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Advancing river water quality prediction: a comparative assessment of deep
learning models for dissolved oxygen forecasting

Ali J. Ali @@ and Ashraf A. Ahmed

Department of Civil and Environmental Engineering, Brunel University London, Uxbridge, UK

ABSTRACT

Accurate forecasting of dissolved oxygen (DO) is crucial for monitoring river water quality and
protecting aquatic ecosystems. This study compares the performance of four deep learning
models — Temporal Fusion Transformer (TFT), Informer, Long Short-Term Memory (LSTM),
and Gated Recurrent Unit (GRU) - for forecasting DO concentrations in the River Lee
(London, UK) across 7- and 30-day time frames. A multivariate time-series dataset was
employed, with temperature, turbidity, pH, conductivity, chlorophyll, and river flow as
predictors. Model skills were evaluated using RMSE, MAE, R2, and SMAPE. Over the 7-day
period, TFT had the lowest RMSE (0.06) and SMAPE (8.86%), while LSTM had the greatest R2
(0.77). TFT outperformed Informer, LSTM, and GRU at the 30-day horizon, with R2=0.79 and
SMAPE of 8.23%, despite significant accuracy losses. According to the variable contribution
study, temperature and river flow were the most significant factors, particularly for short-
term projections. Overall, the results show that transformer-based structures, particularly
TFT, can successfully represent nonlinear temporal dependencies and multivariate
interactions, making them ideal for multi-horizon DO forecasting in river systems. These
models have the ability to supplement normal monitoring by offering short-term

ARTICLE HISTORY
Received 18 July 2025
Accepted 30 January 2026

ASSOCIATE EDITOR
Soufiane Haddout

KEYWORDS

Hydrological time series;
River streamflow;
Hydrological time series;
River Lee; UK; Environmental
monitoring; Multi-horizon
prediction; Machine learning
in water resources

predictions about probable oxygen conditions.

1. Introduction

Dissolved oxygen (DO) is an essential parameter for
assessing the condition and the quality of aquatic eco-
systems. It is vital to the survival of aquatic life because
it affects metabolic rates, the cycling of nutrients, and
the overall equilibrium of ecosystems (Rajesh and
Rehana 2022, Xiao et al. 2023). DO concentrations
are significantly impacted by hydrological processes
such as rainfall, river flow, and temperature variations,
which are frequently caused by seasonal or climatic
variability. Whilst slowing low-flow periods can
cause oxygen depletion, especially in nutrient-rich
water that supports algal blooms, high flows encou-
rage aeration and oxygen diffusion (Luo et al. 2024).
For the purpose of preventing hypoxic occurrences
and protecting aquatic biodiversity, accurate DO pre-
diction across short and medium time horizons is
crucial.

While estimates between 7 and 30-days reflect med-
ium-term perspectives pertinent to practical water-
quality planning, forecasts within 7 days are often con-
sidered short-term (Ali et al., 2024; Ali and Ahmed
2024, 2025). Timely interventions like controlled
flow releases or aeration control can be supported by
accurate predictions across various scales (Danladi

Bello et al. 2017, Deshpande et al. 2021). There have
been recent developments in machine learning (ML)
(Cox 2003, Kushwaha et al. 2024, Li et al. 2024, Pant
et al. 2024). Model realism and contextual relevance
are improved when hydrological elements like temp-
erature, turbidity, and river flow are included in ML
frameworks. Nevertheless, a lot of current methods
have trouble capturing the nonlinear connections
causing DO oscillations across hydrological regimes.

This study compares the performance of four
sequential deep learning models - Temporal Fusion
Transformer (TFT), Informer, Long Short-Term
Memory (LSTM), and Gated Recurrent Unit (GRU)
- in forecasting DO at 7- and 30-day timeframes.
These models were chosen for their ability to represent
temporal dependencies and variable interactions in
multivariate hydrological data. This study attempts
to determine if transformer-based designs outperform
typical recurrent networks under dynamic river cir-
cumstances by focusing on the interface of hydrology
and predictive modelling.

Hydrological and physicochemical elements com-
bine to strongly control DO levels in river systems.
One of the main drivers is river flow, which increases
oxygenation through air exchange and turbulence
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(Lamping et al. 2005, Haider et al. 2013). On the other
hand, extended low conditions encourage oxygen
depletion and stagnation, especially in nutrient-
enriched reaches. Seasonal and climatic fluctuations
are important regulators of DO dynamics because
temperature has an inverse influence on DO solubility
- warmer water stores less oxygen (Kulkarni 2016).

Additional elements that affect oxygen transport
and ecosystem metabolism include turbidity, salinity,
and conductivity (Irvine et al. 2011, El-Nahhal et al.
2021). Elevated turbidity and conductivity modify
light penetration and ion exchange processes, whereas
high salinity decreases oxygen solubility. Runoff,
anthropogenic inputs, and rainfall events frequently
cause these factors to co-vary, resulting in nonlinear
feedback in DO behaviour. Sensor drift, missing
data, or regional heterogeneity may also have an
impact on their readings (Kim et al. 2021, Ghobadi
et al. 2024).

Building reliable forecasting models requires an
understanding of these connected interactions. Deep
learning architectures, including TFT, Informer,
LSTM, and GRU, may learn latent temporal inter-
actions that conventional empirical formulations are
unable to represent by incorporating such hydrologi-
cal dependencies. In addition to supporting the more
general objective of preserving riverine biological stab-
ility, this procedure increases forecasting accuracy.

Historical, physically based hydrological models
that use deterministic equations to explain flow
dynamics, temperature variation, and oxygen
exchange have been used to estimate DO (Radwan et
al. 2003, Pena et al. 2010). These models are often
physically based, which means they rely on equations
to represent physical processes in a body of water,
such as flow dynamics, variation in temperature, and
oxygen exchange mechanisms. Additionally, their
efficiency over long or highly variable periods is lim-
ited since they require constant and high-resolution
calibration data, which are not always accessible.

Machine learning and data-driven approaches have
become more popular in recent years for water quality.
These methods capture intricate temporal and spatial
patterns by directly learning statistical relationships
from observations without the need for explicit phys-
ical formulations (Li et al. 2024, Pant et al. 2024). A
successful balance between interpretability and pre-
diction ability has also been found in hybrid models
that include data-driven and physical components
(Xu et al. 2021, Ghobadi et al. 2024, Li et al. 2025).
However, performance differs significantly between
predicting horizons, model types, and data quality.

To overcome these constraints, this work develops
and evaluates four deep learning architectures for a
river system: Temporal Fusion Transformer (TFT),
Informer, Long Short-Term Memory (LSTM), and
Gated Recurrent Unit (GRU). These models were

chosen because of their shown capacity to incorporate
hydrological variables as pH, turbidity, temperature,
conductivity and river flow while modelling sequential
and multi-horizon dependencies. The TFT uses gating
mechanisms and multi-head attention to dynamically
emphasise important variables (Lim et al. 2021,
Maldonado-Cruz and Pyrcz 2024). By using its Prob-
Sparse attention mechanism, the Informer increases
computing efficiency for medium-term prediction
(Zhou et al. 2021). While the GRU offers a more
straightforward, computationally light recurrent base-
line, the LSTM efficiently captures both short- and
long-term dependencies in water-quality time series
(Khozani et al. 2022).

