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Facilitating producer-consumer P2P energy exchange is a viable paradigm in the era of decentralized energy.
Energy trading requires the development of a fair pricing mechanism, but when numerous energy systems are
involved in the transaction, the problem can get complicated. Through the decentralized coordination of
distributed microgrid energy systems and shiftable microgrid appliances, this article introduces a decentralized
EMS that facilitates P2P energy trading among prosumers in community. This lowers the energy costs per
microgrid compared to operating each microgrid separately. A Chance-Constrained cooperative model con-
necting manufacturing, commercial, and residential prosumers with guaranteed trade fairness serves as foun-
dation for suggested approach. The model is expanded to take into account several demand-side management
strategies and widely utilized energy supply systems. This study offers a more succinct method for figuring out
fair prices for multi-energy trading than earlier research. A comparison between chance-constrained optimiza-
tion outcomes obtained results is implemented utilizing Improved Sparrow Search Algorithm (ISSA), and without
optimization techniques. The results show that recommended strategy for microgrid demand control is appro-
priate and workable. Fair electricity pricing practices are used to minimize energy costs for prosumers in resi-
dential, commercial, and industrial sectors. The suggested solution improves overall electricity bills for the home,
company, and factory by 80.34%, 61.429%, and 54.069%, respectively.

1. Introduction

Recent developments in digital technology have made it possible for
prosumers to transact directly with the UG and other prosumers,
opening the door for grid digitization. Energy is sold directly to peers at
a higher price than it was sold to UG, and buyers buy energy directly
from peers at a cheaper price than they paid when they bought it from
UG. The fundamental idea behind P2P energy trading is this. P2P energy
trading has attracted increased attention in this area of research in

recent years since encouraging P2P trade can be viewed as a way to use
spark spread to boost use of renewable energy and lower carbon dioxide
emissions.

By establishing energy trading environment where all parties can
freely compete and work together, P2P energy trading aims to enhance
social welfare in general. According to a number of studies, prosumers
may benefit greatly from P2P sharing. But in reality, it’s rarely easy to
put up a P2P energy trading market. Since extensive sensing and
communication infrastructures are needed to provide essential
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mand-side management; RTP, real-time prices; IoT, Internet of Things; EMS, energy management system; SG, smart grid; FPS, flat price system; MAF, multi-agent
framework; RMG, residential microgrids; ADMM, alternating direction method of multipliers; PV, photovoltaic; WT, wind turbine; BSU, battery storage unit.
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Table 1
The most recent research based Optimization techniques in energy management,

Table 1 (continued)

. . N Categories Literature References ~ Objective
P2P energy trading frameworks, Demand-side management approaches, Multi-
microgrid coordination strategies. [24] The authors explained how to use hybrid
shuffling, frog-leaping, and pattern
Categories Literature References  Objective search algorithms to scale RES with
Optimization techniques [2] Uncertainties and effective demand mlcfo grids tO' redUC§ CO.StS-
in energy management response strategies were considered in [25] Utliize a hybrid grav1tat10na-1 search and
authors’ home EMS pattern search approach, writers

[3] Writers presented an IoE-based optimum inFrodu(fed EMS and optimal operation of
multi-agent control technique for mlcrog‘rld-based EV.
microgrids utilizing renewable energy [26] A hybrid crow and pattern search
sources algorithm is a cost-oriented resource

[4] Authors provided the ideal position for scheduling method proposed b}’ the )
DG in active distribution networks, a new aut.hors for a solarjpowered ml.cro grid.
smart charging electric vehicle, and [27] writers propose using a Dandelion
optimally performing batteries. Optimizer (DO) to accurately ascertain

[5] The authors presented Energy parameters of PEMFC model.
management in microgrid and multi- [28] The authors suggested an enhanced off-
microgrid grid wind, photovoltaic, based on the

[61 The authors discussed how deep Moth-Flame algorithm.
reinforcement learning and specialized [29] Writers provided an effective DSM-based
expertise are used in microgrid energy optimization strategy for intelligent
management. ) buildings. -

71 Authors developed an IoT-based P2P energy trading [30] Authors discussed P2P trade and energy
optimization technique based on BPSO frameworks management in smart grids.
and BSA for a home DSMS [31] Writers introduced a P2P market

[81 Writers introduced a fog-based IoE mechanism that combines cooperative
architecture for trans active EMS. behaviours and multi-energy coupling.

[9] Writers obtainable optimization model [32] Pemand-élde maflage{nent can be eaSl%Y
for EMS. included into residential and commercial

[10] The authors developed IoT-based EMS in multl-energy. systems thanks to the.
smart cities to save energy and lessen authors’ equitable P2P energy trading
peak demand. system.. -

[11] The writers described an advanced [33] The writers presented Community-based
microgrid EMS technique that used a and P2P microgrid systems markets
real-time monitoring interface. [34] Multi-agent based optimum scheduling

[12] For household EMS, authors proposed an and trading method for several micro
improved multi-objective cockroach grids connected to urban transportation
swarm algorithm approach networks was given by the authors.

[13] The authors create a cost-effective [35] A P2P architecture was created by the
dispatch in standalone scheme by author to construct islanded microgrids.
utilizing butterfly optimization method. p2p flevelopment 15' made possible by

[14] Writers introduced a technique for DSMs multi-layered, mu}tl-agent systen_ls a‘nd
in smart homes that combines microgrid processes that achieve several objectives.
management and energy optimization [36] The authors introduced blockchain-based

[15] In accordance with a two-stage decentralized framework for a P2P
optimization model described by energy trading market.
authors, several HEMS concurrently [37] The authors introduced a distributed P2P
optimize their individual energy energy transaction approach for range of
consumption patterns and compute their prosumers in mlFTOgrld systfrm: )
flexibility provision, which is transmitted [38] P2P energy trading under distribution
to local distribution companies (LDCs). network constraints while maintaining

[16] The authors presented multi-objective age‘nts independence was introduced via
optimization procedure for solar and writers.
battery energy storage in EMS [39] Writers used game-theoretic approach to

[17] The authors explained how household deve}op a decent.ralized P2P energy )
appliances are dynamically coordinated traélﬂg strategy in an energy blockchain
for DSM control in buildings using setting. L . .
multiobjective energy optimization. [40] P2P energy trading in microgrid was

[18] The author reported a chance- obt.alnable via writers. o
constrained optimization in a HEMS [41-45] Writers presented a communication

[19] The authors explained how firefly system based on blockchain topology
hybridization and particle swarm [46] The writers presented In smart
optimization are used in DSM research. communities, PZ_P renewab%e energy

[20] The authors introduced their effective trading and sharing — trading pricing
DSM program for smart grid residential methOd.s
load that is based on optimization [471 The writers presented an energy
algorithms management and pricing technique for a

[21] Writers introduced a real-time optimal P2P energy based on the Stackelberg
arrangement controller for a HEMS based game o )
on a binary backtracking search method. [48] Advances in digitalization and machine

[22] Based on GOA, writers proposed load- learning f°1: integrated building-
shedding strategy for islanded power transportation were presented by the
system with dispersed energy sources. authors.. o

[23] The writers presented using ITS-BF [49] The writers presented optimizations for

algorithm to schedule domestic electrical
loads.

