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Abstract

Acknowledging recent breakthroughs in the context of deep bio-inspired neural networks,
several architectural deep network options have been deployed to create intelligent systems.
The foundations of convolutional neural networks are influenced by hierarchical processing
in the visual cortex. The graph neural networks mimic the communication of biological
neurons. Considering these two computation methods, a novel deep ensemble network
is used to propose a bio-inspired deep graph network for creating an intelligent supply
chain model. An automated smart supply chain helps to create a more agile, resilient and
sustainable system. Improving the sustainability of the network plays a key role in the
efficiency of the supply chain’s performance. The proposed bio-inspired Chebyshev ensem-
ble graph network (Ch-EGN) is hybrid learning for creating an intelligent supply chain.
The functionality of the proposed deep network is assessed on two different databases
including SupplyGraph and DataCo for risk administration, enhancing supply chain sus-
tainability, identifying hidden risks and increasing the supply chain’s transparency. An
average accuracy of 98.95% is obtained using the proposed network for automatic delivery
status prediction. The performance metrics regarding multi-class categorization scenarios
of the intelligent supply chain confirm the efficiency of the proposed bio-inspired approach
for sustainability and risk management.

Keywords: bio-inspired neural networks; sustainability; supply chain management;
ensemble deep learning; DataCo; SupplyGraph; intelligent supply chain

1. Introduction
A compulsory stage of leading business is supply chain management. The interactivity

of various representatives of suppliers, producers, marketers, purveyors and consumers
plays a significant role in managing the supply chain. Regulations are made for the
representatives with the aim of influencing the interactivity between each part for enhancing
transportation and distribution services. Making a plan to optimize delivery, setting
an appropriate balance of the demand and supply, documentation and identification of
suppliers to prepare goods and services, and managing the return of products are the
essential tasks in supply chain management [1].

There are some risks associated with the supply chain, and they should be detected.
The procedure of detection, investigation and administration of these risks are the actions
for risk mitigation in a supply chain. Also, risk management can be considered as the
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process of recognizing and managing the threats to the validity of services. There are many
types of supply chain risks threatening companies and their service offer capacities. Some
examples of these risks are the risks of different catastrophes, political and geographical
vulnerabilities, malware, digital attacks and the suppliers’ financial failures [2]. An under-
standing of the risks is necessary for companies to manage the risks. It is an essential part
of management to have an insight and manage risks. The COVID-19 epidemic is a tangible
example of risks to supply chains [3,4]. Researchers developed a framework to handle the
threatening risks of the supply chain during the epidemic [5]. A pragmatic risk administra-
tion method requires the identification of familiar and obscure risks, construction of a risk
management system and execution of some techniques in order to reduce risks [6]. Extend-
ing the suppliers and making connections with them play an essential role in successful
techniques for risk management in the supply network [7]. The investment in modern
technologies is required for improving the strength, sustainability and discernibility of a
supply chain [8].

Supply chain management includes different stages of planning, sourcing, manufac-
turing, delivery and returns. Prediction of the future production demand is considered
to be the first stage of management. Identification of the suppliers is an important task
of the second stage. Transportation of products and delivering them to the customers
are performed in the third step. The fourth stage is processing product returns and re-
funds from the customers to mitigate costs [9]. A deep learning approach can be used
to optimize the outcome of each stage. Deep learning has been utilized in supply chain
studies in recent years. Deep networks are thoroughly bio-inspired architectures [10,11]
and they extract fundamental concepts from brain activity. The convolutional networks
mimic the hierarchical processing in the visual cortex and dendritic computation. These
brain-inspired computational networks [12] have led to breakthroughs in artificial intelli-
gence for understanding complex data. Novel deep learning methods add more complex
biologic principles to the architecture of the neural networks [13]. This learning approach is
fundamentally bio-inspired [14], drawing its core concept of a multilayered structure from
the function of the human brain, using interconnected neurons to process data and learn
complex patterns like the performance of biological brains. Like the brain learning from
experience, deep learning approaches learn by adjusting connections on the basis of vast
amounts of data. Multiple layers are used in deep learning, similar to how the visual cortex
processes information. The hierarchical processing in this multilayered structure has the
ability to learn highly complex representations. The basic building blocks are influenced
by biological neurons, connecting in layers to learn deep features from the data. Artificial
intelligence has helped to create intelligent supply chain models and bionic supply chains.
An artificial intelligence-based supply chain [15] has the capability of catalyzing fundamen-
tal changes in business. A bionic supply chain [16] utilizes artificial intelligence methods
for creating an AI-augmented workforce. Using these learning methods helps to create
AI-based bionic supply chains [17]. A bionic supply chain works on the basis of a fusion
strategy of human decision-making and artificial intelligence methods. It augments human
capabilities with intelligent methods for enhancing the supply chain’s performance. The
bionic supply chain does not remove the human workforce; it utilizes them and improves
the performance of the intelligent supply chain methods. The bionic supply chain uses
technological inventions to create an agile and resilient supply chain. This type of supply
chain emphasizes collaboration between humans and machines to optimize supply chain
operations. It leverages the power of artificial intelligence methods while acknowledging
the key role of human decision-making. This collaborative method fosters a more adaptable
supply chain [18].
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Taking into consideration the necessity for creating intelligent supply chain models
and bionic supply chains, an effective brain-inspired network is improved in this study
for automated management tasks. The AI-based supply chain is an intelligent supply
chain that offers end-to-end visibility and makes automated decisions for greater efficiency
and customer satisfaction [19]. Regarding the connections among the product feature
vectors, plant locations and allocated resources, it is possible to represent the supply chain
as a graph. Graph representation is the compulsory prerequisite of graph-based deep
learning. Graph-based deep learning is a strategy influenced by the connectivity between
different brain regions during neuronal activities. It is a brain-inspired approach for creating
intelligent systems [20]. An effective graph-based illustration of data samples is introduced
in this study, and a brain-inspired graph network is introduced and developed to realize
the delivery status for risk management. Moreover, product type classification and edge
connection classification are performed for supply chain sustainability management. The
suggested network creates an agile intelligent supply chain model that works on the basis
of the bio-inspired convolutional neural network [21] and the brain-inspired graph neural
networks [22,23].

The contributions presented in this article can be introduced as follows:

1. It suggests a hybrid brain-inspired graph network for extracting discriminative pat-
terns and identifying different categories in a supply chain.

