog energy management system.

Multi-microgrid 
coordination strategies

[86] One of the two micro grids that writers 
studied included the vehicle-to-home 
concept, offering a case study that 
demonstrates how appealing this 
technology is to families.

[87] Based on the consensus algorithm, 
writers obtainable coalitions-game 
theory for EMS strategies in intelligent 
micro grids.

[88] The authors suggested creating cloud- 
based MAF for MG in order to promote a 
smart grid usage culture.

[89] A multi-agent system platform was used 
to integrate ideas of IoT for agent 
communication and interaction.

[90] Writers initially presented consensus 
algorithm-based decision-making for 
connected devices in EMS.

[91] Writers presented an method to cutting 
carbon emissions that makes use of AI 
and RES
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P2P trading for people. This study sought to develop a theoretical 
framework for successful growth of P2P energy trading in microgrid 
communities by examining advantages and disadvantages of different 
energy prosumers and consumers in a P2P energy trading market and 
taking into consideration ownership complexity features of distributed 
energy resources [1].

1.2. Literature review

Tables 1, 2 shows the most recent research based optimization 
techniques in energy management, P2P energy trading frameworks, 
demand-side management approaches, multi-microgrid coordination 
strategies.

1.2.1. Scientific gaps and limitations
The literature review stated above revealed a number of scientific 

and knowledge gaps and limitations. 

• In many studies, Cost-benefit models for P2P energy sharing do not 
address fairness, distribution, and allocation, which results in un
fairness and a lack of willingness of stakeholders;

• Synergistic collaborations and operations are necessary for mutual 
economic benefits in terms of convergence towards dynamic pricing 
equilibrium, whereas some above studies are very limited.

• In many studies, the internal trading pricing approach frequently 
ignores costs associated with renewable system depreciation, energy 
transmission losses, and associated infrastructures.

• In many systems, the authors did not use a chance-constrained to 
minimize the cost.

1.2.2. The contributions of this study
This study’s innovation and originality fill the aforementioned sci

entific gaps. 

• Cutting-edge advancements and developments in P2P trading, spe
cifically in the areas of decentralized system modeling, energy 
sharing mechanisms, and techniques for trade and marginal prices.

Table 2 
Comparison between the results obtained by without corrective method, ISSA and chance-constrained method based on total electricity bill.

Total Electricity Bill of 
Home

% 
Improvement

Total Electricity Bill of 
company

% 
Improvement

Total Electricity Bill of 
factory

% 
Improvement

Without any Corrective Action 1248.916 – 10,099.1 – 2769.228 –
Using ISSA Correction Method 

[93]
856.7951 31.396% 7442.4872 26.305% 2662.772 3.844%

Chance Constrant Method 245.4896 80.34% 3895.2424 61.429% 1271.916 54.069%

Fig. 1. Proposed P2P system.
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• Dynamic power trading strategies and decision-making approaches 
are also systematically presented with the goal of finding an equi
librium between the dynamic power trading quantity and internal 
sell/buy price;

• Synergistic collaborations and operations between multistakeholders 
were presented to better understand the mutual economic benefits, 
including prosumer-centric and consumer-centric energy trading, 
retailer and utility company, agent-based techniques in energy 
sharing, and economic dispatch;

• To encourage decarbonization, increase system efficiency, provide 
loss reduction, power support, and congestion management for the 
power grid, P2P-based approaches to electricity market design are 
proposed.

• To show the efficacy of the proposed Chance restricted optimization 
with respect to objectives like energy cost, carbon emission, and 
PAR, simulation results are compared with Improved Sparrow 
Search Algorithm (ISSA).

2. Proposed system

P2P network is a DN architecture where participants share some of 
their own resources with each other, as stated in Ref. [92]. These shared 
resources, which peers can access directly from one another without the 
use of middlemen, are essential to the network’s services and content, 
including file sharing. Additionally, removing a single randomly 
selected entity from a P2P network does not impair the network’s 
communication capabilities.

In order to accomplish particular energy-related objectives, members 
of P2P energy network share some of their resources (such storage space 
and renewable energy) and information. Peak load reduction, power 
cost reduction, network operation, investment cost minimization, and 
maximizing the usage of renewable energy are a few examples of these 
objectives. Each peer in the network can communicate directly with the 
others and take on the roles of either a provider, a receiver, or both 
without the assistance of an external controller. Moreover, the network 
can accommodate the addition of a new peer or the removal of an 

Fig. 2. A comprehensive flowchart for applied optimization methods.

Algorithm 1 
Framework of SSA.
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existing peer without affecting the system’s functionality.
Generally, P2P energy networks consist of two tiers, as shown in 

Fig. 1: two layers: one for virtual energy trade and the other for physical 
energy transmission. The virtual energy trading layer functions as a 
platform where participating peers exchange the necessary data to 
determine the kind, quantity, and cost of each resource traded with one 
another, much like a local power market. All peers must have equal 
access to a virtual layer built on top of a secure information system. Peer 
generation, demand, and consumption data transmitted from the peer’s 
smart meter over secure communication network are used to build buy 
and sell orders on the virtual layer. After that, appropriate market 
mechanism is applied to enable energy trading using created orders. 
After all of the buy and sell orders from different peers are matched, 
energy exchange takes place over physical layer. After that, money is 
paid.

On other hand, the physical energy transfer layer acts as a distribu
tion system to make it easier for peers to physically transmit electricity. 
This physical network might be a standalone physical micro grid dis
tribution grid that works in tandem with normal grid, or it can be a 
typical distribution network maintained and managed via Independent 
System Operator (ISO). It is important to remember that physical dis
tribution of electricity is not directly governed by the financial trans
actions that take place between peers in the virtual layer. The moment 
payment is received, in fact, is when the process of integrating a seller’s 
renewable energy to distribution grid actually starts.

