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Abstract

Epilepsy is a common neurological disorder affecting over 50 million people worldwide,
characterised by recurrent seizures accompanied by abnormal neuronal electrical activity.
Electroencephalogram (EEG) is a technique for recording brain electrical signals, widely
employed for epileptic seizure (ES) prediction due to its high temporal resolution, porta-
bility, and cost-effectiveness. However, reliable ES prediction based on EEG remains
challenging, primarily owing to the limited duration of recorded pre-ictal states in pub-
licly available datasets and the typically low signal-to-noise ratio (SNR) in non-invasive
recordings. To mitigate these issues, we propose a Conditional Deep Convolutional Gen-
erative Adversarial Network (CDCGAN), which combines the representational power of
Deep Convolutional Generative Adversarial Network (DCGAN) with the categorical con-
ditioning mechanism of Conditional Generative Adversarial Network (CGAN) to generate
class-specific EEG samples. By synthesising target samples, CDCGAN aims to alleviate
class imbalance and enhance the quality of low-resolution spectral representations. To
evaluate the practical utility of generated data, we trained a Convolutional Neural Network
(CNN) on the augmented dataset and compared its performance against prior studies. Un-
der the Leave-One-Seizure-Out cross-validation (LOSO-CV) protocol, our method achieved
an average AUC of 0.876 at a 60% augmentation rate with 50 training epochs. The AUC
improvement relative to corresponding control settings demonstrates that GAN-based
data augmentation provides additional effective training samples for ES prediction while
preserving task-relevant and discriminative pre-ictal EEG features.
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1. Introduction

Epilepsy is a neurological disorder characterised by recurrent, unprovoked seizures
and affects people across the lifespan. Although pharmacological therapy can control
epileptic seizure (ES) for many patients, a substantial subset remains refractory, leaving
them exposed to persistent risks such as injury and reduced quality of life [1]. In this
context, seizure prediction aims to detect measurable changes in brain activity that precede
an upcoming seizure and to issue an alert with sufficient lead time for intervention. Scalp
electroencephalography (EEG), which captures electrical activity that is non-invasive, is
widely used for this purpose because it provides a direct view of seizure-related neural
dynamics [2].
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ES prediction aims to issue an alarm before seizure onset so that preventive actions can
be taken. In long-term EEG recordings, the signal can be divided into two broad categories:
ictal segments, which correspond to the seizure event itself, and non-ictal segments, which
correspond to all remaining periods when no seizure is occurring. The non-ictal part is
further divided into inter-ictal and pre-ictal states. Inter-ictal refers to baseline activity far
from any seizure event, whereas pre-ictal refers to the period preceding seizure onset in
which seizure-related changes may emerge. To operationally define the pre-ictal interval
for prediction, two time intervals relative to seizure onset are commonly introduced as
follows: the seizure occurrence period (SOP) and the seizure prediction horizon (SPH). The
SOP is defined as the pre-ictal interval immediately preceding seizure onset during which a
seizure is expected to occur, and the SPH is a minimum lead time between an issued alarm
and the SOP to allow sufficient time for intervention. Accordingly, an alarm is regarded as
correct if (i) no seizure occurs during the SPH following the alarm and (ii) a seizure occurs
within the subsequent SOP.

However, using EEG signals to predict ES is inherently challenging. The first is the
limited amount of EEG data available, which limits the amount of data on which deep
learning models can be trained. Also, public datasets now are unbalanced because when the
EEG signal of a subject is recorded, most of the time the subject spends is between interictal
rather than ES. This results in less data on the seizure period. However, such an unbalanced
dataset allows the model to train on a smaller amount of data. If the original data is used
for balancing, the data in the training set will be greatly reduced [2]. It will affect the
performance of the model, especially for Convolutional Neural Network (CNN) models [3].
At the same time, non-invasive EEG recordings typically have a low signal-to-noise ratio
(SNR), making it difficult to distinguish seizure-related activity from background noise.

Generative adversarial networks (GANs) [4] learn to synthesise data by training a gener-
ator and a discriminator. The generator produces candidate samples from latent noise, while
the discriminator attempts to tell generated samples from real ones. This framework has been
increasingly used for EEG data synthesis and augmentation. For instance, Hartmann et al. [5]
introduced EEG-GAN based on a DCGAN-style architecture [6] and assessed real-synthetic
similarity using widely used distribution-level metrics such as the Inception Score (IS), Frechet
Inception Distance (FID), and sliced Wasserstein distance (SWD/WD).

