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Abstract

Reliable fault diagnosis of induction motors from current signals is critical for preventing
failures in industrial systems. However, deep learning models often exhibit performance
degradation when the torque load and other operating conditions change. Although a lot
of research has been completed on supervised fault classification using current signals, the
investigation of the behaviour of these datasets for unsupervised learning has not been
done. This study quantifies and analyses the “shadowing effect” of operational variability,
demonstrating that a baseline 1D-CNN achieving 100% accuracy under static 0 Nm loads
drops to 53.19% accuracy when subjected to 4 Nm load in the KAIST dataset using a stator
current. Similar trends were validated using the Paderborn University (PU) bearing dataset.
Using 1D-CNN feature extraction followed by Principal Component Analysis (PCA),
t-SNE, and hierarchical clustering, we show that standard linear mitigation strategies, such
as removing high-variance principal components, are ineffective because fault and load
features are deeply entangled. Hierarchical clustering analysis confirms that the feature
space is organised by load dominance, with the primary tree split consistently occurring by
torque load rather than fault type. Crucially, we identify that internal geometric metrics,
such as “spread” and “diameter”, correlate with external purity metrics like the proposed
“Dominance Score”. The findings establish a quantitative basis for developing unsuper-
vised, load-invariant diagnostic models that utilise geometric stopping criteria to isolate
fault clusters without using ground-truth labels.

Keywords: condition monitoring; fault diagnosis; contextual features; artificial
intelligence; clustering

1. Introduction
Rotating machinery, particularly induction motors, serves as a critical component in

many industrial applications. Induction motors are considered indispensable components
in mechanical equipment, providing power for the machine to work [1]. The reliability of
these motors is tied to operational efficiency and safety, with unexpected failures leading
to costs and downtime and therefore production losses and safety hazards as well. The
implementation of strategies for fault detection on rotary machines is crucial for the relia-
bility and safety of modern industrial systems [2]. In fact, bearing faults alone account for
40–45% of motor failures, rotor faults for 8–10%, and stator faults for 30–40%, collectively
representing the dominant failure modes in industrial environments [1,3]. Consequently,
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condition monitoring systems have become crucial in modern predictive maintenance.
Early detection of faults enables interventions before faults evolve into critical failures,
thereby reducing repair costs and minimising production losses and enhancing overall
system reliability [2–4].

Motor signal datasets are fundamental for the development of AI-driven condition
monitoring systems. These datasets provide the raw material for training and testing the AI
models for condition monitoring. Existing datasets capture faults at various operating fre-
quencies, such as the 60 Hz induction motor dataset by [5,6], another that operates at 50 Hz
as in [7,8], or the mixed 100 Hz (at 1500 rpm) and 60 Hz (at 900 rpm) experiments by [9].
Recently, the Order Domain Transformer (ODT) has been proposed as a normalisation
technique that enables fusion of datasets with different frequencies, hence extending the
existing datasets in the normalised format and improving the overall performance of neural
network (NN) models due to wider variability of signals introduced [10]. Some resources,
like the KAIST dataset [9,11] extend the scope of datasets by capturing signals at different
speed and load conditions relying on fixed, segmented load profiles. However, industrial
applications operate under continuous variable speed and irregular load changes and are
influenced by stochastic factors that are difficult to reproduce [9]. For instance, the dataset
by [9] is restricted to two discrete torque settings of 0.1 Nm and 0.7 Nm, while the KAIST
dataset [11] utilises only three static load conditions (0, 2 and 4 Nm). Similarly, databases
for rotor fault detection often rely on stepped load increments, such as the 0.5 Nm to 4 Nm
range used to identify broken rotor bars [6]. These discrete snapshots represent a narrow
slice of real-world motor behaviour and do not represent real operating conditions with
vast variations in speed and load. In this work, the analysis uses mechanical fault modes.
Specifically, the KAIST motor dataset provides bearing inner/outer race faults, shaft mis-
alignment and rotor unbalance, while the Paderborn University dataset provides rolling
element bearing damage. This work focuses on understanding how varying mechanical
torque load influences neural network performance for mechanical fault diagnosis.

When a motor’s load shifts dynamically, the resulting signal deviation can easily be
misidentified as a defect by an anomaly detector [4,12]. In this case, the data shift must
be fully understood for the consequent task of fault classification within the dynamic
operating environment. For instance, ref. [13] used Topological Data Analysis (TDA) for
fault classification under no-load conditions, while ref. [14] extended TDA to quantify
eccentricity faults under varying load conditions ranging from 0 to 3.5 Nm. Ref. [2]
employed FPCA and FDM to classify faults under varying load levels of 0%, 20%, 40%,
60%, and 80%. In [15], the authors successfully differentiated between distinct faults,
such as inner race, outer race and ball faults, using an autoencoder with a feed-forward
neural network using loads of 0, 1, 2 and 3 horsepower (hp). Ref. [16] utilised a CNN
to diagnose faults under loads of 0, 1, 2 and 3 hp as well. Ref. [1] utilised pre-trained
unsupervised GANs to fine-tune discriminators across five fault categories, namely healthy
motor, bending rotor, defective bearing, phase missing, and stator winding shorted, where
varying rotating speeds (100–1800 rpm) were used as operating conditions. Similarly, in the
broader context of complex industrial systems, ref. [17] proposed a digital twin-assisted
framework to enhance diagnosis reliability by fusing virtual and real data, utilising a
convolutional neural network-gated recurrent unit model, while ref. [18] also developed
an intelligent diagnosis method for an electric-hydraulic control system using residual
analysis for extracting strong features. Additionally, probabilistic approaches such as
the probabilistic neural network (PNN) have been applied to classify bearing fault types
under varying load conditions [19]. Although many efforts have been made to utilise
fault classification with a discrete, stepped load range, limited efforts have been made to
understand the influence of load variations on unsupervised fault classification.
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Current signals are commonly leveraged due to their simple and low-cost implemen-
tation, as sensors are part of motor control systems [12,14]. This placement on control
panels facilitates practical industrial deployment by bypassing the difficulties of accessing
machinery in challenging environments [2]. Consequently, various approaches have been
developed to utilise this modality: ref. [13] utilised time-domain stator current signals
directly, while [2] employed a two-phase current alongside line voltages. Others, such
as [12], transformed current signals into two-dimensional images for analysis, and research
by [10,20] has further validated the use of current data alone for robust fault diagnosis.

The fundamental principle of Motor Current Signal Analysis (MCSA) is that fault
conditions manifest as characteristic spectral changes in the current signature [2,3]. Tra-
ditional diagnostic approaches rely on converting these raw signals into signatures using
techniques such as Fast Fourier Transform (FFT) [2] or Recurrence Plots (RPs) [12]. While
effective, these methods require extensive domain expertise to manually engineer features
and identify relevant fault harmonics, which often shift depending on motor specifications
and operating conditions [2]. Instead of using signal processing techniques, researchers
have utilised raw unprocessed time-domain signals as model inputs, using deep learning to
automatically learn representative features. For instance, ref. [21] demonstrated the efficacy
of a compact adaptive 1D-CNN. Similarly, ref. [16] proposed a deep CNN framework
which can automatically extract robust features from raw signals, and in [22], the authors
introduced a model combining 1D and 2D CNNs to process raw signals directly. This
eliminates the need for complex preprocessing and allows for automated feature extraction
using deep learning models.

Simultaneously, the reliance on supervised learning poses a practical barrier to deploy-
ment. Although supervised models, ranging from Decision Trees and SVMs [13] to CNNs
as in [16,21], achieve high accuracy, they depend on availability of abundant labelled fault
data. In industrial environments, collecting labelled data for every possible failure mode is
costly and time-consuming [1,2]. While semi-supervised approaches have been explored
in [1,15], they still require some degree of labelling. Consequently, the use of unsupervised
learning allows the labelling bottleneck to be bypassed by uncovering patterns and clusters
within the abundant raw operational data available, without requiring manual annotation
for every operating condition [2].

Despite the promise of unsupervised classification on raw current signals, its ef-
fectiveness is compromised by operational variability, specifically the fluctuating load
characteristics. Analysis of public datasets, such as the KAIST motor dataset [11] and
Paderborn University (PU) dataset [9], reveals that models trained under static conditions
struggle to generalise when under varying loads. For instance, studies focusing on a single
load condition often report high diagnostic accuracy [23]. However, when data from mul-
tiple load conditions are integrated, performance drops significantly, as shown in [24,25].
This degradation occurs because load variations introduce dominant variance in the raw
signal that unsupervised models struggle to distinguish from fault signatures. While recent
attempts using domain adaptation have been made [20], the adequacy of dimensionality
reduction techniques, such as Principal Component Analysis (PCA), in this context needs
to be explored. It remains to be investigated whether removing top principal components
based on high variance can effectively eliminate these dominant contextual variables or
if dominant features driven by load changes will obscure the subtle features of faults, a
phenomenon defined as the shadowing effect by [26].

A more targeted approach is required to understand how these contextual variables
structure the feature space and influence the performance of the neural network model.
Hierarchical clustering has emerged as a powerful tool for analysing complex and multi-
scale feature relationships by organising data into nested structures that preserve the
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local context. For instance, ref. [27] demonstrated the utility of this approach on marine
machinery to identify and label distinct anomaly patterns. Building on these advancements,
this paper proposes the application of hierarchical clustering to systematically identify and
trace how operational conditions (such as multiple torque loads) propagate through cluster
levels in the feature space.

This paper makes the following contributions:

• Systematically characterises how operational variability (multiple torque loads) mani-
fests as contextual features within hierarchical cluster structures.

• Identifies and evaluates hierarchical clustering metrics to capture contextual influence
at different scales, enabling context-aware feature assessment beyond conventional
variance-based approaches.