2. The proposed bio-inspired technique uses a graph illustration of the features recorded
for products. The correlation between the characteristics of the products is employed
to construct the connection graph, influenced by the functional connectivity in the
brain. The functional connectivity refers to synchronized activity between different
neuronal regions.

3. The characteristics related to the products are utilized directly as the nodes of the
brain-based functional connectivity-inspired graph in the proposed method. This step
is performed in order to decrease the calculation load in training phase.

4. The proposed ensemble intelligent supply chain model classifies the delivery status
of the products, hence improving the performance of risk administration.

5. The proposed network architecture provides a framework for classification of 5 dif-
ferent product categories, 4 edge connections in terms of products with the same
groups and 25 categories of products with the same plants. Hence, it develops the
sustainability of the intelligent supply chain.

6. It uses a parallel network of brain-inspired Chebyshev-based graph convolution and
bio-inspired 1-D convolution layers for creating an intelligent supply chain model.

The other sections of this paper are organized as follows. Section 2 unveils contem-
porary approaches of supply chain management using machine learning. In Section 3,
the characteristics of the DataCo and SupplyGraph databases are provided. Also, the
mathematical basis of brain-inspired graph convolution, Chebyshev graph convolution and
graph attention networks are explained in this section. Section 4 describes the attributes
and the structure of the bio-inspired ensemble network for different purposes. Some mod-
eling targets are considered, including delivery status prediction, product classification
and product connection classification for creating an intelligent multi-task supply chain
model. Section 5 presents and extends the experimental results. The figures in this section
substantiate the efficiency of the proposed bio-inspired ensemble network. Section 6 is
allocated to the conclusions.

2. Related Works
The bio-inspired deep learning approach has the ability to analyze large amounts of

data and extract learned features with trained parameters. Machine learning algorithms
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help to forecast time-based features and sales predictions. The selection of routes in
a supply chain network can be obtained with machine learning approaches and deep
learning algorithms to reduce transportation and delivery costs and plan an efficient route.
Deep learning models and classification algorithms can be used for improving the model’s
accuracy for the prediction of demand, detection of anomaly, optimization of logistics
and sustainability of the supply chain [9]. Some studies applied deep learning in order
to forecast real-time data related to the demand rate of production. Also, the objectives
of deep learning have been detection of abnormal data, implementation of a predictive
and sustainable maintenance plan, and promotion of decision-making [24–26]. Also, deep
learning in supply chain management has been used to propose methods for supplier
selection [27,28].

Pereira et al. in [27] proposed an analysis for the selection of suppliers. Their approach
was designed corresponding to the CRITIC-GRA-3N machine learning approach proposed
by Almeida et al. [29] in 2022. The method improved the selection of auto parts dealers
in the city of Guaratingueta-SP. It was able to rank and select the suppliers in an efficient
way. In the study by Ramjan Ali et al. [28], the authors identified a list of supplier selection
benchmarks that apply to many organizations. The random forest classification method
in conjunction with the RF-related feature extraction method was used in this study. The
most critical criteria for supplier selection investigated in [28] are quality, material price,
information sharing and on-time delivery. In another study by Yazdani et al. [30] in 2021,
the interval-valued fuzzy neurosophic (IVFN) model was extended for the selection of
suppliers for a dairy enterprise in Iran.

In some studies, a multi-phase approach based on deep learning has been proposed
for allocating the orders in a supply chain [31,32]. In the study by Shidpour et al. [31]
in 2023, a model was improved for developing the supply chain’s performance. The
objectives in their study were allocating customer orders and selecting the suppliers. The
corporate social responsibility scores were considered to acquire the ideal result for the
model in [31]. The impact of deep learning-based transformation on decreasing the cost
of transfers and transaction expenses in production management has been investigated
by Li et al. [33]. Other examples of deep learning applications of this approach in supply
chain management are deep modeling for transportation and conveyance issues during
wars [34], a deep model of technology acceptance and the diffusion of innovation theory
for production management in the supply chain [35].

Another applicable field of study for deep learning models is low-carbon method-
ologies for green supply chain administration [36]. In the study by Chun Fu et al. [36] in
2023, the impact of low-carbon activities in the construction industry was investigated. The
framework in their study was based on the exploration of structural modeling based on
least squares. The analysis of data was performed with the use of partial least squares in
structural equation modeling (PLS-SEM). The analysis of supply chain relationships in [36]
helped to propose plans in order to diminish carbon dioxide pollution emissions. The study
had a positive effect on the surrounding environment. In the study by Niu et al. [37] in
2024, location choices for enterprises and allocated centers for distribution were involved in
modeling. The proposed model in [37] reduced the cost with appropriate location choices
for allocation centers and production plants.

Deep learning for risk management has been done in recent years for different objec-
tives such as selection and segmentation of suppliers for risk prediction [38]. Estimation of
suppliers’ responsiveness and improving the resilience and strength of the supply chain [39]
are other examples of deep models’ application in risk management. The detection of dis-
ruption, fraud and anomaly are other objectives of deep models [40]. In the study by
Sebastian Villa in 2022 [40], the authors made an exploration of the bullwhip effect in

https://doi.org/10.3390/biomimetics11020123

https://doi.org/10.3390/biomimetics11020123


Biomimetics 2026, 11, 123 5 of 30

a supply chain. Some circumstances of horizontal competition between retailers were
considered during the study. A mathematical model [40] was developed in a competi-
tive system, while two behavioral explorations were considered to analyze the impact of
supplier and customer characteristics on the decision of the retailers. The results of the
study [40] demonstrate that competing for demand does not have an effect on how retailers
expand their orders, whereas competing for supply influences the participants’ ordering
decisions. Furthermore, the order variability decreased by up to 50% through modification
of the supplier’s strategy for distribution in [40]. The retailers ignore the order cancellations
of the customers according to this study [40].

