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Advancing river water quality prediction: a comparative assessment of deep 
learning models for dissolved oxygen forecasting
Ali J. Ali and Ashraf A. Ahmed

Department of Civil and Environmental Engineering, Brunel University London, Uxbridge, UK

ABSTRACT  
Accurate forecasting of dissolved oxygen (DO) is crucial for monitoring river water quality and 
protecting aquatic ecosystems. This study compares the performance of four deep learning 
models – Temporal Fusion Transformer (TFT), Informer, Long Short-Term Memory (LSTM), 
and Gated Recurrent Unit (GRU) – for forecasting DO concentrations in the River Lee 
(London, UK) across 7- and 30-day time frames. A multivariate time-series dataset was 
employed, with temperature, turbidity, pH, conductivity, chlorophyll, and river flow as 
predictors. Model skills were evaluated using RMSE, MAE, R2, and SMAPE. Over the 7-day 
period, TFT had the lowest RMSE (0.06) and SMAPE (8.86%), while LSTM had the greatest R2 
(0.77). TFT outperformed Informer, LSTM, and GRU at the 30-day horizon, with R2 = 0.79 and 
SMAPE of 8.23%, despite significant accuracy losses. According to the variable contribution 
study, temperature and river flow were the most significant factors, particularly for short- 
term projections. Overall, the results show that transformer-based structures, particularly 
TFT, can successfully represent nonlinear temporal dependencies and multivariate 
interactions, making them ideal for multi-horizon DO forecasting in river systems. These 
models have the ability to supplement normal monitoring by offering short-term 
predictions about probable oxygen conditions.

ARTICLE HISTORY
Received 18 July 2025 
Accepted 30 January 2026  

ASSOCIATE EDITOR   
Soufiane Haddout

KEYWORDS  
Hydrological time series; 
River streamflow; 
Hydrological time series; 
River Lee; UK; Environmental 
monitoring; Multi-horizon 
prediction; Machine learning 
in water resources

1. Introduction

Dissolved oxygen (DO) is an essential parameter for 
assessing the condition and the quality of aquatic eco
systems. It is vital to the survival of aquatic life because 
it affects metabolic rates, the cycling of nutrients, and 
the overall equilibrium of ecosystems (Rajesh and 
Rehana 2022, Xiao et al. 2023). DO concentrations 
are significantly impacted by hydrological processes 
such as rainfall, river flow, and temperature variations, 
which are frequently caused by seasonal or climatic 
variability. Whilst slowing low-flow periods can 
cause oxygen depletion, especially in nutrient-rich 
water that supports algal blooms, high flows encou
rage aeration and oxygen diffusion (Luo et al. 2024). 
For the purpose of preventing hypoxic occurrences 
and protecting aquatic biodiversity, accurate DO pre
diction across short and medium time horizons is 
crucial.

While estimates between 7 and 30-days reflect med
ium-term perspectives pertinent to practical water- 
quality planning, forecasts within 7 days are often con
sidered short-term (Ali et al., 2024; Ali and Ahmed 
2024, 2025). Timely interventions like controlled 
flow releases or aeration control can be supported by 
accurate predictions across various scales (Danladi 

Bello et al. 2017, Deshpande et al. 2021). There have 
been recent developments in machine learning (ML) 
(Cox 2003, Kushwaha et al. 2024, Li et al. 2024, Pant 
et al. 2024). Model realism and contextual relevance 
are improved when hydrological elements like temp
erature, turbidity, and river flow are included in ML 
frameworks. Nevertheless, a lot of current methods 
have trouble capturing the nonlinear connections 
causing DO oscillations across hydrological regimes.

This study compares the performance of four 
sequential deep learning models – Temporal Fusion 
Transformer (TFT), Informer, Long Short-Term 
Memory (LSTM), and Gated Recurrent Unit (GRU) 
– in forecasting DO at 7- and 30-day timeframes. 
These models were chosen for their ability to represent 
temporal dependencies and variable interactions in 
multivariate hydrological data. This study attempts 
to determine if transformer-based designs outperform 
typical recurrent networks under dynamic river cir
cumstances by focusing on the interface of hydrology 
and predictive modelling.

Hydrological and physicochemical elements com
bine to strongly control DO levels in river systems. 
One of the main drivers is river flow, which increases 
oxygenation through air exchange and turbulence 

© 2026 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrest
ricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the 
Accepted Manuscript in a repository by the author(s) or with their consent. 

CONTACT  Ali J. Ali ali.ali@brunel.ac.uk; Ashraf A. Ahmed ashraf.ahmed@brunel.ac.uk Department of Civil and Environmental Engineering, 
Brunel University London, Uxbridge UB8 3PH, UK

INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT 
https://doi.org/10.1080/15715124.2026.2626322

http://crossmark.crossref.org/dialog/?doi=10.1080/15715124.2026.2626322&domain=pdf&date_stamp=2026-02-14
http://orcid.org/0009-0007-8359-7787
http://creativecommons.org/licenses/by/4.0/
mailto:ali.ali@brunel.ac.uk
mailto:ashraf.ahmed@brunel.ac.uk
http://www.tandfonline.com


(Lamping et al. 2005, Haider et al. 2013). On the other 
hand, extended low conditions encourage oxygen 
depletion and stagnation, especially in nutrient- 
enriched reaches. Seasonal and climatic fluctuations 
are important regulators of DO dynamics because 
temperature has an inverse influence on DO solubility 
– warmer water stores less oxygen (Kulkarni 2016).

Additional elements that affect oxygen transport 
and ecosystem metabolism include turbidity, salinity, 
and conductivity (Irvine et al. 2011, El-Nahhal et al. 
2021). Elevated turbidity and conductivity modify 
light penetration and ion exchange processes, whereas 
high salinity decreases oxygen solubility. Runoff, 
anthropogenic inputs, and rainfall events frequently 
cause these factors to co-vary, resulting in nonlinear 
feedback in DO behaviour. Sensor drift, missing 
data, or regional heterogeneity may also have an 
impact on their readings (Kim et al. 2021, Ghobadi 
et al. 2024).

Building reliable forecasting models requires an 
understanding of these connected interactions. Deep 
learning architectures, including TFT, Informer, 
LSTM, and GRU, may learn latent temporal inter
actions that conventional empirical formulations are 
unable to represent by incorporating such hydrologi
cal dependencies. In addition to supporting the more 
general objective of preserving riverine biological stab
ility, this procedure increases forecasting accuracy.

Historical, physically based hydrological models 
that use deterministic equations to explain flow 
dynamics, temperature variation, and oxygen 
exchange have been used to estimate DO (Radwan et 
al. 2003, Pena et al. 2010). These models are often 
physically based, which means they rely on equations 
to represent physical processes in a body of water, 
such as flow dynamics, variation in temperature, and 
oxygen exchange mechanisms. Additionally, their 
efficiency over long or highly variable periods is lim
ited since they require constant and high-resolution 
calibration data, which are not always accessible.

Machine learning and data-driven approaches have 
become more popular in recent years for water quality. 
These methods capture intricate temporal and spatial 
patterns by directly learning statistical relationships 
from observations without the need for explicit phys
ical formulations (Li et al. 2024, Pant et al. 2024). A 
successful balance between interpretability and pre
diction ability has also been found in hybrid models 
that include data-driven and physical components 
(Xu et al. 2021, Ghobadi et al. 2024, Li et al. 2025). 
However, performance differs significantly between 
predicting horizons, model types, and data quality.