2.1. Microgrid-to-microgrid energy trading

The primary objective of P2P energy trading systems in this category 
is to optimize use of RES to address the imbalance between supply and 
demand of energy inside microgrids. On one hand, these solutions result 
in lower electricity costs for the microgrids taking part in the P2P energy 
exchange. By managing the power flow inside grid, power generation at 
microgrid may be stabilized even in the face of unpredictable load de
mand. P2P commerce with the security component included allows 
distributed energy supply and flexible demands to grow and strengthen 
the grid in both routine and emergency scenarios.

The buildings that are used for residential, commercial, and indus
trial reasons account for a significant amount of the energy consumed in 
cities. Main goal of this research is to give prosumers in the home and 
workplace the ability to trade electricity and heating energy equitably 
while accounting for a range of demandside characteristics, using an 
optimization-based trading aid tool. The suggested integration of com
mercial, residential, and industrial prosumers is depicted in Fig. 1. The 
heating network and utility grid connect two prosumers. Energy trading 
allows for the exchange of surplus heating and power. Due to the two 
prosumers’ large distance from one another and considerable energy 
loss, there won’t be a cooling energy exchange. Fig. 2 shows a 
comprehensive flowchart for applied optimization methods.

2.2. Sparrow search algorithm (SSA) corrective action

Sparrows come in many different types and are generally gregarious 

Algorithm 2 
The improved sparrow search algorithm.
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birds. They are widespread around world and prefer to live in populated 
areas. They are also omnivorous birds that mostly consume grain seeds 
or weeds. The fact that sparrows are a frequent bird in the area is well 
known. The sparrow, in contrast to many other little birds, is very in
tellectual and has a long memory [93].

In this section created rules based on an imagined version of the 
sparrows’ subsequent behavior in order to keep things simple. 

1). Producers generally has enough of energy storage and give the 
scavengers instructions or feeding sites. Its job is to locate places with 
an abundance of food. An individual’s amount of energy reserves is 
determined via evaluating their degree of fitness.
2). Sparrows begin to chirp in terror as soon as they spot predator. 
When alarm value surpasses safety threshold, producers are required 
to guide every scavenger to secure location.

3). Although all sparrows have the capacity to become producers if 
they look for more plentiful food sources, proportion of producers to 
scavengers in population stays constant.The birds that produce 
would be the most energized. In order to obtain additional energy, 
some scavengers who are ravenous are more likely to search skies for 
food.
4). Scavengers follow producer who can provide best food in order to 
find food. Some scavengers may compete for food while closely 
monitoring producers in order to boost their own rate of predation.
5). When a threat is spotted, sparrows on group’s periphery swiftly 
go toward the safe zone to take up a better position, while sparrows 
in group’s core fly around aimlessly to stay close to one another.

To find food in simulation experiment, authors must use virtual 
sparrows. Next matrix shows the positions of the sparrows.: 

X =

⎡

⎢
⎢
⎣

x1,1 x1,2 ⋯ ⋯ x1,d
x2,1 x2,2 ⋯ ⋯ x2,d
⋮ ⋮ ⋮ ⋮ ⋮

xn,1 xn,2 ⋯ ⋯ xn,d

⎤

⎥
⎥
⎦ (1) 

where d is dimension of variables that require optimization and n is 
number of sparrows. Consequently, following vector can be used to 
express sparrows’ overall fitness value: 

FX =

⎡

⎢
⎢
⎣

f
( [

x1,1 x1,2 ⋯ ⋯ x1,d
])

f
( [

x2,1 x2,2 ⋯ ⋯ x2,d
])

⋮ ⋮ ⋮ ⋮ ⋮
f
( [

xn,1 xn,2 ⋯ ⋯ xn,d
])

⎤

⎥
⎥
⎦ (2) 

When n is sparrows number and fitness value of each individual is 
signified via value in FX for each row. Those producers who are more fit 
are prioritized when looking for food in the SSA. Moreover, because it is 
the producers’ responsibility to find food and control population 
mobility. Consequently, producers are able to forage for food in a greater 
range of areas than scavengers. Following rules (1) and (2), producer’s 
location is changed as shadows at each iteration: 

Xt+1
ij =

⎧
⎪⎨

⎪⎩

Xt
ij⋅exp

(
− i

α⋅itermax

)

if R2 < ST

Xt
ij + Q⋅L if R2 ≥ ST

(3) 

where j = 1, 2 . . . d. and t denotes current iteration. Xt
i,j signified 

value of jth dimension of ith sparrow at iteration t. A constant with most 
iterations is called itermax. Is a random number with α ∈ [0, 1]. A safety 
threshold is signified via ST (ST ∈ [0.5, 1.0]) and the alert value is 

Fig. 3. Complete P2P cooperative.

Fig. 4. Renewable energy generation –electricity consumption power mismatch of home without any corrective action.
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signified via R2 (R2 ∈ [0, 1]). A random number with a normal distri
bution is called Q. L displays a 1 × d matrix with 1 for each element. 
Producer switches to wide search mode when R2 < ST, which indicates 
that there are no predators in area. R2 ≥ ST shows that some sparrows 
have detected predator; if this is case, all sparrows need to fly right away 
to safer areas.