• Demonstrates that hierarchical cluster analysis can guide the design of robust unsu-
pervised fault classification systems for raw time-domain current data under varying
operational conditions.

• Provides practical validation on the KAIST motor dataset [11] and PU motor dataset [9],
quantifying the impact of contextual features on 1D-CNN performance and confirming
that hierarchical metrics inform more targeted feature selection and model robustness
than variance-based methods.

The remainder of this paper is organised as follows: Section 2 introduces the technical
background for the dimensionality reduction and clustering tools used in this work, includ-
ing Principal Component Analysis (PCA), t-Distributed Stochastic Neighbour Embedding
(t-SNE) and hierarchical clustering. Section 3 then details the methodology, covering the
datasets, preprocessing pipeline, 1D-CNN feature extractor and feature space analysis
procedures. Section 4 presents the experimental results, while Section 5 discusses the
findings in the context of unsupervised, load-invariant fault diagnosis. Section 6 concludes
the paper and outlines directions for future work.

2. Theoretical Background
This section provides the mathematical and conceptual foundations for the unsuper-

vised techniques later applied in the methodology to analyse the feature space extracted by
the 1D-CNN. To investigate the structural organisation of high-dimensional fault signatures
and the potential “shadowing effect” of operational variability, both linear and non-linear
dimensionality reduction methods are employed. Principal Component Analysis (PCA)
is used to assess class separability through global variance, while t-Distributed Stochastic
Neighbour Embedding (t-SNE) provides a granular view of local manifold structures.
Unsupervised k-means clustering and hierarchical clustering are established as the primary
tools for quantifying cluster purity and identifying natural groupings without the use of
labels. These methods allow for an evaluation of how torque load conditions structure the
feature space relative to mechanical fault types.

2.1. PCA

Principal Component Analysis (PCA) is a linear dimensionality reduction technique
used in this study for both visualisation and diagnostics. It transforms the feature space
into a new coordinate system of orthogonal principal components, ordered by the amount
of data variance they capture.

For visualisation, plotting the first two or three principal components (PCs) provides
a low-dimensional view of the feature space, allowing for an initial assessment of how
the data points are grouped. More importantly, PCA is used as a diagnostic tool as well,
investigating what has been defined as the “shadowing” effect of contextual features.
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2.2. t-SNE

t-Distributed Stochastic Neighbour Embedding (t-SNE) is also used for visualisation.
It is a non-linear technique that is effective at revealing the underlying local structure of
data. It maps the high-dimensional feature vectors into a 2D space, providing a clear visual
map of how individual data points and classes cluster together. This helps in quantitively
assessing the separability of the fault classes and provides a different perspective on the
influence of operational load conditions.

2.3. Clustering

Unsupervised clustering aims to group high-dimensional features based on natural
geometric proximity without pre-defined labels. In this study, K-means is utilised as the
primary algorithm, employing the Euclidean distance to minimise the within-cluster sum
of squares. To assess the structure of the resulting feature space, metrics are categorised
into internal and external validation.

Internal vs. external metrics:

• Internal validation: This is an unsupervised method that does not require labels. It
evaluates clusters based on their geometric properties, like shape and spread. For
hierarchical analysis, split quality metrics like the Silhouette Score and Davies–Bouldin
Index are employed to measure inter-cluster separation and intra-cluster cohesion.

• External validation: This uses ground-truth labels to evaluate the purity of these
clusters, providing a baseline to determine if geometric groupings correspond to true
fault classes. This mutimetric approach allows for a quantitative assessment of how
torque loads shadow the fault features.

The first part of the Table 1 presents the similarity and distance measures, which are
not validation metrics but rather the mathematical rulers used by clustering algorithms to
determine how “close” or “similar” two data points are. The choice of measure can funda-
mentally change how clusters are formed. In our case, K-means uses the Euclidean distance.

Table 1. Summary of similarity and distance measures and cluster validation metrics.

Metric Type Requires Child
Cluster Validation Ranges,

Ideal Description

Euclidean Distance
[28]

Similarity
measure No Distance [0, ∞],

lower

Standard point-to-point
geometric distance, used

for cluster assignment

Diameter
(proposed)

Cluster
quality No Internal [0, ∞],

lower
Largest distance between

two points in a cluster

Spread
[29]

Cluster
quality No Internal [0, ∞],

lower

Average standard
deviation across cluster

features; scatter of points

Centroid Cohesion
(WCSS)

Cluster
quality No Internal [0, ∞],

lower
Total squared distance
from points to centroid

Dominance Score
(proposed)

Cluster
quality No External [0, 1],

higher
Proportion of dominant

label in a cluster

Silhouette Score
[30]

Cluster &
Split quality Yes Internal [−1, 1],

higher

Measures cohesion and
separation by comparing
intra-cluster and nearest

inter-cluster distances
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Table 1. Cont.

Metric Type Requires Child
Cluster Validation Ranges,

Ideal Description

Calinski–Harabasz
Index
[31]

Split quality Yes Internal [0, ∞],
higher

Ratio of between-cluster
dispersion to

within-cluster dispersion

Davies–Bouldin
Index
[32]

Split quality Yes Internal [0, ∞],
lower

Ratio of within-cluster
spread to separation

between clusters

Dunn’s Index
[33] Split quality Yes Internal [0, ∞],

higher

Minimum inter-cluster
distance divided by

maximum intra-cluster
diameter

V-measure
[34] Split quality Yes External

[0, 1],
higher;
0 is also
good.

Harmonic mean of
homogeneity and
completeness for

clustering vs. classes

The second part of the table presents the validation metrics used to score the quality
of the resulting clusters. These are critical for interpreting the output and are divided
into internal and external validation metrics, as mentioned before. The suite of metrics
allows us to assess whether the clusters are geometrically good, using internal metrics,
and/or whether the clusters are correct, using external metrics. This distinction allows us
to find the relationship between internal validation and external validation, which is key in
understanding the impact of contextual features, such as the load torque.

In this analysis, not all the validation metrics have been used, as some gave different
results compared to the majority of the other metrics, such as the “Mahalanobis distance”
metric. Also, more focus is given to internal validation metrics than to external ones;
therefore, others were excluded as well, such as the “Rand Index” and “Jaccard Index”.

3. Methodology
Building on the theoretical background in Section 2, the proposed methodology con-

sists of extracting features from a raw motor current signal and analysing the resulting
feature space. The process begins with selection of appropriate datasets that contain
variations in both mechanical fault types and operating conditions, such as the torque
load. A one-dimensional convolutional neural network (1D-CNN) is employed to learn
high-dimensional representation of the data. Finally, a series of preprocessing methods
is applied, along with PCA and t-SNE for visualisation of the features. Consequently,
clustering is employed, using K-means, which is used in supervised and unsupervised
tasks. Finally, hierarchical clustering is explored using K-means, in order to understand the
structure, relationship and separability of the data.

3.1. Datasets

In this study, two publicly available datasets known for their use in condition monitor-
ing, with varying operating conditions, are utilised: the KAIST motor dataset [11] and PU
(Paderborn University) motor dataset [9].

The KAIST dataset covers most of the major mechanical faults, more specifically,
bearing damage (inner: BPFI; outer: BPFO), shaft misalignment, and rotor unbalance. The
data was collected under different load conditions (0 Nm, 2 Nm, 4 Nm), from a 3 hp, 4-pole
AC motor driven at 380 V, 60 Hz at a rated speed of 1770 rpm, sampled at a frequency of
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25.6 kHz. However, in the dataset, the bearing outer (BPFO) class has not been used as
the files were corrupt and not possible to use. Furthermore, after analysing the Technical
Data Management Streaming (TDMS) format files for the current data, we noticed that the
0 Nm Normal file has 7,682,458 data points, whereas the 2 Nm and 4 Nm Normal files have
3,072,983 data points. The 0 Nm dataset should have had the same number of data points
as the 2 Nm and 4 Nm datasets; as the sampling frequency is 25.6 kHz and measurement
time is 120 s, around 3,072,000 data points are expected, which matches with the 2 Nm and
4 Nm Normal files. Therefore, the data has been used with the above considerations. The
specifications and files used are summarised in Table 2.

Table 2. KAIST motor dataset operating conditions [11].

Sampling
Rate (kHz) Length (s) Fault Types Fault Severity Load (Nm) File Name

25.6

120 Normal n/a
0 0Nm_Normal
2 2Nm_Normal
4 4Nm_Normal

60

Unbalance

583 mg
0 0Nm_Unbalance_0583mg
2 2Nm_Unbalance_0583mg
4 4Nm_Unbalance_0583mg

1169 mg
0 0Nm_Unbalance_1169mg
2 2Nm_Unbalance_1169mg
4 4Nm_Unbalance_1169mg

1751 mg
0 0Nm_Unbalance_1751mg
2 2Nm_Unbalance_1751mg
4 4Nm_Unbalance_1751mg

2239 mg
0 0Nm_Unbalance_2239mg
2 2Nm_Unbalance_2239mg
4 4Nm_Unbalance_2239mg

3318 mg
0 0Nm_Unbalance_3318mg
2 2Nm_Unbalance_3318mg
4 4Nm_Unbalance_3318mg

Misalignment

0.1 mm
0 0Nm_Misalign_01
2 2Nm_Misalign_01
4 4Nm_Misalign_01

0.3 mm
0 0Nm_Misalign_03
2 2Nm_Misalign_03
4 4Nm_Misalign_03

0.5 mm
0 0Nm_Misalign_05
2 2Nm_Misalign_05
4 4Nm_Misalign_05

Bearing Inner

0.3 mm
0 0Nm_BPFI_03
2 2Nm_BPFI_03
4 4Nm_BPFI_03

1.0 mm
0 0Nm_BPFI_10
2 2Nm_BPFI_10
4 4Nm_BPFI_10

3.0 mm
0 0Nm_BPFI_30
2 2Nm_BPFI_30
4 4Nm_BPFI_30
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The Paderborn University (PU) dataset is a widely used benchmark for data-driven
classification tasks in condition monitoring. Unlike the KAIST dataset, the PU dataset uses
a Permanent Magnet Synchronous Motor (PMSM), which does not have motor slip (the
difference between synchronous speed and rotor speed). The motor has a power rating
of 425 W, a nominal torque of 1.35 Nm and a nominal speed of 3000 rpm, with a pole pair
number of p = 4. The current signal was captured at a high sampling frequency of 64 kHz.
The PU dataset used in this work contains exclusively mechanical bearing damage, such as
healthy bearings and bearings with inner-ring, outer-ring and inner/outer-ring damage.