Truong et al. [7] introduced GAN-based modelling for seizure prediction and evalu-
ated it on several public EEG datasets, including CHB-MIT [8], Freiburg [9], and EPILEP-
SIAE [10]. Their pipeline converts inter-ictal and pre-ictal EEG segments into STFT spec-
trograms, trains a GAN on these representations, and leverages the discriminator as a
learned feature extractor for downstream classification, reporting improvements over a
CNN baseline [3]. Related efforts have also used GANS either for synthetic EEG generation
(e.g., EpilepsyGAN for privacy-preserving data sharing [11]) or for explicit data augmenta-
tion, where STFT spectrogram windows are generated by a DCGAN and appended to the
training set to improve prediction performance [12].

Xu et al. [13] proposed a GAN-based pre-ictal signal synthesis approach to generate
multi-channel EEG samples. Specifically, temporal EEG segments were used to train four
GAN variants with different architectures (DCGAN, DCWGAN, RGAN, and RWGAN).
The generative performance was assessed by measuring the discrepancy between synthetic
and real samples using frequency-domain RMSE (FDRMSE), FID, and WD, and DCWGAN
was reported to achieve the best overall results. Xu et al. futher augmented the original
dataset with DCWGAN-generated samples, which led to improvements in ES prediction
accuracy and AUC-ROC. Yu et al. [14] employed a Conditional GAN (CGAN) for EEG
data augmentation and introduced an additional refiner network to reduce the distribution
gap between generated and real signals, targeting data scarcity and class imbalance. Yang
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et al. [15] leveraged unsupervised learning to train the discriminator of a Wasserstein GAN
as a feature extractor and subsequently applied a Bidirectional Long Short-Term Memory
(Bi-LSTM) to perform ES prediction using the extracted EEG features. Subsequently, Feng
et al. [16] proposed employing a Domain-Generative Adversarial Network (DGAN) to
address model generalisation issues in ES detection. This network integrates a generative
adversarial network with an adversarial domain adaptation module, designed to minimise
variations in feature representations across patients and within individual patients. The
method was evaluated on the publicly available CHB-MIT dataset and an additional
proprietary dataset, yielding results that demonstrated superior performance compared to
existing approaches.

Despite these advances, several challenges persist within the field. Firstly, improve-
ments in distribution-level similarity metrics (such as FID/WD/FDRMSE) do not necessar-
ily translate into enhanced performance for downstream ES prediction tasks, particularly
under clinically relevant evaluation protocols. Secondly, generating pre-seizure samples
of specific categories in a controlled manner remains challenging, thereby limiting the
effectiveness of data augmentation in addressing class imbalance. Thirdly, the interaction
between synthetic data quality and model generalisation capabilities is often insufficiently
explored, whilst ambiguous data augmentation and segmentation strategies may yield
unstable results or potential data leakage.

To address these limitations, we train a Conditional Deep Convolutional GAN (CDC-
GAN) on the CHB-MIT database to generate samples that capture pre-ictal characteristics
in a class-conditional manner. The synthetic samples are then integrated with the original
training set to construct an expanded dataset. Using an identical CNN-based modelling
framework, we evaluate the expanded dataset against the original dataset under the Leave-
One-Seizure-Out cross-validation (LOSO-CV) protocol. Figure 1 provides an overview of
the proposed pipeline, including preprocessing, CDCGAN-based augmentation, detector

training, and LOSO-CV evaluation.
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Figure 1. Overview of the proposed CDCGAN-based epileptic seizure (ES) prediction pipeline. Raw
EEG signals are segmented into inter-ictal and pre-ictal intervals according to the SPH/SOP settings,
and each 30 s segment is converted into a spectrogram using STFT. A conditional DCGAN (cDCGAN)
is then trained to generate class-specific (pre-ictal) spectrograms, which are appended to the original
training set according to a predefined augmentation rate (ratio of generated to original pre-ictal
samples), forming an expanded dataset. The CNN detector is trained on the expanded dataset
and evaluated using leave-one-seizure-out cross-validation (LOSO-CV); window-level ROC-AUC
is computed for each held-out fold and averaged to obtain the patient-level AUC. Color blocks
denote major stages of the workflow (blue: acquisition/preprocessing; green: GAN architecture and
generation; yellow: data augmentation; gray: evaluation).
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2. Method
2.1. Dataset

The CHB-MIT [17,18] was collected at Boston Children’s Hospital, in collaboration
with the Massachusetts Institute of Technology, and contains long-term scalp EEG record-
ings from paediatric patients with intractable epilepsy. In total, 23 EEG recordings from
22 subjects are included. During data acquisition, patients were monitored continuously
for several days, typically following withdrawal of anti-epileptic medication, to capture
seizure events and to support clinical evaluation for potential surgical treatment. Overall,
182 seizure episodes with annotated onset and termination times are provided. Electrode
placement and nomenclature follow the International 10-20 system [19].

In this study, we set SPH = 5 min and SOP = 30 min (Figure 2). For each annotated
seizure with onset time fonget, ONe pre-ictal SOP segment was extracted from [tonset — SPH —
SOP, tonset — SPH]. Only segments with the exact SOP duration were retained. With a
sampling rate of 256 Hz, each SOP segment contains 460,800 samples.