P2P trading in net-zero energy
communities using battery and hydrogen
energy storage

(continued on next page)
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Categories Literature References ~ Objective Categories Literature References ~ Objective
Demand-side [50] Writers present a strategy for managing [72] Demand-side scheduling of green energy
management microgrid energy consumption that takes Authors presented the concept of
approaches unpredictability into consideration and management in the smart grid.
makes use of practical demand response [73] Writers used a RaspberryPi3 to introduce
methods. a SCADA-controlled loads.

[51] Writers offered multi-objective [74] Authors described an EMS based on cloud
scheduling for EMS in IoT-enabled computing and IoT.
homes, based on arithmetic optimization [75] Utilizing an ANFIS technique, writers
techniques. presented an on-grid/off-grid EMS.

[52] A demand response-based multi-agent [76] A work scheduling system for multi-
system was created and put into use for objective DR to RTP was obtainable by
active network management of delivery writers.
networks. [771 For cloud computing platforms, the

[53] The authors introduced optimization- authors developed a Smart EMS (SEMS)
based hierarchical EMS. as a service for nano grid devices.

[54] The authors introduced multi-agent [78] A self-learning EMS was obtainable by
approach to optimizing demand response writers.
aggregators for homes and businesses [79] Writers demonstrated IoE-based real-

[55] The authors presented the smart hybrid time electricity scheduling system for
microgrid adaptive energy management HEMS.
system. [80] Integration of a grid-connected

[56] The authors presented a framework for photovoltaic-wind hybrid system with
EMS. This gadget establishes a wireless adaption converters connected to a
network of several devices on each home shared DC bus was discussed by the
via connecting to IP address-based IoT authors.
element. [81]1 In order to identify optimal microgrid

[57] For power management, the authors topology in existing distribution systems,
provide a unique fog computing network authors proposed a zonal-based optimal
service. Adoption of fog computing microgrid identification model by zoning
platform makes data safety, accessibility, network into several clusters.
flexibility, interoperability, and real-time [82] In smart manufacturing, the authors
EMS easier. presented ANFIS for robust and effective

[58] Writers presented an effective smart grid source chain presentation.

EMS that took DRP and RES into account. [83] The writers concentrated on an

[59] Authors offered a comprehensive plan for integrated UG. Taking an imbalanced
demand reduction and intelligent EMS grid into consideration, a unique method
for IoE-based loads. for controlling the grid side inverter of a

[60] Writers demonstrated how to develop DPGS is created.
and design a modular EMS and integrate [84] The writers presented a decarbonized
it to a battery-powered micro grid that is microgrid scheme with intelligent
connected to the grid. electrical markets

[61] The authors provided distributed EMS [85] Writer’s obtainable coalition-based
based on ADMM for microgrid with high game-theoretical building as-service-
penetration of DES. over-fog energy management system.

[62] In order to control consumption, the Multi-microgrid [86] One of the two micro grids that writers
authors proposed time-of-use tariff plan coordination strategies studied included the vehicle-to-home
for domestic energy users in Bangladesh. concept, offering a case study that

[63] The authors argued that DSMS is an demonstrates how appealing this
essential component for profitable technology is to families.
functioning of residential and rural micro [87]1 Based on the consensus algorithm,
grid systems. writers obtainable coalitions-game

[64] A real-time community microgrid theory for EMS strategies in intelligent
scheduling scheme was made available micro grids.
by writers. [88] The authors suggested creating cloud-

[65] A novel system-based SCADA based MAF for MG in order to promote a
methodology was presented by the smart grid usage culture.
authors. [89] A multi-agent system platform was used

[66] Writers provided a novel approach to to integrate ideas of 10T for agent
scheduling DER to supply loads within communication and interaction.

MG in case of a power outage. [90]1 Writers initially presented consensus

[67] The authors suggested using a flat price algorithm-based decision-making for
system (FPS) to rationally distribute connected devices in EMS.
energy consumption in the SG in order to [91] Writers presented an method to cutting
address the DSM problem. carbon emissions that makes use of Al

[68] Microgrids for industries was one of and RES
improved EMS methods that the authors
offered.

[69] In smart grid applications with a limited information flows between different agents, it is imperative to accu-
number of devices, the authors presented rately estimate the possible impact of P2P trading from an individual’s
scenarios for controlling power demand. . . o

[70] The authors suggested an algorithm perspective beforehand. On-site distributed energy resources have the
aimed at planning smart device problem biggest influence on the P2P trading effect in a well-established micro-
for avoiding load change in DSM. grid community. Because different prosumers own different kinds of

[71] The authors suggested a bald eagle

search optimization strategy based on
10T to solve day-ahead scheduling issues.

DERs, it is more challenging to assess how DER ownership complex-
ity—which encompasses type, location, configuration, and degree of
energy supply-demand matching of each on-site DER system—affects
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Table 2
Comparison between the results obtained by without corrective method, ISSA and chance-constrained method based on total electricity bill.
Total Electricity Bill of % Total Electricity Bill of % Total Electricity Bill of %
Home Improvement company Improvement factory Improvement
Without any Corrective Action  1248.916 - 10,099.1 - 2769.228 -
Using ISSA Correction Method 856.7951 31.396% 7442.4872 26.305% 2662.772 3.844%
[93]
Chance Constrant Method 245.4896 80.34% 3895.2424 61.429% 1271.916 54.069%
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Fig. 1. Proposed P2P system.

P2P trading for people. This study sought to develop a theoretical
framework for successful growth of P2P energy trading in microgrid
communities by examining advantages and disadvantages of different
energy prosumers and consumers in a P2P energy trading market and
taking into consideration ownership complexity features of distributed
energy resources [1].

1.2. Literature review

Tables 1, 2 shows the most recent research based optimization
techniques in energy management, P2P energy trading frameworks,
demand-side management approaches, multi-microgrid coordination
strategies.

1.2.1. Scientific gaps and limitations
The literature review stated above revealed a number of scientific
and knowledge gaps and limitations.

o In many studies, Cost-benefit models for P2P energy sharing do not
address fairness, distribution, and allocation, which results in un-
fairness and a lack of willingness of stakeholders;

e Synergistic collaborations and operations are necessary for mutual

economic benefits in terms of convergence towards dynamic pricing

equilibrium, whereas some above studies are very limited.