The data has four classes, specifically the Healthy class, InnerRing damage class, Outer-
Ring damage class, and OuterInnerRing damage class. The same as the KAIST dataset, this
one has multiple operating conditions as well. These are summarised in Table 3. We will be
using operating conditions No. 0 and 2, which have different load torques.

Table 3. PU dataset operating conditions [9].

No. Rotational
Speed (rpm)

Load
Torque (Nm)

Radial
Force (N)

Name of
Setting

0 1500 0.7 1000 N15_M07_F10
1 900 0.7 1000 N09_M07_F10
2 1500 0.1 1000 N15_M01_F10
3 1500 0.7 400 N15_M07_F04

3.2. Preprocessing

In order for the data to be trained, the raw motor current data undergoes a series
of preprocessing steps to ensure it is in a suitable format for the model. This involves
segmenting the continuous signal using a sliding window, normalising the data, and
splitting it into training and testing sets.

The raw time-series signal is first divided into segments of 5120 samples each, which
based on the literature review is the size chosen usually. Each of the segments is then stan-
dardised using Z-score normalisation. The process ensures that every segment has a mean
of 0 and a standard deviation of 1, which helps stabilise and accelerate the training process.

In order to avoid data leakage, where segments from the same file appear in training
and testing sets, the splitting is done at the file level. It is a more robust method, where
the files are split into 80/20% groups before any segmentation occurs. This ensures that
the model is tested on data not seen before, providing a more realistic assessment of its
generalisation capability. It is important to note that in the case of the “Normal” class,
the splitting has been done at the segment level, as the number of “Normal” files is 3
and therefore would not be ideal for splitting at the file level. The segment distribution is
presented in Table 4.

Table 4. Segment distribution for KAIST and PU datasets.

Files per Class File Distribution After
Splitting (80/20)

Segment Distribution After
Splitting (80/20)

Training Testing Training Testing

KAIST dataset classes
0 (Bearing) 9 7 2 2100 600

1 (Misalignment) 9 7 2 4200 1200
2 (Normal) 3 2 1 2100 600

3 (Unbalance) 15 12 3 7200 1800
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Table 4. Cont.

Files per Class File Distribution After
Splitting (80/20)

Segment Distribution After
Splitting (80/20)

Training Testing Training Testing

PU dataset classes
0 (Healthy) 120 96 24 4806 1200

1 (Outer Ring) 240 192 48 9628 2406
2 (OuterInner Ring) 60 48 12 2399 601

3 (Inner Ring) 220 176 44 8811 2201

As the classes have different numbers of files and therefore are imbalanced, a Weighted
Cross-Entropy loss function is used during training, where the model pays more attention
to under-represented faults and does not become biased towards the majority class.

3.3. Model

As shown in the literature review, there are multiple models that can be used; however,
the 1D-CNN has shown great results and good extraction of the features needed for the
analysis. Therefore, this model is employed, and it is one-dimensional, as it is a current
time-series measurement. In this analysis, this model is not only used for classification
output, but as mentioned, it serves as a powerful unsupervised feature extractor. The
raw current signals are segmented into sliding windows of 5120 data points in length.
These segments are then fed into the network, where they propagate through a series of
four convolutional layers designed to capture high-frequency signatures associated with
mechanical faults. The architecture then expands the feature depth from 32 to 256 filters,
with a kernel size of 5 and then 3. The stride and padding are at default values, therefore 1
for stride and 0 for padding. Each convolution layer is followed by batch normalisation,
ReLU activation and max pooling. The model is trained using the Adam optimiser with a
learning rate of 0.0001, using a batch size of 64 over a maximum of 200 epochs, with early
stopping to prevent overfitting. The architecture is shown in Figure 1.

Figure 1. 1D-CNN architecture used.

The parameters of the 1D-CNN for both datasets utilised are detailed in Table 5 below.
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Table 5. 1D-CNN parameters for KAIST and PU datasets.

Parameter KAIST PU

Segment length 5120 5120
conv layer 1 Filters: 32; kernel: 5 Filters: 32; kernel: 5
conv layer 2 Filters: 64; kernel: 5 Filters: 64; kernel: 5
conv layer 3 Filters: 128; kernel: 5 Filters: 128; kernel: 5
conv layer 4 Filters: 256; kernel: 3 Filters: 256; kernel: 3

Pooling MaxPool1D (2) MaxPool1D (2)
Dense layer 1 Flatten 256 Flatten 256
Dense layer 2 256 (num classes) 256 (num classes)

Dropout 0.5 0.5
Optimiser Adam Adam

Learning rate 0.0001 0.0001
Weight decay 1 × 10−4 1 × 10−4

Batch size 64 64
Epochs 200 200

3.4. Feature Space Analysis Techniques

Once the features are extracted by the 1D-CNN, a suite of unsupervised analysis
techniques is applied to the resulting learned feature space. The purpose of this analysis is
to visualise the high-dimensional data, understand the structure and assess the influence
of contextual operating conditions on how the model organises the data. For this pur-
pose, Principal Component Analysis (PCA) is used, along with t-SNE, and consequently
clustering and hierarchical clustering are applied to these features using K-means.

3.4.1. Removal of Principal Components

In the literature, different authors have defined the quality of the principal components
using different metrics. However, the standard one is the explained variance from the
PCs. The hypothesis is that, as these components are ordered by the most variance, it is
likely that the top PCs capture the dominant features, which, as shown before, are the
load conditions.

The approach here consists of multiple experiments, summarised also in Figure 2:

1. Removing multiple top PCs from the full feature space.
2. Removing multiple top PCs from a variance-reduced (80%) space.
3. Removing a single top PC from the full feature space.
4. Removing a single top PC from the variance-reduced (80%) space.

The first approach is therefore the cumulative removal of the top five principal compo-
nents from the full feature space. The second approach reduces the component space to
retain 80% variance, which corresponds to less features and dimensions, and then explores
removing the top variance components. The third and fourth approaches test if a single
principal component (e.g., just PC0 or PC1) is singularly responsible for the load dominance.

Thus, the third approach consists of removing only a single principal component from
the full dimension space, and in the fourth approach, a single top PC is removed but from
a reduced dimension space (80% variance).

3.4.2. Clustering

In order to quantitatively and qualitatively assess the structure of the learned feature
space, unsupervised clustering algorithms are employed. The goal is to determine if the
data points corresponding to different fault types form distinct, natural groups and see how
these are affected by the operating conditions. There are multiple clustering algorithms
such as DBSCAN, HDBSCAN, Agglomerative Clustering and others [35]; however, the well-
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known K-means is well-suited for this analysis, as it can work with an undefined number
of clusters or by specifying the number of clusters. The latter will be used for hierarchical
clustering, to build a tree-like diagram of nested clusters, known as a dendrogram. It
provides a powerful visualisation of the data’s structure without needing a pre-specified
number of clusters. This is important for exploring the relationship between different
fault classes and operating conditions and understanding separability at various levels
of granularity. In this way, it is possible to analyse if the data points group first by the
operating load and then by fault type, which would quantitatively confirm the dominance
of the contextual feature. The quality of these clusters is then assessed using a series of
metrics. Some of these metrics are taken from the literature review, and others are calculated
and created, such as the diameter and the Dominance Score. These are summarised in
Table 1. In this analysis, not all the validation metrics have been used, as some gave different
results compared to the majority of the other metrics, such as the “Mahalanobis distance”
metric. Also, more focus is given to internal validation metrics than to external ones;
therefore, others were excluded as well, such as the “Rand Index” and “Jaccard Index”.

Figure 2. Process of removal of principal components to remove load dominance from fault features:
removing multiple top PCs from full feature space (1), removing multiple top PCs from a variance-
reduced space (2), removing a single top PC from full feature space (3), and removing a single top PC
from a variance-reduced space (4).

3.5. Experimental Environment

All deep learning models and clustering algorithms were implement using Python
3.10.16, PyTorch 2.5.1+ cuda 12.4, numpy 2.1.3, pandas 2.2.3, scikit-learn 1.6.0, scipy 1.14.1,
matplotlib 3.9.3 and seaborn 0.13.2. The hardware configuration consisted of an AMD
Ryzen 9 5900X 12-Core processor, 64 GB of RAM, and an NVIDIA GeForce RTX 3090 GPU.

4. Results
This section reports the experimental results obtained using the proposed methodology.

First, we evaluate the baseline supervised 1D-CNN performance under different torque
loads on both the KAIST and PU datasets. We then analyse the learned feature space using
PCA and t-SNE visualisations, followed by clustering and hierarchical analysis. Finally, we
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examine the effect of different principal component removal strategies on the classification
performance and feature space structure.