Few studies have thoroughly assessed transformers’
comparative performance versus recurrent models for
DO prediction at several horizons, despite their
increasing usage in hydrological forecasting. By exam-
ining how attention-based and recurrent architectures
react to short- and medium-term hydrological variabil-
ity, this work closes that gap and provides insight into
their advantages and disadvantages for practical water-
quality forecasting (Dey and Salem 2017). It is impor-
tant to note that this work is unique in that it compares
and interprets known deep learning architectures for
short- to medium-term dissolved oxygen forecasting,
rather than developing new model structures.

Previous research has mostly focused on immediate
or event-driven forecasting, leaving a major vacuum in
the credible short- to medium-term projections that
environmental agencies require for effective water
management. This work closes this gap by thoroughly
comparing cutting-edge sequential models such as
Temporal Fusion Transformer (TFT), Informer,
Long Short-Term Memory (LSTM), and Gated Recur-
rent Unit (GRU) over 7- and 30-day forecasting hor-
izons.  Furthermore, the incorporation  of
hydrological factors such as temperature, turbidity,
pH, and river flow guarantees that the models are
adapted to the intricate dynamics of aquatic environ-
ments. The key innovations of this study are:

e Examining the influence of environmental vari-
ation by illustrating how temperature, turbidity,
and river flow affect model predictions by examin-
ing their effects on DO levels.

 Evaluating the capacity of sophisticated deep learn-
ing models (TFT, Informer, LSTM, and GRU) to
properly anticipate DO levels in river systems
across short (7-day) and medium (30-day) time
periods.

e In-depth analysis of hydrological factors - such as
pH, chlorophyll, turbidity, temperature, conduc-
tivity, and river flow - affects these models’ predic-
tions and how they relate to managing the water
quality of rivers.



e Cross-site validation involves testing the models at
a different monitoring site to assess the created
frameworks’ spatial transferability and resilience.

This study contributes to our knowledge of how
deep learning models incorporate hydrological varia-
bility throughout operational forecasting timeframes
by comparing attention-based and recurrent architec-
tures. The results provide quantifiable information on
how well-suited contemporary transformer frame-
works are for short-term dissolved oxygen forecasting
in river systems.

2. Materials and methods

This section highlights our approach for Dissolved
oxygen (DO) forecasting in the River Lee. It uses a
combination of transformer models and deep learning
models, including TFT, Informer, LSTM, and GRU.
The procedures for gathering and preparing data are
presented in this section, outlining the mechanics of
each machine learning model, and clarifying the
evaluation standards.

2.1. Data collection and pre-processing

In order to forecast dissolved oxygen (DO) levels,
this study uses a wealth of hydrological data from
the River Lee in East London, United Kingdom.
The dataset, which comes from the Environment
Agency’s Hydrology Data Explorer, covers the period
from March 2016 to January 2024. The monitoring
station is about 7 kilometres from the River Thames,
towards East London. The dataset contains daily
observations generated from hourly readings from
March 2016 to January 2024. To guarantee compar-
ability across inputs, all variables were normalised
before model training. Dissolved oxygen, an impor-
tant indication of river health, was analysed with
other major water quality indicators such as pH,
chlorophyll, turbidity, temperature, conductivity,
and river flow. Data were acquired from the same
monitoring station in the river. However, the avail-
ability of comprehensive data for all characteristics
differed across the stations that were located in the
area. As a result, The River Lee was chosen as a
model urban river system due to human stresses,
changing hydrological conditions, and known
water-quality issues. Rather than focussing on unique
hydrodynamic behaviour, the work use the River Lee
as a realistic testbed for evaluating the performance
and interpretability of deep learning models under
typical urban river settings where short-term dis-
solved oxygen forecasting is operationally important.

An additional monitoring station close to the River
Lee was utilised as an external validation site in order
to evaluate spatial resilience. The additional dataset

INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT . 3

allows for initial testing of model transferability
under various hydrological conditions, although cov-
ering a shorter time period and fewer variables
(Appendix A).

Raw hourly readings were aggregated to daily
averages to smooth out sub-day noise and highlight
hydrological interactions that influence DO. Missing
values (<2%) were filled via mean imputation, ensur-
ing sequence continuity for deep-learning models
(Vafaei et al. 2018). Sensitivity testing revealed that
the results were consistent before and after imputa-
tion. Outliers, primarily from sensor spikes, were
identified using interquartile range criteria and ocular
inspection. All predictors were normalised to [0, 1] by
the MinMaxScaler (Kang and Tian 2018). Previous
research has linked temperature, river flow, turbidity,
conductivity, pH, and chlorophyll to oxygen solubility
and water clarity (Neal et al. 2006, Kney and Brandes
2007, Huey and Meyer 2010). To guarantee repeatabil-
ity, data preparation and modelling were carried out in
Python using TensorFlow and scikit-learn, as well as a
fixed random seed. To ensure stability, the findings
were cross-checked with different random splits and
minor changes to imputed data. A schematic flowchart
of data collecting, preprocessing, model training, vali-
dation, and assessment.

Several preprocessing and feature-engineering
methods were used to prepare the dataset for dissolved
oxygen (DO) predictions. Key water-quality indicators
- DO, pH, chlorophyll, turbidity, temperature, con-
ductivity, and river flow — were kept recording the
physical and chemical variables that influence oxygen
solubility and ecosystem metabolism. Temperature
directly influences oxygen solubility (Zhi et al. 2023),
whereas turbidity shows suspended particles that
decrease light penetration and photosynthetic activity.

Lagged features were created for all predictors
except DO with a three-day lag, allowing models to
learn temporal relationships between past and current
situations (Kim et al. 2021). Rolling averages with a
seven-day timeframe were calculated to smooth daily
swings and capture weekly hydrological patterns
(Amor et al. 2016). Together, these modifications pro-
vide the contextual memory required for sequential
deep-learning systems. To equalise the contribution
of each input feature, all variables were scaled from
0 to 1 using the MinMaxScaler (Deepa and Ramesh
2022, Ahmed et al. 2024). Scaling keeps large-magni-
tude factors like conductivity from dominating gradi-
ent updates in models like as LSTM, GRU, and
Transformer versions.

A multi-horizon dataset was subsequently created
for 7- and 30-day prediction windows, allowing
short- and medium-term forecasting. The dataset
was separated into three subsets: training (70%), vali-
dation (15%), and holdout testing (15%). Sampling
was random yet reproducible, using a set random
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seed (42). Although chronological divides are usual in
time-series research, random sampling was used since
the dataset had minimal autocorrelation beyond 30
days and rather steady hydrological behaviour, result-
ing in balanced distributions across subsets (Lessels
and Bishop 2020).

The training and validation sets were used to fit
models and tune hyperparameters, with the unseen
test set serving as the final evaluation. The uniform
preprocessing and feature-engineering approach guar-
anteed that all models - TFT, Informer, LSTM, and
GRU - were trained with similar inputs, allowing for
a fair multi-model comparison. The multi-horizon
approach allowed for simultaneous calculation of
near-term (7-day) and medium-term (30-day) DO
dynamics, which improved the interpretability of
short- and long-term responses to hydrological varia-
bility (Quaedvlieg 2021).

2.2. Machine learning models

Input factors were chosen based on their known phys-
ical and biogeochemical effects on dissolved oxygen
dynamics. Temperature determines oxygen solubility,
turbidity and chlorophyll indicate light availability
and biological activity, river flow affects mixing and
reaeration, conductivity depicts ionic composition,
and pH reflects chemical conditions that impact oxy-
gen processes.