Brain-inspired graph neural networks have been utilized by researchers in some
studies related to supply chain management in recent years. Abushaega et al. in 2025 [41]
considered graph learning in local centers of the supply chain network to optimize the
global supply chain network. They used the concept of federated learning in order to
improve the sustainability of the global network. The graph construction phase in their
study was prominently based on the logistics and delivery services. The considered dataset
was the Supply Chain Data dataset and was segmented into three subcategories: the
distributor, the manufacturer and the supplier. The dataset characteristics in [41] pertain to
the acquired raw material, the time of delivery and the costs of the supplier. Yuemei Sun in
2025 [42] used the concept of Graphsage network learning for risk prediction in financial
transaction networks. An ATM security configuration for unusual activity detection was
proposed in [43] by Kshirsagar et al., based on graph network learning. Input video files
were collected from the UCF crime database and the DCSASS dataset in [43]. Abuse,
shoplifting, arrest, burglary, explosion, assault, fighting, robbery, road accidents, shooting,
arson and stealing were considered for investigation in this research [43]. Their approach
demonstrates the reliability for real-time surveillance applications. Foroutan et al., in
2024 [44], performed graph learning for classification purposes and investigation of price
fluctuation in crude oil markets. The dataset in their work [44] encompasses considerable
markets and zones for a long period of about two decades.

In this paper, we propose a bio-inspired ensemble graph network for creating a multi-
task intelligent supply chain model. The proposed intelligent model provides a framework
for automatic risk administration and supply chain sustainability management. In the next
section, we delineate the datasets’ characteristics and the mathematical foundation of the
brain-inspired Chebyshev graph convolution kernel and graph attention layer.

3. Materials and Methods
In this section, the details of the two databases used in this study are explicated. The

DataCo and the SupplyGraph databases are used in this study. Moreover, the mathematical
basics of the brain-inspired graph convolution kernel and graph attention network will be
elucidated to understand how the graph layers work.

3.1. Database Setting

Table 1 illustrates the details of the DataCo dataset. This dataset consists of 52 columns
for 180,000 transactions of DataCo global company. Three types of transaction, days for
shipment (scheduled), days for shipping, benefit per order, sales per customer, latitude,
longitude, order item discount rate, order item discount, order item total and order profit
per order are the characteristics for each data sample. The target labels for these data
samples are the late delivery risk status. Table 2 presents the specifications of the target
feature “late delivery risk,” which is defined as binary. In this feature, a value of 0 represents
on-time delivery, and a value of 1 represents late delivery. The minimum value of this
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feature is 0, and the maximum is 1. This feature is used in predictive models for classifying
the delivery status and helps simulate the likelihood of late delivery of goods or services.

Table 1. DataCo specifications.

DataCo Feature Format Min Max Description

1 Type Word 0 2 Kind of transaction

2
Real number
of shipping

days
Digit 0 6 Actual working days for shipping

activities of the purchased product

3 Scheduled number for
shipment days Digit 1 4

Number of days for scheduled
transportation of the
purchased product

4 Gain per order Numeral −613.77 186.23 Gaining per order

5 Sales per customer Numeral 27.04 399.98 Total sales per customer

6 Latitude Numeral 18 44 Latitude according to
storage location

7 Longitude Numeral −120 −66 Longitude according to
storage location

8 Order item discount Numeral 0 99.99 The discount value of the order item

9 Order item
discount rate Numeral 0 0.18 Discount percentage value of the

order item

10 Total order item Numeral 9.37 479.95 Total amount per order

11 Order profit rate per
order Numeral −613 153 Profit rate per order

Table 2. Target feature specifications.

DataCo Target Feature Format Min Max Target Description

1 Late delivery risk Binary 0 1 1 for late delivery, 0 for
on-time delivery

SupplyGraph is the second dataset in this research. It consists of the features of
products, companies and resources. It consists of nodes and edges labeled for connections
between products for same groups and same plants, separately.

Fluctuations of and variations in delivery to the distributor, factory issue, production
and sales orders for each day have been considered for this dataset. The nodes are available
for product group, product sub-group and storage location. Edges are available for the
connections between plants and connections between product groups. The characteristics
of time-based features are in terms of units and weights. For the homogenous type of
SupplyGraph database in Table 3, there are 40 products and there are 5 different categories
for products and 25 categories of plants.

The edge indexes corresponding to different plants are available in this database. The
connections according to different product categories are gathered in a file. The graph
construction can be done corresponding to plants and product categories.

Figure 1 illustrates DataCo’s characteristic signals for all transactions in the company.
Figure 2 shows the fluctuations of production sales orders, delivery to the distributor and
factory issue corresponding to with four products of the SupplyGraph.
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Table 3. SupplyGraph dataset’s characteristics.

DataCo Feature Duration Number of Products

1 Temporal data—delivery to distributor 9 August 2023–1 January 2023 40

2 Temporal data—factory issue 9 August 2023–1 January 2023 40

3 Temporal data—production 9 August 2023–1 January 2023 40

4 Temporal data—sales order 9 August 2023–1 January 2023 40

Figure 1. Characteristic plots for the Dataco dataset. (A) Order profit. (B) Order item. (C) Order
discount. (D) Longitude of location. (E) Latitude of location. (F) Sales. (G) Benefit.

Figure 2. Characteristic time plot for 4 different products: (A) Production, (B) sales order, (C) delivery
to distributor, and (D) factory issue.

Table 4 presents the edge connections in the homogenous SupplyGraph. It defines
two edge types: “Plant” and “Product group,” both connecting products. The “Plant” edge
type has 1647 connections, while the “Product group” edge type has 188 connections. This
table illustrates the relationships between plants, product groups, and products in the
supply network.
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Table 4. Edge connections in the homogenous SupplyGraph.

DataCo Edge Type Nodes Number of Connections

1 Plant Products 1647

2 Product group Products 188

3.2. Graph Convolution

The research of Michaël Defferrard et al. [30] led to the popularization of graph signal
processing (GSP). The mathematical functions in GSP take into account the attributes of
the graph’s elements and also the structure of the graph. GSP is utilized to develop the
convolution kernels of the graph domain, and this area of research exploits signal processing
techniques like the Fourier transform and deploys them in graph representations. The
use of the Fourier transform in GSP results in graph spectral filtering, which is named
graph convolution [32]. Bio-inspired graph convolution refers to the development of graph
convolutional networks that mimic natural biological mechanisms to process information.
Bio-inspired meta-heuristic methods are frequently used for hyper-parameter optimization
of graph convolution networks.

We explain the graph convolution layer in deep networks as described in [32]. Taking
the graph structure into consideration, it is required to know the adjacency matrix and
degree matrix according to the specific graph illustration. Here, W ∈ ℜ(N×N) is considered
as the adjacency matrix and D ∈ ℜ(N×N) corresponds to the degree matrix. The calculation
of the i-th diagonal component of the degree matrix can be described by (1). The Laplacian
matrix of the graph named L in the formula is acquired by (2).