The scavengers have to put Eqs. (3) and (4) into practice. As was 
previously said, certain scavengers pay more attention to the producers. 
They immediately resign from their current positions to fight for the 

wonderful meal as soon as they learn that the producer have discovered 
it. If they are successful, they can immediately collect the food from the 
producer; if not, they must proceed according to Eq. (4). The scrounger’s 
position update formula is explained here: 

Xt+1
i,j =

⎧
⎪⎨

⎪⎩

Q⋅exp
(xt

worst − xt
i,j

i2

)

if i > n/2

Xt+1
p +

⃒
⃒
⃒Xt

ij − Xt+1
ip

⃒
⃒
⃒⋅A+⋅L otherwise

(4) 

Fig. 5. Abandoned electricity of home-electricity purchase of the home without any corrective action.

Fig. 6. A) bill of home according to Iraq’s electrical ministry without corrective method, b) Cost of purchase of home without corrective method.
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where the producer’s optimum location is denoted by XP. Xworst shows 
the poorest place in world right now. A shows a 1 × d matrix in which a 
random value of either 1 or − 1 is assigned to every element. For A+ =

AT ( AAT)− 1. The ith scrounger with lowest fitness grade is most likely 
famished when i > n/2. We assume that in hypothetical experiment, 
these threat-aware sparrows comprise between 10% and 20% of the 
whole population. The beginning locations of these birds are selected at 
random from the population. Eq. (5) can be used to illustrate the 
mathematical model as follows.: 

Xt+1
ij =

⎧
⎪⎪⎨

⎪⎪⎩

Xt
best + β⋅

⃒
⃒
⃒Xt

ij − Xt
best

⃒
⃒
⃒ if fi > fg

Xt
ij + K⋅

(
⃒
⃒
⃒Xt

ij − Xt
worst

⃒
⃒
⃒

(fi − fw) + ε

)

if fi = fg

(5) 

Where Xbest is current global ideal location. As step size control param
eter, β denotes normal distribution of random numbers with a variance 
of 1 and 0. K ∈ [− 1, 1] is the random number we have. where fi is 
sparrow’s fitness value at that moment. Currently, fg and fw signify 
global best and worst fitness values, respectively. Least constant, ε, 
prevents zero-division mistake.

To keep things simple, when sparrow is at group’s boundary when fi 
> fg. The center of the population is represented by Xbest , which is also 
safe in its vicinity. Since they are aware of the threat, the middle-class 
sparrows ought to approach the other birds, as demonstrated by fi =
fg. K is step size control coefficient, and it also designates direction in 
which sparrow travels. Pseudo code demonstrated in Algorithm 1 can be 
used to outline fundamental steps of SSA.

2.2.1. Model of the ISSA

2.2.1.1. Elite opposition-based learning strategy with Chebyshev chaotic 
map. A quality of initial population have a direct impact on algorithm’s 
convergence performance in swarm intelligence optimization. The ac
curacy and rate of convergence will be slowed down by the uneven 
distribution and unstable quality that result from initial population in 
SSA being formed at random. Chaotic mapping has three properties: 
regularity, ergodicity, and randomness. It has recently been used to 
enhance the initial population quality of swarm intelligence algorithms. 
Among the often utilized chaotic maps are the Tent chaotic map, the 
Kent chaotic map, and the Logistic chaotic map. In this study, the pop
ulation is initialized using Chebyshev chaotic map. Compared to chaotic 
mapping that was previously discussed, the Chebyshev chaotic map is 
more straightforward, independent of the beginning value, and gener
ates more uniformly distributed mapping outputs. The equation for the 
Chebyshev chaotic map is [94]: 

xt+1 = cos
(
tcos− 1 (xt)

)
(6) 

where a random number xtϵ [0, 1] is present. The following equation 
creates the starting population after acquiring the Chebyshev chaotic 
sequence: 

Xi,j
t+1 = lbj +

(
ubj − lbj

)
× xt (7) 

where lbj and ubj are lower and upper bounds, respectively, of search 
space’s jth dimension. Using the elite opposition-based learning tech
nique (EOLS), the initial population’s quality is raised. There are some 
exceptional sparrows in the population. Elite individuals are better than 

Fig. 7. Renewable energy generation –electricity consumption power mismatch of the company without any corrective action.

Fig. 8. Abandoned electricity of home-electricity purchase of the company without any corrective action.
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others in every way, including spotting and thwarting the adversary. 
The objective behind the EOLS is to employ elite individuals’ informa
tion to generate the starting population as much as possible. By doing 
this, the population will be more diverse, higher quality, and the algo
rithm will be kept from settling on the local optimal answer. Those with 
limited fitness value in the overall population are typically considered 
elite. After the initial population acquisition, the individuals are ranked 
based on their fitness levels, and the elite group is selected from a subset 
of the lowest-scoring individuals. The elite opposition of each elite 
member of the elite group can be computed using following formula: 

X̃i,j = μ
(
l̃bj + ũbj

)
− Xi,j (8) 

where l̃bj and ũbj denote, respectively, lower and upper bounds of in
dividual in starting population in jth dimension of current search space, 
and μ ϵ[0, 1] is a random number. After calculating each person’s fitness 
values, n people with low fitness values are chosen to make up the 
beginning population.

2.2.1.2. Levy flight strategy and dynamic weight factor. The producers in 
the sparrow population are in charge of finding regions where there is an 

Fig. 9. A) Bill of the company according to Iraq’s electrical ministry without any corrective action, b) Cost of purchase of the company without any corrective action.