This study employs a novel method in the field of
hydrological modelling by applying the Informer
and TFT models to the challenge of DO forecasting
across the specified (short 7-days) and medium (30-
days). These structures are ideal for hydrological
time series forecasting because they can capture non-
linear dependencies and long-term temporal inter-
actions between many environmental causes. Unlike
traditional hybrid or ensemble methods, which inte-
grate many model types to improve accuracy, trans-
former-based systems learn temporal and contextual
correlations directly from data using their attention
processes (Choi and Lee 2023). To achieve total
repeatability, all model designs, hyperparameters, pre-
processing methods, and assessment procedures are
thoroughly described. Fixed random seeds, consistent
data splits, and identical feature sets were used to train
the models across all architectures. This defined meth-
odology assures that performance discrepancies are
due to model capacity rather than experimental
setting.

Transformers were chosen because their self-atten-
tion mechanism enables the simultaneous modelling
of both short- and medium-range interdependence
across all hydrological variables — features that recur-
rent networks frequently approximate sequentially.
The informer uses a ProbSparse attention method to
effectively handle large sequences while preserving

accuracy (Zhou et al. 2021). In contrast, the TFT
uses variable selection networks and gated residual
connections to provide interpretable multi-horizon
predictions (Lim et al. 2021)

For a comparative study, LSTM and GRU models
were used as recurrent baselines, allowing for direct
comparison of transformer performance to proven
sequential architectures. While hybrid or physics-
informed frameworks can improve interpretability,
they usually need considerable preprocessing and par-
ameter calibration (Sseguya and Jun 2024). In contrast,
the transformer-based models utilised here dynami-
cally prioritise important features from raw inputs,
eliminating the need on handmade feature design.

Although this work focuses on data-driven model-
ling, the ability to integrate transformer topologies
with physics-based techniques remains an essential
area of future research. Such integration might com-
bine the interpretability of mechanistic models with
the predictive ability of deep learning, hence increas-
ing the application of DO forecasting over a wide
range of hydrological systems.

2.2.1. Long short-term memory

This study used LSTM networks to forecast dissolved
oxygen levels in a river system. Because of its capacity
to store information over lengthy time periods, LSTM
models are ideal for time series forecasting. They do
this with memory blocks made up of gates and cells,
with the cell serving as a conveyor belt to transport
information along the sequence. The gates define
what information should be added or deleted from
memory, and each gate has its own weights and biases
(Khozani et al. 2022, Ali and Ahmed 2024).

Jo = o(wy.[h—y, x:], by)

The forget gate decides which information to erase
from memory, where f; represents the forget gate out-
put, o is the sigmoid function, h;_; is the hidden state
from the previous time step, x; is the current input, wy
is the forget gate’s weight matrix, and by is the bias
term. This procedure guarantees that the model pre-
ferentially remembers significant information, with
the sigmoid function determining the degree of mem-
ory retention (Kong et al. 2021).

The input gate, which selects what new information
should be placed in the memory cell, employs the tanh
function to produce fresh data for the memory
(Gundu and Simon 2021). These gates enable the
model to dynamically determine which components
of the time series are relevant for predicting. In the
current study, LSTM model architecture was defined
as follows:

e Model definition: A sequential model was used with
an LSTM layer containing 64 units. The layer ident-
ifies temporal connections in the data without



returning the sequence. The model concludes with
a dense layer that forecasts the multi-horizon
sequence.

e Output layer: to anticipate dissolved oxygen levels
across a number of future time steps, a dense
layer with a linear activate function was employed.

e Model compilation: The model is trained well by
using the Adam optimiser with a learning rate of
0.001 and a Mean Squared Error (MSE) loss func-
tion during compilation.

e Training and validation: Early stopping was utilised
during training to prevent both overfitting and
underfitting, halting the process if there are no
enhancements in the validation loss after 10 epochs.

The model’s performance is assessed by making
predictions on the holdout, validation, and training
sets after training. The gating mechanism of LSTM
enables it to efficiently manage partial and noisy
water quality data by filtering out unnecessary infor-
mation (Khozani et al. 2022). It is perfect for estimat-
ing DO because of its ability to simulate non-linear
interactions between environmental parameters. Fur-
thermore, multi-horizon forecasting is supported by
LSTM, enabling prediction across a longer time hor-
izon. Previous hydrological studies have effectively
used this model (Dayal et al. 2024, Martin-Suazo et
al. 2024), demonstrating its ability to forecast intricate
river dynamics. Figure: Workflow of the methods used
to anticipate dissolved oxygen (DO) levels in the River
Lee. The process consists of data collection, preproces-
sing, model building, training and validation, and per-
formance evaluation (Figure 1).

2.2.2. Gated recurrent unit

GRU is a great option for sequence modelling because
of its effectiveness in managing long-term dependen-
cies, which is essential for forecasting hydrological
variables like DO in river ecosystems (Chung et al.
2014). By removing the memory cell and integrating
the input and forget gates into a single update gate,
the GRU model of recurrent neural networks sim-
plifies its design more than the LSTM. This maintains
the capacity to accurately describe sequential data
while reducing computing complexity (Cahuantzi et
al. 2023).

To ensure the network can capture the dependen-
cies, the update gate Z; in the GRU regulates how
much data from the previous time steps is carried
over to the current state. The amount of historical
data that should be forgotten is decided by the reset
gate r. This can be expressed mathematically as
(Chung et al. 2014):

Zy = o(Wext + Uzhy_y)

re = o(Wex + Uphy_y)
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In this study, a GRU model was created to anticipate
DO levels over a variety of time periods. The capacity
of the GRU can handle intricate temporal linkages in
hydrological data, making it a well-suited model for
this research. For a fair comparison, the GRU model
was constructed similarly to the LSTM model with 64
units, and a dense layer with a linear activation function
to provide predictions for the designated horizon.

2.2.3. Temporal fusion transformer

The TFT model is a cutting-edge deep learning model
built for time series forecasting, particularly multi-
horizon applications such as predicting DO in river
systems (Marcellino et al. 2006, Lim et al., 2021).
TFT mixes standard model interpretability with deep
learning’s advanced sequence modelling capabilities.
Its main strength is its capacity to handle complicated,
non-linear temporal patterns found in hydrological
data by using methods like multi-head self-attention
and gated residual network (GRN). The multi-head
self-attention mechanism assists the model in captur-
ing long-term dependencies in time series data, whilst
the GRN filters out unnecessary information, allowing
the model to focus on the most important features
(Vaswani et al. 2017).

Furthermore, TFT incorporates both static and
temporal variables, such as geological characteristics
and water flow, making it useful for forecasting river
quality over long periods of time. The model analyses
data using both LSTM layers, which capture short-
and medium-term dependencies, and the attention
layer, and is critical for comprehending patterns
such as seasonal changes or lengthy dry spells that
affect dissolved oxygen in river systems. The model
includes early stopping to prevent overfitting and
ensure resilience over many horizons. It is trained
using the Adam Optimiser for efficient learning.