Dii = ∑
j

wij (1)

L = D − W ∈ ℜ(N×N) (2)

The fundamental operations in the graph domain are computed in accordance with
the eigenvectors of the graph Laplacian matrix denoted by U. These vectors can be obtained
via singular value decomposition (SVD) in (3).

L = UΛUT (3)

The columns of U = [u0, . . . , uN−1] ∈ ℜ(N×N) comprise the Fourier basis, and
Λ = diag([λ0, . . . , λN−1]) is a diagonal matrix. Calculation of the eigenvectors returns
the Fourier basis in accordance with the graph. For a given signal X ∈ ℜN denoting
the stacked feature vectors on the graph nodes, its graph Fourier transform (GFT) via the
obtained graph basis functions is expressed as shown in (4).

X̂ = (UT)X (4)

In Formula (4), X̂ designates the converted signal in the frequency domain and is the
answer corresponding to the graph Fourier transform. The formula above expresses that
the inverse of the GFT can be obtained via the formula in (5). The filtered version of X by
(L) can be written as shown in (6).

X = U(UT)X = UX̂ (5)

Y = g(L) X (6)
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Using the following formulation in (7), it is obvious that the graph convolution of
X with the vector of Ug(Λ) is symmetrical to the kernel operation of (6). The g(Λ) in
Formula (7) is expressed as shown in (8).

y = g(L)x = Ug(Λ)UTx = U(g(Λ)).(UTx)
= U(UT(Ug(Λ))).(UTx) = x ∗g (Ug(Λ))

(7)

g(Λ) =


g(λ0) . . . 0
...

. . .
...

0 . . . g(λN−1)

 (8)

3.3. Chebyshev Graph Convolution

In this section, we explain a particular type of bio-inspired graph convolution entitled
Chebyshev graph convolution, while replacing g(L) in (7) with the Chebyshev polynomial
of L. As we described earlier, the graph convolution of X with Ug(Λ) can be calculated as
shown in (9).

y = g(L)x = g(UΛUT)x = Ug(Λ)UTx (9)

The estimation of the g(Λ) is done via the K-order Chebyshev multinomials. The
normalized version of Λ is utilized for approximation of the g(Λ) operation. The largest
element among the diagonal entries of Λ is defined by λMax, and the normalized Λ is
computed with the formula in (10). The IN in (10) is the N × N identity matrix, and the

diagonal elements of
~
Λ lie in the interval of [−1, 1]. Approximation of g(Λ) based on the

K-order Chebyshev polynomials framework as shown in Formula (10).
~
Λ =

2Λ

Λmax
− IN (10)

g(Λ) =
K−1

∑
k=0

θkTk(
~
Λ) (11)

In Formula (11), θk denotes the coefficient of the Chebyshev polynomials, and Tk(
~
Λ)

can be acquired according to the following formulas in (12). T0(
~
Λ) = 1, T1(

~
Λ) =

~
Λ

Tk(
~
Λ) = 2(

~
Λ)(Tk-1(

~
Λ))− Tk-2(

~
Λ) , k ≥ 2

(12)

According to (12), the graph convolution kernel in (9) can be defined using (11)

as illustrated in (13). In Formula (13),
~
L = 2 L

λmax
− IN is the normalized type of the

Laplacian matrix.

y = U g(Λ) UTx

=
K−1
∑

k=0
U


θkTk(

~
λ0) . . . 0

...
. . .

...

0 . . . θkTk(
~
λN-1)

 UTx

=
K−1
∑

k=0
θkTk(

~
L)x

(13)

The expression of Chebyshev graph convolution in (13) indicates that it is sym-
metrical to the exploitation of the convolutional results of x with each part of the
Chebyshev multinomial.
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3.4. Graph Attention

Attention graph networks point out the restrictions of bio-inspired convolutional
graph neural networks by enhancing optimizable self-attention procedures that allocate
differing significance to different neighbors [45,46]. These are specialized deep learning
architectures that integrate biological principles such as neural firing patterns into graph-
based data processing. These networks use biological knowledge to weight connections
between nodes, making them particularly effective for various regulatory tasks.

This section describes the formulation of the graph attention layer. A set of features is
considered as the input of the graph attention layer as shown in (14). N and F designate
the number of nodes and features, respectively.

f =

{→
f 1,

→
f 2, . . . ,

→
f N

}
,

→
f i ∈ RF (14)

A new set of node features would be created as the output of the graph attention layer.

f ′ =

{→
f ′1 ,

→
f ′2, . . . ,

→
f ′N

}
,

→
f ′i ∈ RF′ (15)

The weight matrix W ∈ RF′×F is applied to every single node. The mechanism of
self-attention is employed to calculate the attention coefficients:

attention : RF′ × RF′ → R amn = attention (W
→
f m , W

→
f n) (16)

A leaky rectified linear unit can be employed to calculate the normalized output,
considering a nonlinear activation function.

amn =
exp (LeakyReLU(

→
w

T
[concatenation(W

→
f m , W

→
f n))

∑
k∈Ni

exp ( LeakyReLU(
→
w

T
[concatenation(W

→
f m , W

→
f k))

(17)

Considering the first-order neighboring nodes, the normalization process is performed
across all choices of j using the softmax function:

samn = so f t maxn (amn) =
exp(amn)

∑
k∈Ni

exp(eik)
(18)

The normalized attention coefficients are considered, and nonlinearity is imposed on
the output.

→
f ′m = ∆ ( ∑

n∈Nm

samnW
→
f n) (19)

Concatenation of the features is required to construct the output.

→
f ′m =

K
Concatenation

k=1
∆ ( ∑

n∈Nm

sak
mnWk

→
f n) (20)

For multi-head attention on the final layer of the network for prediction, averaging
should be employed, and the final classification layer should be considered after the
averaging step.

→
f ′m = ∆ (

K

∑
k=1

∑
n∈Nm

sak
mnWk

→
f n) (21)

This technique enables the model to concentrate on more significant links and depen-
dencies to improve the prediction performance. The negative side of the fact is the rising
of the calculation cost and the incremental trend of complexity. In supply chain logical
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analysis, attention graph networks are specifically useful for anomaly detection and risk
administration. Moreover, it is advantageous in cases where the capabilities of the model
are used to rate essential connections and obtain more precise interpretations.