Fig. 10. Electricity consumption and renewable energy generation of factory without any corrective action.
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abundance of food and utilizing their search area to the fullest. There
fore, in order to balance local extraction and global exploration, pro
ducers need to employ flexible strategies. To solve this issue, this study 
presents the dynamic weight factor, which has the following definition: 

Xt+1
i,j =

⎧
⎪⎨

⎪⎩

ω⋅Xi,j
t⋅exp

(
− i

α⋅Tmax

)

, R2 < ST

ω⋅Xi,j
t + Q⋅L, R2 ≥ ST

(9) 

ω =

(
Tmax − t + 1

Tmax

)t

+ δ (10) 

In order to prevent dynamic weight factor ω from becoming too tiny 
in later stages of the loop, δ ϵ [0,0.1] is a random variable. Dynamic 
weight factor ω balances the capacities of both by ensuring that the 
producers can undertake local exploitation at the conclusion of the 
iteration with a lower step size and global exploration at the beginning 
with a bigger step size.

Exploitation can only take place in later stages of iteration very close 
to local optimal solution if producers have already settled into local 
optimal solution in early stages of the iteration. This work uses the Levy 
flight technique to avoid such a situation by providing the producers 
with the option to abandon local optimal solution at a later iterational 

Fig. 11. Abandoned electricity and electricity purchase of factory without any corrective action.

Fig. 12. A) Bill of factory according to Iraq’s electrical ministry, b) The cost of purchase of factory without any corrective action.
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stage. The Levy distribution controls the step size of the Levy flight, a 
non-Gaussian random process. Given how challenging it is to calculate 
the Levy flight step size, simulations frequently employ the Mantegna 
algorithm, whose formula is as: 

s =
u

|v|1/β (11) 

where u ∼ N
(
0, σu

2), v ∼ N
(
0, σv

2), σu and σv is defined as: 

σu =

[
Γ(1 + β)sin (πβ/2)
Γ((1 + β)/2)2(β− 1)/2

]1/β

σv = 1

(12) 

where conventional gamma function, Γ, is used. The number β ϵ (0, 2) is 
arbitrary. A following equation is used to update producers’ positions 
after Levy flight steps are obtained: 

X̃t
i = Xt

i + 0.01s
(
Xt

i − Xt
b
)

(13) 

where the producers’ location, as determined by (9), is represented by 
Xt

i . Current global optimum location is Xt
b. The characteristics of Levy 

distribution suggest that Levy flight includes a number of little actions 
that can strengthen the producers’ ability to exploit the market locally. 
Large steps are occasionally taken to assist producers in leaving the local 
optimal solution and improving their capacity for global exploration. 
The Levy flight technique and the dynamic weight factor work together 
to successfully boost producer efficiency, reduce the likelihood that 
producers would choose the locally optimal option, and better balance 

potential for both local exploitation and global exploration.

2.2.1.3. Mutation strategy. A colony of sparrows’ scavengers will 
monitor the producers’ activities. When they find food, the producers 
fight to increase their stores of energy. Some scavengers will fly away 
from group to look for isolated areas to forage when their energy levels 
are low. Scavengers in SSA follow a flight path that is determined by: 

p(x, y, z) =
jρc
λ
∑N

n=1
un

FnΔwΔh
Rn

e− (α+jk)RSR sinc
kx̃nΔw

2R
sinc

kỹnΔh
2R

(14) 

where the imaginary unit is represented by j =
̅̅̅̅̅̅̅
− 1

√
. The medium’s 

density is denoted by ρ. The sound wave’s wavelength is represented by 
λ. The sound wave velocity in Xworst

t and Xi,j
t (i > n /2 in (2)) is rep

resented by c.,The scavengers may not always locate regions with plenty 
of food, even with this updating approach. This paper uses the following 
mutation method to direct the scavengers’ flight path and increase 
population diversity. 

Xi,j
t+1 = Xi,j

t + η
(
XP

t+1 − Xi,j
t) (15) 

where the random integer is η ϵ [0, 1]. The aforementioned algorithm 
will increase the scavengers’ chances of discovering high-quality food by 
directing them to optimal position XP

t+1. Algorithm 2 illustrates the ISSA 
implementation phases in experiment for i > n/2.

2.3. Chance constrained corrective action

A competing method for resolving optimization issues in the face of 

Fig. 13. Renewable energy generation –electricity consumption power mismatch of home using ISSA corrective action.

Fig. 14. Abandoned electricity of home-electricity purchase of the home using ISSA corrective action.
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uncertainty is chance constrained programming. Miller and Wagner 
(1965) and Charnes and Cooper (1959) were the first to present this 
approach. Its primary characteristic is that the final decision guarantees 
the likelihood of adhering to limits, or the degree of certainty that it is 
feasible. Therefore, it is possible to quantify the relationship between 
profitability and reliability using chance-constrained programming. 
Stated differently, the problem’s solution offers thorough details on the 
cost-effectiveness as a function of the intended degree of confidence in 
meeting the process restrictions [95].

Uncertainties can be broadly divided to two groups: internal un
certainties, which reflect a lack of process knowledge, like as model 
parameters, and external uncertainties, which include feed rate and/or 
composition, recycle flows, temperature and pressure of coupled oper
ating units, raw material and utility supply, customer demand, prices, 
and market conditions. A small number of experimental data points are 
frequently used to regress model parameters. Previous research has 
focused more on internal uncertainty than external uncertainty. In most 
cases, statistical regression from previously available data, 

Fig. 15. A) Bill of home according to Iraq’s electrical ministry, b) The electricity bill of home using ISSA corrective action.

Fig. 16. Improving of home using ISSA corrective action.
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interpolation, or extrapolation can be used to determine distribution of 
uncertain variable. Gathering process data for dispersion analysis has 
become comparatively simple due to growing popularity of computer- 
based process monitoring schemes. Stochastic distribution of uncertain 
variables can take many different forms, and they can be coupled or 
uncorrelated. In engineering practice, the normal (Gaussian) distribu
tion is frequently regarded as a sufficient assumption for a large number 
of uncertain variables. Usually, the variance and mean statistics are 
available. Nevertheless, the output variables will likewise be uncertain 
as a result of these uncertain variables spreading throughout the process. 
It is extremely challenging to analytically characterize the output 

distribution for a nonlinear process.