In many studies, the internal trading pricing approach frequently

ignores costs associated with renewable system depreciation, energy

transmission losses, and associated infrastructures.

o In many systems, the authors did not use a chance-constrained to
minimize the cost.

1.2.2. The contributions of this study
This study’s innovation and originality fill the aforementioned sci-
entific gaps.

e Cutting-edge advancements and developments in P2P trading, spe-
cifically in the areas of decentralized system modeling, energy
sharing mechanisms, and techniques for trade and marginal prices.
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Fig. 2. A comprehensive flowchart for applied optimization methods.

Algorithm 1
Framework of SSA.

Energy Nexus 20 (2025) 100536

e Dynamic power trading strategies and decision-making approaches
are also systematically presented with the goal of finding an equi-
librium between the dynamic power trading quantity and internal
sell/buy price;

Synergistic collaborations and operations between multistakeholders
were presented to better understand the mutual economic benefits,
including prosumer-centric and consumer-centric energy trading,
retailer and utility company, agent-based techniques in energy
sharing, and economic dispatch;

To encourage decarbonization, increase system efficiency, provide
loss reduction, power support, and congestion management for the
power grid, P2P-based approaches to electricity market design are
proposed.

To show the efficacy of the proposed Chance restricted optimization
with respect to objectives like energy cost, carbon emission, and
PAR, simulation results are compared with Improved Sparrow
Search Algorithm (ISSA).

Proposed system

P2P network is a DN architecture where participants share some of
their own resources with each other, as stated in Ref. [92]. These shared
resources, which peers can access directly from one another without the
use of middlemen, are essential to the network’s services and content,
including file sharing. Additionally, removing a single randomly
selected entity from a P2P network does not impair the network’s
communication capabilities.

In order to accomplish particular energy-related objectives, members
of P2P energy network share some of their resources (such storage space
and renewable energy) and information. Peak load reduction, power
cost reduction, network operation, investment cost minimization, and
maximizing the usage of renewable energy are a few examples of these
objectives. Each peer in the network can communicate directly with the
others and take on the roles of either a provider, a receiver, or both
without the assistance of an external controller. Moreover, the network
can accommodate the addition of a new peer or the removal of an

Input
G: maximum iterations
PD: number of producers
SD: number of sparrows who perceive danger
R2: alarm value
n: number of sparrows

Initialize a population of n sparrows and define its relevant parameters

Output: Xpest, fy
while (t < G)
Rank fitness values and find current best individual and current worst individual
R2 = rand(1)
fori=1:PD
update sparrow's location

end for

fori=1+PD):n
update sparrow's location

end for

fori=1:5D
update sparrow's location

end for

Get current new location
If new location is better than before,update it

t=t+1

end

returen Xpes, fy
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Algorithm 2
The improved sparrow search algorithm.

Energy Nexus 20 (2025) 100536

Input:

N:number of sparrows
Tinax: total number of iterations
PD:number of producers
SD:number of secouters

ST:safety value
Output:

frest: optimal solution
Xpest: global optimal position
initialize a population of N sparrows

while t < Typay do
Calculating fitness value of individuals
Ranking he fitness values and finding current best and worst individual
fori=1:PDdo
update the producers'position
end for
fori= (14 PD):N do
update scroungers'position

end for

fori=1:5Ddo

update scouters'position

end for

fori = 1:Ndo

if new position is better than previous position then Using new
position to update previous position
end if
if new position is better than optimal position then using
new position to update optimal position

end if
end for

t=t+1
end while

existing peer without affecting the system’s functionality.

Generally, P2P energy networks consist of two tiers, as shown in
Fig. 1: two layers: one for virtual energy trade and the other for physical
energy transmission. The virtual energy trading layer functions as a
platform where participating peers exchange the necessary data to
determine the kind, quantity, and cost of each resource traded with one
another, much like a local power market. All peers must have equal
access to a virtual layer built on top of a secure information system. Peer
generation, demand, and consumption data transmitted from the peer’s
smart meter over secure communication network are used to build buy
and sell orders on the virtual layer. After that, appropriate market
mechanism is applied to enable energy trading using created orders.
After all of the buy and sell orders from different peers are matched,
energy exchange takes place over physical layer. After that, money is
paid.

On other hand, the physical energy transfer layer acts as a distribu-
tion system to make it easier for peers to physically transmit electricity.
This physical network might be a standalone physical micro grid dis-
tribution grid that works in tandem with normal grid, or it can be a
typical distribution network maintained and managed via Independent
System Operator (ISO). It is important to remember that physical dis-
tribution of electricity is not directly governed by the financial trans-
actions that take place between peers in the virtual layer. The moment
payment is received, in fact, is when the process of integrating a seller’s
renewable energy to distribution grid actually starts.

2.1. Microgrid-to-microgrid energy trading

The primary objective of P2P energy trading systems in this category
is to optimize use of RES to address the imbalance between supply and
demand of energy inside microgrids. On one hand, these solutions result
in lower electricity costs for the microgrids taking part in the P2P energy
exchange. By managing the power flow inside grid, power generation at
microgrid may be stabilized even in the face of unpredictable load de-
mand. P2P commerce with the security component included allows
distributed energy supply and flexible demands to grow and strengthen
the grid in both routine and emergency scenarios.

The buildings that are used for residential, commercial, and indus-
trial reasons account for a significant amount of the energy consumed in
cities. Main goal of this research is to give prosumers in the home and
workplace the ability to trade electricity and heating energy equitably
while accounting for a range of demandside characteristics, using an
optimization-based trading aid tool. The suggested integration of com-
mercial, residential, and industrial prosumers is depicted in Fig. 1. The
heating network and utility grid connect two prosumers. Energy trading
allows for the exchange of surplus heating and power. Due to the two
prosumers’ large distance from one another and considerable energy
loss, there won’t be a cooling energy exchange. Fig. 2 shows a
comprehensive flowchart for applied optimization methods.

2.2. Sparrow search algorithm (SSA) corrective action

Sparrows come in many different types and are generally gregarious
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Fig. 3. Complete P2P cooperative.

birds. They are widespread around world and prefer to live in populated
areas. They are also omnivorous birds that mostly consume grain seeds
or weeds. The fact that sparrows are a frequent bird in the area is well
known. The sparrow, in contrast to many other little birds, is very in-
tellectual and has a long memory [93].

In this section created rules based on an imagined version of the
sparrows’ subsequent behavior in order to keep things simple.