The TFT model is ideal for this study since it can
handle multi-horizon predictions whilst maintaining
interpretability, and it has been applied in some
studies (Wang and Tang 2023). The nature of river
systems, in which numerous environmental con-
ditions impact DO, necessitates a model that can
incorporate both short-term fluctuation, such as
daily river flow changes, and long-term seasonal
trends like temperature fluctuation. The TFT design,
which incorporates multi-horizon attention and gat-
ing techniques, ensures the model captures the essen-
tial hydrological dynamics required for reliable
prediction over a range of time horizons. The gating
mechanism blocks can be expressed as follows (Lim
et al. 2021):

GRN(a, ¢) = LayerNorm(a + GLU,(m,))
n = Wiom, + bio
1, = ELU(W,wa + Wiwc + by w)
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Data Sources

l—‘—|

Environment Agency

Local Stations

Pre-Processing Model development

) LSTM (Temporal Memory)
Aggregated hourly to daily |

TFT (Variable selection,
attention, GRN)

Informer (ProbSparse.
attention)

Lags features 3-days |
GRU (Gated recurrent Unit)

Mean Imputation

Normalisation

7-day rolling window

Training Process Performance Metrics
Chronological split:
Train (70%)
Val (15%), Holdout(15%)

|
Optil r: Adam; MSE:
y stopping

Hyperparameters

Figure 1. Workflow of the methods used to anticipate dissolved oxygen (DO) levels in the River Lee. The process consists of data
collection, preprocessing, model building, training and validation, and performance evaluation.

With a primary input of a and an optional context
vector of ¢, the Gated Residual Network (GRN) for-
mula makes use of Gated Linear Units (GLUs) and
exponential linear unit (ELU) activation (Clevert et
al. 2015). A thorough grasp of the variables affecting
river water quality is made possible by its potent tem-
poral fusion decoder and capacity to analyse both sta-
tic and dynamic covariates.

2.2.4. Informer

The Informer model was used in this research
because it effectively manages long sequence time
series forecasting, which is crucial for predicting
DO levels in rivers. It solved significant constraints
of standard transformer models by including inno-
vations such as the ProbSparse self-attention mech-
anism and self-attention distilling operation,
making it suited for such forecasts. The ProbSparse
self-attention mechanism enhances computational
efficiency by focusing on the most critical queries
for self-attention computation, lowering complexity
from Q(L?) to Q(LlogL), where L is the length of
the input sequence (Zhao and Wang 2023). The
attention mechanism is determined by (Zhou et al.
2021):

Attention(Q, K, V) softmax(QKT>V
T ey
Where Q, K, and V stand for the queries, keys, and
values matrices, respectively, whilst dx denotes the
key’s dimension. The ProbSparse approximation in
the Informer model only chooses the top- u queries
- where u is defined by the sparsity ratio - for cal-
culating the self-attention. The self-attention distil-
ling procedure decreases computing efforts by
gradually lowering the input size over numerous

levels. The relevance of each attention score is
reduced, leaving just the most important com-
ponents for succeeding (Zhou et al. 2021, Xu et al.
2023). It can be expressed as:

Ao A
L] — L
Zk:lAi,k

Where A; j is the condensed form, and A is the orig-
inal attention matrix. While preserving important
temporal relationships, this procedure efficiently
condenses the sequence information to make it
easier to handle for deep processing.

Finally, the model employs a generative decoder,
which allows it to predict a whole future sequence
in a single forward pass rather than step by step,
hence boosting both inference speed and prediction
accuracy for extended sequences. The model used in
this study used 4 attention heads with a dimension-
ality of the model’s embedding space of 64 and a
feed-forward dimension of 128. The ProbSparse
self-attention mechanism decreases the compu-
tational complexity, which leads to more efficiency
in long-sequence prediction over extended horizons.
The Informer model’s capacity to accommodate
extended input sequences while focusing on crucial
temporal dependencies makes it ideal for forecasting
dissolved oxygen in rivers, where seasonal and
hydrological trends play an important role.

These models were chosen for their interpretability
features, which are essential for evaluating our
hypothesis, in addition to their forecasting accuracy.
The attention processes included in the informer
and TFT models are crucial for understanding how
different hydrological conditions affect DO levels.
For instance, it’s clear which variables (such as temp-
erature or river flow) the TFT model concentrates on
under various circumstances or at different seasons of



the year due to its multi-head attention mechanism
(Lim et al. 2021). This skill helps to design focused
management plans by explicitly testing our hypothesis
that some environmental elements have a more sub-
stantial influence during various periods. Water man-
agement authorities can better comprehend model
projections and make well-informed judgments
because of these interpretability qualities, which also
make practical applications easier. Authorities can
improve water quality management methods by better
prioritising monitoring and intervention efforts by
determining which factors have the most impact on
DO levels.

2.2.5. Hyperparameter configuration

Each model’s hyperparameters were chosen with care
to maximise performance through a range of predict-
ing horizons. A batch size of 32, a learning rate of
0,001, and 64 units in the hidden layers were chosen
for the LSTM and GRU models. To avoid overfitting,
both models used the Adam Optimiser and early stop-
ping with a 10-epoch patience. Crucial hyperpara-
meters for the TFT model were two 64- and 32-unit
LSTM layers, followed by a multi-head attention
mechanism with four heads and a key dimension of
16. Four attention heads, a sparse attention mechan-
ism, an embedding size of 64, and a feed-forward
dimension of 128 were all included in the informer
model’s configuration. The Adam Optimiser was
used to train both the informer and TFT models
with a batch size 32, an early stopping time of 10
epochs, and a learning rate of 0.001. Taking into
account the distinct temporal and hydrological
dynamics of the dataset, these hyperparameters were
adjusted to strike a balance between accuracy and
computing efficacy.

2.3. Evaluation methods

2.3.1. Rolling window

Each model in our study was assessed using a standar-
dised procedure designed to forecast the amounts of
dissolved oxygen in river ecosystems. During post-
data pre-processing, a rolling window technique that
produces rolling window and lag features was used.
This method was used to capture the impact of histori-
cal environmental circumstances on present-day dis-
solved oxygen levels. By using information from
previous observations (i-1 to i-N), the rolling window
approach evaluates the model’s performance at a
specific time instance i to produce h-step forward pre-
dictions (Amor et al. 2016). This method is in line with
the dynamic character of river habitats, where past cir-
cumstances influence the current water quality stan-
dards, such as variations in temperature, river flow,
or turbidity. As the time window advances, the
model is updated regularly to take into account fresh
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data and enhance future projections. Qur estimates
will always be precise and true to the natural fluctu-
ations in river systems, thanks to this continuous
updating mechanism.

2.3.2. Holdout sets technique

In this study, the holdout method was utilised to assess
how well our models performed on forecasting DO
levels. This method is particularly effective since it
splits the dataset into two separate sets — a training
set and a holdout (testing) set. This method works
especially well for non-stationary time series, such as
data on river water quality. The models’ predictive
power was assessed by training them on the first seg-
ment and testing them on the second, which included
new, unseen data. Compared to other approaches,
such as cross-validation, the holdout technique is the
most appropriate for time-dependent data, as it
assures more reliable validation, which makes it par-
ticularly beneficial for hydrological forecasting. It pro-
vides a reliable evaluation of the model’s predictive
power in a practical setting, making it an important
stage in confirming its performance (Cerqueira et al.
2020).

2.3.3. Performance metrics (RMSE, MAE, R?, and
SMAPE)

Three metrics were used to assess the effectiveness of
our models: the Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), R-squared (R?), and
the Symmetric Mean Absolute Percentage Error
(SMAPE). These metrics were selected to provide a
comprehensive evaluation of the prediction accuracy
and reliability of the model (Chicco et al. 2021, Li et
al. 2025).