2.3.1. Formulation of the problem
Examined a market that contains a collection of agents classified as 

either consumers or producers of energy or reserves. Reserve customers 
require the reserve to offset their uncertainty, much like energy con
sumers do in order to meet their demands. Since excess generation can 
always be reduced, we assume that the only source of uncertainty is from 
renewable agents and only the deficiency situation is taken into account. 
As stated in [96], all agents are expected to be truthful and logical, 
meaning they constantly choose their course of action to optimize their 

Fig. 17. Generation-demand power mismatch of company using ISSA corrective action.

Fig. 18. a) Abandoned electricity and, b) electricity purchase of company using ISSA corrective action.
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own gains. The following suggests a market mechanism for a single slot 
market that operates one day in advance.

2.3.1.1. P2P trading. Compared to current centralized markets, P2P 
method for power markets is far more decentralized. All agents must 
give the SO all of their information, including cost or utility function, 
power constraints, and uncertainty, in order for SO to centrally decide 
how to dispatch energy and reserves in centralized market. All agents, 
however, are allowed to freely negotiate the amounts and prices of 
multi-bilateral exchanges with one another in a P2P market. Players are 

directly involved in the P2P process, which protects their anonymity and 
is impervious to player failure or quit.

To simulate trading procedure, net power injection En of separately 
agent n ∈ Ω is split to the sum of bilaterally traded quantities with a set 
of adjacent agents m ∈ ωn. 

En =
∑

m∈ωn
Enm,∀n ∈ Ω (16) 

A sale or production is represented by a positive value of Enm, 
whereas a buy or consumption is represented via negative number. The 
set of choice variables is {Enm|n ∈ Ω,m ∈ ωn}. En = {En1…Enm} is used to 

Fig. 19. A) Bill according to Iraq’s electrical ministry of company, b) The electricity bill of company using ISSA corrective action.

Fig. 20. Improving using ISSA corrective action.
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symbolize entire collection of agent n’s transactions in order to simplify 
notations. The limits En and En limit the power set-points of agent n. 

En ≤ En ≤ En, ∀n ∈ Ω (17) 

(EnEn ≥ 0) restricts each agent to either producer or consumer. 
Therefore, if it is a producer, the decision variables must be positive 
(E_nm≥0), and if it is consumer, it must be negative (Enm ≤ 0). 
{

Enm ≥ 0, ∀(n,m) ∈
(
Ωg ∪ Ωr,ωn

)

Enm ≤ 0, ∀(n,m) ∈ (Ωu,ωn)
(18) 

where sets of conventional generators, renewable generators, and con
sumers are denoted by Ωg,Ωr and Ωu, respectively. Assumed to be 
strictly convex functions are producer generation cost or consumer 
utility Ce

n(En), which is positive for generators and negative for cus
tomers.

Likewise, each agent’s reserve injection Rn is divided as 

Rn =
∑

m∈ωn
Rnm, ∀n ∈ Ω (19) 

A set of reserve decision variables is {Rnm|n ∈ Ω,m ∈ ω}, while entire 
set of reserve transactions is represented by Rn = {Rn1…Rnm}. An agent 
n’s reserve level is limited via boundaries Rn and Rn. 

Rn ≤ Rn ≤ Rn, ∀n ∈ Ω (20) 

Every agent is limited to either the consumer or the reserve supplier 
(RnRn ≥ 0). Therefore, if the agent is a reserve supplier, its decision 
variables must be positive (Rnm ≥ 0); if it is a reserve consumer, they 
must be negative (Rnm ≤ 0). 

{
Rnm ≥ 0, ∀(n,m) ∈

(
Ωg ∪ Ωu,ωn

)

Rnm ≤ 0, ∀(n,m) ∈ (Ωr,ωn)
(21) 

Additionally, assumed that the consumer utility function or reserve 
production cost Cr

n(Rn) is strictly convex, with a positive value for non- 
renewable generators and a negative value for renewable ones. In this 
case, we think the idea of "reserve utility" is useful and significant. By 
penalizing the shortage or creating an incentive system, SO can incen
tivize renewable agents to enhance quality of generation. Renewable 
agents can be considered the "reserve utility" and can avoid penalties or 
get subsidies if they can accurately provide power to ensure safety of 
power systems.

In worst situation, a sufficient amount of reserve is required, i.e., 

En ≤ En + Rn ≤ En, ∀n ∈ Ω (22) 

Lastly, balance constraints describe market equilibrium between 
energy/reserve production and consumption; in P2P market, they can be 
substituted via set of reciprocity constraints, which are specified as: 
{

Enm + Emn = 0, ∀(n,m) ∈ (Ω,ωn)

Rnm + Rmn = 0, ∀(n,m) ∈ (Ω,ωn)
(23) 

2.3.1.2. Chance-restricted social cost reduction issue. Under the limita
tions, P2P joint market’s goal is to minimize social cost of each agent. 
Issue is stated as: 

(24)

Fig. 21. Generation-demand power mismatch of factory using ISSA corrective action.

Fig. 22. Abandoned electricity and electricity purchase of Factory using ISSA corrective action.
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P{R̃n ≥ Rn} ≥ 1 − ϵn, ∀n ∈ Ω (25) 

The generating power of renewable agents is fixed at the predicted 
value. A related forecast uncertainty distribution is obtained once the 
projected power is provided, and the chance-constrained method is used 
to calculate the necessary reserve for each renewable agent. According 
to Eq. (25) the real uncertainty R̃n within scheduled reserve Rn has a 
probability of at least one via acceptable probability.