To overcome these constraints, this work develops 
and evaluates four deep learning architectures for a 
river system: Temporal Fusion Transformer (TFT), 
Informer, Long Short-Term Memory (LSTM), and 
Gated Recurrent Unit (GRU). These models were 

chosen because of their shown capacity to incorporate 
hydrological variables as pH, turbidity, temperature, 
conductivity and river flow while modelling sequential 
and multi-horizon dependencies. The TFT uses gating 
mechanisms and multi-head attention to dynamically 
emphasise important variables (Lim et al. 2021, 
Maldonado-Cruz and Pyrcz 2024). By using its Prob
Sparse attention mechanism, the Informer increases 
computing efficiency for medium-term prediction 
(Zhou et al. 2021). While the GRU offers a more 
straightforward, computationally light recurrent base
line, the LSTM efficiently captures both short- and 
long-term dependencies in water-quality time series 
(Khozani et al. 2022).

Few studies have thoroughly assessed transformers’ 
comparative performance versus recurrent models for 
DO prediction at several horizons, despite their 
increasing usage in hydrological forecasting. By exam
ining how attention-based and recurrent architectures 
react to short- and medium-term hydrological variabil
ity, this work closes that gap and provides insight into 
their advantages and disadvantages for practical water- 
quality forecasting (Dey and Salem 2017). It is impor
tant to note that this work is unique in that it compares 
and interprets known deep learning architectures for 
short- to medium-term dissolved oxygen forecasting, 
rather than developing new model structures.

Previous research has mostly focused on immediate 
or event-driven forecasting, leaving a major vacuum in 
the credible short- to medium-term projections that 
environmental agencies require for effective water 
management. This work closes this gap by thoroughly 
comparing cutting-edge sequential models such as 
Temporal Fusion Transformer (TFT), Informer, 
Long Short-Term Memory (LSTM), and Gated Recur
rent Unit (GRU) over 7- and 30-day forecasting hor
izons. Furthermore, the incorporation of 
hydrological factors such as temperature, turbidity, 
pH, and river flow guarantees that the models are 
adapted to the intricate dynamics of aquatic environ
ments. The key innovations of this study are: 

. Examining the influence of environmental vari
ation by illustrating how temperature, turbidity, 
and river flow affect model predictions by examin
ing their effects on DO levels.

. Evaluating the capacity of sophisticated deep learn
ing models (TFT, Informer, LSTM, and GRU) to 
properly anticipate DO levels in river systems 
across short (7-day) and medium (30-day) time 
periods.

. In-depth analysis of hydrological factors – such as 
pH, chlorophyll, turbidity, temperature, conduc
tivity, and river flow – affects these models’ predic
tions and how they relate to managing the water 
quality of rivers.
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. Cross-site validation involves testing the models at 
a different monitoring site to assess the created 
frameworks’ spatial transferability and resilience.

This study contributes to our knowledge of how 
deep learning models incorporate hydrological varia
bility throughout operational forecasting timeframes 
by comparing attention-based and recurrent architec
tures. The results provide quantifiable information on 
how well-suited contemporary transformer frame
works are for short-term dissolved oxygen forecasting 
in river systems.

2. Materials and methods

This section highlights our approach for Dissolved 
oxygen (DO) forecasting in the River Lee. It uses a 
combination of transformer models and deep learning 
models, including TFT, Informer, LSTM, and GRU. 
The procedures for gathering and preparing data are 
presented in this section, outlining the mechanics of 
each machine learning model, and clarifying the 
evaluation standards.

2.1. Data collection and pre-processing

In order to forecast dissolved oxygen (DO) levels, 
this study uses a wealth of hydrological data from 
the River Lee in East London, United Kingdom. 
The dataset, which comes from the Environment 
Agency’s Hydrology Data Explorer, covers the period 
from March 2016 to January 2024. The monitoring 
station is about 7 kilometres from the River Thames, 
towards East London. The dataset contains daily 
observations generated from hourly readings from 
March 2016 to January 2024. To guarantee compar
ability across inputs, all variables were normalised 
before model training. Dissolved oxygen, an impor
tant indication of river health, was analysed with 
other major water quality indicators such as pH, 
chlorophyll, turbidity, temperature, conductivity, 
and river flow. Data were acquired from the same 
monitoring station in the river. However, the avail
ability of comprehensive data for all characteristics 
differed across the stations that were located in the 
area. As a result, The River Lee was chosen as a 
model urban river system due to human stresses, 
changing hydrological conditions, and known 
water-quality issues. Rather than focussing on unique 
hydrodynamic behaviour, the work use the River Lee 
as a realistic testbed for evaluating the performance 
and interpretability of deep learning models under 
typical urban river settings where short-term dis
solved oxygen forecasting is operationally important.

An additional monitoring station close to the River 
Lee was utilised as an external validation site in order 
to evaluate spatial resilience. The additional dataset 

allows for initial testing of model transferability 
under various hydrological conditions, although cov
ering a shorter time period and fewer variables 
(Appendix A).

Raw hourly readings were aggregated to daily 
averages to smooth out sub-day noise and highlight 
hydrological interactions that influence DO. Missing 
values (<2%) were filled via mean imputation, ensur
ing sequence continuity for deep-learning models 
(Vafaei et al. 2018). Sensitivity testing revealed that 
the results were consistent before and after imputa
tion. Outliers, primarily from sensor spikes, were 
identified using interquartile range criteria and ocular 
inspection. All predictors were normalised to [0, 1] by 
the MinMaxScaler (Kang and Tian 2018). Previous 
research has linked temperature, river flow, turbidity, 
conductivity, pH, and chlorophyll to oxygen solubility 
and water clarity (Neal et al. 2006, Kney and Brandes 
2007, Huey and Meyer 2010). To guarantee repeatabil
ity, data preparation and modelling were carried out in 
Python using TensorFlow and scikit-learn, as well as a 
fixed random seed. To ensure stability, the findings 
were cross-checked with different random splits and 
minor changes to imputed data. A schematic flowchart 
of data collecting, preprocessing, model training, vali
dation, and assessment.

Several preprocessing and feature-engineering 
methods were used to prepare the dataset for dissolved 
oxygen (DO) predictions. Key water-quality indicators 
– DO, pH, chlorophyll, turbidity, temperature, con
ductivity, and river flow – were kept recording the 
physical and chemical variables that influence oxygen 
solubility and ecosystem metabolism. Temperature 
directly influences oxygen solubility (Zhi et al. 2023), 
whereas turbidity shows suspended particles that 
decrease light penetration and photosynthetic activity.

Lagged features were created for all predictors 
except DO with a three-day lag, allowing models to 
learn temporal relationships between past and current 
situations (Kim et al. 2021). Rolling averages with a 
seven-day timeframe were calculated to smooth daily 
swings and capture weekly hydrological patterns 
(Amor et al. 2016). Together, these modifications pro
vide the contextual memory required for sequential 
deep-learning systems. To equalise the contribution 
of each input feature, all variables were scaled from 
0 to 1 using the MinMaxScaler (Deepa and Ramesh 
2022, Ahmed et al. 2024). Scaling keeps large-magni
tude factors like conductivity from dominating gradi
ent updates in models like as LSTM, GRU, and 
Transformer versions.

A multi-horizon dataset was subsequently created 
for 7- and 30-day prediction windows, allowing 
short- and medium-term forecasting. The dataset 
was separated into three subsets: training (70%), vali
dation (15%), and holdout testing (15%). Sampling 
was random yet reproducible, using a set random 
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seed (42). Although chronological divides are usual in 
time-series research, random sampling was used since 
the dataset had minimal autocorrelation beyond 30 
days and rather steady hydrological behaviour, result
ing in balanced distributions across subsets (Lessels 
and Bishop 2020).