The RMSE determines the average error magnitude by
assessing the extent of anticipated errors. The accuracy of
the model is determined by taking the square root of the
average squared differences between the actual and pro-
jected values. The RMSE formula is as follows:

1 m
RMSE = |— X —Y)%
/m;( )

(best value = 0, worst value = +00)

MAE determines the average magnitude of errors in a set
of forecasts without taking into account the direction of
the errors. It is the mean, with equal weight given to
each individual deviation, of the absolute differences
between the observed and predicted values over the test
sample. The formula can be expressed as follows:

MAE =
1 m
ZZ |X; — Y;|; (best value = 0, worst value = 400)

i=1

R-squared (R*) measures the dependent variable’s
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anticipated variation from the independent factors. Based
on the percentage of total variation that the model
explains, it evaluates how well observed results are
repeated by the model in DO levels. R* can be calculated
as follows:

R2 1— Z;i1 (Xi - Yz)2 .
Y (Y- Yy
(best value = +1, worst value = —)

SMAPE is popular error static in time series models, the
accuracy is determined by comparing the expected and
actual values and normalising the absolute errors by the
total of the absolute values of the anticipated and actual
values. This is especially important in ecological research
because DO concentrations can fluctuate greatly. SMAPE
can be expressed as follow:

>

2 _
SMAPE = 100 x mean (M)

|ytrue| + |yprep|
(best value = 0%, worst value = 100)

To handle the unique difficulties presented by DO level
forecasts in river systems, the forecasting horizons were
carefully chosen in addition to the performance metrics.
Numerous short- and long-term environmental variables
impact the temporal dynamics of DO levels. In order to
fully capture these dynamics, our analysis incorporates
a variety of predicting horizons, including 7 and 30.

e Short-term horizons (7 and 30 days): These time
periods are essential for comprehending how DO
levels react instantly to fleeting occurrences like pre-
cipitation, pollution, and abrupt ecological shifts.
The survival of aquatic species and the health of eco-
systems may depend on prompt responses, which
require management of these transient changes.

The choice of these particular horizons enables our
models to offer insightful information at a variety of
temporal scales, each of which is essential for distinct
facets of ecological forecasting and water quality man-
agement. It is guaranteed that our prediction models
are not only adaptable but also directly relevant to

Table 1. The holdout results of all models across all 5 horizons.

requirements of environmental scientists and local
government agencies in maintaining the well-being
of river systems by including this range.

3. Results and discussion

In this section, four model was assessed - TFT, Informer,
LSTM and GRU - over two predicting horizons: 7 and
30 days. This multi-horizon forecasting technique
reveals important information about each model’s resi-
lience, accuracy and capacity to manage short- and med-
ium-term dependencies in predicting DO levels in river
water. The model’s performance was evaluated using
RMSE, MAE, R* and SMAPE. These metrics examine
the models’ capacity to forecast DO and capture trends
and variability in water quality. A complete examination
of how each model performs over the various horizons is
presented, with an emphasis on the identification of
standout models for each horizon. The fundamental
contribution of this work is its comparative and inter-
pretive analysis, rather than architectural alteration.
The study evaluates transformer-based and recurrent
deep learning models under identical hydrological
inputs and forecasting horizons, providing practical
insight into the relative strengths, stability, and inter-
pretability of each architecture for short- to medium-
term dissolved oxygen forecasting. Table 1 demonstrate
the results on the holdout sets.

In the medium-term, TFT had the best perform-
ance (RMSE=0.06; SMAPE =8.23; R2). Over the
near run, all models had comparable RMSE (0.06-
0.07) and MAE (0.05). TFT had the lowest SMAPE
(8.86%) and highest R2 (0.77), closely followed by
LSTM and GRU (SMAPE 9.07-9.10). Informer
showed somewhat larger inaccuracy (SMAPE=
9.14%). These findings show that all designs caught
short-term DO changes successfully, with TFT having
the most consistent error profile.

This study compares the performance of four
sequential deep learning models - Temporal Fusion
Transformer (TFT), Informer, Long Short-Term
Memory (LSTM), and Gated Recurrent Unit (GRU)

Table 2. The validation results of all models across all 5
horizons.

7-Step Ahead

7-Step Ahead (Validation)
(Holdout) Model RMSE MAE R2 SMAPE
2
Model RMSE MAE R SMAPE 1y 0.07 0.05 073 9.35
TFT 0.06 0.05 0.77 8.86 Informer 0.07 0.05 0.73 9.64
Informer 0.07 0.05 0.74 9.14 LSTM 0.07 0.05 0.74 9.57
LSTM 0.06 0.05 0.77 9.07 GRU 0.07 0.05 0.74 9.50
GRU 0.06 0.05 0.76 9.10 30-Step Ahead
30-Step Ahead (Holdout) (Validation)
Model RMSE MAE R? SMAPE Model RMSE MAE R? SMAPE
TFT 0.06 0.04 0.79 8.23 TFT 0.06 0.05 0.77 9.33
Informer 0.07 0.05 0.73 9.28 Informer 0.07 0.05 0.70 10.35
LSTM 0.06 0.05 0.75 8.87 LSTM 0.07 0.05 0.70 10.28
GRU 0.07 0.05 0.70 9.84 GRU 0.08 0.06 0.65 11.25




- in forecasting DO at 7- and 30-day timeframes.
These models were chosen for their ability to represent
temporal dependencies and variable interactions in
multivariate hydrological data. This study attempts
to determine if transformer-based designs outperform
typical recurrent networks under dynamic river cir-
cumstances by focussing on the interface of hydrology
and predictive modelling.

Strong generalisation across all models was
confirmed by the validation results (Table 2), which
closely matched the holdout findings. SMAPE over
the seven-day horizon varied from 9.35% to 9.64%,
with TFT once more yielding the lowest error
(9.35%). Informer’s findings were somewhat better
than those of LSTM and GRU. TFT continued to per-
form the best for the 30-day horizon (SMAPE =
9.33%). GRU demonstrated lower accuracy (SMAPE
=11.25%), showing more difficulties modelling
longer-term temporal patterns, whereas Informer
and LSTM had slightly higher error (10.28-10.35%).

Early stopping, preprocessing, and feature-engin-
eering methods successfully prevented overfitting,
and the models reflected robust hydrological connec-
tions in the data, as seen by the strong relationship
between validation and holdout measures.

3.1. Model overview

The Symmetric Mean Absolut Percentage Error
(SMAPE) was used as a main accuracy metric to evalu-
ate the performance of four prediction models used in
this study: TFT, Informer, LSTM, and GRU, over a
range of predicting horizons. The architecture of
each model is specifically designed to capture tem-
poral relationships, which affects how successful they
are at various time scales. Figure 2 summaries the
holdout SMAPE performance for both horizons.

3.1.1. 7 - steps forecast

The substantial temporal autocorrelation in short-
term DO changes was reflected in all models” good
performance over the 7-day horizon. While Informer,
LSTM, and GRU generated similar SMAPE values
(9.07-9.14%), TFT had the lowest error (8.86%).
This shows that all models successfully captured
daily DO fluctuation, with just a little difference in pre-
dicted accuracy.