4. Proposed Bio-Inspired Method
The graphical diagram of different stages in accordance with the proposed bio-inspired

network is represented in Figure 3. The Dataco and SupplyGraph datasets are used in this
study. As can be seen in this figure, after pre-processing of the data and graph design stage,
the acquired graph would be applied to tune the parameters of the proposed bio-inspired
Chebyshev ensemble graph network (Ch-EGN) during the training stage.

Figure 3. Schematic overview of the proposed method.

The network includes two distinct parts of deep networks. The brain-inspired graph-
based section consists of four layers of Chebyshev convolution layers, and the bio-inspired
convolutional part includes two sequential non-graph convolutional layers. The loss
function of the ensemble network is the weighted summation of the parallel graph-based
part and convolutional part of the network. The training phase of the Ch-EGN is performed
with K-fold cross-validation.

4.1. Pre-Processing Stage

Dataco and SupplyGraph signals are considered in this study. The conversion of
text-like features to integers is the first step of the pre-processing stage. The selection of
features in order to clean the datasets is another step. The clean array of features is used
and applied to the graph design phase.
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4.2. Graph Construction

After pre-processing, the graph design stage is necessary to employ the acquired graph
in the training phase of the proposed network architecture. The correlation of characteristic
features in the transaction data in DataCo is required for graph embedding.

The target for training the proposed Ch-EGN is considered to be conversion of on-time
delivery status and late delivery into zero and one, respectively. For the SupplyGraph
database, the target is the product number for product classification, and is the plant
number and product sub-group number for edge classification purposes.

A sigmoid is utilized for computing the absolute value of the cross-correlation matrix.
Also, a threshold level is considered in order to remove some non-zero elements of the
output array. The adjacency matrix is the output of the sigmoid function and threshold-
ing stage according to the simplified graphical representation of the graph design stage
in Figure 4.

Figure 4. Graph construction stage for DataCo.

4.3. Proposed Bio-Inspired Ch-EGN Architecture

Figure 5 delineates the detailed graphical representation of the proposed bio-inspired
network architecture. As this figure shows, our proposed geometric Ch-EGN contains four
layers of graph convolution. As specified by this figure, in every Chebyshev convolutional
layer, the first step is the estimation of the Chebyshev convolution of the input graph via
the graph Laplacian. The next layer is the activation layer. Also, batch normalization is
utilized in the output of each layer to normalize the input to the next layer.

The output of the pre-processing stage is imposed to the parallel convolutional part of
the ensemble bio-inspired network. The loss function is the ensemble of two loss functions
of the parallel parts of the Ch-EGN network. After the log-softmax layers in parallel
networks, the obtained signal is classified according to the target vector.

Batch normalization makes the network stable throughout the training procedure,
and the convergence of the network would happen more quickly. The normalization is
allocated to each graph convolution layer. After four layers of Chebyshev convolution and
two parallel convolution layers, the extracted feature array is acquired, which is compatible
with the size of the target vector.
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Figure 5. The detailed architecture of the proposed Ch-EGN.

The details and characteristics of the proposed architecture are explained in Tables 5
and 6. Table 5 is related to the details of first part of the Ch-EGN. Table 6 is the attributes of
layers matching the convolutional part of the network. Also, it shows the kernel size for
different layers, the size of strides in the layers, the number of kernels used for each layer
and the total number of weights to be trained during the training procedure.

Table 5. Layers of the graph section of the proposed method.

Layers DataCo SupplyGraph

Layer Layer Name Activation
Function

Dimension of
Weight Array

Dimension
of Bias

Number of
Parameters

Dimension
of Weight
Array

Dimension
of Bias

Number of
Parameters

1 Chebyshev
convolution layer [1, 10, 10] [10] 110 [1, 220, 220] [220] 48,620

2 Activation Layer Relu

3 Batch normalization [10] [10] 20 [220] [220] 440

4 Chebyshev
convolution layer [1, 10, 5] [5] 55 [1, 220, 100] [100] 22,100
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Table 5. Cont.

Layers DataCo SupplyGraph

Layer Layer Name Activation
Function

Dimension of
Weight Array

Dimension
of Bias

Number of
Parameters

Dimension
of Weight
Array

Dimension
of Bias

Number of
Parameters

5 Activation Layer Relu

6 Batch normalization [5] [5] 10 [100] [100] 200

7 Chebyshev
convolution layer [1, 5, 2] [2] 12 [1, 100, 20] [20] 2020

8 Activation layer Relu

9 Batch normalization [2] [2] 4 [20] [20] 40

10 Chebyshev
convolution layer [1, 2, 2] [2] 6 [1, 20, 5] [5] 105

11 Activation layer Relu

12 Batch normalization [2] [2] 4 [5] [5] 10

Table 6. Details of the convolutional part of the proposed method.

Data Layer Layer Name Activation Function Output
Dimension

Size of
Kernel

Stride
Shape

Number
of Kernels

Number
of Weights

DataCo
1 Convolution 1-D LeakyReLU(alpha = 0.1) (10, 10, 5) 1 × 5 1 × 1 10 510

2 Convolution 1-D LeakyReLU(alpha = 0.1) (2, 10, 5) 1 × 5 1 × 1 2 102

SupplyGraph 3 Convolution 1-D LeakyReLU(alpha = 0.1) (100, 220, 5) 1 × 5 1 × 1 100 110,100

4 Convolution 1-D LeakyReLU(alpha = 0.1) (5, 100, 5) 1 × 5 1 × 1 5 2505

The target vector for delivery status prediction in DataCo is a two-class vector. The
target vector for SupplyGraph is 5 for product group classification, 4 for product sub-group
classification and 25 for plant classification. Table 7 demonstrates the weight parameters of
the edge classification part of the network for classifying different categories of the edge
connections of the graph.

Table 7. Details of the edge classification part of the proposed method.