1). Producers generally has enough of energy storage and give the
scavengers instructions or feeding sites. Its job is to locate places with
an abundance of food. An individual’s amount of energy reserves is
determined via evaluating their degree of fitness.

2). Sparrows begin to chirp in terror as soon as they spot predator.
When alarm value surpasses safety threshold, producers are required
to guide every scavenger to secure location.

Energy Nexus 20 (2025) 100536

3). Although all sparrows have the capacity to become producers if
they look for more plentiful food sources, proportion of producers to
scavengers in population stays constant.The birds that produce
would be the most energized. In order to obtain additional energy,
some scavengers who are ravenous are more likely to search skies for
food.

4). Scavengers follow producer who can provide best food in order to
find food. Some scavengers may compete for food while closely
monitoring producers in order to boost their own rate of predation.
5). When a threat is spotted, sparrows on group’s periphery swiftly
go toward the safe zone to take up a better position, while sparrows
in group’s core fly around aimlessly to stay close to one another.

To find food in simulation experiment, authors must use virtual
sparrows. Next matrix shows the positions of the sparrows.:

X111 X12 X1.d
X: X X:

x= | X W
xn,l xn,Z xn,d

where d is dimension of variables that require optimization and n is
number of sparrows. Consequently, following vector can be used to
express sparrows’ overall fitness value:

fE X111 X12 X1.d ;
Fy = f :xz,l x2:,2 Xz,:d @
f( [xn.l Xn,2 xn.d] )

When n is sparrows number and fitness value of each individual is
signified via value in Fx for each row. Those producers who are more fit
are prioritized when looking for food in the SSA. Moreover, because it is
the producers’ responsibility to find food and control population
mobility. Consequently, producers are able to forage for food in a greater
range of areas than scavengers. Following rules (1) and (2), producer’s
location is changed as shadows at each iteration:

—i
Xt _ if R ST
Xis_ﬂ _ y XP (a-itermax> fR <

X;+QL if R, > ST

3

where j = 1, 2...d. and t denotes current iteration. X}
value of j* dimension of i sparrow at iteration t. A constant with most
iterations is called itermax. Is a random number with & € [0, 1]. A safety

threshold is signified via ST (ST < [0.5, 1.0]) and the alert value is

signified

6r—TT—T T T T T T T T 1

T T T 1 T T T ] | T 1

MlElectricity consumption/ kWh of home without corrective method
ElRenewable energy generation/kWh of home without corrective method 4

Power (kW)
w £

N

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
The time (Hour)

Fig. 4. Renewable energy generation —electricity consumption power mismatch of home without any corrective action.
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Power (kW)
o

N
T

o
T

T T T I I I T T T T T T I I I I T T T T T
[CJAbandoned electricity of home without corrective method
[IElectricity purchase of home without corrective method

_ A —

| 1 1 | 1 1 1 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
The time (Hour)

Fig. 5. Abandoned electricity of home-electricity purchase of the home without any corrective action.

120

100

Price (Iraqi Dinar)

T T T T T T T T T T T T T T T T T T T T T T T
bill of home according to Iraq's electrical
ministry without corrective method -

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
The time (Hour)

(@)
700 I B R NS S S S S C—" — C— R R R D0 G (N - S R B R
I-Cost of purchase/hour of home without corrective method|
600 -
500
£
Q 400}
G
s
=300
o
L
& 200
100
0 4 | I ¢ 1 L 1 | | 1 L |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
The time (Hour)

Fig. 6. A) bill of home according to Iraq’s electrical ministry without

signified via Ry (R2 € [0, 1]). A random number with a normal distri-
bution is called Q. L displays a 1 x d matrix with 1 for each element.
Producer switches to wide search mode when R, < ST, which indicates
that there are no predators in area. Ry > ST shows that some sparrows
have detected predator; if this is case, all sparrows need to fly right away
to safer areas.

The scavengers have to put Egs. (3) and (4) into practice. As was
previously said, certain scavengers pay more attention to the producers.
They immediately resign from their current positions to fight for the

(®)

corrective method, b) Cost of purchase of home without corrective method.

wonderful meal as soon as they learn that the producer have discovered
it. If they are successful, they can immediately collect the food from the
producer; if not, they must proceed according to Eq. (4). The scrounger’s
position update formula is explained here:
xltvarst - x§j P
Q-exp — : ifi>n/2
1_
X = 4
X+ |Xp - X -ATL otherwise
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where the producer’s optimum location is denoted by Xp. Xyorse Shows
the poorest place in world right now. A shows a 1 x d matrix in which a
random value of either 1 or — 1 is assigned to every element. For At =

AT (AAT)fl. The ith scrounger with lowest fitness grade is most likely
famished when i > n/2. We assume that in hypothetical experiment,
these threat-aware sparrows comprise between 10% and 20% of the
whole population. The beginning locations of these birds are selected at
random from the population. Eq. (5) can be used to illustrate the
mathematical model as follows.:

Xiesr +p ij - Xiest lffl >fg
X;_*l = Xf i X]Evorst R (5)
jtK (m) iffi=f;

Where X, is current global ideal location. As step size control param-
eter, # denotes normal distribution of random numbers with a variance
of 1 and 0. K € [-1,1] is the random number we have. where f; is
sparrow’s fitness value at that moment. Currently, f, and f,, signify
global best and worst fitness values, respectively. Least constant, &,
prevents zero-division mistake.

To keep things simple, when sparrow is at group’s boundary when f;
> f,. The center of the population is represented by Xp., which is also
safe in its vicinity. Since they are aware of the threat, the middle-class
sparrows ought to approach the other birds, as demonstrated by f; =
fe- K is step size control coefficient, and it also designates direction in
which sparrow travels. Pseudo code demonstrated in Algorithm 1 can be
used to outline fundamental steps of SSA.