4.1. Experiment A: 1D-CNN on Multiple Torque Loads

The model is trained and tested on both the KAIST motor dataset and PU motor
dataset using raw time-series current signals. The 1D-CNN architecture employed in
this study is designed as a standardised baseline feature extractor rather than a highly
optimised domain-invariant classifier. Therefore, it is important to note that the objective
of this study is not to develop an architecture that overfits these datasets but to use a
representative general-purpose architecture, as shown in the Introduction, to expose the
intrinsic behaviour of deep features under load shifts. The classification degradation
observed in this study should be interpreted as a characteristic of a standard supervised
learning paradigm when facing distribution shifts, and we utilised a fixed simplified
architecture to ensure that the resulting feature space distortion is a product of the domain
shift, rather than the result of complex architectural regularisation. The quantification of the
impact of these varying conditions is also the focus of this work, establishing a benchmark
before proceeding with feature space analysis.

4.1.1. KAIST Motor Dataset

The results for the KAIST motor dataset, presented in Table 6, reveal a degradation in
classification performance as the torque increases. At 0 Nm load, the model achieves 100%
accuracy and an F1 score of 1 for all fault classes, indicating that under stable operating
conditions the 1D-CNN can reliably distinguish between fault features. At 2 Nm load,
the performance drops to an average accuracy of 91.73%, with a marked decrease in the
performance of the Normal class, which is affected both by the higher load and larger
number of data points in the 0 Nm Normal file noted previously in the dataset description.
Performance for the other classes also decreases, suggesting that the change in load already
impacts the separability of specific fault classes. At 4 Nm load, the performance degrades
even more to an average accuracy of 53.19%. At this load, the model is highly confused.
For all loads combined, when the model is trained and tested on the full dataset mixing
all three loads, the average accuracy is 87.97%, which is higher than the 4 Nm only case
but still notably lower than for 0 Nm and 2 Nm alone, and the higher standard deviation
indicates less table training across runs. While this is higher than the 4 Nm only case,
it is significantly worse than the 0 Nm and 2 Nm cases. The high standard deviation
also suggests that training is unstable, as the model struggles to find consistent patterns
across the conflicting load conditions. In terms of computational cost, training on the 4
Nm data requires slightly less time than for 0 Nm and 2 Nm, and this is reflected in the
corresponding CO2 emission estimates.

Table 6. KAIST motor dataset 1D-CNN results.

Load Class Precision Recall F1 Avg
Accuracy

Avg
Macro F1

Avg
Weighted F1 Time (s) CO2 (kg)

0

BPFI 1.0000
(±0.0000)

1.0000
(±0.0000)

1.0000
(±0.0000)

100.00%
(±0.00%)

1.0000
(±0.0000)

1.0000
(±0.0000)

250.05 ±
12.11

0.0067 ±
0.0002

Misalignment 1.0000
(±0.0000)

1.0000
(±0.0000)

1.0000
(±0.0000)

Normal 1.0000
(±0.0000)

1.0000
(±0.0000)

1.0000
(±0.0000)

Unbalance 1.0000
(±0.0000)

1.0000
(±0.0000)

1.0000
(±0.0000)
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Table 6. Cont.

Load Class Precision Recall F1 Avg
Accuracy

Avg
Macro F1

Avg
Weighted F1 Time (s) CO2 (kg)

2

BPFI 1.0000 ±
0.0000

1.0000
(±0.0000)

1.0000 ±
0.0000

91.73% ±
0.71%

0.7284 ±
0.0045

0.8890 ±
0.0033

259.40 ±
10.28

0.0065 ±
0.0001

Misalignment 1.0000
(±0.0000)

1.0000 ±
0.0000

1.0000 ±
0.0000

Normal 0.0563 ±
0.0594

0.0100 ±
0.0122

0.0165 ±
0.0198

Unbalance 0.8311 ±
0.0026

0.9747 ±
0.0205

0.8971 ±
0.0100

4

BPFI 0.9822 ±
0.0201

0.9733 ±
0.0281

0.9775 ±
0.0184

53.19% ±
2.56%

0.5129 ±
0.0243

0.4929 ±
0.0273

224.12 ±
8.10

0.0060 ±
0.0001

Misalignment 0.2520 ±
0.0950

0.0857 ±
0.0443

0.1263 ±
0.0600

Normal 0.2070 ±
0.0543

0.5467 ±
0.1744

0.2903 ±
0.0556

Unbalance 0.5887 ±
0.1213

0.7543 ±
0.0515

0.6577 ±
0.0898

ALL

BPFI 0.8579 ±
0.2842

0.9223 ±
0.1512

0.8420 ±
0.2163

87.97% ±
14.62%

0.8901 ±
0.1341

0.8809 ±
0.1416

765.51 ±
50.32

0.0198 ±
0.0007

Misalignment 0.9626 ±
0.0717

0.7445 ±
0.2967

0.8006 ±
0.2443

Normal 0.9780 ±
0.0439

1.0000 ±
0.0000

0.9884 ±
0.0232

Unbalance 0.9396 ±
0.0897

0.9356 ±
0.1183

0.9295 ±
0.0735

4.1.2. PU Motor Dataset

The PU dataset here is not used for comparison with the KAIST motor dataset but to
assess whether similar load-related effects are observed. The results presented in Table 7
show a moderate overall performance, with the 1D-CNN achieving 78.58% accuracy on
M01 (0.1 Nm load) and 75.96% accuracy on M07 (0.7 Nm load). When data from both load
settings are combined, the average accuracy drops to 71.49%.

Table 7. PU motor dataset 1D-CNN results.

Load Class Precision Recall F1 Avg
Accuracy

Avg
Macro F1

Avg
Weighted F1 Time (s) CO2 (kg)

M01

Healthy 0.779
(±0.0621)

0.6882
(±0.1081)

0.7216
(±0.0537)

78.58%
(±1.12%)

0.8071
(±0.0134)

0.7829
(±0.0122)

453.41
(±88.23)

0.0135
(±0.0026)

OuterRing 0.7704
(±0.045)

0.7639
(±0.0884)

0.7615
(±0.0292)

InnerRing 0.7928
(±0.0779)

0.8132
(±0.0986)

0.7932
(±0.0206)

OuterInnerRing 0.9395
(±0.048)

0.9671
(±0.0388)

0.9522
(±0.0329)

M07

Healthy 0.7327
(±0.1011)

0.756
(±0.1763)

0.7169
(±0.0757)

75.96%
(±1.07%)

0.7811
(±0.0149)

0.7559
(±0.0153)

510.60
(±84.23)

0.0153
(±0.0025)

OuterRing 0.7482
(±0.0255)

0.6598
(±0.0465)

0.6997
(±0.0207)

InnerRing 0.7762
(±0.0847)

0.8374
(±0.0937)

0.7959
(±0.018)

OuterInnerRing 0.9545
(±0.0456)

0.8818
(±0.0966)

0.9119
(±0.0414)
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Table 7. Cont.

Load Class Precision Recall F1 Avg
Accuracy

Avg
Macro F1

Avg
Weighted F1 Time (s) CO2 (kg)

Both

Healthy 0.7966
(±0.0827)

0.6438
(±0.0803)

0.7044
(±0.032)

71.49%
(±1.12%)

0.7465
(±0.0149)

0.7123
(±0.0113)

895.10
(±233.91)

0.0267
(±0.0070)

OuterRing 0.7273
(±0.0207)

0.5924
(±0.0167)

0.6526
(±0.0122)

InnerRing 0.6455
(±0.0371)

0.8463
(±0.0379)

0.7309
(±0.0197)

OuterInnerRing 0.9371
(±0.0408)

0.8649
(±0.0646)

0.898
(±0.0415)

As with the KAIST dataset, combining multiple operating conditions degrades the
classifier’s performance and makes generalisation across loads more challenging. In terms
of the training time, M07 took, on average, longer to train than M01, which is also reflected
in higher estimated CO2 emissions.

4.2. Experiment B: Feature Visualisation Using PCA and t-SNE

After analysing the model classification accuracy, the focus shifts to a direct analysis
of the learned feature space extracted from the penultimate dense layer of the 1D-CNN.
By employing PCA and t-SNE, the high-dimensional feature space is projected into two
dimensions and three dimensions for visualisation. The objective is to visually inspect how
the model organises the data and to identify the influence of both the fault classes and the
operating conditions.

For the KAIST dataset, the visualisations reveal a well-structured feature space where
the fault classes are clearly distinct, as shown in Figure 3. The PCA plot reveals that the
learned features are separable to a large degree. The BPFI class forms a highly distinct
cluster, well-separated from the others. The other classes also form their groupings, though
they are situated more closely together and there is some overlapping space where there
is a mixture of common features from the Unbalance, Normal and Misalignment classes.
With regard to t-SNE, it reveals a separation of the classes, forming some shapes in the
feature space. The circle shows, as in the PCA plot, the common features from some classes.
This indicates that the 1D-CNN successfully learned non-linear features that distinguish
between the different fault types.

  
(a) (b) 

Figure 3. Damage class features for all loads, visualised using PCA and t-SNE for KAIST motor
dataset: (a) PCA visualisation and (b) t-SNE visualisation.
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In contrast, the feature space for the PU dataset shown in Figure 4 shows more
overlapping and less clear separation between the fault classes. The PCA plot reveals
considerable mixing of the fault classes. Although t-SNE improves the visualisation by
forming more defined local clusters, significant overlap between the classes remains, and
the clusters are less distinctly separated than in KAIST.

 
(a) (b) 

Figure 4. Damage class features for all loads, visualised using PCA and t-SNE for PU motor dataset:
(a) PCA visualisation and (b) t-SNE visualisation.

To gain a more granular understanding of the feature space, 3D visualisations were
generated with the learned features labelled by the individual data files, as visualised in
Figure 5. The 3D t-SNE plots reveal a clear pattern, where data points originating from
the same source file form tight and distinct clusters. This shows that the features learned
by the 1D-CNN are consistent. The same trend is observed in the PCA plot, but due to
PCA being a linear technique, the clusters are less compact and show some overlap. A key
observation here is in relation to measurements at a 4 Nm load. Looking at the PCA plot,
in the top-left section of the graph, there is a lot of overlap of features from different fault
classes but at the same load torque. This indicates that at a higher load, the features behave
differently and less distinctively.