SPH SOP

4 Amplitude Pre-ictal State Intenventio

i\ L &
il
5 12,263 12,285 12,312 12,318 25,246

Time (seconds)

Figure 2. An EEG recording example from the CHB-MIT database [8] (e.g., the second seizure of
Patient 1). The ictal stage is labelled from 12,285 to 12,312 s, and an inter-ictal interval is selected from
25,246 to 39,680 s. A correct prediction indicates that no seizure occurs during the SPH following
an issued warning and that a seizure occurs within the subsequent SOP. The yellow triangle marker
denotes the time at which the warning (alarm) is issued (start of SPH). Reproduced from [20].

Inter-ictal segments were obtained from the dataset segmentation file (segmenta-
tion.csv), which specifies inter-ictal intervals that are temporally separated from seizure
events by design. Multiple inter-ictal intervals may correspond to one seizure. For each
inter-ictal interval, we extracted the annotated EEG segment; when a full inter-ictal file is
specified, the entire recording (typically 1 h, 921,600 samples) was used, otherwise only the
annotated sub-interval was extracted.

Because the number of available EEG channels varies across subjects in CHB-MIT, we
adopted the channel selection and simplification procedure in [21] to obtain a consistent set
of channels across patients (Table 1). Both pre-ictal and inter-ictal segments were partitioned
into non-overlapping 30 s windows (7680 samples per window) and transformed into
time—frequency representations using the same STFI-based preprocessing pipeline. Each
30 s window was represented as a spectrogram tensor of size 16 x 56 x 112 (channels x time
bins x frequency bins), which serves as the input to CDCGAN (for pre-ictal augmentation)
and the downstream CNN predictor.
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Table 1. Subject-wise primary EEG channels and seizure counts in the CHB-MIT dataset. For each
patient, 16 primary channels were selected using the screening procedure described in [21] to obtain a
consistent channel set across subjects. Channel indices correspond to the original channel numbering
in the CHB-MIT recordings, and the last column reports the number of annotated seizure events for
each patient.

Patient Primary Channels Number Seizures Number
[8,4,6,0,5,7, 16, 10,

P1 20,18,3,2,12, 11, 15, 9] 7

o [17,10,11, 16,4, 5, 15, 0, 5
6,7,13,12, 3,21, 14, 2]

s [17,4,10,9,8, 0, 16, 6, )
7.15,3,11,21, 12, 14, 5]
[6,7,4,12,13, 15, 16, 5,

P5 17,3,9,8,19,18,2, 1] 5

b [9,2,17, 15,19, 20,18, 7, A
1.11,8.5,13, 16, 4, 12]
[11,7,17,10,9,6, 8, 4,

P10 15,3, 16,20, 0,19, 12, 13] 6
[6,7,15, 14, 3, 0,10, 9,

P13 11,4,5,1,8,2,16, 13] 3
[0,16,10,4,12,9, 15, 1,

P14 8,11,17,7,13, 6, 5, 20] 5
[7.17,3,5,16, 11, 15, 4,

P18 10,6,9,8,18, 2, 0, 14] 6
[6,16,7,21,17, 5, 15, 3,

P19 0, 14,13, 11, 2,18, 19, 10] 3
[14,13,0,4, 21,2, 18,1,

P20 6,19, 5,15, 10, 17, 16, 20] 5
[8,9,19,4 1,18,2, 12,

P2l 0,16, 5, 20, 17,21, 3, 13] 4
[19,20,21,16,11,0,4,1,

P23 717,10, 5, 6,15, 3, 9] 5

2.2. Preprocessing

For preprocessing, the EEG recordings (16 channels, sampled at f; = 256 Hz) were con-
verted into time—frequency representations using the short-time Fourier transform (STFT).
Each SOP segment was divided into 60 non-overlapping windows of 30 s (7680 samples per
channel), and an STFT-based spectrogram was computed for every 30 s window. We adopt
a time—frequency representation because pre-ictal dynamics are typically non-stationary
and are often reflected by time-varying, frequency-dependent changes in EEG rhythms
and spectral power; the spectrogram preserves both spectral content and its temporal
evolution, which facilitates learning transient frequency-localised signatures preceding
seizure onset [3,7].

We used the stft package to compute spectrograms with a frame length of 1s
(256 samples). Since the default setting uses an overlap coefficient of 2 (i.e., 50% over-
lap) and a cosine window, the hop size is 0.5 s (128 samples). With these settings, each 30 s
window yields 59 time frames, and the one-sided spectrum contains 129 frequency bins
(0-128 Hz with 1 Hz resolution). This configuration provides a practical time—frequency
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resolution trade-off for scalp EEG: it is fine-grained enough to capture short-lived spectral
modulations while remaining compact for stable GAN and CNN training.