2.2.1. Model of the ISSA

2.2.1.1. Elite opposition-based learning strategy with Chebyshev chaotic
map. A quality of initial population have a direct impact on algorithm’s
convergence performance in swarm intelligence optimization. The ac-
curacy and rate of convergence will be slowed down by the uneven
distribution and unstable quality that result from initial population in
SSA being formed at random. Chaotic mapping has three properties:
regularity, ergodicity, and randomness. It has recently been used to
enhance the initial population quality of swarm intelligence algorithms.
Among the often utilized chaotic maps are the Tent chaotic map, the
Kent chaotic map, and the Logistic chaotic map. In this study, the pop-
ulation is initialized using Chebyshev chaotic map. Compared to chaotic
mapping that was previously discussed, the Chebyshev chaotic map is
more straightforward, independent of the beginning value, and gener-
ates more uniformly distributed mapping outputs. The equation for the
Chebyshev chaotic map is [94]:

X1 = cos (tcos™" (x')) (6)
where a random number x’e [0, 1] is present. The following equation
creates the starting population after acquiring the Chebyshev chaotic
sequence:

Xijt+1 = lb] + (ubj — lb]) X .XJt (7)
where Ib; and ub; are lower and upper bounds, respectively, of search
space’s j™ dimension. Using the elite opposition-based learning tech-
nique (EOLS), the initial population’s quality is raised. There are some

exceptional sparrows in the population. Elite individuals are better than
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Fig. 10. Electricity consumption and renewable energy generation of factory without any corrective action.

others in every way, including spotting and thwarting the adversary.
The objective behind the EOLS is to employ elite individuals’ informa-
tion to generate the starting population as much as possible. By doing
this, the population will be more diverse, higher quality, and the algo-
rithm will be kept from settling on the local optimal answer. Those with
limited fitness value in the overall population are typically considered
elite. After the initial population acquisition, the individuals are ranked
based on their fitness levels, and the elite group is selected from a subset
of the lowest-scoring individuals. The elite opposition of each elite
member of the elite group can be computed using following formula:

10

Xy = n(lby +uby) — Xy ®
where Zl;; and zIE, denote, respectively, lower and upper bounds of in-
dividual in starting population in j* dimension of current search space,
and y ¢[0, 1] is a random number. After calculating each person’s fitness
values, n people with low fitness values are chosen to make up the
beginning population.

2.2.1.2. Levy flight strategy and dynamic weight factor. The producers in
the sparrow population are in charge of finding regions where there is an
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Fig. 12. A) Bill of factory according to Iraq’s electrical ministry, b) The cost of purchase of factory without any corrective action.

abundance of food and utilizing their search area to the fullest. There-
fore, in order to balance local extraction and global exploration, pro-
ducers need to employ flexible strategies. To solve this issue, this study
presents the dynamic weight factor, which has the following definition:

—i
w-X;it-ex ( ), R, < ST
xgr= O a T, ©
(l)'XiJ'[ + (2'L7 Ry > ST
Trax — t+1)"
w:<maxT t+>+5 (10)
max

11

In order to prevent dynamic weight factor o from becoming too tiny
in later stages of the loop, & ¢ [0,0.1] is a random variable. Dynamic
weight factor @ balances the capacities of both by ensuring that the
producers can undertake local exploitation at the conclusion of the
iteration with a lower step size and global exploration at the beginning
with a bigger step size.

Exploitation can only take place in later stages of iteration very close
to local optimal solution if producers have already settled into local
optimal solution in early stages of the iteration. This work uses the Levy
flight technique to avoid such a situation by providing the producers
with the option to abandon local optimal solution at a later iterational
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Fig. 14. Abandoned electricity of home-electricity purchase of the home using ISSA corrective action.

stage. The Levy distribution controls the step size of the Levy flight, a
non-Gaussian random process. Given how challenging it is to calculate
the Levy flight step size, simulations frequently employ the Mantegna
algorithm, whose formula is as:

u

s= ol an
whereu ~ N(0, 6,%), v ~ N(0, 6,%), o, and o, is defined as:
. 1/p
B I'(1 + p)sin (zp/2)
N +p)/2)20- 02 a2
o, =1

where conventional gamma function, I, is used. The number f ¢ (0, 2) is
arbitrary. A following equation is used to update producers’ positions
after Levy flight steps are obtained:
Xt = X' +0.01s(X! — X{) 13)
where the producers’ location, as determined by (9), is represented by
X{. Current global optimum location is X]. The characteristics of Levy
distribution suggest that Levy flight includes a number of little actions
that can strengthen the producers’ ability to exploit the market locally.
Large steps are occasionally taken to assist producers in leaving the local
optimal solution and improving their capacity for global exploration.
The Levy flight technique and the dynamic weight factor work together
to successfully boost producer efficiency, reduce the likelihood that
producers would choose the locally optimal option, and better balance

12

potential for both local exploitation and global exploration.

2.2.1.3. Mutation strategy. A colony of sparrows’ scavengers will
monitor the producers’ activities. When they find food, the producers
fight to increase their stores of energy. Some scavengers will fly away
from group to look for isolated areas to forage when their energy levels
are low. Scavengers in SSA follow a flight path that is determined by:

kx,Aw . ky,Ah

e
sinc 2R

_ Fubwih
l n=1

Rse sinc
R,

p(x.y,2) a4

where the imaginary unit is represented by j = v/—1. The medium’s
density is denoted by p. The sound wave’s wavelength is represented by
A. The sound wave velocity in X,or' and X;;' (i > n/2 in (2)) is rep-
resented by c.,The scavengers may not always locate regions with plenty
of food, even with this updating approach. This paper uses the following
mutation method to direct the scavengers’ flight path and increase
population diversity.

X[_J_H»l _ X[_J_t + ﬂ(XPt+1 —Xth) (15)

where the random integer is 5 ¢ [0, 1]. The aforementioned algorithm
will increase the scavengers’ chances of discovering high-quality food by
directing them to optimal position Xp**!. Algorithm 2 illustrates the ISSA
implementation phases in experiment fori > n/2.

2.3. Chance constrained corrective action

A competing method for resolving optimization issues in the face of
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Fig. 16. Improving of home using ISSA corrective action.

uncertainty is chance constrained programming. Miller and Wagner
(1965) and Charnes and Cooper (1959) were the first to present this
approach. Its primary characteristic is that the final decision guarantees
the likelihood of adhering to limits, or the degree of certainty that it is
feasible. Therefore, it is possible to quantify the relationship between
profitability and reliability using chance-constrained programming.
Stated differently, the problem’s solution offers thorough details on the
cost-effectiveness as a function of the intended degree of confidence in
meeting the process restrictions [95].

13

Uncertainties can be broadly divided to two groups: internal un-
certainties, which reflect a lack of process knowledge, like as model
parameters, and external uncertainties, which include feed rate and/or
composition, recycle flows, temperature and pressure of coupled oper-
ating units, raw material and utility supply, customer demand, prices,
and market conditions. A small number of experimental data points are
frequently used to regress model parameters. Previous research has
focused more on internal uncertainty than external uncertainty. In most
cases, statistical regression from previously available data,
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Fig. 18. a) Abandoned electricity and, b) electricity purchase of company using ISSA corrective action.

interpolation, or extrapolation can be used to determine distribution of
uncertain variable. Gathering process data for dispersion analysis has
become comparatively simple due to growing popularity of computer-
based process monitoring schemes. Stochastic distribution of uncertain
variables can take many different forms, and they can be coupled or
uncorrelated. In engineering practice, the normal (Gaussian) distribu-
tion is frequently regarded as a sufficient assumption for a large number
of uncertain variables. Usually, the variance and mean statistics are
available. Nevertheless, the output variables will likewise be uncertain
as a result of these uncertain variables spreading throughout the process.
It is extremely challenging to analytically characterize the output

distribution for a nonlinear process.