 
(a) (b) 

Figure 5. Individual file features, visualised using PCA and t-SNE for KAIST motor dataset: (a) PCA
visualisation and (b) t-SNE visualisation.
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To isolate the effect of torque load, the feature space is replotted for each load condition
separately, as shown in Figures 6–8. At 0 Nm, the PCA and t-SNE plots show distinct and
well-separated groupings for each fault type, with tight, dense clusters. At 2 Nm, the BPFI
class remains clearly distinct, but the clusters for the other classes move closer together,
and their boundaries become less sharp. At 4 Nm, the PCA plot shows a dense region
where points from different fault classes largely overlap, and the corresponding t-SNE
visualisation exhibits a mixed distribution with no clear local class-wise structure.

  
(a) (b) 

Figure 6. Visualisation of 0 Nm load features using PCA and t-SNE for KAIST motor dataset: (a) PCA
visualisation and (b) t-SNE visualisation.

  
(a) (b) 

Figure 7. Visualisation of 2 Nm load features using PCA and t-SNE for KAIST motor dataset: (a) PCA
visualisation and (b) t-SNE visualisation.

4.3. Experiment C: Removal of Principal Components

To move from visual inspection to a quantitative analysis, the composition of the
clusters formed by unsupervised algorithms is examined. K-means is first applied to
the learned feature space to group the data based on geometric similarity without labels,
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and ground-truth labels are used to determine purity of the resulting clusters. Figure 9
shows the resulting cluster composition using stacked bar charts for one of the principal
component removal experiments, where K-means identifies six clusters although the data
contain four damage classes. Some clusters contain more mixed damage labels, such as in
Cluster 6, while others are relatively pure, motivating a more detailed tabular analysis of
how principal component removal affects the dominance of contextual features such as the
torque load.

  
(a) (b) 

Figure 8. Visualisation of 4 Nm load features using PCA and t-SNE for KAIST motor dataset: (a) PCA
visualisation and (b) t-SNE visualisation.

This experiment evaluates the effect of removing the top principal components (PCs)
from the learned feature space as a potential mitigation strategy. After each removal step,
K-means clustering is performed, and a set of purity metrics is computed to assess the
separation of the fault classes. For each cluster, the variance in the percentages of the four
fault classes is calculated, followed by standardised variance where 100 corresponds to a
pure cluster and 0 to a fully mixed cluster. The average of these standardised variances
across clusters is used as a summary purity measure for each iteration.

In the first approach shown in Table 8, the baseline (k = 0) has an average score of 73.77.
Upon removing just the top PC (k = 1), the score plummets to 37, and further removal of
additional components leads to continued degradation, although some individual clusters
remain pure. A similar patter appears in the second approach, presented in Table 9, where
the average score drops from 59.36 at baseline to 37 after removing the top PC, with
subsequent removal further lowering cluster purity. Tables 8–11 include colouring from
red to green which respectively indicates lower scores and higher scores.

In the third approach, presented in Table 10, removing only PC1 decreases the average
score from 73.77 to 25.87, and removing PC2 gives a score of 15.14. Across this approach, the
purity scores do not improve, and the resulting clusters become increasingly mixed in terms
of fault labels. In the fourth approach, shown in Table 11, applied in the reduced space,
removing PC1 and PC2 again lowers cluster purity. Removing PC3 produces 10 clusters,
many of which achieve relatively high purity scores, but the number of clusters no longer
corresponds to the expected four fault classes.
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Figure 9. Cluster composition using optimal number of clusters from K-means.

Table 8. First approach: removal of top principal components. The table shows percentages of
segment distribution across different damage classes for each iteration when removing k number of
principal components, along with metrics that better visualise the separation of segments, such as the
average standardised variance.

Removing Top Pcs and Evaluating Clusters (K-Means)
First Approach: Removing from Full PCs 512

Iteration Cluster BPFI Normal Misalign Unbalance Max Tot
segments std Inv std Variance Standardised

Variance Average

k = 0,
variance: 1

0 14.29 0 85.71 0 85.71 2100 35.53 64.47 1262.60 67.34
1 0 16.67 0 83.33 83.33 3600 34.36 65.64 1180.44 62.96
2 14.29 0 85.71 0 85.71 2100 35.53 64.47 1262.60 67.34
3 0 100 0 0 100 1500 43.30 56.70 1875.00 100.00
4 100 0 0 0 100 1799 43.30 56.70 1875.00 100.00
5 0 0 0 100 100 3000 43.30 56.70 1875.00 100.00
6 5.28 10.52 31.57 52.62 52.62 5701 18.74 81.26 351.14 18.73

73.77

k = 1,
variance: 0.89

0 49.74 0.55 49.71 0 49.74 3619 24.73 75.27 611.36 32.61
1 0 11.01 20.55 68.45 68.45 8766 26.12 73.88 682.11 36.38
2 0 36.37 0 63.63 63.63 4715 26.79 73.21 717.89 38.29
3 33.33 0 66.67 0 66.67 2700 27.64 72.36 763.94 40.74

37.00

k = 2,
variance: 0.79

0 33.32 0 66.64 0.04 66.64 2701 27.62 72.38 762.78 40.68
1 0 33.33 0 66.67 66.67 4503 27.64 72.36 763.94 40.74
2 14.29 9.52 28.58 47.61 47.61 12596 14.82 85.18 219.59 11.71

31.05

k = 3,
variance: 0.73

0 0 100 0 0 100 752 43.30 56.70 1875.00 100.00
1 13.91 9.87 9.15 67.07 67.07 6383 24.36 75.64 593.25 31.64
2 13.12 8.22 34.49 44.18 44.18 6860 14.84 85.16 220.16 11.74
3 0 100 0 0 100 748 43.30 56.70 1875.00 100.00
4 18.03 0.12 48.47 33.38 48.47 5057 17.95 82.05 322.17 17.18

52.11

k = 4,
variance: 0.67

0 19.08 26.02 8.37 46.53 46.53 7255 13.93 86.07 194.05 10.35
1 10.49 6.47 38.21 44.83 44.83 12545 16.75 83.25 280.41 14.96

12.65

k = 5,
variance: 0.65

0 7.93 15.8 30.93 45.34 45.34 9440 14.36 85.64 206.23 11.00
1 18.83 11.67 23.94 45.56 45.56 10360 12.65 87.35 159.90 8.53

9.76
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Table 9. Second approach: removal of top principal components. The table shows percentages of
segment distribution across different damage classes for each iteration when removing k number of
principal components, along with metrics that better visualise the separation of segments, such as the
average standardised variance.

Removing Top Pcs and Evaluating These Clusters (K-Means)
Second Approach: Removing After Reducing to 80% Variance

Iteration Cluster BPFI Normal Misalign Unbalance Max Tot
segments std Inv std Variance Standardised

Variance Average

k = 0,
variance: 0.80

0 0 16.67 0 83.33 83.33 3600 34.36 65.64 1180.44 62.96
1 33.33 0 66.67 0 66.67 2700 27.64 72.36 763.94 40.74
2 0 100 0 0 100 1500 43.30 56.70 1875.00 100.00
3 14.29 9.52 28.57 47.62 47.62 6300 14.82 85.18 219.69 11.72
4 33.33 0 66.67 0 66.67 2700 27.64 72.36 763.94 40.74
5 0 0 0 100 100 3000 43.30 56.70 1875.00 100.00

59.36

k = 1,
variance: 0.69

0 0 36.4 0 63.6 63.6 4717 26.79 73.21 717.48 38.27
1 0 10.98 20.55 68.47 68.47 8763 26.13 73.87 682.75 36.41
2 33.33 0 66.67 0 66.67 2700 27.64 72.36 763.94 40.74
3 49.72 0.58 49.69 0 49.72 3620 24.71 75.29 610.50 32.56

37.00

Kk= 2,
variance: 0.59

0 33.32 0 66.64 0.04 66.64 2701 27.62 72.38 762.78 40.68
1 14.29 9.52 28.58 47.61 47.61 12596 14.82 85.18 219.59 11.71
2 0 33.33 0 66.67 66.67 4503 27.64 72.36 763.94 40.74

31.05

k = 3,
variance: 0.52

0 0 100 0 0 100 784 43.30 56.70 1875.00 100.00
1 18.01 0.12 48.45 33.41 48.45 5046 17.95 82.05 322.13 17.18
2 13.12 8.22 34.51 44.15 44.15 6862 14.83 85.17 219.97 11.73
3 0 100 0 0 100 716 43.30 56.70 1875.00 100.00
4 13.94 9.86 9.18 67.02 67.02 6392 24.33 75.67 591.87 31.57

52.10

k = 4,
variance: 0.47

0 19.09 26.02 8.37 46.52 46.52 7251 13.93 86.07 193.91 10.34
1 10.49 6.48 38.19 44.84 44.84 12549 16.74 83.26 280.28 14.95

12.65

k = 5,
variance: 0.45

0 7.98 15.65 31.13 45.25 45.25 9415 14.36 85.64 206.19 11.00
1 18.77 11.82 23.77 45.64 45.64 10385 12.65 87.35 160.01 8.53

9.77

Table 10. Third approach: removal of top single principal component. The table shows percentages
of segment distribution across different damage classes for each iteration when removing k number
of principal components, along with metrics that better visualise the separation of segments, such as
the average standardised variance.