The complex STFT output was converted to magnitude and stabilised by adding 10~°
before applying a base-10 logarithm. To suppress power-line interference in CHB-MIT, we
removed frequency components within 57-63 Hz and 117-123 Hz (60 Hz mains frequency
and its second harmonic), and excluded the DC component (0 Hz). After frequency
removal, the spectrogram contains 114 frequency bins. Finally, for a fixed input size to
the downstream models, we cropped the spectrogram to the first 56 time frames and
112 frequency bins, resulting in a tensor of size 16 x 56 x 112 (channels x time bins x
frequency bins) for each 30 s window.

2.3. Conditional Deep Convolutional Generative Adversarial Network (CDCGAN)

The GAN adopted in this study is termed the CDCGAN, which integrates the convo-
lutional architecture of DCGAN [6] with the label-conditioning mechanism of CGAN [22].
Figure 3 illustrates the overall CDCGAN architecture. In the discriminator, the input con-
sists of either real spectrogram samples or synthetic samples produced by the generator.
The discriminator employs a similar architecture to DCGAN, comprising three convolu-
tional blocks containing 16, 32, and 64 feature maps respectively. Each block uses a 5 x 5
convolution kernel with a stride of 2 for progressive downsampling.

Generator

G()

Noise and Label Information

@
13
N}
N

Hidden Representation

W~ =

Random Noise 7z = 62 Reshape

Condition » 5 4 ‘

EEENEEN
-~

“

b\
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Figure 3. Architecture of the proposed Conditional Deep Convolutional GAN (CDCGAN). The
generator G(-) takes a latent noise vector z € R and a class condition y € {0,1} (0: inter-ictal,
1: pre-ictal). The concatenated input is embedded into a 6272-dimensional hidden representation and
reshaped into feature maps of size 64 x 7 x 14. A sequence of transposed-convolution blocks (kernel
5 x 5, stride 2 x 2) progressively upsamples the representation to 32 x 14 x 28, 16 x 28 x 56, and finally
generates a synthetic EEG time—frequency sample with size 16 x 56 x 112. The discriminator D(-)
receives either real (original) or forged (generated) samples and applies convolutional downsampling
blocks (kernel 5 x 5, stride 2 x 2) to obtain 16 x 28 x 56, 32 x 14 x 28, and 64 x 7 x 14 feature maps,
followed by flattening (6272 units) and a sigmoid output that estimates the probability that the input
is real. During adversarial training, G is optimised to synthesise class-specific EEG samples, while D
is trained to distinguish real from generated data under the same conditioning.
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Employing CNN within the GAN framework offers notable advantages for EEG
modelling. Compared with early GAN variants based on fully connected networks, the
convolutional structure enables the discriminator to capture hierarchical spatial patterns in
the time—frequency representation, thereby facilitating the learning of more informative
features. This is particularly beneficial for non-invasive scalp EEG, which often exhibits
SNR and complex spatiotemporal characteristics that are difficult to model effectively with
simple architectures such as shallow artificial neural networks (ANNSs).

We apply batch normalisation once before each convolutional layer (three in total) to
stabilise and accelerate training by reducing internal covariate shift [23]. The last layer
of the discriminator is a fully connected layer followed by a leaky ReLU activation. The
discriminator outputs a scalar score used to distinguish whether an input spectrogram is
drawn from the real dataset or generated by the generator.

The structure of the generator is inspired by the Conditional GAN. The public
datasets now are unbalanced because when the EEG signal of a subject is recorded, most
of the time the subject spends is between interictal rather than seizures. This results in
less data on the seizure period. However, such an unbalanced dataset allows the model
to train on a smaller amount of data. If the original data is used for balancing, the data
in the training set will be greatly reduced. It will affect the performance of the model,
especially for CNN models [3]. Thus, the advantage of Conditional GAN is that it can
generate a specific label so that it can solve unbalanced issues. From the construction of
Conditional GAN, it can be found that the input of Conditional GAN contains the labels
and original data. Thus, the training part of it is supervised learning in order to generate
the specific label data.

The input of the generator is the noise and labels. To keep the same dimension of
the discriminator, the shape of the noise is set to 62. Then the noise would be inputted
into the fully-connected layers. The number of convolutional kernels in the generator
is 32, 16 and 16 with the size 5 by 5 and strides 2. The setting of batch normalisation
layers and the activate function is the same as the discriminator. For the label information,
it is transformed into one hot label with two categories added to the discriminator and
the generator.

Compared with the other GAN model, CDCGAN is more suitable for solving the issues
in the EEG classification or prediction field. By combining the DCGAN and Conditional
GAN, the CDCGAN can forge high-resolution time—frequency diagrams and learn more
deep features. The CDCGAN can generate specific labels to solve unbalanced issues. The
architecture of the complete CDCGAN is shown below.