Data Layer Layer Name Activation Function Output Dimension

SupplyGraph
(product-based connections)

(4 categories)

1 Linear ReLU (Number of edges, 100)

2 Linear ReLU (Number of edges, 4)

SupplyGraph
(plant-based connections)

(25 categories)

1 Linear ReLU (Number of edges, 100)

2 Linear ReLU (Number of edges, 25)

The 1-D convolutional layer assumes a fixed ordering of elements where the distance
between neighboring units is constant. It performs a sliding window operation. It computes
the dot product between a learnable kernel and a local segment of the input. The filter
is translation-invariant, meaning that the same weights are applied across different posi-
tions in the sequence. It excels at capturing local patterns in ordered sequences, whereas
the Chebyshev graph convolution handles irregular structures where the nodes have a
variable number of neighbors with no fixed inherent ordering. The graph convolution has
been designed for non-Euclidean data illustrated as graphs. The distance in the irregu-
lar structure of a graph is defined by connectivity edges rather than the spatial patterns
of neighboring nodes. This type of convolution utilizes a spectral method estimated by
Chebyshev polynomials. Instead of a sliding window, it operates on the graph Laplacian to
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approximate a filter in the spectral domain, as defined in Section 3. This approximation
leads to the capture of global structures and long-distance dependencies across the graph.
The 1-D convolution layer assumes a linear connectivity. However, the Chebyshev graph
convolution adapts to complex relationships defined by a custom adjacency matrix.

4.4. Training and Evaluation of the Proposed Ch-EGN

In the training procedure, the generated input and target samples are utilized to tune
the parameters of the suggested Ch-EGN to the Dataco and SupplyGraph datasets. We
implement a 10-fold cross validation.

After training and tuning the variables and parameters of the Chebyshev graph convo-
lution network and the parallel convolutional network, the testing phase is performed. The
training of the proposed Ch-EGN is performed according to the parameters in Tables 5–7.
The optimal weights are obtained and summarized in this table. Cross-validation is selected
for the validation procedure. A schematic view of this phase is indicated in Figure 6.

Figure 6. K-fold cross-validation stage.

A 10-fold cross-validation is fulfilled in accordance with Figure 6 using the training
samples. The test stage can predict the delivery status of Dataco and the classification
purposes of SupplyGraph based on the calculated weights of the training stage. The
pseudo-code in Algorithm 1 explains the details of the proposed Ch-EGN. Table 8 shows
the training search area and the optimal parameters for each scope.

Table 8. Details of training parameters.

Parameters Search Scope Optimal Value

Optimizer of graph section Adam, SGD Adam

Cost function of graph segment MSE, cross-entropy Cross-entropy

Number of Chebyshev convolutional layers 2, 3, 4 3

Learning rate of graph segment 0.1, 0.01, 0.001 0.001

Window size 15, 20, 25, 30 20

Optimizer of convolutional segment Adam, SGD Adam

Learning rate of convolutional segment 0.01, 0.001, 0.0001, 0.00001 0.0001

Number of convolutional layers of second segment 2, 3, 4 4
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Algorithm 1. Bio-inspired Chebyshev ensemble graph network (Ch-EGN)

Input: (1) Characteristic vectors X; (2) A threshold level for adjacency matrix;
(3) Chebyshev polynomial orders for each layer K1, K2, K3, K4;
(4) Labeled train and test samples Xtrain and Xtest;
(5) α coefficient in ensemble cost function.
Output: Class labels for Xtest

Initialize the model parameters.
Repeat according to the 10-fold cross-validation:
1: Determine the correlation co-efficient of the of X in Xtrain.
2: Calculate the adjacency matrix W by using the sigmoid function for the result of Step 1.
3: Determination of the normalized Laplacian matrix Λ̂.
4: Calculate the multinomials in accordance with the layer.
5: Extract the output of the four Chebyshev graph convolutional layers considering K1,
and using K2, K3 and K4 and the sequential activation layers.
6: Calculate the output of the dropout layer.
7: Calculate the output of the parallel simple convolutional layers.
8: Optimize the weights of the ensemble layers using appropriate loss function such as cross-entropy.
9: Update the weights of the layers using the total ensemble cost function:

LossCross−Entropy(target, output1) = − 1
n

n
∑

i=1
(targeti.log output1i + (output1i − targeti). log(targeti − reali))

LossCross−Entropy(target, output2) = − 1
n

n
∑

i=1
(targeti. log output2i + (output2i − targeti). log(targeti − reali))

LossTotal = LossCross−Entropy(target, output1) + α ∗ LossCross−Entropy(target, output2 )
10: Obtain the predictions for the embedded graphs in accordance with Xtest using the trained Ch-EGN.
Stop specifications: A maximum number of trials or acceptable accuracy.

Figure 7 illustrates the circular connectivity of the edges in the SupplyGraph dataset
with similar product groups. The edge connections are the relations between products in
terms of same product types. Figure 8 is the circular connectivity between nodes of the
SupplyGraph dataset considering the edge connections with similar plant locations. There
are 188 edge connections in Figure 7 and 1646 edge connectivity in Figure 8 in terms of the
similarity of the plant locations.

 

Figure 7. Circular connectivity between products in terms of product groups’ edge indexes.
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Figure 8. Circular connectivity between products in terms of plants’ edge indexes.

5. Results and Discussion
In this section, the results obtained through an analysis of the proposed bio-inspired

Ch-EGN are presented. Our configuration is executed on a laptop with 16 GB RAM, a
2.8 GHz Core i7 CPU and a GeForce GTX 1050 GPU. The implementation of the proposed
network was performed using the Google Colab Pro platform.

Figures 9 and 10 show the performance of the proposed Ch-EGN for DataCo, based
on the loss functions in accordance with the Chebyshev graph convolution segment and
the parallel convolutional network. Regarding these figures, the Adam optimizer with an
optimal learning rate of 0.0001 and an optimum weight decay of 4 × 10−4 was used, taking
into consideration the cross-entropy for the first segment of the network and the total loss
corresponding to the pseudocode for the ensemble segment of the proposed network. This
figure illustrates the loss plots for the Ch-EGN, fuzzy Ch-EGN, G-EGN and GAT-EGN. The
fuzzy version needs more iterations in order to converge. The graph convolutional and
graph attentional methods have weak performance in comparison with the Chebyshev
convolutional network. Three layers of graph convolution networks are considered for the
G-EGN, and the GAT includes three sequential layers of graph attention. As can be seen,
we consider more than 700 iterations for all methods, considering a 10-fold cross-validation.

Figure 9. Cont.
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Figure 9. Loss plots for training on DataCo: (A) Ch-EGN; (B) FCh-EGN; (C) G-EGN; (D) GAT-EGN.

Figure 10. Accuracy plots for training the on DataCo.: ((A) Ch-EGN; (B) FCh-EGN; (C) G-EGN;
(D) GAT-EGN).