3.1.2. 30 - steps forecast

Performance patterns remained consistent throughout
30 days, although discrepancies across models grew
more prominent. TFT again had the lowest error
rate (8.23%), followed by LSTM (8.87%). Informer
and GRU had greater SMAPE (9.28% and 9.84%),
indicating that their capacity to extract medium-
range temporal relationships was less effective than
TFT’s variable-selection and attention processes.
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Each model’s actual vs expected graphs over a range
of timeframes offer important information about the
models’ strengths and weaknesses. Figure 3 plots
emphasise each model’s accuracy and reactivity to
environmental changes by graphically illustrating how
it depicts the dynamics of dissolved oxygen in the river
system over time.

For the 7 days horizon, both the TFT and informer
models aligned well with the real trend in DO, indicating
how well they manage transient variations. The models’
susceptibility to sudden changes in water quality par-
ameters, including rainfall or pollution influxes, could
be the cause of the minor differences between expected
and actual readings. By using their advanced attention
processes to concentrate on the most important recent
future, as indicated by the denser clusters of points sur-
rounding the line perfect fit. The same goes for the LSTM
and GRU, which operated admirably. However, the
graph shows occasional departures during periods of
significant DO oscillations, which may indicate a
worse ability to respond to quick environmental changes
than transformer-based models. The error distribution
in these models is slightly wider, indicating a marginally
worse prediction precision at this scale; this can be
viewed in the next section.

3.2. Model performance

Error-distribution plots (Figures 3-6) were used to
evaluate each model’s stability and bias across the 7-
and 30-day periods. These distributions offer more
insight into predicting dependability than aggregate
measurements like RMSE or SMAPE (Mertikas, 2023).

Figure 4 illustrates that the TFT generated error
distributions that were tightly centred and very sym-
metrical across both horizons. At 7 days, errors were
tightly grouped around zero, showing high short-
term stability and low systematic bias. Although the
dispersion grew somewhat at 30 days, the distribution
remained centred with a tiny mean error (x0.01), indi-
cating that TFT performed consistently in the medium
range. This conduct is consistent with the model’s
attention processes, which aid in the preservation of
relevant temporal structure over long time horizons.

The Informer model (Figure 5) likewise provided
well-centred error distributions on both horizons.
The 7-day distribution was compact, demonstrating
the model’s capacity to capture local temporal
relationships. At 30 days, the error spread rose con-
siderably, while the median error remained close to
0. This expansion is predicted because longer time
horizons create more uncertainty and amplify modest
departures in earlier phases. Informer’s stability across
horizons reflects the advantages of its sparse attention
mechanism, while its medium-range mistakes were
somewhat bigger than TFT’s.
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Comparison of Forecasting Models by Holdout SMAPE (7 Steps)
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Figure 2. Comparison between the models in the short-horizons.

At 7 days, LSTM demonstrated consistent short-term
behaviour, with a tight, central distribution (Figure 6).
Over the 30-day period, the dispersion widened more
than the transformer-based models. This shows that,
while LSTM captures short-term hydrological connec-
tions successfully, it loses robustness as the forecast win-
dow grows larger. This is consistent with recurrent
models’ reliance on sequential memory, which can
accrue errors over extended time periods.

GRU showed similar performance trends as LSTM
(Figure 7). The 7-day horizon revealed a tight distri-
bution at zero, showing high short-term dependabil-
ity. At 30 days, the distribution expanded and
exhibited somewhat greater deviations than LSTM,

indicating that GRU’s simpler gating structure had a
limited capacity to sustain medium-term dependen-
cies. Nonetheless, the median error remained close
to zero, showing no systematic bias.

Across all models, error distributions were tightest at
the 7-day horizon, which is consistent with the high
short-term temporal autocorrelation commonly seen
in DO time series. At the 30-day horizon, all models
had larger distributions, indicating the predicted rise
in uncertainty as hydrological factors pile over time.
TFT and Informer had the narrowest error distributions
across both horizons, showing higher medium-range
stability, which is likely due to their attention processes
and capacity to focus on informative time steps.
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Figure 3. actual vs predicted for short term (7- and 30-steps).

In contrast, LSTM and GRU had a wider variety of
mistakes at 30 days, indicating the difficulty recurrent
architectures have in maintaining information over
long durations. When combined with the aggregate
accuracy measures, these patterns indicate that trans-
former-based models conserve temporal structure
more successfully over long horizons, whereas recur-
rent models remain competitive but are less stable in
medium-term forecasting.

3.3. Variable contribution analysis

The major goal variable in this work was dissolved oxy-
gen (DO), and its linkages to important hydrological
and environmental parameters give critical context
for understanding model behaviour. As seen in Figure
8, temperature had the highest negative correlation
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with DO (—0.69). This matches well-known thermo-
dynamic phenomena, in which oxygen solubility
decreases as water temperature rises. Models that prop-
erly captured this link, notably TFT, produced lower
short-horizon SMAPE values (8.86% at 7 days and
8.23% at 30 days), demonstrating the importance of
incorporating quick temperature-driven oscillations
for prediction accuracy. At these shorter horizons, the
LSTM model also demonstrated impressive accuracy,
successfully monitoring quick changes in water metrics
as turbidity, pH, and chlorophyll. LSTM capitalised on
the temporal correlation between DO and pH (corre-
lation of 0.13), especially in reaction to short-term
acidity variations, whilst having a simpler recurrent
structure than attention-based models. This slight

direct association, however, indicates that its impact
decreased after the short-term projection periods.
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TFT Model - Distribution of Prediction Errors
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Figure 4. TFT error distribution for both horizons.

LSTM also worked well at short time scales, suc-
cessfully predicting variations related to pH, turbidity,
and chlorophyll. The positive but slight correlation
between DO and pH (0.13) indicates a weaker direct
influence, which may explain why the effect was
more visible in short-term forecasts than over longer
time horizons. Similarly, chlorophyll had a slight posi-
tive connection with DO (0.20), indicating the impact
of biological activity. This link contributed to the suc-
cessful capture of short-term changes by LSTM and
TFT, while Informer and GRU were less sensitive to
these fast swings.

GRU handled short-term dependencies consist-
ently and provided performance equivalent to
LSTM at both horizons. Turbidity showed a moder-
ate association with river flow (0.53), indicating that
hydrological disturbances influence suspended par-
ticles. Both GRU and LSTM appeared sensitive to
this relationship over a 7-day period, but GRU’s

error distribution widened more noticeably at 30
days. This implies that cumulative nonlinear inter-
actions among hydrological factors affected its med-
ium-term stability.

Informer worked well on short time horizons while
being meant for longer input sequences. Its multi-
head attention mechanism allowed it to predict inter-
actions involving temperature and river flow, two fac-
tors with weak but significant relationships with DO
(0.094 for river flow). However, as shown in Table 1,
its SMAPE values rose compared to TFT at both hor-
izons, showing problems in catching abrupt short-
duration changes, particularly those caused by flow
variability.

Conductivity had a slight negative connection with
DO (—0.15), but its effect grew more noticeable during
the 30-day period. TFT and GRU successfully depicted
this medium-term pattern, which is consistent with the
slow impact of conductivity on river chemistry.
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Informer Model - Distribution of Prediction Errors
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Figure 5. Informer error distribution for both horizons.