Removing Single Pcs and Evaluating These Clusters (K-Means)
Third Approach: Removing from Full PCs 512

Iteration Cluster BPFI Normal Misalign Unbalance Max Tot
segments std Inv std Variance Standardised

Variance Average

PC0, variance:
1

0 14.29 0 85.71 0 85.71 2100 35.533 64.467 1262.60 67.34
1 0 16.67 0 83.33 83.33 3600 34.358 65.642 1180.44 62.96
2 14.29 0 85.71 0 85.71 2100 35.533 64.467 1262.60 67.34
3 0 100 0 0 100 1500 43.301 56.699 1875.00 100.00
4 100 0 0 0 100 1799 43.301 56.699 1875.00 100.00
5 0 0 0 100 100 3000 43.301 56.699 1875.00 100.00
6 5.28 10.52 31.57 52.62 52.62 5701 18.739 81.261 351.14 18.73

73.77

PC1, variance:
0.9

0 17.99 0.00 45.43 36.58 45.43 3324 17.504 82.496 306.41 16.34
1 0.13 25.06 8.21 66.60 66.6 7183 25.647 74.353 657.75 35.08
2 49.87 50.13 0.00 0.00 50.13 3591 25.000 75.000 625.01 33.33
3 5.29 31.57 10.52 52.61 52.61 5702 18.733 81.267 350.91 18.72

25.87

PC2, variance:
0.92

0 2.66 17.72 20.64 59 59 10174 20.779 79.221 431.77 23.03
1 25.23 37.37 6.23 31.17 37.37 9626 11.656 88.344 135.86 7.25

15.14

PC3, variance:
0.94

0 27.03 36.49 6.08 30.4 36.49 9867 11.438 88.562 130.82 6.98
1 0.33 18.12 21.14 60.41 60.41 9933 21.936 78.064 481.18 25.66

16.32

PC4, variance:
0.96

0 99.75 0 0.17 0.08 99.75 2367 43.157 56.843 1862.52 99.33
1 0.44 28.45 23.71 47.39 47.39 6326 16.719 83.281 279.52 14.91
2 5.28 31.6 10.46 52.66 52.66 5697 18.768 81.232 352.23 18.79
3 0.18 33.27 11.09 55.45 55.45 5410 21.243 78.757 451.28 24.07

39.27

PC5, variance:
0.97

0 99.87 0 0.13 0 99.87 2349 43.226 56.774 1868.51 99.65
1 0.06 33.05 11.02 55.08 55.08 5447 21.136 78.864 446.72 23.83
2 0 28.57 23.81 47.62 47.62 6300 16.962 83.038 287.71 15.34
3 5.3 31.56 10.47 52.59 52.59 5704 18.731 81.269 350.86 18.71

39.38
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Table 11. Fourth approach: removal of top single principal component. The table shows percentages
of segment distribution across different damage classes for each iteration when removing k number
of principal components, along with metrics that better visualise the separation of segments, such as
the average standardised variance.

Removing Single Pcs and Evaluating These Clusters (K-Means)
Fourth Approach: Removing from Reduced 80% Variance

Iteration Cluster BPFI Normal Misalign Unbalance Max Tot
segments std Inv std Variance Standardised

Variance Average

k = 0,
variance: 1

0 0 16.67 0 83.33 83.33 3600 34.358 65.642 1180.44 62.96
1 33.33 0 66.67 0 66.67 2700 27.640 72.360 763.94 40.74
2 0 100 0 0 100 1500 43.301 56.699 1875.00 100.00
3 14.29 9.52 28.57 47.62 47.62 6300 14.822 85.178 219.69 11.72
4 33.33 0 66.67 0 66.67 2700 27.640 72.360 763.94 40.74
5 0 0 0 100 100 3000 43.301 56.699 1875.00 100.00

59.36

PC1, variance:
0.71

0 17.99 0 45.43 36.58 1510 3324 17.504 82.49556 306.41 16.34
1 0.13 25.06 8.21 66.6 4784 7183 25.647 74.35344 657.75 35.08
2 49.87 50.13 0 0 1800 3591 25.000 74.99983 625.01 33.33
3 5.3 31.57 10.52 52.61 3000 5702 18.730 81.27009 350.81 18.71

25.87

PC2, variance:
0.72

0 25.26 37.36 6.23 31.15 3597 9629 11.651 88.34911 135.74 7.24
1 2.64 17.73 20.65 59 6000 10,171 20.783 79.21692 431.94 23.04

15.14

PC3, variance:
0.74

0 7.26 92.74 0 0 1800 1941 39.222 60.77815 1538.35 82.05
1 0 0 16.67 83.33 3000 3600 34.358 65.6424 1180.44 62.96
2 14.07 85.88 0 0.05 1800 2096 35.614 64.3863 1268.34 67.64
3 0 0 0 100 3000 3000 43.301 56.69873 1875.00 100.00
4 7.98 32.32 3.05 56.65 1469 2593 21.370 78.62953 456.70 24.36
5 0 0 100 0 711 711 43.301 56.69873 1875.00 100.00
6 9.17 33.04 2.92 54.86 1501 2736 20.581 79.4186 423.59 22.59
7 54.11 5.1 39.45 1.34 605 1118 22.428 77.57234 503.00 26.83
8 0 0 100 0 789 789 43.301 56.69873 1875.00 100.00
9 98.77 0.08 0 1.15 1201 1216 42.594 57.40645 1814.21 96.76

68.32

PC4, variance:
0.77

0 0.2 33.27 11.09 55.44 3000 5411 21.234 78.7661 450.88 24.05
1 0.46 28.45 23.71 47.38 2998 6327 16.708 83.2919 279.16 14.89
2 5.28 31.6 10.46 52.66 3000 5697 18.768 81.23217 352.23 18.79
3 99.75 0 0.17 0.08 2359 2365 43.157 56.84303 1862.52 99.33

39.26

PC5, variance:
0.78

0 0 28.57 23.81 47.62 3000 6300 16.962 83.03809 287.71 15.34
1 0.9 33.03 11.01 55.06 3000 5449 20.884 79.11571 436.15 23.26
2 5.37 31.56 10.47 52.6 3000 5703 18.717 81.28335 350.31 18.68
3 99.87 0 0.13 0 2345 2348 43.226 56.77375 1868.51 99.65

39.24

4.4. Experiment D: Hierarchical Clustering

To gain a deeper understanding of the learned feature space, hierarchical clustering is
applied in addition to PCA and K-means. Four preprocessing pipelines are first evaluated
to identify a suitable feature representation: features unscaled, features scaled, features
scaled with PCA, and features scaled with PCA retaining 90% variance. The ground-truth
calculations of the 12 classes (damage + load) are presented in Figure 10. The table includes
shades of green colouring, where lighter green indicates lower score and darker green
indicates higher scores.

The ground-truth analysis revealed that the features scaled with the PCA pipeline pro-
vided the most stable and interpretable baseline with distinctions in metrics like “spread”
and “diameter”. This preprocessing configuration is therefore selected for the full hierar-
chical clustering analysis. An example dendrogram for KAIST is shown in Figure A2 in
Appendix A, which plots the structure of the hierarchical tree. The very first split at the top
of the tree separates the data into two main branches: one containing all the 4 Nm data and
the other containing all the 0 Nm and 2 Nm data. This shows that the algorithm perceives
0 Nm and 2 Nm as being more similar to each other and different from 4 Nm. Within the
0/2 Nm branch, the subclusters corresponding to different damage types are relatively
clear and distinct. In contrast, the 4 Nm branch is shown as more complex, and the damage
classes are not distinct, apart from the case of BPFI.
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Damage Load Num samples Density Spread Diameter Avg Mahalanobis Damage Load Num samples Density Spread Diameter Avg Mahalanobis
BPFI 0Nm 900 1.91 0.29 15.65 22.53 BPFI 0Nm 900 0.80 0.68 34.73 22.53
BPFI 2Nm 900 1.96 0.28 14.35 22.48 BPFI 2Nm 900 0.77 0.71 42.67 22.54
BPFI 4Nm 900 1.37 0.40 19.08 22.52 BPFI 4Nm 900 0.60 0.92 44.82 22.57

Misalign 0Nm 1800 3.98 0.27 12.58 22.55 Misalign 0Nm 1800 1.68 0.65 31.83 22.58
Misalign 2Nm 1800 3.99 0.27 11.85 22.53 Misalign 2Nm 1800 1.58 0.69 35.51 22.69
Misalign 4Nm 1800 2.73 0.40 18.93 22.55 Misalign 4Nm 1800 1.24 0.88 44.82 22.58
Normal 0Nm 1500 2.70 0.34 16.68 22.49 Normal 0Nm 1500 1.30 0.70 39.61 22.49
Normal 2Nm 600 1.33 0.27 12.53 22.52 Normal 2Nm 600 0.53 0.68 35.43 22.52
Normal 4Nm 600 1.00 0.36 15.95 22.58 Normal 4Nm 600 0.43 0.85 36.40 22.58

Unbalance 0Nm 3000 5.98 0.30 16.31 22.45 Unbalance 0Nm 3000 2.67 0.68 37.43 22.45
Unbalance 2Nm 3000 6.19 0.29 13.37 22.51 Unbalance 2Nm 3000 2.55 0.71 47.84 22.58
Unbalance 4Nm 3000 4.64 0.39 18.18 22.54 Unbalance 4Nm 3000 2.08 0.87 50.02 22.56

Damage Load Num samples Density Spread Diameter Avg Mahalanobis Damage Load Num samples Density Spread Diameter Avg Mahalanobis
BPFI 0Nm 900 0.83 0.66 34.73 22.53 BPFI 0Nm 900 0.71 0.77 33.20 18.25
BPFI 2Nm 900 0.83 0.66 42.67 22.48 BPFI 2Nm 900 0.68 0.81 41.37 18.27
BPFI 4Nm 900 0.60 0.90 44.82 22.52 BPFI 4Nm 900 0.52 1.05 43.12 18.27

Misalign 0Nm 1800 1.71 0.64 31.83 22.55 Misalign 0Nm 1800 1.48 0.74 30.41 18.27
Misalign 2Nm 1800 1.67 0.65 35.51 22.53 Misalign 2Nm 1800 1.37 0.80 34.38 18.27
Misalign 4Nm 1800 1.20 0.91 44.82 22.55 Misalign 4Nm 1800 1.07 1.02 43.57 18.27
Normal 0Nm 1500 1.17 0.77 39.61 22.49 Normal 0Nm 1500 1.13 0.80 38.62 18.27
Normal 2Nm 600 0.56 0.65 35.43 22.52 Normal 2Nm 600 0.46 0.78 34.33 18.30
Normal 4Nm 600 0.44 0.83 36.40 22.58 Normal 4Nm 600 0.38 0.97 34.43 18.30

Unbalance 0Nm 3000 2.62 0.70 37.43 22.45 Unbalance 0Nm 3000 2.33 0.78 36.47 18.23
Unbalance 2Nm 3000 2.60 0.70 47.84 22.51 Unbalance 2Nm 3000 2.20 0.83 46.97 18.27
Unbalance 4Nm 3000 2.01 0.90 50.02 22.54 Unbalance 4Nm 3000 1.79 1.02 48.64 18.26

features_unscaled.npz

features_scaled.npz

features_scaled_with_pca.npz

features_scaled_with_pca_90_variance.npz

Figure 10. Ground-truth metric calculations for each class.