Figures 11 and 12 demonstrate the performance of the Ch-EGN for SupplyGraph. The
number of repetitions necessary for the convergence of the proposed method with the aim
of product type classification with this dataset is equal to 500. The SupplyGraph dataset
requires more than 500 iterations in order to converge.

Table 9 reports the performance metrics considering the DataCo dataset for prediction
of the delivery status for different methods. This table shows the on-time delivery and
late delivery status predictions’ accuracy. It also demonstrates the precision, F1-score and
recall, considering various orders for the Chebyshev polynomial convolution layer and the
FCh-EGN, G-EGN and GAT-EGN methods.
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Figure 11. Loss plot for training the proposed method for the SupplyGraph dataset.

Figure 12. Accuracy plot for training the proposed method for the SupplyGraph dataset.

Table 9. Performance metrics of the proposed method (accuracy, precision, recall, F1-score).

DataCo
Category

Ch-EGN
(k1 = 1, k2 = 1,
k3 = 1, k4 = 1)

Ch-EGN
(k1 = 1, k2 = 2,
k3 = 2, k4 = 2)

Ch-EGN
(k1 = 2, k2 = 2,
k3 = 2, k4 = 2)

Ch-EGN
(k1 = 3, k2 = 3,
k3 = 3, k4 = 3)

FCh-EGN GAT-EGN G-EGN

On-time delivery 98.2 98.3 94.7 93.2 95.3 93.8 91.8

Late delivery 99.7 97.8 95.2 92.6 94.9 93.5 91.1

Overall accuracy 98.95 98.05 94.95 92.9 95.1 93.65 91.45

Precision 99.7 97.81 95.2 93.2 94.9 93.50 91.74

F1-score 98.9 98.04 94.7 92.87 95.09 93.64 91.41

Recall 98.22 98.32 94.72 93.15 95.28 93.78 91.09

Figures 13 and 14 illustrate the three-dimensional and two-dimensional T-SNE plots
for different layers of the proposed Ch-EGN in order to demonstrate the procedure of the
classification and a tangible view of the stages of classification considering the proposed
Ch-EGN with the DataCo dataset.

Figure 15 shows the performance metrics of the proposed Ch-EGN regarding different
sets of features for the DataCo database. The comparison shows a decreasing trend for
delivery status prediction and time per epoch. As can be seen, decreasing the number of
features affects the speed of processing positively. Although it will reduce the complexity
and computational burden, it affects the performance’s accuracy negatively.

Table 10 is the report for product classification in the case of considering the Sup-
plyGraph dataset. The classification accuracies for different types of product S, P, A, M
and E can be seen in this table. The results of the proposed Ch-EGN together with those
of the G-EGN, FCh-EGN and GAT-EGN are available in Table 10 for the SupplyGraph
dataset. Moreover, this table presents the category-specific evaluation metrics thoroughly
for all of these networks. As can be seen in Table 10, the proposed Ch-EGN surpasses the
other methods.
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Figure 13. Three-dimensional TSNE plots for DataCo. (A) Input vector, (B) third graph layer,
(C) second convolution layer, (D) output layer and (E) output of the softmax layer.

Figure 14. Two-dimensional TSNE plots for DataCo. (A) Input vector, (B) third graph layer, (C) second
convolution layer, (D) output layer and (E) output of the softmax layer.
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Figure 15. Test accuracy and time of training per epoch with different sets of features for DataCo
graph construction.

Table 10. Performance metrics of the proposed method for the SupplyGraph product classification
scenario.

Supply Graph Categories Ch-EGN FCh-EGN G-EGN GAT-EGN

S 100 90.09 85.75 80.6

P 100 85.28 82.92 78.9

A 100 87.39 82.25 80.1

M 100 83.27 81.29 75.8

E 100 84.46 81.95 76.3

Overall accuracy 100 86.54 84.57 78.9

Precision 100 86.08 84.18 78.4

F1-score 100 86.03 84.11 78.3

Recall 100 86.09 84.2 78.5

Table 11 shows the detailed results for classification of the product type, product
relation classification in terms of products and product connection classification in terms of
plant similarity. There are five different categories of product types. There are 4 different
groups of relations based on the product relations and 25 different groups of connections for
similar plants. This table confirms the good performance of the proposed method for node
and edge classification in comparison with other methods. The proposed Ch-EGN outper-
forms other methods for classification of the nodes and edges of the SupplyGraph database.

Table 11. Accuracy for product relation classification.

Supply Graph
Dataset

Ch-EGN
(k1 = 1, k2 = 1,
k3 = 1, k4 = 1)

Ch-EGN
(k1 = 1, k2 = 2,
k3 = 2, k4 = 2)

Ch-EGN
(k1 = 2, k2 = 2,
k3 = 2, k4 = 2)

Ch-EGN
(k1 = 3, k2 = 3,
k3 = 3, k4 = 3)

FCh-EGN G-EGN GAT-EGN

Product group classification
(node classification) 100 100 100 100 86.54 84.57 80.09

Product group relation
classification

(edge classification)
98.07 98.07 96.1 94.47 85.2 81.54 79.32

Plant relation classification
(edge classification) 92.37 92.37 90.03 88.68 82.3 80.76 78.44

Table 12 shows the performance metrics of the proposed method in comparison with
the other novel and traditional methods. As can be seen, our proposed geometric ensemble
network outperforms the other conventional methods.
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Table 12. Comparison with the conventional methods.

Method Product Group
Classification

Product Group
Relation Classification

Plant Relation
Classification

Ch-EGN 100 98.07 92.37

GNN-based [47] 75.68 91.36 91.45

KNN [48] 64.44 74.75 74.63

XGB [49] 65.56 71.78 71.23

Logistic regression 66.67 62.73 68.63

The confusion matrix is a valuable way of confirming the efficiency of the proposed
method. Figure 16 shows the performance of the proposed Ch-EGN considering the DataCo
dataset. Figure 17 is the confusion matrix for the classification of product types in the
SupplyGraph dataset considering our proposed Ch-EGN.

Figure 16. The confusion matrix for delivery status prediction. (A) Percentage. (B) Number.

Figure 17. Product classification in the SupplyGraph database.