2.3.1. Formulation of the problem

Examined a market that contains a collection of agents classified as
either consumers or producers of energy or reserves. Reserve customers
require the reserve to offset their uncertainty, much like energy con-
sumers do in order to meet their demands. Since excess generation can
always be reduced, we assume that the only source of uncertainty is from
renewable agents and only the deficiency situation is taken into account.
As stated in [96], all agents are expected to be truthful and logical,
meaning they constantly choose their course of action to optimize their

14
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own gains. The following suggests a market mechanism for a single slot
market that operates one day in advance.

2.3.1.1. P2P trading. Compared to current centralized markets, P2P
method for power markets is far more decentralized. All agents must
give the SO all of their information, including cost or utility function,
power constraints, and uncertainty, in order for SO to centrally decide
how to dispatch energy and reserves in centralized market. All agents,
however, are allowed to freely negotiate the amounts and prices of
multi-bilateral exchanges with one another in a P2P market. Players are

15

directly involved in the P2P process, which protects their anonymity and
is impervious to player failure or quit.

To simulate trading procedure, net power injection E, of separately
agent n € Q is split to the sum of bilaterally traded quantities with a set
of adjacent agents m € wy,.

E, = menEnm_Vn ceQ (16)

A sale or production is represented by a positive value of E,y,
whereas a buy or consumption is represented via negative number. The
set of choice variables is {E,,|n € Q,m € w,}. E; = {En...Enm} is used to
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Fig. 22. Abandoned electricity and electricity purchase of Factory using ISSA corrective action.

symbolize entire collection of agent n’s transactions in order to simplify
notations. The limits E, and E, limit the power set-points of agent n.

E, <E, <E, VneQ an

(ExE, > 0) restricts each agent to either producer or consumer.

Therefore, if it is a producer, the decision variables must be positive
(E_.nm>0), and if it is consumer, it must be negative (E,, < 0).

{

where sets of conventional generators, renewable generators, and con-
sumers are denoted by Q,, Q. and Q,, respectively. Assumed to be
strictly convex functions are producer generation cost or consumer
utility C¢(E,), which is positive for generators and negative for cus-
tomers.

Likewise, each agent’s reserve injection R, is divided as

R, = Zmewanm, vneQ

Em >0, Y(n,m) € (QUQ, o)

En.m S 07 V(n, m) € (quwﬂ) (18)

19

A set of reserve decision variables is {R,n|n € Q,m € w}, while entire
set of reserve transactions is represented by R, = {Rp1...Run}. An agent
n’s reserve level is limited via boundaries R, and R.

Ry <R, <Ry, VneQ (20)

Every agent is limited to either the consumer or the reserve supplier
(RqR, > 0). Therefore, if the agent is a reserve supplier, its decision
variables must be positive (R,, > 0); if it is a reserve consumer, they
must be negative (R, < 0).

16

Rum 20, V(n,m) e (QUQy, wn)

Rum <0, V(n,m) € (Q, wn) @D

Additionally, assumed that the consumer utility function or reserve
production cost C;,(R,) is strictly convex, with a positive value for non-
renewable generators and a negative value for renewable ones. In this
case, we think the idea of "reserve utility" is useful and significant. By
penalizing the shortage or creating an incentive system, SO can incen-
tivize renewable agents to enhance quality of generation. Renewable
agents can be considered the "reserve utility" and can avoid penalties or
get subsidies if they can accurately provide power to ensure safety of
power systems.

In worst situation, a sufficient amount of reserve is required, i.e.,

E, <E, +R, <E, VneQ 22)

Lastly, balance constraints describe market equilibrium between
energy/reserve production and consumption; in P2P market, they can be
substituted via set of reciprocity constraints, which are specified as:

{

2.3.1.2. Chance-restricted social cost reduction issue. Under the limita-
tions, P2P joint market’s goal is to minimize social cost of each agent.
Issue is stated as:

Enwm + Emn = 07 V(Tl, m) € (97 wn)

Run +Run =0, V(n,m) € (Q,w,) 23)

min )" (CE(E) + CR(En) + CE(Ry) + CE(R,))

neqQ

(24)
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Fig. 24. Improving of Factory using the ISSA corrective action.
P{R, >Ry} >1—¢€, VneQ (25) techniques. Though, it cannot protect privacy because it necessitates the

disclosure of all agent information. A P2P technique is therefore
preferred. The construction of fully decentralized P2P joint market that
can solve above social cost reduction problem with optimal dispatches
will come next (24).

The generating power of renewable agents is fixed at the predicted
value. A related forecast uncertainty distribution is obtained once the
projected power is provided, and the chance-constrained method is used
to calculate the necessary reserve for each renewable agent. According

to Eq. (25) the real uncertainty ﬁn within scheduled reserve R, has a

probability of at least one via acceptable probability. 2.4. Complete P2P joint
As a convex optimization problem, the social cost reduction problem
have unique optimum that can be found using variety of centralized Each renewable agent can independently calculate required reserve

without disclosing private uncertainty information, and each agent can

17
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Fig. 26. Abandoned electricity of home-electricity purchase of the home using chance-constrained corrective action.

bargain with neighbors to exchange energy and reserves in the entire
P2P joint market. To do this, we must transform the chance constraint
(25) from its probability form into a deterministic version that is
consistent with (24). In addition, a SO assists in completing the
computation of power flows and voltage angles by acting as a single
actor in the market. The consensus ADMM is then used to construct a
decentralized bargaining mechanism. Fig. 3 displays market structure of
complete P2P joint market.

2.5. Modeling system-generation resources

2.5.1. Photovoltaic solar
Eq. (1) is the formula that describes I-V behavior of PV cell circuit
model with one diode and two resistors [97,98].

V + IR
I:Ipv—lo{exp< (j_V 3)—1}—
T

where the photocurrent is denoted by Ipy, series resistor by R;, diode
reverse saturation current by Iy, ideality factor by a, the shunt resistor
by Ry, which accounts for current leakage through highly conductive
shunts across p-n junction, and thermal voltage of diode, Vy, which is
affected via electron charge (q), number of series-connected cells (n),
Boltzmann constant (k), and diode’s temperature (T).