The numerical results in Figure A1 in Appendix A provide a quantitative view
of the clustering behaviour. At level 1, the tree split coincides with the 4 Nm load
separation, confirming that load is the dominant organising factor in the feature space.
External metrics based on ground-truth labels, such as the proposed Dominance Score
and V-measure, increase with depth and reach higher values by level 4–5, indicating
that many clusters at deeper levels achieve high purity with respect to damage and
load labels.

Figures 11 and 12 show boxplots of split quality and cluster quality metrics across
hierarchical levels for both the KAIST and PU datasets. For the Dominance Score, the
median and interquartile range generally improve from level 0 to level 5, confirming that
cluster purity increases as the tree deepens. Internal geometric metrics such as spread
and diameter show a consistent downward trend with increasing depth, reflecting
tighter and more compact clusters. The Silhouette Score for KAIST improves up to level
2 and then decreases, while the Davies–Bouldin Index shows a corresponding increase,
indicating that additional splits beyond level 2 sometimes over-partition already-pure
clusters and degrade the average split quality.

Figures 13 and 14 summarise damage and load composition across hierarchical
levels. At level 0–1, clusters are highly mixed in terms of damage types, whereas from
level 2–5, the bars become progressively purer, showing that damage-specific clusters
are increasingly isolated for both datasets. For KAIST, load composition plots show
that load separation is largely achieved by level 2, whereas for PU, deeper levels are
needed before most clusters become load-specific. At level 5, PU still retains clusters
with mixed loads, suggesting that load-related features are even stronger in PU than in
KAIST, consistent with the closer torque values of 0.1 Nm and 0.7 Nm compared to 0,
2 and 4 Nm in KAIST.
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Figure 11. Hierarchical clustering boxplot graph for split quality metrics represented for KAIST and
PU datasets, which shows the trend of the metrics as the level of clustering gets deeper.
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Figure 12. Hierarchical clustering boxplot graph for cluster (cohesion) quality metrics for KAIST and
PU datasets, which show the trend of the metrics as the level of clustering gets deeper.
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Figure 13. Hierarchical clustering of damage composition for KAIST and PU datasets.
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Figure 14. Hierarchical clustering of load composition for KAIST and PU datasets.
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5. Discussion
The experimental results collectively characterise the shadowing effect of operational

variability on automated fault diagnosis, linking baseline performance degradation, the
limitations of linear mitigation strategies, and the structural insights obtained from hierar-
chical clustering. Across the KAIST and PU datasets, the torque load emerges as a dominant
contextual feature that reshapes the learned feature space and reduces the separability of
fault classes.

In the supervised baseline (Experiment A), classification performance on KAIST re-
mains high at a single load but degrades as torque increases and when data from multiple
loads are combined. This indicates that, as the load increases, the decision boundaries
learned by the 1D-CNN become increasingly misaligned with the underlying fault classes
and instead align with the load-driven variability. The PU results show the same behaviour;
therefore, performance under a single load condition is consistently higher than when data
from different loads are combined, showing that the interference of contextual features
is not specific to a single dataset or machine type and motivating a deeper unsupervised
feature space analysis.

The feature space visualisation (Experiment B) provides qualitative evidence of this
shadowing effect. For KAIST, the progression from clear, class-wise separation at 0 Nm to
extensive overlap at 4 Nm shows that at higher loads, points from different fault classes
cluster first by load and then by damage type. This behaviour indicates that load-driven
features reshape the representation learned by the 1D-CNN and progressively reduces the
distinctiveness of fault-specific features. In PU, the greatest overall overlap between classes
further illustrates how bearing fault features can be masked when contextual variation is
strong relative to fault signatures.

These observations motivate the move from visual inspection to a quantitative analysis
using unsupervised clustering (Experiment C). By applying K-means without labels and
then examining the cluster composition with ground-truth fault and load labels, cluster
purity can be measured, and the influence of contextual features on the feature space can be
assessed. The principal component removal experiment provides a critical negative result:
removing high-variance principal components does not improve the separation of fault
classes and sometimes worsens it. The dominant contextual influence of torque load is
not found in the first few PCs; instead, load-related features and fault-related features are
mixed across different components. Therefore, the top PCs, despite having higher variance,
also carry essential discriminative information needed for separation of fault classes, and
simple linear component removal strategies are ineffective for isolating contextual features
such as the torque load.

The hierarchical clustering analysis (Experiment D) further clarifies how contextual
features and fault-related features are organised. For KAIST, the first split of the hierarchical
tree separates 4 Nm and 0/2 Nm, confirming that the torque load is the dominant organising
factor in the feature space, while the increasing Dominance Score and V-measure with
depth show that fault class information, although initially masked, remains present and
can be recovered in deeper clusters. Internal geometric metrics such as spread and diameter
follow trends that mirror the behaviour of the Dominance Score, suggesting that they can
serve as unsupervised proxies for cluster purity when labels are not available. Among
external metrics, the Dominance Score and V-measure provide the clearest indication that
splits are meaningful with respect to damage and load labels, whereas internal metrics
are more relevant for practical unsupervised settings. Therefore, diameter and spread
are the most informative for internal cluster quality, while Silhouette is useful for split
quality but can deteriorate once pure clusters are over-partitioned. Low Silhouette and high
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Davies–Bouldin values at some levels indicate that many fault groups remain geometrically
close and overlapping, which aligns with the previously observed shadowing effect.

The behaviour of Silhouette and V-measure for KAIST, improving up to level 2 and
then declining, highlights the need for principled stopping criteria in hierarchical cluster-
ing. Once clusters have become relatively pure, further splitting tends to partition single
damage classes into multiple subclusters, reducing the average split quality scores without
improving class separation. This behaviour, together with the widening of boxplots at
deeper levels, reflects the difficulty of separating load and damage features without explicit
guidance. The analysis suggests that internal metrics derived from hierarchical clustering,
such as spread, could support mitigation strategies for contextual feature dominance by
defining purer and load-aware clusters before training classifiers. These clusters could
then be used as a refined training set or pseudo-labels to improve load-invariant damage
classification, and future work could explore alternative feature engineering strategies and
clustering algorithms to further enhance separation.

6. Conclusions
This research quantitatively characterised the shadowing effect of contextual features

on data-driven mechanical fault diagnosis. We demonstrated that varying operating condi-
tions, such as the torque load, are not just background noise but act as dominant structural
features that distort the learned feature space from a 1D-CNN. While the standard classifier
achieved high accuracy under static conditions, its performance degraded significantly
when subject to varying loads, caused by overlapping feature projections at higher torques.

Our analysis confirmed that linear mitigation strategies, such as removing high-
variance principal components, are ineffective because fault features and contextual load
features are deeply entangled. Instead, we validated the use of hierarchical clustering
as a robust analytical method. By applying this technique to the KAIST and PU motor
datasets, we demonstrated that the feature space is organised hierarchically, where the
model prioritises load separation before fault classification. Furthermore, we identified the
internal cluster metrics, such as spread and diameter, which serve as unsupervised proxies
for cluster purity, aligning with ground-truth external metrics like the Dominance Score.

One of the limitations of this study is that the analysis was done in an offline setting,
where the computational costs may present challenges for real-time edge deployment
without further optimisation. Furthermore, while the method was validated on two distinct
datasets, the study focused on induction motors and PMSMs and mechanical damage. The
generalisability to other rotating machinery types remains to be tested.