The training and validation sets were used to fit 
models and tune hyperparameters, with the unseen 
test set serving as the final evaluation. The uniform 
preprocessing and feature-engineering approach guar
anteed that all models – TFT, Informer, LSTM, and 
GRU – were trained with similar inputs, allowing for 
a fair multi-model comparison. The multi-horizon 
approach allowed for simultaneous calculation of 
near-term (7-day) and medium-term (30-day) DO 
dynamics, which improved the interpretability of 
short- and long-term responses to hydrological varia
bility (Quaedvlieg 2021).

2.2. Machine learning models

Input factors were chosen based on their known phys
ical and biogeochemical effects on dissolved oxygen 
dynamics. Temperature determines oxygen solubility, 
turbidity and chlorophyll indicate light availability 
and biological activity, river flow affects mixing and 
reaeration, conductivity depicts ionic composition, 
and pH reflects chemical conditions that impact oxy
gen processes.

This study employs a novel method in the field of 
hydrological modelling by applying the Informer 
and TFT models to the challenge of DO forecasting 
across the specified (short 7-days) and medium (30- 
days). These structures are ideal for hydrological 
time series forecasting because they can capture non
linear dependencies and long-term temporal inter
actions between many environmental causes. Unlike 
traditional hybrid or ensemble methods, which inte
grate many model types to improve accuracy, trans
former-based systems learn temporal and contextual 
correlations directly from data using their attention 
processes (Choi and Lee 2023). To achieve total 
repeatability, all model designs, hyperparameters, pre
processing methods, and assessment procedures are 
thoroughly described. Fixed random seeds, consistent 
data splits, and identical feature sets were used to train 
the models across all architectures. This defined meth
odology assures that performance discrepancies are 
due to model capacity rather than experimental 
setting.

Transformers were chosen because their self-atten
tion mechanism enables the simultaneous modelling 
of both short- and medium-range interdependence 
across all hydrological variables – features that recur
rent networks frequently approximate sequentially. 
The informer uses a ProbSparse attention method to 
effectively handle large sequences while preserving 

accuracy (Zhou et al. 2021). In contrast, the TFT 
uses variable selection networks and gated residual 
connections to provide interpretable multi-horizon 
predictions (Lim et al. 2021)

For a comparative study, LSTM and GRU models 
were used as recurrent baselines, allowing for direct 
comparison of transformer performance to proven 
sequential architectures. While hybrid or physics- 
informed frameworks can improve interpretability, 
they usually need considerable preprocessing and par
ameter calibration (Sseguya and Jun 2024). In contrast, 
the transformer-based models utilised here dynami
cally prioritise important features from raw inputs, 
eliminating the need on handmade feature design.

Although this work focuses on data-driven model
ling, the ability to integrate transformer topologies 
with physics-based techniques remains an essential 
area of future research. Such integration might com
bine the interpretability of mechanistic models with 
the predictive ability of deep learning, hence increas
ing the application of DO forecasting over a wide 
range of hydrological systems.

2.2.1. Long short-term memory
This study used LSTM networks to forecast dissolved 
oxygen levels in a river system. Because of its capacity 
to store information over lengthy time periods, LSTM 
models are ideal for time series forecasting. They do 
this with memory blocks made up of gates and cells, 
with the cell serving as a conveyor belt to transport 
information along the sequence. The gates define 
what information should be added or deleted from 
memory, and each gate has its own weights and biases 
(Khozani et al. 2022, Ali and Ahmed 2024).

ft = s(vf .[ht− 1, xt], bf ) 

The forget gate decides which information to erase 
from memory, where ft represents the forget gate out
put, s is the sigmoid function, ht− 1 is the hidden state 
from the previous time step, xt is the current input, vf 
is the forget gate’s weight matrix, and bf is the bias 
term. This procedure guarantees that the model pre
ferentially remembers significant information, with 
the sigmoid function determining the degree of mem
ory retention (Kong et al. 2021).

The input gate, which selects what new information 
should be placed in the memory cell, employs the tanh 
function to produce fresh data for the memory 
(Gundu and Simon 2021). These gates enable the 
model to dynamically determine which components 
of the time series are relevant for predicting. In the 
current study, LSTM model architecture was defined 
as follows: 

. Model definition: A sequential model was used with 
an LSTM layer containing 64 units. The layer ident
ifies temporal connections in the data without 
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returning the sequence. The model concludes with 
a dense layer that forecasts the multi-horizon 
sequence.

. Output layer: to anticipate dissolved oxygen levels 
across a number of future time steps, a dense 
layer with a linear activate function was employed.

. Model compilation: The model is trained well by 
using the Adam optimiser with a learning rate of 
0.001 and a Mean Squared Error (MSE) loss func
tion during compilation.

. Training and validation: Early stopping was utilised 
during training to prevent both overfitting and 
underfitting, halting the process if there are no 
enhancements in the validation loss after 10 epochs.

The model’s performance is assessed by making 
predictions on the holdout, validation, and training 
sets after training. The gating mechanism of LSTM 
enables it to efficiently manage partial and noisy 
water quality data by filtering out unnecessary infor
mation (Khozani et al. 2022). It is perfect for estimat
ing DO because of its ability to simulate non-linear 
interactions between environmental parameters. Fur
thermore, multi-horizon forecasting is supported by 
LSTM, enabling prediction across a longer time hor
izon. Previous hydrological studies have effectively 
used this model (Dayal et al. 2024, Martín-Suazo et 
al. 2024), demonstrating its ability to forecast intricate 
river dynamics. Figure: Workflow of the methods used 
to anticipate dissolved oxygen (DO) levels in the River 
Lee. The process consists of data collection, preproces
sing, model building, training and validation, and per
formance evaluation (Figure 1).

2.2.2. Gated recurrent unit
GRU is a great option for sequence modelling because 
of its effectiveness in managing long-term dependen
cies, which is essential for forecasting hydrological 
variables like DO in river ecosystems (Chung et al. 
2014). By removing the memory cell and integrating 
the input and forget gates into a single update gate, 
the GRU model of recurrent neural networks sim
plifies its design more than the LSTM. This maintains 
the capacity to accurately describe sequential data 
while reducing computing complexity (Cahuantzi et 
al. 2023).

To ensure the network can capture the dependen
cies, the update gate Zt in the GRU regulates how 
much data from the previous time steps is carried 
over to the current state. The amount of historical 
data that should be forgotten is decided by the reset 
gate rt. This can be expressed mathematically as 
(Chung et al. 2014):

Zt = s(Wzxt + Uzht− 1) 

rt = s(Wrxt + Urht− 1) 

In this study, a GRU model was created to anticipate 
DO levels over a variety of time periods. The capacity 
of the GRU can handle intricate temporal linkages in 
hydrological data, making it a well-suited model for 
this research. For a fair comparison, the GRU model 
was constructed similarly to the LSTM model with 64 
units, and a dense layer with a linear activation function 
to provide predictions for the designated horizon.

2.2.3. Temporal fusion transformer
The TFT model is a cutting-edge deep learning model 
built for time series forecasting, particularly multi- 
horizon applications such as predicting DO in river 
systems (Marcellino et al. 2006, Lim et al., 2021). 
TFT mixes standard model interpretability with deep 
learning’s advanced sequence modelling capabilities. 
Its main strength is its capacity to handle complicated, 
non-linear temporal patterns found in hydrological 
data by using methods like multi-head self-attention 
and gated residual network (GRN). The multi-head 
self-attention mechanism assists the model in captur
ing long-term dependencies in time series data, whilst 
the GRN filters out unnecessary information, allowing 
the model to focus on the most important features 
(Vaswani et al. 2017).