V+IR
Rsh

(26)

kT

VT =n— (27)
q
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2.5.2. Wind turbine modeling

Output power of a wind turbine is primarily determined via its radius
and wind speed in area under consideration. Remaining variables, like
air density, are either constants or can be made so via setting them to
value strongminded via control algorithm [99]:

1
Py = SpAG (A BV (28)
One definition of the performance factor (C,) is;
116 - (2*1>
C,(A.B) = 0‘5176( 045 5) e \"/ +0.00681 29)
1 1 .
0.035 (30)

ki A+0088 i1

2.5.3. Energy storage

One of the most crucial components of microgrid is energy storage,
and power systems will encounter a number of difficulties when a
sizable amount of renewable energy becomes available in future. Energy
storage technology, which reduces intermittent character of variable
renewable energy, is one of most crucial technologies for reaching high
penetration [100,101].

Ep(t) = Ep(t—1) + [P*(t) / ngis — P§'(t) 1) V£, B BD

ED < Ey(t) < E?™ Vi, B (32)
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Fig. 28. Improving of home using chance-constrained corrective action.
(33) 3. System modelling and simulation results

(34)

This section shows how to test and validate the suggested approach

Eq. (31) describes the energy of the battery during charging and
discharging, whereas Eq. (32) establishes battery’s maximum energy
capacity. Discharge and charge power at any given time are represented
by Egs. (33) and (34) respectively.
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using the MATLAB/Simulink environment. Photovoltaic (PV), wind
turbine (WT), and battery storage unit (BSU) for backup power make up
the suggested microgrid system. Uncertainty is increased by RERs, sys-
tem load demand, and fluctuating market pricing. The primary issues in
smart microgrid energy scheduling are managing these unpredictable
characteristics and figuring out the optimal system parameter sched-
uling. To establish the best schedule for the unknown smart microgrid
parameters, a stochastic technique is used, accounting for several
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Fig. 30. a) Abandoned electricity and b) electricity purchase of company using chance-constrained corrective action.

scenarios and their associated probabilities. Many scenarios have been
designed to assess uncertainty of RERs, load demand, and energy price
violation based on historical data from smart microgrid. Next, we apply
the modified Elephant herding optimization to these scenarios to iden-
tify the best ones. Consequently, an optimization method is used to
determine the smart microgrid’s ideal energy schedule. Three micro-
grids make up each of the four linked loads in the suggested system. The
following three scenarios are implemented in order to validate the
suggested demand management plan for smart microgrids:

1. Scenario#1 Results without corrective methods

20

2. Scenario#2 Results with the Improved Sparrow Search Algorithm
(ISSA) only

3. Scenario#3 Results with the chance-constrained optimization

3.1. Scenario#1 results without corrective methods

In this scenario, proposed model system is applied based on without
corrective method between residential, commercial, and factory pro-
sumers. The results obtained by using this scenario are illustrated in
below figures.

Fig. 4 shows Renewable energy generation —electricity consumption
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Fig. 31. A) Bill according to Iraq’s electrical ministry of company, b) Cost of company purchase/hour using chance-constrained corrective action.
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power mismatch without any corrective action. Fig. 5 shows abandoned
electricity of home-electricity purchase of the home without any
corrective action. Fig. 6 shows A) bill of home according to Iraq’s
electrical ministry without any corrective action, and b) Cost of pur-
chase of home without any corrective action. Fig. 7 shows renewable
energy generation —electricity consumption power mismatch of the
company without any corrective action. Fig. 8 shows abandoned elec-
tricity of home-electricity purchase of the company without any
corrective action. Fig. 9 shows bill of the company according to Iraq’s
electrical ministry without any corrective action, b) Cost of purchase of
the company without any corrective action. Fig. 10 shows Electricity
consumption and renewable energy generation of factory without any
corrective action. Fig. 11 shows abandoned electricity and electricity
purchase of factory without any corrective action. Fig. 12 shows A) bill
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of factory according to Iraq’s electrical ministry, b) The cost of purchase
of factory without any corrective action

3.2. Scenario#2 results with Improved Sparrow Search Algorithm (ISSA)
only

In this scenario, proposed model system is applied based on a
Improved Sparrow Search Algorithm (ISSA) for residential, commercial,
and factory prosumers. Results obtained by using this scenario are
illustrated in below figures.

Fig. 13 shows renewable energy generation —electricity consumption
power mismatch of home using ISSA corrective action. Fig. 14 shows
abandoned electricity of home-electricity purchase of the home using
ISSA corrective action. Fig. 15 shows A) bill of home according to Iraq’s
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Fig. 34. Abandoned electricity and electricity purchase of Factory using chance-constrained corrective action.

electrical ministry, b) The electricity bill of home using ISSA corrective
action. Fig. 16 shows Improving of home using ISSA corrective action.
Fig. 17 displays Generation-demand power mismatch of company uti-
lizing ISSA corrective action. Fig. 18 displays abandoned electricity and
electricity purchase of company using ISSA corrective action. Fig. 19
shows A) bill according to Iraq’s electrical ministry of company, b) The
electricity bill of company using ISSA corrective action. Fig. 20 shows
improving using ISSA corrective action. Fig. 21 shows Generation-
demand power mismatch of factory using ISSA corrective action.
Fig. 22 shows abandoned electricity and electricity purchase of Factory
using ISSA corrective action. Fig. 23 shows A) bill according to Iraq’s
electrical ministry of Factory, b) Cost of purchase/hour using ISSA
corrective action. Fig. 24 shows improving of Factory using the ISSA
corrective action.

The enhanced Sparrow Search Algorithm (ISSA) approach enhanced
generation and demand balance, according to the results of Scenario 2.
However, this is not the best option because loss still influences mis-
matching between generation and demand.

3.3. Scenario#3 results with the chance-constrained

In this scenario, the proposed model system is applied based on a
Chance-Constrained cooperative model between residential, commer-
cial, and factory prosumers. The results obtained by using this scenario
are illustrated in below figures.

Fig. 25 shows Renewable energy generation —electricity consump-
tion power mismatch of home using chance-constrained corrective ac-
tion. Fig. 26 shows abandoned electricity of home-electricity purchase of
the home using chance-constrained corrective action. Fig. 27 shows A)

22

bill of home according to Iraq’s electrical ministry, b) Cost of home of
purchase/hour using chance-constrained corrective action. Fig. 28
shows Improving of home using chance-constrained corrective action.
Fig. 29 shows Generation-demand power mismatch of company using
chance-constrained corrective action. Fig. 30 shows abandoned elec-
tricity and electricity purchase of company using chance-constrained
corrective action. Fig. 31 shows A) bill according to Iraq’s electrical
ministry of company, b) Cost of company purchase/hour using chance-
constrained corrective action. Fig. 32 shows improving (%) of company
using chance-constrained method. Fig. 33 shows Generation-demand
power mismatch of Factory using chance-constrained corrective ac-
tion. Fig. 34 shows abandoned electricity and electricity purchase of
Factory using chance-constrained corrective action. Fig. 35 shows A) bill
according to Iraq’s electrical ministry of Factory, b) Cost of purchase/
hour using chance-constrained corrective action. Fig. 36 shows
improving of factory using the chance-constrained corrective action

3.4. Discussions and analysis

P2P energy trading allows consumers and prosumers to directly ex-
change surplus energy, offering benefits such as reduced costs, increased
renewable energy adoption, and enhanced grid stability. Also, by facil-
itating local energy exchange, P2P trading can reduce reliance on
centralized power grids, potentially decreasing transmission losses and
improving overall grid stability.