As a convex optimization problem, the social cost reduction problem 
have unique optimum that can be found using variety of centralized 

techniques. Though, it cannot protect privacy because it necessitates the 
disclosure of all agent information. A P2P technique is therefore 
preferred. The construction of fully decentralized P2P joint market that 
can solve above social cost reduction problem with optimal dispatches 
will come next (24).

2.4. Complete P2P joint

Each renewable agent can independently calculate required reserve 
without disclosing private uncertainty information, and each agent can 

Fig. 23. A) Bill according to Iraq’s electrical ministry of Factory, b) Cost of purchase/hour using ISSA corrective action.

Fig. 24. Improving of Factory using the ISSA corrective action.
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bargain with neighbors to exchange energy and reserves in the entire 
P2P joint market. To do this, we must transform the chance constraint 
(25) from its probability form into a deterministic version that is 
consistent with (24). In addition, a SO assists in completing the 
computation of power flows and voltage angles by acting as a single 
actor in the market. The consensus ADMM is then used to construct a 
decentralized bargaining mechanism. Fig. 3 displays market structure of 
complete P2P joint market.

2.5. Modeling system-generation resources

2.5.1. Photovoltaic solar
Eq. (1) is the formula that describes I-V behavior of PV cell circuit 

model with one diode and two resistors [97,98]. 

I = IPV − IO

{

exp
(

V + IRs

αVT

)

− 1
}

−
V + IRs

Rsh
(26) 

where the photocurrent is denoted by IPV , series resistor by Rs, diode 
reverse saturation current by IO, ideality factor by α, the shunt resistor 
by Rsh, which accounts for current leakage through highly conductive 
shunts across p-n junction, and thermal voltage of diode, VT , which is 
affected via electron charge (q), number of series-connected cells (n), 
Boltzmann constant (k), and diode’s temperature (T). 

VT = n
kT
q

(27) 

2.5.2. Wind turbine modeling
Output power of a wind turbine is primarily determined via its radius 

and wind speed in area under consideration. Remaining variables, like 
air density, are either constants or can be made so via setting them to 
value strongminded via control algorithm [99]: 

Pm =
1
2

ρAtCp(λ. β)V3
w (28) 

One definition of the performance factor (Cp) is; 

Cp(λ.β) = 0.5176
(

116
λi

− 0.4β − 5
)

e
−

(
21
λi

)

+ 0.0068λ (29) 

1
λi
=

1
λ + 0.08β

−
0.035
β3 + 1

(30) 

2.5.3. Energy storage
One of the most crucial components of microgrid is energy storage, 

and power systems will encounter a number of difficulties when a 
sizable amount of renewable energy becomes available in future. Energy 
storage technology, which reduces intermittent character of variable 
renewable energy, is one of most crucial technologies for reaching high 
penetration [100,101]. 

EB(t) = EB(t − 1) +
[
Pdis

B (t)
/

ηdis − Pch
B (t) × ηch

]
∀t,B (31) 

Emin
B ≤ EB(t) ≤ Emax

B ∀t,B (32) 

Fig. 25. Renewable energy generation –electricity consumption power mismatch of home using chance-constrained corrective action.

Fig. 26. Abandoned electricity of home-electricity purchase of the home using chance-constrained corrective action.
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Pdis
B (t)

/
ηdis ≤ Pmax

B × μB(t) ∀t,B (33) 

Pch
B (t) × ηch ≤ Pmax

B × (1 − μB(t)) ∀t,B (34) 

Eq. (31) describes the energy of the battery during charging and 
discharging, whereas Eq. (32) establishes battery’s maximum energy 
capacity. Discharge and charge power at any given time are represented 
by Eqs. (33) and (34) respectively.

3. System modelling and simulation results

This section shows how to test and validate the suggested approach 
using the MATLAB/Simulink environment. Photovoltaic (PV), wind 
turbine (WT), and battery storage unit (BSU) for backup power make up 
the suggested microgrid system. Uncertainty is increased by RERs, sys
tem load demand, and fluctuating market pricing. The primary issues in 
smart microgrid energy scheduling are managing these unpredictable 
characteristics and figuring out the optimal system parameter sched
uling. To establish the best schedule for the unknown smart microgrid 
parameters, a stochastic technique is used, accounting for several 

Fig. 27. A) Bill of home according to Iraq’s electrical ministry, b) Cost of home of purchase/hour using chance-constrained corrective action.

Fig. 28. Improving of home using chance-constrained corrective action.
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scenarios and their associated probabilities. Many scenarios have been 
designed to assess uncertainty of RERs, load demand, and energy price 
violation based on historical data from smart microgrid. Next, we apply 
the modified Elephant herding optimization to these scenarios to iden
tify the best ones. Consequently, an optimization method is used to 
determine the smart microgrid’s ideal energy schedule. Three micro
grids make up each of the four linked loads in the suggested system. The 
following three scenarios are implemented in order to validate the 
suggested demand management plan for smart microgrids: 

1. Scenario#1 Results without corrective methods

2. Scenario#2 Results with the Improved Sparrow Search Algorithm 
(ISSA) only
3. Scenario#3 Results with the chance-constrained optimization

3.1. Scenario#1 results without corrective methods

In this scenario, proposed model system is applied based on without 
corrective method between residential, commercial, and factory pro
sumers. The results obtained by using this scenario are illustrated in 
below figures.

Fig. 4 shows Renewable energy generation –electricity consumption 

Fig. 29. Generation-demand power mismatch of company using chance-constrained corrective action.