Building on the unsupervised metrics identified in this work, future research will focus
on developing an intelligent preprocessing pipeline. We aim to utilise the identified internal
metrics as automatic stopping criteria for hierarchical clustering. This would enable the
extraction of load-invariant, pure clusters from raw operational data, facilitating the training
of robust fault diagnosis models without utilising the labelling of operating conditions.
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Appendix A

 

Level Parent Total Segments Silhouette Davies-Bouldin Calinski-Harabasz Dunn Index V-Measure Dominance Score Centroid Cohesion Diameter Spread BPFI Misalign Normal Unbalance 0Nm 2Nm 4Nm
level_0_cluster_0 0 19800 0.07 3.224 1709.743 0.229 0.407 0.152 10137595 61.343 0.806 2700 5400 2700 9000 7200 6300 6300

level_1_cluster_0 1 level_0_cluster_0 7798 0.113 2.416 975.856 0.243 0.562 0.385 2813083.5 56.504 0.725 598 3600 600 3000 2098 5700 0
level_1_cluster_1 1 level_0_cluster_0 12002 0.098 2.712 1425.557 0.23 0.52 0.25 6518636 56.258 0.841 2102 1800 2100 6000 5102 600 6300

level_2_cluster_0 2 level_1_cluster_0 5700 0.15 2.236 1045.522 0.288 0.751 0.526 1953953.1 56.504 0.729 300 1800 600 3000 0 5700 0
level_2_cluster_1 2 level_1_cluster_0 2098 0.106 2.776 132.349 0.431 0.984 0.858 546178.6 33.099 0.661 298 1800 0 0 2098 0 0
level_2_cluster_2 2 level_1_cluster_1 4500 0.138 2.704 564.789 0.327 1 0.667 1667456 39.911 0.706 0 0 1500 3000 4500 0 0
level_2_cluster_3 2 level_1_cluster_1 7502 0.148 2.281 1037.097 0.291 0.442 0.4 4159014 56.258 0.889 2102 1800 600 3000 602 600 6300

level_3_cluster_0 3 level_2_cluster_0 2100 0.081 3.217 98.123 0.379 1 0.857 586692.1 39.726 0.7 300 1800 0 0 0 2100 0
level_3_cluster_1 3 level_2_cluster_0 3600 0.039 4.86 151.196 0.293 0.002 0.833 1064319.1 47.841 0.709 0 0 600 3000 0 3600 0
level_3_cluster_2 3 level_2_cluster_1 1798 0.06 3.856 119.282 0.452 0 1 440948 31.834 0.649 0 1798 0 0 1798 0 0
level_3_cluster_3 3 level_2_cluster_1 300 0.044 4.439 15.017 0.522 0.012 0.993 72791.14 29.776 0.658 298 2 0 0 300 0 0
level_3_cluster_4 3 level_2_cluster_2 3000 0.142 2.174 388.998 0.384 0 1 902054.25 37.427 0.68 0 0 0 3000 3000 0 0
level_3_cluster_5 3 level_2_cluster_2 1500 0.151 2.234 283.125 0.331 0 1 579385.25 39.613 0.699 0 0 1500 0 1500 0 0
level_3_cluster_6 3 level_2_cluster_3 1814 0.204 2.038 402.914 0.334 0.717 0.332 868363.5 48.246 0.818 1803 0 11 0 602 600 612
level_3_cluster_7 3 level_2_cluster_3 5688 0.05 4.318 298.579 0.332 0.117 0.527 2785409 51.175 0.887 299 1800 589 3000 0 0 5688

level_4_cluster_0 4 level_3_cluster_0 1800 0.025 6.236 41.896 0.407 0 1 481560.53 35.506 0.692 0 1800 0 0 0 1800 0
level_4_cluster_1 4 level_3_cluster_0 300 0.05 4.156 17.12 0.466 0 1 78918.336 38.065 0.685 300 0 0 0 0 300 0
level_4_cluster_2 4 level_3_cluster_1 1772 0.035 5.162 65.732 0.367 0.118 0.85 507557.34 43.399 0.705 0 0 265 1507 0 1772 0
level_4_cluster_3 4 level_3_cluster_1 1828 0.037 4.967 71.221 0.293 0.002 0.817 513840.06 47.154 0.698 0 0 335 1493 0 1828 0
level_4_cluster_4 4 level_3_cluster_2 979 0.046 4.409 50.069 0.492 0 1 225599.53 29.848 0.639 0 979 0 0 979 0 0
level_4_cluster_5 4 level_3_cluster_2 819 0.05 4.17 46.391 0.498 0 1 187886.61 30.367 0.638 0 819 0 0 819 0 0
level_4_cluster_6 4 level_3_cluster_3 156 0.054 3.871 10.225 0.584 0.023 0.987 36459.82 29.776 0.649 154 2 0 0 156 0 0
level_4_cluster_7 4 level_3_cluster_3 144 0.057 3.755 9.952 0.568 0 1 32839.195 28.461 0.641 144 0 0 0 144 0 0
level_4_cluster_8 4 level_3_cluster_4 2398 0.096 2.95 251.174 0.408 0 1 654331.4 35.729 0.666 0 0 0 2398 2398 0 0
level_4_cluster_9 4 level_3_cluster_4 602 0.084 3.144 60.434 0.549 0 1 144121.38 31.82 0.65 0 0 0 602 602 0 0

level_4_cluster_10 4 level_3_cluster_5 610 0.175 2.021 147.48 0.41 0 1 182577.56 35.375 0.669 0 0 610 0 610 0 0
level_4_cluster_11 4 level_3_cluster_5 890 0.187 1.952 227.904 0.366 0 1 304709.7 39.149 0.692 0 0 890 0 890 0 0
level_4_cluster_12 4 level_3_cluster_6 1207 0.247 1.606 463.299 0.397 0.983 0.499 425042.16 41.314 0.714 1202 0 5 0 602 600 5
level_4_cluster_13 4 level_3_cluster_6 607 0.038 5.014 23.648 0.475 0 0.99 285357.44 44.517 0.906 601 0 6 0 0 0 607
level_4_cluster_14 4 level_3_cluster_7 3226 0.047 4.298 162.509 0.378 0.548 0.518 1464363.8 44.996 0.87 0 966 589 1671 0 0 3226
level_4_cluster_15 4 level_3_cluster_7 2462 0.059 4.074 143.728 0.351 0.373 0.54 1182077.2 51.175 0.886 299 834 0 1329 0 0 2462

level_5_cluster_0 5 level_4_cluster_0 1171 1 305383.84 33.268 0.687 0 1171 0 0 0 1171 0
level_5_cluster_1 5 level_4_cluster_0 629 1 165211.08 35.506 0.686 0 629 0 0 0 629 0
level_5_cluster_2 5 level_4_cluster_1 150 1 36695.863 28.345 0.667 150 0 0 0 0 150 0
level_5_cluster_3 5 level_4_cluster_1 150 1 37935 36.699 0.675 150 0 0 0 0 150 0
level_5_cluster_4 5 level_4_cluster_2 821 0.978 228805.2 32.167 0.7 0 0 18 803 0 821 0
level_5_cluster_5 5 level_4_cluster_2 951 0.74 260577.92 42.177 0.693 0 0 247 704 0 951 0
level_5_cluster_6 5 level_4_cluster_3 1069 0.802 289272.22 38.786 0.691 0 0 212 857 0 1069 0
level_5_cluster_7 5 level_4_cluster_3 759 0.838 205278.5 47.154 0.691 0 0 123 636 0 759 0
level_5_cluster_8 5 level_4_cluster_4 491 1 109237.88 27.369 0.635 0 491 0 0 491 0 0
level_5_cluster_9 5 level_4_cluster_4 488 1 105363.78 27.929 0.626 0 488 0 0 488 0 0

level_5_cluster_10 5 level_4_cluster_5 374 1 79942.555 27.025 0.625 0 374 0 0 374 0 0
level_5_cluster_11 5 level_4_cluster_5 445 1 97848.72 29.472 0.633 0 445 0 0 445 0 0
level_5_cluster_12 5 level_4_cluster_6 77 1 16652.416 27.481 0.628 77 0 0 0 77 0 0
level_5_cluster_13 5 level_4_cluster_6 79 0.975 17537.371 26.107 0.636 77 2 0 0 79 0 0
level_5_cluster_14 5 level_4_cluster_7 66 1 14019.224 25.425 0.621 66 0 0 0 66 0 0
level_5_cluster_15 5 level_4_cluster_7 78 1 16669.113 27.376 0.625 78 0 0 0 78 0 0
level_5_cluster_16 5 level_4_cluster_8 1542 1 382227.16 33.656 0.651 0 0 0 1542 1542 0 0
level_5_cluster_17 5 level_4_cluster_8 856 1 210018.72 30.663 0.654 0 0 0 856 856 0 0
level_5_cluster_18 5 level_4_cluster_9 305 1 67100.47 27.069 0.635 0 0 0 305 305 0 0
level_5_cluster_19 5 level_4_cluster_9 297 1 63832.832 28.785 0.631 0 0 0 297 297 0 0
level_5_cluster_20 5 level_4_cluster_10 307 1 74126.24 31.65 0.64 0 0 307 0 307 0 0
level_5_cluster_21 5 level_4_cluster_10 303 1 72809.695 31.549 0.636 0 0 303 0 303 0 0
level_5_cluster_22 5 level_4_cluster_11 403 1 106388.18 32.672 0.656 0 0 403 0 403 0 0
level_5_cluster_23 5 level_4_cluster_11 487 1 136089.75 35.418 0.67 0 0 487 0 487 0 0
level_5_cluster_24 5 level_4_cluster_12 602 1 146731.22 31.994 0.659 602 0 0 0 602 0 0
level_5_cluster_25 5 level_4_cluster_12 605 0.992 160273.61 37.465 0.689 600 0 5 0 0 600 5
level_5_cluster_26 5 level_4_cluster_13 269 0.989 125715.875 44.517 0.905 266 0 3 0 0 0 269
level_5_cluster_27 5 level_4_cluster_13 338 0.991 148907.11 39.693 0.884 335 0 3 0 0 0 338
level_5_cluster_28 5 level_4_cluster_14 1215 0.514 514851.94 40.609 0.855 0 624 588 3 0 0 1215
level_5_cluster_29 5 level_4_cluster_14 2011 0.829 879240.5 44.996 0.862 0 342 1 1668 0 0 2011
level_5_cluster_30 5 level_4_cluster_15 1000 0.581 484495.22 43.187 0.891 299 581 0 120 0 0 1000
level_5_cluster_31 5 level_4_cluster_15 1462 0.827 632330.56 50.015 0.86 0 253 0 1209 0 0 1462

Figure A1. KAIST hierarchical clustering metrics for scaled features with PCA. Colour from red to
green which respectively indicates lower scores and higher scores.
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Figure A2. Example dendrogram of hierarchical clustering on KAIST dataset.
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