Furthermore, TFT incorporates both static and 
temporal variables, such as geological characteristics 
and water flow, making it useful for forecasting river 
quality over long periods of time. The model analyses 
data using both LSTM layers, which capture short- 
and medium-term dependencies, and the attention 
layer, and is critical for comprehending patterns 
such as seasonal changes or lengthy dry spells that 
affect dissolved oxygen in river systems. The model 
includes early stopping to prevent overfitting and 
ensure resilience over many horizons. It is trained 
using the Adam Optimiser for efficient learning.

The TFT model is ideal for this study since it can 
handle multi-horizon predictions whilst maintaining 
interpretability, and it has been applied in some 
studies (Wang and Tang 2023). The nature of river 
systems, in which numerous environmental con
ditions impact DO, necessitates a model that can 
incorporate both short-term fluctuation, such as 
daily river flow changes, and long-term seasonal 
trends like temperature fluctuation. The TFT design, 
which incorporates multi-horizon attention and gat
ing techniques, ensures the model captures the essen
tial hydrological dynamics required for reliable 
prediction over a range of time horizons. The gating 
mechanism blocks can be expressed as follows (Lim 
et al. 2021):

GRNv(a, c) = LayerNorm(a+ GLUv(h1)) 

h1 =W1vh2 + b1v 

h2 = ELU(W2va+W3vc+ b2v) 
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With a primary input of a and an optional context 
vector of c, the Gated Residual Network (GRN) for
mula makes use of Gated Linear Units (GLUs) and 
exponential linear unit (ELU) activation (Clevert et 
al. 2015). A thorough grasp of the variables affecting 
river water quality is made possible by its potent tem
poral fusion decoder and capacity to analyse both sta
tic and dynamic covariates.

2.2.4. Informer
The Informer model was used in this research 
because it effectively manages long sequence time 
series forecasting, which is crucial for predicting 
DO levels in rivers. It solved significant constraints 
of standard transformer models by including inno
vations such as the ProbSparse self-attention mech
anism and self-attention distilling operation, 
making it suited for such forecasts. The ProbSparse 
self-attention mechanism enhances computational 
efficiency by focusing on the most critical queries 
for self-attention computation, lowering complexity 
from Q(L2) to Q(L log L), where L is the length of 
the input sequence (Zhao and Wang 2023). The 
attention mechanism is determined by (Zhou et al. 
2021):

Attention(Q, K, V) = softmax
QKT
���
dk
√

􏼒 􏼓

V 

Where Q, K, and V stand for the queries, keys, and 
values matrices, respectively, whilst dk denotes the 
key’s dimension. The ProbSparse approximation in 
the Informer model only chooses the top- u queries 
– where u is defined by the sparsity ratio – for cal
culating the self-attention. The self-attention distil
ling procedure decreases computing efforts by 
gradually lowering the input size over numerous 

levels. The relevance of each attention score is 
reduced, leaving just the most important com
ponents for succeeding (Zhou et al. 2021, Xu et al. 
2023). It can be expressed as:

Âi, j =
Ai,j

􏽐L
k=1 Ai, k 

Where Âi, j is the condensed form, and A is the orig
inal attention matrix. While preserving important 
temporal relationships, this procedure efficiently 
condenses the sequence information to make it 
easier to handle for deep processing.

Finally, the model employs a generative decoder, 
which allows it to predict a whole future sequence 
in a single forward pass rather than step by step, 
hence boosting both inference speed and prediction 
accuracy for extended sequences. The model used in 
this study used 4 attention heads with a dimension
ality of the model’s embedding space of 64 and a 
feed-forward dimension of 128. The ProbSparse 
self-attention mechanism decreases the compu
tational complexity, which leads to more efficiency 
in long-sequence prediction over extended horizons. 
The Informer model’s capacity to accommodate 
extended input sequences while focusing on crucial 
temporal dependencies makes it ideal for forecasting 
dissolved oxygen in rivers, where seasonal and 
hydrological trends play an important role.

These models were chosen for their interpretability 
features, which are essential for evaluating our 
hypothesis, in addition to their forecasting accuracy. 
The attention processes included in the informer 
and TFT models are crucial for understanding how 
different hydrological conditions affect DO levels. 
For instance, it’s clear which variables (such as temp
erature or river flow) the TFT model concentrates on 
under various circumstances or at different seasons of 

Figure 1.  Workflow of the methods used to anticipate dissolved oxygen (DO) levels in the River Lee. The process consists of data 
collection, preprocessing, model building, training and validation, and performance evaluation.
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the year due to its multi-head attention mechanism 
(Lim et al. 2021). This skill helps to design focused 
management plans by explicitly testing our hypothesis 
that some environmental elements have a more sub
stantial influence during various periods. Water man
agement authorities can better comprehend model 
projections and make well-informed judgments 
because of these interpretability qualities, which also 
make practical applications easier. Authorities can 
improve water quality management methods by better 
prioritising monitoring and intervention efforts by 
determining which factors have the most impact on 
DO levels.

2.2.5. Hyperparameter configuration
Each model’s hyperparameters were chosen with care 
to maximise performance through a range of predict
ing horizons. A batch size of 32, a learning rate of 
0,001, and 64 units in the hidden layers were chosen 
for the LSTM and GRU models. To avoid overfitting, 
both models used the Adam Optimiser and early stop
ping with a 10-epoch patience. Crucial hyperpara
meters for the TFT model were two 64- and 32-unit 
LSTM layers, followed by a multi-head attention 
mechanism with four heads and a key dimension of 
16. Four attention heads, a sparse attention mechan
ism, an embedding size of 64, and a feed-forward 
dimension of 128 were all included in the informer 
model’s configuration. The Adam Optimiser was 
used to train both the informer and TFT models 
with a batch size 32, an early stopping time of 10 
epochs, and a learning rate of 0.001. Taking into 
account the distinct temporal and hydrological 
dynamics of the dataset, these hyperparameters were 
adjusted to strike a balance between accuracy and 
computing efficacy.

2.3. Evaluation methods

2.3.1. Rolling window
Each model in our study was assessed using a standar
dised procedure designed to forecast the amounts of 
dissolved oxygen in river ecosystems. During post- 
data pre-processing, a rolling window technique that 
produces rolling window and lag features was used. 
This method was used to capture the impact of histori
cal environmental circumstances on present-day dis
solved oxygen levels. By using information from 
previous observations (i-1 to i-N), the rolling window 
approach evaluates the model’s performance at a 
specific time instance i to produce h-step forward pre
dictions (Amor et al. 2016). This method is in line with 
the dynamic character of river habitats, where past cir
cumstances influence the current water quality stan
dards, such as variations in temperature, river flow, 
or turbidity. As the time window advances, the 
model is updated regularly to take into account fresh 

data and enhance future projections. Our estimates 
will always be precise and true to the natural fluctu
ations in river systems, thanks to this continuous 
updating mechanism.

2.3.2. Holdout sets technique
In this study, the holdout method was utilised to assess 
how well our models performed on forecasting DO 
levels. This method is particularly effective since it 
splits the dataset into two separate sets – a training 
set and a holdout (testing) set. This method works 
especially well for non-stationary time series, such as 
data on river water quality. The models’ predictive 
power was assessed by training them on the first seg
ment and testing them on the second, which included 
new, unseen data. Compared to other approaches, 
such as cross-validation, the holdout technique is the 
most appropriate for time-dependent data, as it 
assures more reliable validation, which makes it par
ticularly beneficial for hydrological forecasting. It pro
vides a reliable evaluation of the model’s predictive 
power in a practical setting, making it an important 
stage in confirming its performance (Cerqueira et al. 
2020).