Improvements in these models’ 30-day measures show
that the more steady, slowly shifting character of con-
ductivity is simpler to account for in medium-term
projections. River flow had a slight positive association
with DO (0.094), but was highly connected with turbid-
ity, as indicated by their correlation of 0.53. Models
sensitive to short-term hydrodynamic changes, such
as TFT and LSTM, effectively captured these fluctu-
ations after 7 days. Informer, on the other hand,
struggled with sudden flow-related transitions at
times, which is consistent with its architecture’s prefer-
ence for longer temporal relationships.

Overall, the short-term forecasting horizons
revealed significant strengths in each model. TFT and
LSTM were the most successful in adapting to fast
hydrological changes, while GRU provided a computa-
tionally economical alternative with high immediate
performance. Informer gave a balanced representation
of short- and medium-range relationships. These
findings highlight the necessity of choosing forecasting

==+ Mean Error: -0.03
==+ Median Error: -0.03

0.1 00 ol

Prediction Error (Dissolved Oxygen)

models that account for both the temporal properties of
the target variable and the dynamic behaviour of
important hydrological factors.

3.4. Premutation feature importance (PFI)

While correlation analysis is beneficial for under-
standing the linear correlations between hydrological
factors and DO, it does not explain how these vari-
ables are used by forecasting models during predic-
tion. To overcome this issue and improve model
interpretability, a Permutation Feature Importance
(PFI) analysis was performed (Figure 9). PFI is a
model-independent interpretability approach that
quantifies the importance of each input variable by
assessing the decrease in prediction performance
caused by random permutation of its values (Kaneko
2022, Khan and Byun 2023). Unlike correlation
analysis, PFI takes into account nonlinear inter-
actions and the underlying structure of deep learning
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LSTM Model - Distribution of Prediction Errors
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Figure 6. LSTM error distribution for both horizons.

models, making it ideal for the transformer-based
and recurrent architectures employed in this work.
The PFI analysis thus supplements the correlation
heat map by demonstrating which hydrological dri-
vers have the most effect on the trained forecasting
model, rather than just their statistical relationship
with DO.

Temperature was found as the most significant
hydrological driver of DO predictors, causing the
greatest rise in SMAPE when permuted (6.92). This
validates temperature circumstances’ dominating
influence on oxygen solubility and short-term DO
variability, which is compatible with well-established
physical principles determining gas solubility in
water. Turbidity (2.15) and conductivity (2.05) were
the next most important predictors, indicating the sig-
nificance of suspended particles and ionic concen-
tration in influencing oxygen dynamics via light
attenuation, mixing, and chemical reactions (Carey
et al. 2023). Chlorophyll had a moderate impact

(1.69), which is consistent with the role of algal photo-
synthesis and respiration in short-term DO variations.
River flow (0.55) and pH (0.40) had lesser effects,
showing less direct influence on DO variability at 7-
30-day forecasting timeframes. These findings show
that PFI gives a physically interpretable explanation
for the TFT model’s performance and establish that
the model’s major predictors are compatible with
known hydrological and biogeochemical controls.

3.5. Models’ limitations and strengths

The TFT, Informer, LSTM, and GRU models were
tested for their strengths and limitations in forecasting
dissolved oxygen (DO) across short-term horizons of
7 and 30 days. Each model revealed significant benefits
based on its design, ability to capture short-term varia-
bility, and ability to represent interactions between
hydrological factors. TFT performed well across both
perspectives, with low SMAPE values and high R2
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GRU Model - Distribution of Prediction Errors
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Figure 7. GRU error distribution for both horizons.

scores. Its main feature is its multi-head attention
mechanism, which allows the model to prioritise
informative time steps and change the impact of
major factors like temperature and river flow (Lim et
al. 2021). This ability to dynamically weight feature
significance contributed to greater accuracy and
narrow, centred error distributions in the findings.

LSTM also displayed significant predictive capabili-
ties over both horizons, with performance comparable
to TFT. Its sequential memory structure enabled it to
successfully record short-term changes, notably those
in variables like turbidity and chlorophyll (Khozani et
al. 2022). The stability of LSTM forecasts across 7 and
30 days suggests that its design is well adapted to pre-
dicting immediate temporal relationships in hydrolo-
gical data.

GRU performed similarly to LSTM, but with a sim-
pler gating structure that allowed for effective model-
ling of short-term temporal patterns. Its accuracy at
the 7-day horizon was comparable to more complicated
structures, but its findings at 30 days revealed signifi-
cantly larger error distributions, implying small
decreases in stability across longer short-term windows.

Informer worked admirably on the 7- and 30-day
timescales, despite being built especially for extended
input sequences. Its sparse attention mechanism let
it to acquire significant temporal correlations, while
having somewhat higher SMAPE values than TFT.
This shows that, while Informer can accurately
mimic short-term dynamics, its design is less respon-
sive to fast local fluctuations than TFT.

Overall, the comparison research shows that trans-
former-based models, notably TFT, have distinct
benefits for short-term DO forecasting because to
their capacity to collect and prioritise influential tem-
poral aspects. Recurrent models, such as LSTM and
GRU, remain great options for short-term predictions,
although their stability decreases significantly when
the forecasting window grows from 7 to 30 days.

3.6. Hydrological implications

The accuracy of dissolved oxygen (DO) projections is
highly related to the hydrological and physicochemical
features of the river system. In this investigation,
short-term prediction horizons of 7 and 30 days
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Correlation Matrix of Hydrological Features and Dissolved Oxygen

1.0
Y 0.17 0.15 0.094
0.8
& - -0.048 0.011 -0.011 -0.0058
0.6
3
&
&R -0.0098 0.061 -0.082 -0.048 -0.4
0
&
S -0.2
6\&
S
-0.0
{
'\‘?}Q
--0.2
%)
és'\\
N
s -0.4
Q®
< - 0.094 -0.0058 -0.048
A2 -0.6
Q_\
1 I I
& @
\0@
oX
Figure 8. Heat map that describes the correlations of every feature with DO.
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were particularly sensitive to fluctuations in tempera-
ture, turbidity, conductivity, and river flow, as evi-
denced by the data correlation structure and model
error patterns. Temperature had the strongest link
with DO, whereas turbidity and river flow were mod-
erately related. Periods with quick changes in these
determinants were linked with higher forecast errors
across all models, emphasising the difficulty of captur-
ing sudden changes in hydrological conditions within
short time periods.

The TFT model’s attention mechanism improved
its forecast accuracy at these shorter horizons by
enabling it to dynamically adjust to short-term vari-
ations in river flow and temperature. Its sensitivity
to quick changes in the environment nevertheless led
to minor errors, especially during times of severe
weather that drastically alter water quality metrics.
The Informer model balanced short-duration patterns
with instantaneous fluctuations, which allowed it to
function well at shorter time scales even though its
design was largely focused on longer predicting hor-
izons. Though less sensitive than TFT and LSTM, its
attention processes may dynamically adapt to chan-
ging short-term hydrological conditions. Therefore,
the stability and representativeness of the training
data are critical factors in determining Informer’s
applicability at 7- and 30-day periods.

The models approached these dynamics in various
ways. TFT’s attention mechanism allowed it to
respond to short-term fluctuations in temperature
and river flow, resulting in reasonably small and
centred error distributions at both horizons. LSTM
and GRU, which rely on recurrent memory, caught
most of the short-term temporal dependency but
exhibited higher increases in error variance after 30
days, showing lower resilience as uncertainty accumu-
lated over time. Informer provided an intermediate
response: its sparse attention structure allowed it to
capture both short-range and somewhat longer-
range temporal patterns, but its performance lagged
significantly behind that of TFT, particularly when
quick local changes occurred.