2.4. Synthetic Data Generation and Sampling Strategy

After CDCGAN generates class-specific samples, the synthetic spectrograms are ap-
pended to the original training set according to an augmentation rate. We define the
augmentation rate as r = N /100, where N% denotes the ratio of generated spectrograms
to the number of original spectrograms extracted from the patient’s pre-ictal period (SOP).
Let A be the number of seizures for a patient and B be the number of spectrograms ex-
tracted from the SOP of each seizure (in our setting, B = 60 corresponding to a 30 min
SOP segmented into 60 non-overlapping 30 s windows). The target number of generated
spectrograms is then computed as

Gtarget = [r-A-B]. 1)
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To preserve a seizure-wise organisation of samples, we allocate generated spectrograms in
blocks following each seizure in the training set. Specifically, for seizurei (i =1, ..., A), we
append a generated block of size

gi = min(B, max (0, Gtarget — (i —1)B)), @

and stop once Gtarget Samples have been added. Note that the addition referred to here
pertains to appending samples to the training set at the spectrogram level, rather than
concatenating EEG signals along the timeline. In practice, the generator is configured to
produce up to 1000 synthetic spectrograms per patient. For a given augmentation rate, we
compute the required number of synthetic samples Gtarget (Equation (1)) and then select
the first Gtarget spectrograms from the generated pool (i.e., without random sampling). The
detailed procedure is summarised in Table 2.

Table 2. Seizure-wise augmentation procedure for integrating generated pre-ictal spectrograms
into the original training set. r = N/100 is the augmentation rate, and the target number of
generated spectrograms is Gtarget = [rAB] (Equation (1)). For seizure i, a generated block of size
gi = min(B, max(0, Gtarget — (i — 1)B)) is appended. The last column reports the remaining number
of generated spectrograms needed after each generated block.

Step Spectrograms Type Remaining to Reach Giarget
Seizure 1 B Original Gtarget
Expanded 1 g1 Generated max(0, Gtarget — B)
Seizure 2 B Original max(0, Garget — B)
Expanded 2 o Generated max(0, Gtarget — 2B)
Seizure 3 B Original max(0, Garget — 2B)
Expanded 3 93 Generated max(0, Garget — 3B)
Seizure A B Original max(0, Grarget — (A —1)B)
Expanded A <A Generated max(0, Grarget — AB)

2.5. Evaluation Model

After the data augmentation part, the expanded dataset can be evaluated by the CNN
model. Figure 4 shows the construction of the evaluation model [3].

The evaluation network consists of three convolutional blocks, denoted as C1, C2,
and C3. Each block performs hierarchical feature extraction, with max pooling applied to
progressively reduce the spatial resolution of feature maps and improve computational effi-
ciency. The resulting representations are then flattened and passed through fully connected
layers. Finally, a soft-max activation is used to produce class probabilities and generate the
predicted labels.

The evaluation CNN follows a hybrid 3D-2D design (Figure 4). Each input is a 5D
spectrogram tensor of shape (batch, 1, C, 56, 112), where C denotes the number of EEG
channels (16 when significant-channel selection is applied and 22 otherwise). In C1, a 3D
convolution with 16 filters and kernel size (C,5,5) is applied with stride (1, 2,2), so that
the convolution spans the full channel dimension while downsampling the time-frequency
plane; this is followed by a ReLU activation and 3D max pooling with pool size (1,2,2).
The resulting feature maps are reshaped to a 2D representation and passed through two 2D
convolutional blocks (C2 and C3) with 32 and 64 filters, respectively, using 3 x 3 kernels
and 2 x 2 max pooling. Finally, the features are flattened and fed into fully connected layers
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with dropout (0.5), and a 2-unit softmax output produces class probabilities for inter-ictal
versus pre-ictal classification.

S S o Fully-C d
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640
n
16x s2x M3 64x M 3
3 3
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‘ )
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Figure 4. Architecture of the evaluation CNN used to assess CDCGAN-based data augmentation.
Each input is a 5D spectrogram tensor of shape (batch, 1, C, 56, 112), where C denotes the number
of EEG channels (C = 16 when significant-channel selection is applied and C = 22 otherwise). C1
applies batch normalisation followed by a 3D convolution with 16 filters and kernel size (C,5,5)
(spanning the full channel dimension) using stride (1,2,2), and 3D max pooling with pool size
(1,2,2). The output is reshaped and processed by two 2D convolutional blocks: C2 (32 filters) and C3
(64 filters), both using 3 x 3 kernels with stride 1 x 1 and 2D max pooling (2 x 2). The feature maps
are flattened and passed through fully connected layers with dropout (0.5): a 128-unit hidden layer
(sigmoid) followed by a 2-unit softmax output for binary classification (inter-ictal vs. pre-ictal).