2.3.3. Performance metrics (RMSE, MAE, R2, and 
SMAPE)
Three metrics were used to assess the effectiveness of 
our models: the Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), R-squared (R²), and 
the Symmetric Mean Absolute Percentage Error 
(SMAPE). These metrics were selected to provide a 
comprehensive evaluation of the prediction accuracy 
and reliability of the model (Chicco et al. 2021, Li et 
al. 2025).

The RMSE determines the average error magnitude by 
assessing the extent of anticipated errors. The accuracy of 
the model is determined by taking the square root of the 
average squared differences between the actual and pro
jected values. The RMSE formula is as follows:

RMSE =

������������������
1
m

􏽘m

i=1
(Xi − Yi)2

􏽳

;

(best value = 0, worst value = +1) 

MAE determines the average magnitude of errors in a set 
of forecasts without taking into account the direction of 
the errors. It is the mean, with equal weight given to 
each individual deviation, of the absolute differences 
between the observed and predicted values over the test 
sample. The formula can be expressed as follows:

MAE =

1
m

􏽘m

i=1
|Xi − Yi|; (best value = 0, worst value = +1) 

R-squared (R2) measures the dependent variable’s 
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anticipated variation from the independent factors. Based 
on the percentage of total variation that the model 
explains, it evaluates how well observed results are 
repeated by the model in DO levels. R2 can be calculated 
as follows:

R2 = 1 −
􏽐m

i=1 (Xi − Yi)2

􏽐m
i=1 (Y̅ − Yi)

2 ;

(best value = +1, worst value = − 1) 

SMAPE is popular error static in time series models, the 
accuracy is determined by comparing the expected and 
actual values and normalising the absolute errors by the 
total of the absolute values of the anticipated and actual 
values. This is especially important in ecological research 
because DO concentrations can fluctuate greatly. SMAPE 
can be expressed as follow:

SMAPE = 100 ×mean
2× |y prep − ytrue|

|ytrue| + |y prep|

􏼒 􏼓

;

(best value = 0%, worst value = 100) 

To handle the unique difficulties presented by DO level 
forecasts in river systems, the forecasting horizons were 
carefully chosen in addition to the performance metrics. 
Numerous short- and long-term environmental variables 
impact the temporal dynamics of DO levels. In order to 
fully capture these dynamics, our analysis incorporates 
a variety of predicting horizons, including 7 and 30. 

. Short-term horizons (7 and 30 days): These time 
periods are essential for comprehending how DO 
levels react instantly to fleeting occurrences like pre
cipitation, pollution, and abrupt ecological shifts. 
The survival of aquatic species and the health of eco
systems may depend on prompt responses, which 
require management of these transient changes.

The choice of these particular horizons enables our 
models to offer insightful information at a variety of 
temporal scales, each of which is essential for distinct 
facets of ecological forecasting and water quality man
agement. It is guaranteed that our prediction models 
are not only adaptable but also directly relevant to 

requirements of environmental scientists and local 
government agencies in maintaining the well-being 
of river systems by including this range.

3. Results and discussion

In this section, four model was assessed – TFT, Informer, 
LSTM and GRU – over two predicting horizons: 7 and 
30 days. This multi-horizon forecasting technique 
reveals important information about each model’s resi
lience, accuracy and capacity to manage short- and med
ium-term dependencies in predicting DO levels in river 
water. The model’s performance was evaluated using 
RMSE, MAE, R2 and SMAPE. These metrics examine 
the models’ capacity to forecast DO and capture trends 
and variability in water quality. A complete examination 
of how each model performs over the various horizons is 
presented, with an emphasis on the identification of 
standout models for each horizon. The fundamental 
contribution of this work is its comparative and inter
pretive analysis, rather than architectural alteration. 
The study evaluates transformer-based and recurrent 
deep learning models under identical hydrological 
inputs and forecasting horizons, providing practical 
insight into the relative strengths, stability, and inter
pretability of each architecture for short- to medium- 
term dissolved oxygen forecasting. Table 1 demonstrate 
the results on the holdout sets.

In the medium-term, TFT had the best perform
ance (RMSE = 0.06; SMAPE = 8.23; R2). Over the 
near run, all models had comparable RMSE (0.06- 
0.07) and MAE (0.05). TFT had the lowest SMAPE 
(8.86%) and highest R2 (0.77), closely followed by 
LSTM and GRU (SMAPE 9.07-9.10). Informer 
showed somewhat larger inaccuracy (SMAPE =  
9.14%). These findings show that all designs caught 
short-term DO changes successfully, with TFT having 
the most consistent error profile.

This study compares the performance of four 
sequential deep learning models – Temporal Fusion 
Transformer (TFT), Informer, Long Short-Term 
Memory (LSTM), and Gated Recurrent Unit (GRU) 

Table 1. The holdout results of all models across all 5 horizons.

Model

7-Step Ahead 
(Holdout)

RMSE MAE R2 SMAPE

TFT 0.06 0.05 0.77 8.86
Informer 0.07 0.05 0.74 9.14
LSTM 0.06 0.05 0.77 9.07
GRU 0.06 0.05 0.76 9.10

Model
30-Step Ahead (Holdout)

RMSE MAE R2 SMAPE

TFT 0.06 0.04 0.79 8.23
Informer 0.07 0.05 0.73 9.28
LSTM 0.06 0.05 0.75 8.87
GRU 0.07 0.05 0.70 9.84

Table 2. The validation results of all models across all 5 
horizons.

Model

7-Step Ahead 
(Validation)

RMSE MAE R2 SMAPE

TFT 0.07 0.05 0.73 9.35
Informer 0.07 0.05 0.73 9.64
LSTM 0.07 0.05 0.74 9.57
GRU 0.07 0.05 0.74 9.50

Model

30-Step Ahead 
(Validation)

RMSE MAE R2 SMAPE

TFT 0.06 0.05 0.77 9.33
Informer 0.07 0.05 0.70 10.35
LSTM 0.07 0.05 0.70 10.28
GRU 0.08 0.06 0.65 11.25
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– in forecasting DO at 7- and 30-day timeframes. 
These models were chosen for their ability to represent 
temporal dependencies and variable interactions in 
multivariate hydrological data. This study attempts 
to determine if transformer-based designs outperform 
typical recurrent networks under dynamic river cir
cumstances by focussing on the interface of hydrology 
and predictive modelling.

Strong generalisation across all models was 
confirmed by the validation results (Table 2), which 
closely matched the holdout findings. SMAPE over 
the seven-day horizon varied from 9.35% to 9.64%, 
with TFT once more yielding the lowest error 
(9.35%). Informer’s findings were somewhat better 
than those of LSTM and GRU. TFT continued to per
form the best for the 30-day horizon (SMAPE =  
9.33%). GRU demonstrated lower accuracy (SMAPE  
= 11.25%), showing more difficulties modelling 
longer-term temporal patterns, whereas Informer 
and LSTM had slightly higher error (10.28–10.35%).

Early stopping, preprocessing, and feature-engin
eering methods successfully prevented overfitting, 
and the models reflected robust hydrological connec
tions in the data, as seen by the strong relationship 
between validation and holdout measures.