Fig. 30. a) Abandoned electricity and b) electricity purchase of company using chance-constrained corrective action.
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power mismatch without any corrective action. Fig. 5 shows abandoned 
electricity of home-electricity purchase of the home without any 
corrective action. Fig. 6 shows A) bill of home according to Iraq’s 
electrical ministry without any corrective action, and b) Cost of pur
chase of home without any corrective action. Fig. 7 shows renewable 
energy generation –electricity consumption power mismatch of the 
company without any corrective action. Fig. 8 shows abandoned elec
tricity of home-electricity purchase of the company without any 
corrective action. Fig. 9 shows bill of the company according to Iraq’s 
electrical ministry without any corrective action, b) Cost of purchase of 
the company without any corrective action. Fig. 10 shows Electricity 
consumption and renewable energy generation of factory without any 
corrective action. Fig. 11 shows abandoned electricity and electricity 
purchase of factory without any corrective action. Fig. 12 shows A) bill 

of factory according to Iraq’s electrical ministry, b) The cost of purchase 
of factory without any corrective action

3.2. Scenario#2 results with Improved Sparrow Search Algorithm (ISSA) 
only

In this scenario, proposed model system is applied based on a 
Improved Sparrow Search Algorithm (ISSA) for residential, commercial, 
and factory prosumers. Results obtained by using this scenario are 
illustrated in below figures.

Fig. 13 shows renewable energy generation –electricity consumption 
power mismatch of home using ISSA corrective action. Fig. 14 shows 
abandoned electricity of home-electricity purchase of the home using 
ISSA corrective action. Fig. 15 shows A) bill of home according to Iraq’s 

Fig. 31. A) Bill according to Iraq’s electrical ministry of company, b) Cost of company purchase/hour using chance-constrained corrective action.

Fig. 32. Improving (%) of company using chance-constrained method.
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electrical ministry, b) The electricity bill of home using ISSA corrective 
action. Fig. 16 shows Improving of home using ISSA corrective action. 
Fig. 17 displays Generation-demand power mismatch of company uti
lizing ISSA corrective action. Fig. 18 displays abandoned electricity and 
electricity purchase of company using ISSA corrective action. Fig. 19
shows A) bill according to Iraq’s electrical ministry of company, b) The 
electricity bill of company using ISSA corrective action. Fig. 20 shows 
improving using ISSA corrective action. Fig. 21 shows Generation- 
demand power mismatch of factory using ISSA corrective action. 
Fig. 22 shows abandoned electricity and electricity purchase of Factory 
using ISSA corrective action. Fig. 23 shows A) bill according to Iraq’s 
electrical ministry of Factory, b) Cost of purchase/hour using ISSA 
corrective action. Fig. 24 shows improving of Factory using the ISSA 
corrective action.

The enhanced Sparrow Search Algorithm (ISSA) approach enhanced 
generation and demand balance, according to the results of Scenario 2. 
However, this is not the best option because loss still influences mis
matching between generation and demand.

3.3. Scenario#3 results with the chance-constrained

In this scenario, the proposed model system is applied based on a 
Chance-Constrained cooperative model between residential, commer
cial, and factory prosumers. The results obtained by using this scenario 
are illustrated in below figures.

Fig. 25 shows Renewable energy generation –electricity consump
tion power mismatch of home using chance-constrained corrective ac
tion. Fig. 26 shows abandoned electricity of home-electricity purchase of 
the home using chance-constrained corrective action. Fig. 27 shows A) 

bill of home according to Iraq’s electrical ministry, b) Cost of home of 
purchase/hour using chance-constrained corrective action. Fig. 28
shows Improving of home using chance-constrained corrective action. 
Fig. 29 shows Generation-demand power mismatch of company using 
chance-constrained corrective action. Fig. 30 shows abandoned elec
tricity and electricity purchase of company using chance-constrained 
corrective action. Fig. 31 shows A) bill according to Iraq’s electrical 
ministry of company, b) Cost of company purchase/hour using chance- 
constrained corrective action. Fig. 32 shows improving (%) of company 
using chance-constrained method. Fig. 33 shows Generation-demand 
power mismatch of Factory using chance-constrained corrective ac
tion. Fig. 34 shows abandoned electricity and electricity purchase of 
Factory using chance-constrained corrective action. Fig. 35 shows A) bill 
according to Iraq’s electrical ministry of Factory, b) Cost of purchase/ 
hour using chance-constrained corrective action. Fig. 36 shows 
improving of factory using the chance-constrained corrective action

3.4. Discussions and analysis

P2P energy trading allows consumers and prosumers to directly ex
change surplus energy, offering benefits such as reduced costs, increased 
renewable energy adoption, and enhanced grid stability. Also, by facil
itating local energy exchange, P2P trading can reduce reliance on 
centralized power grids, potentially decreasing transmission losses and 
improving overall grid stability.

A comparison between results obtained without corrective method, 
using ISSA correction method, and the chance-constrained method 
based on the total electricity bill is shown in Table 2.

The total electricity bill of home without correction methods is 

Fig. 33. Generation-demand power mismatch of Factory using chance-constrained corrective action.

Fig. 34. Abandoned electricity and electricity purchase of Factory using chance-constrained corrective action.
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1248.91566 (ID). But after applying ISSA correction method, cost is 
found 856.7951(ID), and after applying chance-constrained correction 
method, cost is found 245.48964(ID). By comparing ISSA correction 
method and chance-constrained correction method with without 
correction methods, the ISSA algorithm saved 31.396% per day, and 
chance-constrained correction method saved 80.34% per day.