To investigate the effect of different parameters on the optimality of the performance,
we executed an extended experiment. In order to evaluate the effect of alternating the
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number of sequential Chebyshev filters, a series of training procedures were performed
for different numbers of sequential Chebyshev multinomials. Figure 18 showcases the
results of tuning for two, three, four and five sequential Chebyshev layers. Setting the
sequential layers to more than four in this case study does not improve the performance,
but it affects the computational complexity. This figure showcases the incremental direction
of the training time per iteration epoch of the proposed Ch-EGN.

Figure 18. F1-score and time of training per epoch with different numbers of graph
convolution layers.

Figure 19 is the comparison outcome of different altering coefficients α of the ensemble
loss function in Algorithm 1. This column chart outlines that adjusting the coefficient
equal to 0.9 will optimize the accuracy and that this is the most effective one, taking into
consideration the converging time.

Figure 19. F1-score and time of training per epoch with different ensemble coefficients in the cost
function.

Figure 20 shows the performance metrics of the proposed Ch-EGN regarding different
threshold levels. The comparison shows that considering a threshold level for graph con-
struction equal to 0.7 results in a compromise between accuracy and computational burden.

Figure 21 shows the performance metrics of the proposed Ch-EGN in comparison with
the other novel methods. The comparison shows the results of delivery status prediction
using simple LSTM and BiLSTM methods along with softmax and SVM classifiers. As
can be seen, our proposed geometric ensemble network outperforms the other methods
provided in [50].
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Figure 20. Test accuracy and time of training per epoch with different threshold levels for DataCo
graph construction.

Figure 21. The comparison with other novel methods for DataCo in terms of accuracy, precision and
F1-score.

Figures 22 and 23 are the confusion matrixes for edge classification for the SupplyGraph
database considering the proposed Ch-EGN. Figure 22A considers delivery to the distributor
for the nodes. Factory issue has been considered for calculating the right-hand confusion
matrix in Figure 22B. Figure 23A considers the sales orders for calculating the confusion matrix.
The time-series of production has been considered for the confusion matrix in Figure 23B. All
of these performance metrics confirm the efficiency of the proposed method.

Figure 22. The confusion matrix for edge classification for product group connections. (A) Delivery
to the distributor; (B) factory issue.
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Figure 23. The confusion matrix for edge classification for product group connections. (A) Sales
orders; (B) production.

Figure 24 showcases the confusion matrix for edge classification of the SupplyGraph
dataset considering the edge connections for similar plant locations for different types of
products. This figure confirms the efficiency of our proposed intelligent multi-task supply
chain model.

Figure 24. The confusion matrix for edge connections in terms of plant labels.

https://doi.org/10.3390/biomimetics11020123

https://doi.org/10.3390/biomimetics11020123


Biomimetics 2026, 11, 123 26 of 30

Recent studies demonstrate that intelligent supply chain systems increasingly rely
on the integration of artificial intelligence and data-driven decision-making frameworks.
Blockchain-enabled architectures have proven effective in enhancing transparency, trace-
ability and waste reduction in food and healthcare supply chains, providing a reliable
foundation for decentralized coordination [51]. Machine learning and deep learning tech-
niques have been widely applied to complex engineering systems, including aircraft design,
smart energy networks and large-scale optimization problems, showing superior perfor-
mance in handling uncertainty and multi-objective constraints [52,53]. At the same time, the
expansion of digital systems highlights the need for resilient and human-aware intelligent
frameworks that account for behavioral and societal impacts [54].

In healthcare-related supply chains, artificial intelligence has enabled significant im-
provements in diagnosis, treatment planning and service management. Multi-task and
multi-modal learning approaches have demonstrated strong capabilities in processing
heterogeneous clinical and logistical data, particularly in uncertainty-sensitive environ-
ments [55,56]. Hybrid decision-making and multi-criteria evaluation methods further
support the structured prioritization of AI-driven strategies in healthcare and service-
oriented supply chains [57,58]. Intelligent optimization techniques have also been ex-
tensively employed in energy-aware infrastructures, where stochastic and interval-based
models improve resilience and operational efficiency in smart grids and micro-energy
networks [59–62]. These findings emphasize the importance of adaptive and bio-inspired
optimization mechanisms in interconnected supply chain systems.

Advances in intelligent diagnostic systems and medical image analysis confirm the
effectiveness of deep learning, semi-supervised and generative models in high-dimensional
and data-limited environments [63–66]. In parallel, progress in causal inference, fair learn-
ing and large language models has expanded the scope of intelligent decision-support
systems toward more robust and generalizable solutions [67–71]. Human-centered studies
in spatial behavior, architectural intelligence and adaptive environments further highlight
the role of contextual and behavioral factors in intelligent system design [72–74]. Moreover,
recent research in demand response, energy coordination and sustainable infrastructure
demonstrates the effectiveness of intelligent coordination mechanisms in large-scale inter-
connected systems [75].

Finally, uncertainty-aware learning paradigms, including fuzzy neural networks and
advanced feature extraction methods, have shown high reliability in medical and signal-
based intelligent systems, reinforcing the value of bio-inspired and adaptive learning
structures for multi-task environments [76–79]. Collectively, these studies provide a solid
foundation for the proposed intelligent multi-task supply chain model, which integrates
bio-inspired networks with learning-based optimization to achieve scalable, adaptive and
resilient supply chain intelligence [80].

6. Conclusions
In this paper, a novel bio-inspired deep ensemble architecture is proposed to create

a smart supply chain model. The proposed model solves the problem of predicting the
delivery status for risk management in a supply chain. In addition, it is an intelligent model
proposed for strengthening the sustainability of the supply chain. The proposed model
architecture is used for testing the sustainability of the SupplyGraph database and it is
utilized for risk management with the DataCo supply chain dataset.

The connectivity between the nodes of the proposed ensemble method is influenced
by the brain functional connectivity measurement between different brain regions during
neuronal activities. This connectivity constructs the supply chain graph using the hidden
states of supply chain characteristic vectors. The bio-inspired ensemble approach employs
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the supply chain graph for different scenarios of node and edge classification. The proposed
ensemble brain-inspired deep network is a novel approach for supply chain automation. It
facilitates risk management in a supply chain along with strengthening the supply chain’s
sustainability. The efficiency of the proposed bio-inspired method for building an intelligent
supply chain is delineated via the exploratory outcomes on the DataCo and SupplyGraph
datasets. The proposed bio-inspired Ch-EGN creates an agile and transparent multi-task
sustainable supply chain.
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