3.1. Model overview

The Symmetric Mean Absolut Percentage Error 
(SMAPE) was used as a main accuracy metric to evalu
ate the performance of four prediction models used in 
this study: TFT, Informer, LSTM, and GRU, over a 
range of predicting horizons. The architecture of 
each model is specifically designed to capture tem
poral relationships, which affects how successful they 
are at various time scales. Figure 2 summaries the 
holdout SMAPE performance for both horizons.

3.1.1. 7 – steps forecast
The substantial temporal autocorrelation in short- 
term DO changes was reflected in all models’ good 
performance over the 7-day horizon. While Informer, 
LSTM, and GRU generated similar SMAPE values 
(9.07–9.14%), TFT had the lowest error (8.86%). 
This shows that all models successfully captured 
daily DO fluctuation, with just a little difference in pre
dicted accuracy.

3.1.2. 30 – steps forecast
Performance patterns remained consistent throughout 
30 days, although discrepancies across models grew 
more prominent. TFT again had the lowest error 
rate (8.23%), followed by LSTM (8.87%). Informer 
and GRU had greater SMAPE (9.28% and 9.84%), 
indicating that their capacity to extract medium- 
range temporal relationships was less effective than 
TFT’s variable-selection and attention processes.

Each model’s actual vs expected graphs over a range 
of timeframes offer important information about the 
models’ strengths and weaknesses. Figure 3 plots 
emphasise each model’s accuracy and reactivity to 
environmental changes by graphically illustrating how 
it depicts the dynamics of dissolved oxygen in the river 
system over time.

For the 7 days horizon, both the TFT and informer 
models aligned well with the real trend in DO, indicating 
how well they manage transient variations. The models’ 
susceptibility to sudden changes in water quality par
ameters, including rainfall or pollution influxes, could 
be the cause of the minor differences between expected 
and actual readings. By using their advanced attention 
processes to concentrate on the most important recent 
future, as indicated by the denser clusters of points sur
rounding the line perfect fit. The same goes for the LSTM 
and GRU, which operated admirably. However, the 
graph shows occasional departures during periods of 
significant DO oscillations, which may indicate a 
worse ability to respond to quick environmental changes 
than transformer-based models. The error distribution 
in these models is slightly wider, indicating a marginally 
worse prediction precision at this scale; this can be 
viewed in the next section.

3.2. Model performance

Error-distribution plots (Figures 3–6) were used to 
evaluate each model’s stability and bias across the 7- 
and 30-day periods. These distributions offer more 
insight into predicting dependability than aggregate 
measurements like RMSE or SMAPE (Mertikas, 2023).

Figure 4 illustrates that the TFT generated error 
distributions that were tightly centred and very sym
metrical across both horizons. At 7 days, errors were 
tightly grouped around zero, showing high short- 
term stability and low systematic bias. Although the 
dispersion grew somewhat at 30 days, the distribution 
remained centred with a tiny mean error (≈0.01), indi
cating that TFT performed consistently in the medium 
range. This conduct is consistent with the model’s 
attention processes, which aid in the preservation of 
relevant temporal structure over long time horizons.

The Informer model (Figure 5) likewise provided 
well-centred error distributions on both horizons. 
The 7-day distribution was compact, demonstrating 
the model’s capacity to capture local temporal 
relationships. At 30 days, the error spread rose con
siderably, while the median error remained close to 
0. This expansion is predicted because longer time 
horizons create more uncertainty and amplify modest 
departures in earlier phases. Informer’s stability across 
horizons reflects the advantages of its sparse attention 
mechanism, while its medium-range mistakes were 
somewhat bigger than TFT’s.
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At 7 days, LSTM demonstrated consistent short-term 
behaviour, with a tight, central distribution (Figure 6). 
Over the 30-day period, the dispersion widened more 
than the transformer-based models. This shows that, 
while LSTM captures short-term hydrological connec
tions successfully, it loses robustness as the forecast win
dow grows larger. This is consistent with recurrent 
models’ reliance on sequential memory, which can 
accrue errors over extended time periods.

GRU showed similar performance trends as LSTM 
(Figure 7). The 7-day horizon revealed a tight distri
bution at zero, showing high short-term dependabil
ity. At 30 days, the distribution expanded and 
exhibited somewhat greater deviations than LSTM, 

indicating that GRU’s simpler gating structure had a 
limited capacity to sustain medium-term dependen
cies. Nonetheless, the median error remained close 
to zero, showing no systematic bias.

Across all models, error distributions were tightest at 
the 7-day horizon, which is consistent with the high 
short-term temporal autocorrelation commonly seen 
in DO time series. At the 30-day horizon, all models 
had larger distributions, indicating the predicted rise 
in uncertainty as hydrological factors pile over time. 
TFT and Informer had the narrowest error distributions 
across both horizons, showing higher medium-range 
stability, which is likely due to their attention processes 
and capacity to focus on informative time steps.

Figure 2.  Comparison between the models in the short-horizons.
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In contrast, LSTM and GRU had a wider variety of 
mistakes at 30 days, indicating the difficulty recurrent 
architectures have in maintaining information over 
long durations. When combined with the aggregate 
accuracy measures, these patterns indicate that trans
former-based models conserve temporal structure 
more successfully over long horizons, whereas recur
rent models remain competitive but are less stable in 
medium-term forecasting.

3.3. Variable contribution analysis

The major goal variable in this work was dissolved oxy
gen (DO), and its linkages to important hydrological 
and environmental parameters give critical context 
for understanding model behaviour. As seen in Figure 
8, temperature had the highest negative correlation 

with DO (−0.69). This matches well-known thermo
dynamic phenomena, in which oxygen solubility 
decreases as water temperature rises. Models that prop
erly captured this link, notably TFT, produced lower 
short-horizon SMAPE values (8.86% at 7 days and 
8.23% at 30 days), demonstrating the importance of 
incorporating quick temperature-driven oscillations 
for prediction accuracy. At these shorter horizons, the 
LSTM model also demonstrated impressive accuracy, 
successfully monitoring quick changes in water metrics 
as turbidity, pH, and chlorophyll. LSTM capitalised on 
the temporal correlation between DO and pH (corre
lation of 0.13), especially in reaction to short-term 
acidity variations, whilst having a simpler recurrent 
structure than attention-based models. This slight 
direct association, however, indicates that its impact 
decreased after the short-term projection periods.

Figure 3.  actual vs predicted for short term (7- and 30-steps).
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LSTM also worked well at short time scales, suc
cessfully predicting variations related to pH, turbidity, 
and chlorophyll. The positive but slight correlation 
between DO and pH (0.13) indicates a weaker direct 
influence, which may explain why the effect was 
more visible in short-term forecasts than over longer 
time horizons. Similarly, chlorophyll had a slight posi
tive connection with DO (0.20), indicating the impact 
of biological activity. This link contributed to the suc
cessful capture of short-term changes by LSTM and 
TFT, while Informer and GRU were less sensitive to 
these fast swings.

GRU handled short-term dependencies consist
ently and provided performance equivalent to 
LSTM at both horizons. Turbidity showed a moder
ate association with river flow (0.53), indicating that 
hydrological disturbances influence suspended par
ticles. Both GRU and LSTM appeared sensitive to 
this relationship over a 7-day period, but GRU’s 

error distribution widened more noticeably at 30 
days. This implies that cumulative nonlinear inter
actions among hydrological factors affected its med
ium-term stability.