A comparison between results obtained without corrective method,
using ISSA correction method, and the chance-constrained method
based on the total electricity bill is shown in Table 2.

The total electricity bill of home without correction methods is
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Fig. 36. Improving of Factory using the chance-constrained corrective action.

1248.91566 (ID). But after applying ISSA correction method, cost is
found 856.7951(ID), and after applying chance-constrained correction
method, cost is found 245.48964(ID). By comparing ISSA correction
method and chance-constrained correction method with without
correction methods, the ISSA algorithm saved 31.396% per day, and
chance-constrained correction method saved 80.34% per day.

The total electricity bill of company without correction methods is
10,099.1 (ID). But after applying the ISSA correction method, cost is
found 7442.4872 (ID), and after applying chance-constrained correction
method, cost is found 3895.2424 (ID). By comparing ISSA correction
method and chance-constrained correction method with without
correction methods, the ISSA algorithm saved 26.305% per day, and the
chance-constrained correction method saved 61.429% per day.

23

The total electricity bill of factory without correction methods is
2769.228 (ID). But after applying the ISSA correction method, cost is
found 2662.772 (ID), and after applying chance-constrained correction
method, cost is found 1271.916 (ID). By comparing ISSA correction
method and chance-constrained correction method with without
correction methods, the ISSA algorithm saved 3.844% per day, and the
chance-constrained correction method saved 54.069% per day.

The comparison of the three scenarios—a) for a residence, (b) for a
business, and (c) for a factory—based on the total power bill is displayed
in Fig. 25. The comparison of the three situations based on improvement
(%) is displayed in Fig. 26. Table 2 compares the outcomes of ISSA,
suggested approach based on total electricity cost, and ISSA without the
corrective procedure. A comparison of the three scenarios—a) for a
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residence, (b) for a business, and (c) for a factory—based on the total
electricity bill is shown in Fig. 37. A comparison of the three situations
based on improvement (%) is shown in Fig. 38.

An application’s execution time requirement is computed for the
chance-constrained scenario in order to verify and examine its
complexity. Fig. 39 provides a visual depiction of the execution time.
These numbers show that the program’s execution time and memory use
both rise with the number of loads taking part in the coalition. The
execution time for residences, businesses, and factories is displayed in
Fig. 39.

ISSA correction

chance-constrained

(c)

Fig. 37. Comparison between three scenarios based on total electricity bill, a) for home, (b) for company, (c) for factory.
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3.5. Correlate the existing energy trading mechanism with proposed
energy trading mechanism

The current energy trading mechanisms, primarily dominated by
centralized grid and traditional utilities, are evolving towards more
decentralized and participatory models like P2P energy trading. The
proposed mechanisms leverage P2P technologies to facilitate direct
energy exchange between consumers and producers, thereby enhancing
transparency, efficiency, and lowering costs. Here’s a breakdown of the
correlation:
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1. Bridging the gap: The proposed mechanisms aim to integrate with
the existing centralized infrastructure by allowing prosumers to
connect to grid and also participate in decentralized P2P trading.
2. Incentivizing distributions’ energy resources: The proposed
Decentralized P2P trading can incentivize adoption of distributions’
energy resources, like as photovoltaics and wind turbines

3. Evolutionary approach: Existing centralized energy trading tran-
sition to a proposed decentralized P2P energy system may involve a
phased approach, gradually incorporating P2P trading alongside
existing centralized structures.

Conclusion

The decentralized EMS presented in this paper allows prosumers in
community to trade energy with one another while taking into account
the energy and financial flow between homes, businesses, and factories.
It also guarantees that each microgrid will experience a further decrease
in energy costs when operating as a part of a community system as
opposed to operating separately. By distributing the optimization tasks
among the various Controller platforms placed in each microgrid, hi-
erarchical energy management system lowers overall processing and
computation time.

In order to assess P2P multi-energy trading amongst factory, resi-
dential, and commercial prosumers while taking integrated DSM into
account, this study develops an optimization model. The suggested
model may be a useful and effective trading-aiding instrument to
establish fair trading prices and offer suggestions for the best designs of
energy infrastructure. A case study demonstrates how successful the
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suggested strategy.

A comparison between results obtained without corrective method,
using ISSA correction method only, and the chance-constrained method
based on total electricity bill is shown in this paper. Where the total
electricity bill of home without correction methods is 1248.91566 (ID).
But after applying the ISSA correction method, cost is found 856.7951
(ID), and after applying chance-constrained correction method, cost is
found 245.48964(ID). By comparing ISSA correction method and
chance-constrained correction method with without -correction
methods, the ISSA algorithm saved 31.396% per day, and chance-
constrained correction method saved 80.34% per day. Whereas The
total electricity bill of company without correction methods is 10,099.1
(ID). But after applying the ISSA correction method, cost is found
7442.4872 (ID), and after applying chance-constrained correction
method, cost is found 3895.2424 (ID). By comparing ISSA correction
method and chance-constrained correction method with without
correction methods, the ISSA algorithm saved 26.305% per day, and the
chance-constrained correction method saved 61.429% per day. Finaly
The total electricity bill of factory without correction methods is
2769.228 (ID). But after applying ISSA correction method, cost is found
2662.772 (ID), and after applying chance-constrained correction
method, cost is found 1271.916 (ID). By comparing ISSA correction
method and chance-constrained correction method with without
correction methods, the ISSA algorithm saved 3.844% per day, and
chance-constrained correction method saved 54.069% per day.

According to simulation results, utilizing the chance-constrained
smart bidding technique for P2P trade has decreased the grid de-
pendency and electricity prices of consumers and prosumers.
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Future studies can examine the transformer’s electrical and thermal
limitations by leveraging the prosumer’s versatility, potentially
improving its performance within the distribution network. Further-
more, this work does not consider the thermal models of the commer-
cial, industrial, and residential sectors, such as thermal energy storage
and heat pumps. These models can be added later to add demand-side
flexibilities and broaden the proposed framework.
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