We evaluate the model using LOSO-CV [24]. For a patient with N annotated seizures,
in fold 7, we hold out the SOP /pre-ictal windows extracted for seizure 7 as the test set, while
the remaining (N — 1) seizures are used for training. This procedure is repeated N times
so that each seizure is tested exactly once.

Inter-ictal windows are assigned to folds according to the dataset segmentation file
(segmentation.csv). Specifically, all inter-ictal intervals associated with the held-out seizure
are included in the test set of that fold, whereas inter-ictal intervals associated with the
remaining seizures are used for training. Within each fold, after forming the training set, we
apply a deterministic sequential split for early stopping: the first 75% of training samples
are used for optimisation and the remaining 25% are reserved as a validation set.

In our current implementation, CDCGAN is trained in a patient-specific manner using
all available pre-ictal (SOP) samples from that patient prior to LOSO-CV. The generator is
then used to produce additional samples that augment the training split in each fold.

3. Results

In training the generator and discriminator of CDCGAN, the training epoch is
chosen as 50 and the learning rate of the generator and discriminator is the same
w1 = ap =1 x 10~*. The leaky ReLU action function was used a slope of 0.2. The batch size
is 64. The ratio of the number of training sets to the number of validation sets is 7 to 3.
The generated samples for every patient are 1000. According to different augmentation
rates, the generated samples will be added to the original data. In the evaluation model,
the batch size is set to 32 and the training epoch is 100. Then, we used LOSO-CV to test the
expanded dataset. The condition of early stop is that if the performance is not improved
after 10 epochs, the training will be stopped. The dropout rate is set to 0.5. The optimiser
was Adam with momentum 1 = 0.9, B, = 0.999 and the learning rate a3 = 1 x 1075.
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3.1. Evaluation Metrics

The primary evaluation metric is the area under the receiver operating characteristic
curve (ROC-AUC). In this study, ROC-AUC is computed at the window level: for each 30 s
spectrogram sample, the detector outputs a continuous score interpreted as the probability
of the positive class (pre-ictal, y = 1). Within each LOSO-CV iteration, the ROC curve
is obtained by sweeping the decision threshold applied to these scores and plotting the
true positive rate (TPR, sensitivity) against the false positive rate (FPR). The AUC is then
calculated as the area under the resulting ROC curve.

Under LOSO-CV, an AUC value is computed for the test fold in each iteration and
then averaged across the N folds (one fold per seizure) to obtain a patient-level AUC. Given
a binary confusion matrix (Table 3), the rates used to construct the ROC curve are defined
as TPR = qphipx, FPR = i, TNR = qxip (specificity), and FNR = g
Table 3. Confusion-matrix definitions used to compute ROC-related quantities for ES prediction.
Ground-truth labels (rows) are compared with predicted labels (columns), yielding true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN).

Prediction
1 (Pre-Ictal) 0 (Inter-Ictal) Total
Ground Truth
1 (pre-ictal) TP FN TP+FN
0 (inter-ictal) FP TN FP+TN
Total TP+FP FN+TN TP+FP+FN+TN

3.2. Performance Under Different Augmentation Rate

For each augmentation rate, we report a patient-level AUC obtained by averaging
the window-level ROC-AUC across LOSO folds (one fold per seizure). We further report
the mean AUC across patients for each augmentation setting, as shown in Figure 5. For
each patient, the CDCGAN generator is configured to produce up to 1000 synthetic pre-
ictal spectrograms; the required number of synthetic samples is then selected from this
pool and appended to the training set according to the specified augmentation rate. In
all experiments, we set a maximum epoch budget of 50 for the detector; however, early
stopping may terminate training earlier based on a monitored objective (see Figure 6).

We define the augmentation rate as the ratio of generated pre-ictal spectrograms to
the number of original pre-ictal spectrograms for a given patient. Let A denote the number
of seizures for that patient. Since each seizure contributes one 30 min SOP that is converted
into 60 spectrograms, the patient has 60A original pre-ictal spectrograms in total. An
augmentation rate of r therefore corresponds to adding approximately [r - 60A| generated
pre-ictal spectrograms to the training set.

As shown in Figure 5, the AUC reaches its highest values at augmentation rates of
approximately 60% and 100%. We adopt 60% as the default setting because it achieves
performance comparable to 100% while injecting fewer synthetic samples, thereby reducing
the risk of distribution shift induced by generated data and lowering computational cost.
Compared with substantially higher oversampling ratios (e.g., 5x-10x) reported in [13],
these results suggest that a moderate level of targeted pre-ictal augmentation is sufficient
under the CHB-MIT setting and our training protocol.