Informer worked well on short time horizons while 
being meant for longer input sequences. Its multi- 
head attention mechanism allowed it to predict inter
actions involving temperature and river flow, two fac
tors with weak but significant relationships with DO 
(0.094 for river flow). However, as shown in Table 1, 
its SMAPE values rose compared to TFT at both hor
izons, showing problems in catching abrupt short- 
duration changes, particularly those caused by flow 
variability.

Conductivity had a slight negative connection with 
DO (−0.15), but its effect grew more noticeable during 
the 30-day period. TFT and GRU successfully depicted 
this medium-term pattern, which is consistent with the 
slow impact of conductivity on river chemistry. 

Figure 4.  TFT error distribution for both horizons.
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Improvements in these models’ 30-day measures show 
that the more steady, slowly shifting character of con
ductivity is simpler to account for in medium-term 
projections. River flow had a slight positive association 
with DO (0.094), but was highly connected with turbid
ity, as indicated by their correlation of 0.53. Models 
sensitive to short-term hydrodynamic changes, such 
as TFT and LSTM, effectively captured these fluctu
ations after 7 days. Informer, on the other hand, 
struggled with sudden flow-related transitions at 
times, which is consistent with its architecture’s prefer
ence for longer temporal relationships.

Overall, the short-term forecasting horizons 
revealed significant strengths in each model. TFT and 
LSTM were the most successful in adapting to fast 
hydrological changes, while GRU provided a computa
tionally economical alternative with high immediate 
performance. Informer gave a balanced representation 
of short- and medium-range relationships. These 
findings highlight the necessity of choosing forecasting 

models that account for both the temporal properties of 
the target variable and the dynamic behaviour of 
important hydrological factors.

3.4. Premutation feature importance (PFI)

While correlation analysis is beneficial for under
standing the linear correlations between hydrological 
factors and DO, it does not explain how these vari
ables are used by forecasting models during predic
tion. To overcome this issue and improve model 
interpretability, a Permutation Feature Importance 
(PFI) analysis was performed (Figure 9). PFI is a 
model-independent interpretability approach that 
quantifies the importance of each input variable by 
assessing the decrease in prediction performance 
caused by random permutation of its values (Kaneko 
2022, Khan and Byun 2023). Unlike correlation 
analysis, PFI takes into account nonlinear inter
actions and the underlying structure of deep learning 

Figure 5.  Informer error distribution for both horizons.
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models, making it ideal for the transformer-based 
and recurrent architectures employed in this work. 
The PFI analysis thus supplements the correlation 
heat map by demonstrating which hydrological dri
vers have the most effect on the trained forecasting 
model, rather than just their statistical relationship 
with DO.

Temperature was found as the most significant 
hydrological driver of DO predictors, causing the 
greatest rise in SMAPE when permuted (6.92). This 
validates temperature circumstances’ dominating 
influence on oxygen solubility and short-term DO 
variability, which is compatible with well-established 
physical principles determining gas solubility in 
water. Turbidity (2.15) and conductivity (2.05) were 
the next most important predictors, indicating the sig
nificance of suspended particles and ionic concen
tration in influencing oxygen dynamics via light 
attenuation, mixing, and chemical reactions (Carey 
et al. 2023). Chlorophyll had a moderate impact 

(1.69), which is consistent with the role of algal photo
synthesis and respiration in short-term DO variations. 
River flow (0.55) and pH (0.40) had lesser effects, 
showing less direct influence on DO variability at 7- 
30-day forecasting timeframes. These findings show 
that PFI gives a physically interpretable explanation 
for the TFT model’s performance and establish that 
the model’s major predictors are compatible with 
known hydrological and biogeochemical controls.

3.5. Models’ limitations and strengths

The TFT, Informer, LSTM, and GRU models were 
tested for their strengths and limitations in forecasting 
dissolved oxygen (DO) across short-term horizons of 
7 and 30 days. Each model revealed significant benefits 
based on its design, ability to capture short-term varia
bility, and ability to represent interactions between 
hydrological factors. TFT performed well across both 
perspectives, with low SMAPE values and high R2 

Figure 6.  LSTM error distribution for both horizons.
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scores. Its main feature is its multi-head attention 
mechanism, which allows the model to prioritise 
informative time steps and change the impact of 
major factors like temperature and river flow (Lim et 
al. 2021). This ability to dynamically weight feature 
significance contributed to greater accuracy and 
narrow, centred error distributions in the findings.

LSTM also displayed significant predictive capabili
ties over both horizons, with performance comparable 
to TFT. Its sequential memory structure enabled it to 
successfully record short-term changes, notably those 
in variables like turbidity and chlorophyll (Khozani et 
al. 2022). The stability of LSTM forecasts across 7 and 
30 days suggests that its design is well adapted to pre
dicting immediate temporal relationships in hydrolo
gical data.

GRU performed similarly to LSTM, but with a sim
pler gating structure that allowed for effective model
ling of short-term temporal patterns. Its accuracy at 
the 7-day horizon was comparable to more complicated 
structures, but its findings at 30 days revealed signifi
cantly larger error distributions, implying small 
decreases in stability across longer short-term windows.

Informer worked admirably on the 7- and 30-day 
timescales, despite being built especially for extended 
input sequences. Its sparse attention mechanism let 
it to acquire significant temporal correlations, while 
having somewhat higher SMAPE values than TFT. 
This shows that, while Informer can accurately 
mimic short-term dynamics, its design is less respon
sive to fast local fluctuations than TFT.

Overall, the comparison research shows that trans
former-based models, notably TFT, have distinct 
benefits for short-term DO forecasting because to 
their capacity to collect and prioritise influential tem
poral aspects. Recurrent models, such as LSTM and 
GRU, remain great options for short-term predictions, 
although their stability decreases significantly when 
the forecasting window grows from 7 to 30 days.

3.6. Hydrological implications

The accuracy of dissolved oxygen (DO) projections is 
highly related to the hydrological and physicochemical 
features of the river system. In this investigation, 
short-term prediction horizons of 7 and 30 days 

Figure 7.  GRU error distribution for both horizons.
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Figure 8.  Heat map that describes the correlations of every feature with DO.

Figure 9.  The permutation feature importance.
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were particularly sensitive to fluctuations in tempera
ture, turbidity, conductivity, and river flow, as evi
denced by the data correlation structure and model 
error patterns. Temperature had the strongest link 
with DO, whereas turbidity and river flow were mod
erately related. Periods with quick changes in these 
determinants were linked with higher forecast errors 
across all models, emphasising the difficulty of captur
ing sudden changes in hydrological conditions within 
short time periods.

The TFT model’s attention mechanism improved 
its forecast accuracy at these shorter horizons by 
enabling it to dynamically adjust to short-term vari
ations in river flow and temperature. Its sensitivity 
to quick changes in the environment nevertheless led 
to minor errors, especially during times of severe 
weather that drastically alter water quality metrics. 
The Informer model balanced short-duration patterns 
with instantaneous fluctuations, which allowed it to 
function well at shorter time scales even though its 
design was largely focused on longer predicting hor
izons. Though less sensitive than TFT and LSTM, its 
attention processes may dynamically adapt to chan
ging short-term hydrological conditions. Therefore, 
the stability and representativeness of the training 
data are critical factors in determining Informer’s 
applicability at 7- and 30-day periods.

The models approached these dynamics in various 
ways. TFT’s attention mechanism allowed it to 
respond to short-term fluctuations in temperature 
and river flow, resulting in reasonably small and 
centred error distributions at both horizons. LSTM 
and GRU, which rely on recurrent memory, caught 
most of the short-term temporal dependency but 
exhibited higher increases in error variance after 30 
days, showing lower resilience as uncertainty accumu
lated over time. Informer provided an intermediate 
response: its sparse attention structure allowed it to 
capture both short-range and somewhat longer- 
range temporal patterns, but its performance lagged 
significantly behind that of TFT, particularly when 
quick local changes occurred.