The total electricity bill of company without correction methods is 
10,099.1 (ID). But after applying the ISSA correction method, cost is 
found 7442.4872 (ID), and after applying chance-constrained correction 
method, cost is found 3895.2424 (ID). By comparing ISSA correction 
method and chance-constrained correction method with without 
correction methods, the ISSA algorithm saved 26.305% per day, and the 
chance-constrained correction method saved 61.429% per day.

The total electricity bill of factory without correction methods is 
2769.228 (ID). But after applying the ISSA correction method, cost is 
found 2662.772 (ID), and after applying chance-constrained correction 
method, cost is found 1271.916 (ID). By comparing ISSA correction 
method and chance-constrained correction method with without 
correction methods, the ISSA algorithm saved 3.844% per day, and the 
chance-constrained correction method saved 54.069% per day.

The comparison of the three scenarios—a) for a residence, (b) for a 
business, and (c) for a factory—based on the total power bill is displayed 
in Fig. 25. The comparison of the three situations based on improvement 
(%) is displayed in Fig. 26. Table 2 compares the outcomes of ISSA, 
suggested approach based on total electricity cost, and ISSA without the 
corrective procedure. A comparison of the three scenarios—a) for a 

Fig. 35. A) Bill according to Iraq’s electrical ministry of Factory, b) Cost of purchase/hour using chance-constrained corrective action.

Fig. 36. Improving of Factory using the chance-constrained corrective action.
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residence, (b) for a business, and (c) for a factory—based on the total 
electricity bill is shown in Fig. 37. A comparison of the three situations 
based on improvement (%) is shown in Fig. 38.

An application’s execution time requirement is computed for the 
chance-constrained scenario in order to verify and examine its 
complexity. Fig. 39 provides a visual depiction of the execution time. 
These numbers show that the program’s execution time and memory use 
both rise with the number of loads taking part in the coalition. The 
execution time for residences, businesses, and factories is displayed in 
Fig. 39.

3.5. Correlate the existing energy trading mechanism with proposed 
energy trading mechanism

The current energy trading mechanisms, primarily dominated by 
centralized grid and traditional utilities, are evolving towards more 
decentralized and participatory models like P2P energy trading. The 
proposed mechanisms leverage P2P technologies to facilitate direct 
energy exchange between consumers and producers, thereby enhancing 
transparency, efficiency, and lowering costs. Here’s a breakdown of the 
correlation: 

Fig. 37. Comparison between three scenarios based on total electricity bill, a) for home, (b) for company, (c) for factory.
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1. Bridging the gap: The proposed mechanisms aim to integrate with 
the existing centralized infrastructure by allowing prosumers to 
connect to grid and also participate in decentralized P2P trading.
2. Incentivizing distributions’ energy resources: The proposed 
Decentralized P2P trading can incentivize adoption of distributions’ 
energy resources, like as photovoltaics and wind turbines
3. Evolutionary approach: Existing centralized energy trading tran
sition to a proposed decentralized P2P energy system may involve a 
phased approach, gradually incorporating P2P trading alongside 
existing centralized structures.

4. Conclusion

The decentralized EMS presented in this paper allows prosumers in 
community to trade energy with one another while taking into account 
the energy and financial flow between homes, businesses, and factories. 
It also guarantees that each microgrid will experience a further decrease 
in energy costs when operating as a part of a community system as 
opposed to operating separately. By distributing the optimization tasks 
among the various Controller platforms placed in each microgrid, hi
erarchical energy management system lowers overall processing and 
computation time.

In order to assess P2P multi-energy trading amongst factory, resi
dential, and commercial prosumers while taking integrated DSM into 
account, this study develops an optimization model. The suggested 
model may be a useful and effective trading-aiding instrument to 
establish fair trading prices and offer suggestions for the best designs of 
energy infrastructure. A case study demonstrates how successful the 

suggested strategy.
A comparison between results obtained without corrective method, 

using ISSA correction method only, and the chance-constrained method 
based on total electricity bill is shown in this paper. Where the total 
electricity bill of home without correction methods is 1248.91566 (ID). 
But after applying the ISSA correction method, cost is found 856.7951 
(ID), and after applying chance-constrained correction method, cost is 
found 245.48964(ID). By comparing ISSA correction method and 
chance-constrained correction method with without correction 
methods, the ISSA algorithm saved 31.396% per day, and chance- 
constrained correction method saved 80.34% per day. Whereas The 
total electricity bill of company without correction methods is 10,099.1 
(ID). But after applying the ISSA correction method, cost is found 
7442.4872 (ID), and after applying chance-constrained correction 
method, cost is found 3895.2424 (ID). By comparing ISSA correction 
method and chance-constrained correction method with without 
correction methods, the ISSA algorithm saved 26.305% per day, and the 
chance-constrained correction method saved 61.429% per day. Finaly 
The total electricity bill of factory without correction methods is 
2769.228 (ID). But after applying ISSA correction method, cost is found 
2662.772 (ID), and after applying chance-constrained correction 
method, cost is found 1271.916 (ID). By comparing ISSA correction 
method and chance-constrained correction method with without 
correction methods, the ISSA algorithm saved 3.844% per day, and 
chance-constrained correction method saved 54.069% per day.

According to simulation results, utilizing the chance-constrained 
smart bidding technique for P2P trade has decreased the grid de
pendency and electricity prices of consumers and prosumers.

Fig. 38. Comparison between three scenarios based on improvement (%).

Fig. 39. Application running execution time.
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Future studies can examine the transformer’s electrical and thermal 
limitations by leveraging the prosumer’s versatility, potentially 
improving its performance within the distribution network. Further
more, this work does not consider the thermal models of the commer
cial, industrial, and residential sectors, such as thermal energy storage 
and heat pumps. These models can be added later to add demand-side 
flexibilities and broaden the proposed framework.
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