These findings highlight that the efficacy of any
model for short-term DO forecasting is determined
not only by its design, but also by the representative-
ness of the training data throughout the spectrum of
hydrological circumstances observed. If the training
period fails to capture periods of high variability in
critical factors, such as fast temperature swings or
high turbidity occurrences, prediction skill will deterio-
rate. Careful selection and occasional update of training
datasets are thus required to maintain model perform-
ance when hydroclimatic conditions change.

From a management standpoint, the findings show
that models like TFT and LSTM can be useful for
short-term DO prediction and operational water-
quality surveillance when used within their validated
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time frames. Forecasts for 7-30 days can supplement
normal monitoring by highlighting expected near-
term conditions and assisting in the prioritisation of
extra measures or research. However, they should be
evaluated in conjunction with in situ observations
and local expert knowledge, rather than as stand-
alone decision aids, especially under situations that
are beyond the range of the historical data used for
training.

3.7. Limitation

Despite extensive tuning and validation, the TFT,
Informer, LSTM, and GRU models have numerous
limitations. First, the models were trained using data
from a particular river system, so their performance
reflects the site’s distinct hydrological and environ-
mental features. As a result, the findings should not
be applied to other catchments without proper cali-
bration and independent confirmation. The extra
evaluation utilising data from a second monitoring
station (Appendix A) lends some support to model
robustness, but the shorter data record and smaller
number of accessible variables restrict the strength of
this evidence.

An additional issue is the models’ dependence on
significant historical data. While deep learning algor-
ithms may capture complicated temporal patterns,
they require sufficiently large and continuous datasets,
which may not be available in areas with limited moni-
toring infrastructure. This limitation limits the
models’ direct transferability to data-poor systems
and emphasises the significance of constant long-
term environmental monitoring for successful predic-
tive prediction.

Finally, while tactics like validation splits, early
halting, and regularisation were used to prevent
overfitting, the risk of model over-specialisation to
the training dataset cannot be completely ruled out.
Broader testing over more rivers and under a wider
variety of hydrological circumstances would improve
knowledge of generalisability and aid in identifying
scenarios where model performance may decrease.
Future research should incorporate multi-site evalu-
ations and longer temporal records to test the predict-
ability of these forecasting systems across a variety of
environmental conditions.

4. Summary and conclusions

This study compared the performance of four deep
learning models - Temporal Fusion Transformer
(TFT), Informer, Long Short-Term Memory
(LSTM), and Gated Recurrent Unit (GRU) - for fore-
casting dissolved oxygen (DO) in a river system over 7
and 30 days. The investigation revealed that, while
each model identified fundamental hydrological
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linkages, their forecasting accuracy varied depending
on design and capacity to describe short-range tem-
poral correlations. The ability of the Temporal Fusion
Transformer (TFT), Informer, Long Short-Term
Memory (LSTM), and Gated Recurrent Unit (GRU)
models to predict dissolved oxygen (DO) values across
short time horizons of 7- and 30-days was thoroughly
evaluated in this study. Due in large part to different
designs and capacity to manage abrupt hydrological
variations and environmental unpredictability, each
model showed unique advantages and disadvantages.

Temperature had the highest negative connection
with DO, demonstrating its central role in short-
term oxygen dynamics. Turbidity and river flow also
had a significant impact on model behaviour, indicat-
ing their influence on hydrological variability. Adding
delayed and rolling-window features increased model
performance by capturing recent environmental
changes and smoothing out short-term swings. time
monitoring systems to support sustainable water qual-
ity management.

Overall, the work emphasises the advantages of
attention-based architectures, notably TFT, for
short-term DO forecasting while demonstrating the
ongoing significance of recurrent models like as
LSTM and GRU over shorter time horizons. These
findings give practical assistance for selecting forecast-
ing models appropriate for different temporal scales in
river water-quality management. While the models
have a high potential for short-term decision-making,
their use should be supplemented with continuing
monitoring and site-specific calibration to ensure
dependability throughout different hydrological
conditions.
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Appendix

Zhou, H., et al.,

2021,

May. Informer: beyond

efficient transformer for long sequence time-series
forecasting. In: Proceedings of the AAAI conference
on artificial intelligence (Vol. 35, No. 12, pp.

11106-11115).

The results from a second monitoring station are including in this section, which was added to confirm the accuracy and
generalisability of our forecasting models in various geological contexts. Despite having a smaller scope, the data from
this station provides insightful information about how well the models function in a particular environmental setting. Tables
A1l and A2 present the validation and the holdout results across both horizons.

Table A1. The validation results of all models across all 4 horizons for Station 2.

7-Step Ahead

(Validation)
Model RMSE MAE R SMAPE
TFT 0.09 0.07 0.74 11.06
Informer 0.09 0.06 0.74 10.73
LSTM 0.08 0.06 0.78 9.87
GRU 0.07 0.05 0.75 9.03
30-Step Ahead
Model (Validation)
RMSE MAE R? SMAPE
TFT 0.08 0.06 0.76 T1.58
Informer 0.09 0.07 0.73 12.39
LST™M 0.09 0.06 0.74 11.73
GRU 0.08 0.06 0.65 11.13
Table A2. The holdout results of all models across all 4 horizons for Station 2.
7-Step Ahead
(Holdout)
Model RMSE MAE R? SMAPE
TFT 0.08 0.06 0.81 10.74
Informer 0.08 0.06 0.81 11.00
LST™M 0.07 0.06 0.83 10.21
GRU 0.06 0.04 0.79 8.47
30-Step Ahead
(Holdout)
Model RMSE MAE R? SMAPE
TFT 0.08 0.06 0.79 T1.13
Informer 0.08 0.06 0.77 11.79
LST™M 0.08 0.06 0.77 11.47
GRU 0.07 0.05 0.70 9.76

Compared to the major datasets discussed in the main text, the dataset from the second monitoring station has fewer variables including (conductivity,
temperature and turbidity), in addition, it covers a shorter time span. Despite these drawback, the research offers helpful information about the flexibility

and efficacy of the models.
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Figure A1. Actual vs predicted for short-term hoirizon.

The superiority of transformer-based models (TFT and Informer) over classic recurrent models (LSTM and GRU) in mana-
ging short- and mid-term forecasts with high accuracy is demonstrated by the comparison of these models over these time
horizons. For applications like water quality management and environmental monitoring that demand accurate and trust-
worthy forecasts, this distinction is essential. For situations where quick, real-time DO level estimates are crucial, the recur-
rent models continue to provide useful capabilities despite their limits for longer time horizons. These observations not only
support the reliability of the models selected for this investigation, but they also direct future advancements and applications

in environmental sciences predictive modelling.
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Figure A2. Actual vs predicted for short-term hoirizon.

Figure A2 shows how the performance of each model changes as the forecast horizon increases. They show that although all
models are competent in the short term, transformer-based models - especially the Informer - consistently perform better as
the forecast period lengthens. For those involved in environmental management, these insights are essential since the pre-
cision of long-term projections has a big influence on policymaking and decision-making. By providing a nuanced view
of each model’s capabilities across various time frames, incorporating this thorough study into the text will improve the
findings section. It also offers helpful advice for choosing the right models according to the particular requirements of
environmental monitoring programmes, making sure that the models selected match the time scales of the ecological pro-

cesses they are meant to forecast.
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