To complement the AUC results, we also report representative learning curves to
illustrate the training dynamics under different augmentation rates and the motivation
for early stopping. Within each LOSO iteration, the training portion is split sequentially
into a training subset (first 75%) and a monitoring subset (last 25%) for model selection.
As shown in Figure 6, the training loss quickly approaches zero and the training accuracy
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saturates near 1.0 across settings, while the monitoring loss exhibits a U-shaped trend
and tends to increase after approximately 12-15 epochs, indicating the onset of overfit-
ting. Early stopping is applied with a patience of 10 epochs by monitoring the objective
J = Lya1 + Lirain, and training is also stopped when | < 103. We note that these curves
are used for illustrating optimisation behaviour and model selection; final performance is

reported as ROC-AUC on the held-out seizure fold under LOSO-CV.

1
09 M Patient 1
0.8 A
M Patient 2
0.7
M Patient 3
06
8] M Patient 5
305
< | Patient 9
0.4
 pati
03 Patient 13
0.2 Patient 19
0.1 Patient 21
0 Patient 23
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% M Average AUC
Augumentation Rate
Figure 5. Effect of augmentation rate on ES prediction performance (window-level ROC-AUC). For
each patient and each augmentation setting, we compute ROC-AUC on the test fold in LOSO-CV
using the predicted probability of the positive class (pre-ictal, y = 1) for each 30 s spectrogram
window. The patient-level AUC (blue bars) is obtained by averaging the AUC values over the N
LOSO folds (one fold per seizure). The red bars report the mean AUC averaged across patients for
each augmentation rate.
Training and Validation Loss Training and Validation Accuracy
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Figure 6. Representative learning curves of the evaluation CNN under different augmentation
rates (Aug = 0%, 60%, and 100%) within a LOSO iteration. (Left): training and monitoring loss;
(right): training and monitoring accuracy. The monitoring set is a held-in split of the training portion
(first 75% for training and last 25% for monitoring) used for early stopping and model selection. Final
evaluation is performed using ROC-AUC computed on the held-out seizure fold under LOSO-CV.

3.3. Performance Under Different Synthetic Specific Category Samples
By analysing Table 4, it can be founded that in most of the patients, the AUC of the

expanded dataset in the proposed work is larger than the previous work which means
the forged data can improve the existing performance of the model. For the previous
work [3] which is the paper related to the evaluation model, it can be found that the
expanded data can improve the performance of the evaluation model which means the
forged data by CDCGAN can contribute to the performance. For the previous work [7,13],
they employed the GANSs to whether to generate the time domain signal with multiple
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channels or classification the different labels using the trained discriminator as the CNN
model. The higher AUC can prove that the data generated by CDCGAN is superior to
these two methods.

Table 4. Patient-wise AUC comparison between the proposed approach and representative prior
studies. Results for our method are reported under 50 training epochs and a 60% augmentation
rate. We additionally report an ablation setting where label-conditioning is removed (unconditional
DCGAN), while keeping the rest of the pipeline unchanged. The last two rows report the mean and
sample standard deviation (SD) across patients; for Xu et al. [13], the statistics are computed over the
patients for which AUC values are reported. Boldface indicates the highest AUC in each row (per
patient and the mean).

Patient Number Truongetal.[3] Truong et al.[7] Xu et al. [13] DCGAN Our Method
Patient 1 0.924 0.998 0.912 0.986 0.996
Patient 2 0.359 0.171 \ 0.639 0.910
Patient 5 0.880 0.841 \ 0.837 0.841
Patient 9 0.744 0.555 0.518 0.519 0.491

Patient 13 0.973 0.984 \ 0.930 0.997
Patient 19 0.993 0.971 0.494 0.990 0.991
Patient 21 0.905 0.812 \ 0.840 0.785
Patient 23 0.993 0.943 0.810 0.996 0.999
Mean 0.846 0.784 0.684 0.842 0.876
SD 0.213 0.287 0.209 0.177 0.176

3.4. Ablation Study

We conducted an ablation study to quantify the contribution of the conditional mecha-
nism in CDCGAN. Specifically, we removed the label-conditioning and trained an uncondi-
tional DCGAN under the same experimental protocol (same data splits, augmentation rate,
detector architecture, and training epochs). Under this ablated setting, the patient-wise
ROC-AUC values are 0.986 (P1), 0.639 (P2), 0.837 (P5), 0.519 (P9), 0.930 (P13), 0.990 (P19),
0.840 (P21), and 0.996 (P23), yielding a mean ROC-AUC of 0.842 (SD = 0.177) across patients.
Compared with the full CDCGAN-based augmentation (mean ROC-AUC = 0.876), the
performance drop indicates that label-conditioning is an important factor for generating
class-consistent pre-ictal samples that benefit the downstream predictor.