These findings highlight that the efficacy of any 
model for short-term DO forecasting is determined 
not only by its design, but also by the representative
ness of the training data throughout the spectrum of 
hydrological circumstances observed. If the training 
period fails to capture periods of high variability in 
critical factors, such as fast temperature swings or 
high turbidity occurrences, prediction skill will deterio
rate. Careful selection and occasional update of training 
datasets are thus required to maintain model perform
ance when hydroclimatic conditions change.

From a management standpoint, the findings show 
that models like TFT and LSTM can be useful for 
short-term DO prediction and operational water- 
quality surveillance when used within their validated 

time frames. Forecasts for 7–30 days can supplement 
normal monitoring by highlighting expected near- 
term conditions and assisting in the prioritisation of 
extra measures or research. However, they should be 
evaluated in conjunction with in situ observations 
and local expert knowledge, rather than as stand- 
alone decision aids, especially under situations that 
are beyond the range of the historical data used for 
training.

3.7. Limitation

Despite extensive tuning and validation, the TFT, 
Informer, LSTM, and GRU models have numerous 
limitations. First, the models were trained using data 
from a particular river system, so their performance 
reflects the site’s distinct hydrological and environ
mental features. As a result, the findings should not 
be applied to other catchments without proper cali
bration and independent confirmation. The extra 
evaluation utilising data from a second monitoring 
station (Appendix A) lends some support to model 
robustness, but the shorter data record and smaller 
number of accessible variables restrict the strength of 
this evidence.

An additional issue is the models’ dependence on 
significant historical data. While deep learning algor
ithms may capture complicated temporal patterns, 
they require sufficiently large and continuous datasets, 
which may not be available in areas with limited moni
toring infrastructure. This limitation limits the 
models’ direct transferability to data-poor systems 
and emphasises the significance of constant long- 
term environmental monitoring for successful predic
tive prediction.

Finally, while tactics like validation splits, early 
halting, and regularisation were used to prevent 
overfitting, the risk of model over-specialisation to 
the training dataset cannot be completely ruled out. 
Broader testing over more rivers and under a wider 
variety of hydrological circumstances would improve 
knowledge of generalisability and aid in identifying 
scenarios where model performance may decrease. 
Future research should incorporate multi-site evalu
ations and longer temporal records to test the predict
ability of these forecasting systems across a variety of 
environmental conditions.

4. Summary and conclusions

This study compared the performance of four deep 
learning models – Temporal Fusion Transformer 
(TFT), Informer, Long Short-Term Memory 
(LSTM), and Gated Recurrent Unit (GRU) – for fore
casting dissolved oxygen (DO) in a river system over 7 
and 30 days. The investigation revealed that, while 
each model identified fundamental hydrological 
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linkages, their forecasting accuracy varied depending 
on design and capacity to describe short-range tem
poral correlations. The ability of the Temporal Fusion 
Transformer (TFT), Informer, Long Short-Term 
Memory (LSTM), and Gated Recurrent Unit (GRU) 
models to predict dissolved oxygen (DO) values across 
short time horizons of 7- and 30-days was thoroughly 
evaluated in this study. Due in large part to different 
designs and capacity to manage abrupt hydrological 
variations and environmental unpredictability, each 
model showed unique advantages and disadvantages.

Temperature had the highest negative connection 
with DO, demonstrating its central role in short- 
term oxygen dynamics. Turbidity and river flow also 
had a significant impact on model behaviour, indicat
ing their influence on hydrological variability. Adding 
delayed and rolling-window features increased model 
performance by capturing recent environmental 
changes and smoothing out short-term swings. time 
monitoring systems to support sustainable water qual
ity management.

Overall, the work emphasises the advantages of 
attention-based architectures, notably TFT, for 
short-term DO forecasting while demonstrating the 
ongoing significance of recurrent models like as 
LSTM and GRU over shorter time horizons. These 
findings give practical assistance for selecting forecast
ing models appropriate for different temporal scales in 
river water-quality management. While the models 
have a high potential for short-term decision-making, 
their use should be supplemented with continuing 
monitoring and site-specific calibration to ensure 
dependability throughout different hydrological 
conditions.
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Appendix

The results from a second monitoring station are including in this section, which was added to confirm the accuracy and 
generalisability of our forecasting models in various geological contexts. Despite having a smaller scope, the data from 
this station provides insightful information about how well the models function in a particular environmental setting. Tables 
A1 and A2 present the validation and the holdout results across both horizons.  

Table A1.  The validation results of all models across all 4 horizons for Station 2.

Model

7-Step Ahead 
(Validation)

RMSE MAE R2 SMAPE
TFT 0.09 0.07 0.74 11.06
Informer 0.09 0.06 0.74 10.73
LSTM 0.08 0.06 0.78 9.87
GRU 0.07 0.05 0.75 9.03

Model

30-Step Ahead 
(Validation)

RMSE MAE R2 SMAPE
TFT 0.08 0.06 0.76 11.58
Informer 0.09 0.07 0.73 12.39
LSTM 0.09 0.06 0.74 11.73
GRU 0.08 0.06 0.65 11.13

Table A2.  The holdout results of all models across all 4 horizons for Station 2.

Model

7-Step Ahead 
(Holdout)

RMSE MAE R2 SMAPE
TFT 0.08 0.06 0.81 10.74
Informer 0.08 0.06 0.81 11.00
LSTM 0.07 0.06 0.83 10.21
GRU 0.06 0.04 0.79 8.47

Model

30-Step Ahead 
(Holdout)

RMSE MAE R2 SMAPE
TFT 0.08 0.06 0.79 11.13
Informer 0.08 0.06 0.77 11.79
LSTM 0.08 0.06 0.77 11.47
GRU 0.07 0.05 0.70 9.76

Compared to the major datasets discussed in the main text, the dataset from the second monitoring station has fewer variables including (conductivity, 
temperature and turbidity), in addition, it covers a shorter time span. Despite these drawback, the research offers helpful information about the flexibility 
and efficacy of the models.
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The superiority of transformer-based models (TFT and Informer) over classic recurrent models (LSTM and GRU) in mana
ging short- and mid-term forecasts with high accuracy is demonstrated by the comparison of these models over these time 
horizons. For applications like water quality management and environmental monitoring that demand accurate and trust
worthy forecasts, this distinction is essential. For situations where quick, real-time DO level estimates are crucial, the recur
rent models continue to provide useful capabilities despite their limits for longer time horizons. These observations not only 
support the reliability of the models selected for this investigation, but they also direct future advancements and applications 
in environmental sciences predictive modelling.

Figure A1. Actual vs predicted for short-term hoirizon.
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Figure A2 shows how the performance of each model changes as the forecast horizon increases. They show that although all 
models are competent in the short term, transformer-based models – especially the Informer – consistently perform better as 
the forecast period lengthens. For those involved in environmental management, these insights are essential since the pre
cision of long-term projections has a big influence on policymaking and decision-making. By providing a nuanced view 
of each model’s capabilities across various time frames, incorporating this thorough study into the text will improve the 
findings section. It also offers helpful advice for choosing the right models according to the particular requirements of 
environmental monitoring programmes, making sure that the models selected match the time scales of the ecological pro
cesses they are meant to forecast.

Figure A2. Actual vs predicted for short-term hoirizon.
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