4. Discussion

Table 5 provides a structured comparison between the proposed method and repre-
sentative prior studies. The comparison covers the target task (ES prediction), whether
GAN-based data augmentation is adopted, whether class-specific data generation is per-
formed, whether both classes are used to train the GAN, the use of oversampling, the type
of synthesised EEG signals (raw and/or long-term), the evaluation protocol (LOSC-CV),
and whether an improvement in predictive performance is reported. Notably, among
the compared works, only [25] and the proposed method generate class-specific samples,
while the proposed method additionally avoids oversampling during GAN training and
evaluates performance under LOSC-CV. As summarised in the final row, the proposed
method reports improved performance relative to its baseline setting.
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Table 5. Comparison of the proposed method with representative prior studies in terms of task setting,
data augmentation (DA) strategy, GAN-based synthesis design, evaluation protocol, and reported
performance improvement. Each column corresponds to a reference method and each row indicates
whether a specific design choice (e.g., ES prediction task, use of GAN for DA, class-conditional
generation, oversampling, raw or long-term EEG synthesis, LOSO-CV evaluation) is adopted.

Researches (71  [111 [26] [271 [12] [25] [13] This Method
Epileptic seizure prediction task? v X v X v X v v
GAN is used for DA? X v X v X v v v
GAN is used for generating specific data? X X X X X v X v
Both categories’ signals are trained in GAN? v v X X X v v
Oversampling is used in the training part? v X X v X X X X
Synthesise raw EEG signals? X v X v X v v v
Synthesise long-term EEG signals? X X X v X v v v
LOSO-CV? v X X X X X v v
Did performance improve or not? X X X X v X v v

4.1. Advantages

First, unlike studies that apply generic oversampling or augment both classes indis-
criminately, our framework uses a GAN-based model to selectively augment pre-ictal EEG
segments. This targeted augmentation directly addresses the scarcity and class-imbalance
problem in ES prediction, where pre-ictal samples are typically much fewer than inter-ictal
samples. Second, we avoid oversampling during GAN training. This design reduces
computational cost and, more importantly, mitigates the risk of repeatedly reusing noise-
dominated patterns, which is a practical concern for non-invasive scalp EEG with relatively
low SNR. Third, the conditional learning mechanism enables class-aware generation: by
conditioning on labels, the generator learns class-specific characteristics and can synthesise
pre-ictal signals while reducing feature leakage from the other class, thereby improving
separability for downstream prediction.

4.2. Limitations

Despite the observed performance improvements, several limitations warrant con-
sideration. First, the proposed approach remains sensitive to the quality and diversity of
the generated pre-ictal spectrograms. Mode collapse or insufficient coverage of heteroge-
neous pre-ictal patterns in the generator may lead the detector to overfit to a limited set of
synthetic structures, potentially compromising robustness and generalisation to unseen
recordings or patients.

Second, our current augmentation strategy is patient-specific: for each patient, the
generator is trained using that patient’s pre-ictal data to model an individual distribution,
and the generated samples are subsequently used to augment detector training. While this
setting aligns with a personalised deployment scenario, it may overestimate performance
compared with more stringent protocols, such as fold-wise augmentation (where the
generator is trained using training folds only) or cross-patient evaluation. Accordingly, the
reported results should be interpreted as patient-specific performance on CHB-MIT under
our current training protocol, and may not directly generalise to cross-patient settings.

Third, distribution-level similarity does not necessarily guarantee clinical validity.
Although the generated samples can improve downstream ROC-AUC, GAN-generated
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EEG spectrograms may not fully preserve clinically meaningful pre-ictal biomarkers. To
assess physiological plausibility, we conducted quantitative similarity analyses between
real and generated pre-ictal samples across all patients. Specifically, we compared the
distributions of PSD-derived power and the mean spectrogram log-power (logj) for the
full-band range and for each canonical sub-band (4, 6, a, B, 7). The results show par-
tial distributional alignment between real and synthetic samples, with relatively closer
agreement in higher-frequency bands (particularly /) and more pronounced shifts in
lower-frequency bands (notably §/6). This indicates that the current generator captures
some high-frequency spectral characteristics more reliably than low-frequency content.
Overall, these distribution-level comparisons suggest that the generated data do not per-
fectly match the full physiological distribution of real pre-ictal EEG; therefore, further
validation is warranted, including expert review and methodological improvements to
enhance low-frequency fidelity and overall distribution alignment.

5. Conclusions

We proposed a new structure of CDCGAN applied in order to solve the issues in the
ES prediction. The results of the CDCGAN are better than the previous work with the
value of AUC equal to 0.876 when the epoch equals 50 and the augmentation rate equals
60%. This method gives great ideas to solve the issues in the unbalanced datasets and
low-resolution time—frequency diagrams in the ES prediction field.
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