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Abstract

In this study, an advanced copula-based Bayesian inference framework is proposed to

characterize probabilistic features in hydrological simulations. Specifically, a Copula—
Metropolis—-Hastings (CopMH) algorithm is developed through integrating copula func-
tions into the conventional Metropolis-Hastings (MH) algorithm within an interdependence-
sampling framework. In CopMH, the interdependence structure among model parame-
ters is quantified using copula functions, which are subsequently employed to generate

proposal candidates. The proposed approach is then applied to uncertainty analysis in

hydrological simulations of the Ruihe River watershed in Northwest China. The results

indicate that, compared with the traditional MH, incorporating copula-based proposal

distributions significantly improves convergence efficiency and simulation accuracy, as

inter-parameter dependence is more effectively captured. All algorithms are independently

repeated 15 times, and CopMH exhibits more robust and stable performance than MH.
Furthermore, the intercorrelation analysis of hydrological model parameters reveals that

interactive effects among parameters are ubiquitous. These findings highlight that consid-
eration of the interrelationship among the parameters in hydrologic models is meaningful

and necessary for uncertainty quantification of hydrological simulation. This study demon-
strates the strong potential of the proposed CopMH approach for effectively quantifying

and reducing parameter uncertainty in hydrological simulations.

Keywords: copula; Bayesian inference; uncertainty quantification; hydrological simulation

1. Introduction

Hydrological models are conceptual and approximate representations of watershed
processes, typically formulated using relatively simple mathematical equations with a set
of model parameters [1-3]. As effective tools for forecasting and managing water resources,
hydrological models have been widely applied in flood control [4], drought management [5],
and reservoir operation [6,7]. However, owing to the complex and spatially distributed
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physical behavior of natural systems [2], substantial uncertainties arise in model param-
eters [8], model structures [9], and input data [9]. In particular, hydrological parameters
often represent physical characteristics of a watershed that cannot be measured directly
and must instead be inferred through model calibration [10]. Such parameter uncertainty
propagates into hydrological predictions, introducing variability and randomness in many
real-world water resource applications [11]. Thus, great effort is required to both quantify
and reduce uncertainty in model parameters [12].

Previously, tremendous efforts have been made in the development of uncertainty
quantification methods in hydrological simulation [13-15]. Many popular options, such
as the generalized likelihood uncertainty estimation, Bayesian techniques, Markov chain
Monte Carlo (MCMC), and data assimilation, have been applied in hydrological model
calibration [16-18]. Among them, Bayesian techniques have been widely used as they
can handle complex models and partially unobserved quantities, and are capable of pro-
ducing posterior distributions based on observation data and a priori information [19,20].
Nevertheless, integrating marginal distribution and conditional distribution, the posterior
distribution of model parameters is often difficult to evaluate or approximate analytically,
especially for highly nonlinear and complex hydrological models [10]. Consequently, a key
task in Bayesian inference is to characterize the posterior distribution when analytical
solutions or approximations are not feasible. To solve this problem, MCMC algorithms
are applied for producing the samples of posterior distributions from prior distributions
and observed values [21]. Then the associated posterior distributions are obtained from
these samples. MCMC algorithms offer a possible way to explore the posterior distribu-
tions based on the Bayesian theory, which can provide statistical inference for parameter
uncertainty of hydrological models [22-24].

Among the MCMC methods, the Metropolis—Hastings (MH) algorithm is one of
the most successful and influential ones [24,25]. However, the standard MH algorithm
does not generally work in high dimensions, since it leads to very frequent repeated sam-
ples. The strong parameter dependencies associated with multidimensional sampling
spaces [26] limit MH algorithms to conservative parameter update schemes. Toward this
end, a variety of modified MH algorithms have been developed to improve MH sampling
efficiency [27-29], including the random walk Metropolis—Hastings algorithm [30], the
independence Metropolis—Hastings algorithm [31], the adaptive Metropolis—Hastings algo-
rithm [32], and adaptive independent Metropolis—Hastings [33]. In addition, the Kalman-
inspired proposal distribution, which accounts for the correlation between model parame-
ters and model outputs, has been shown to significantly accelerate MCMC simulations [12].

The proposal distribution g(x) plays a crucial role in the performance of different algo-
rithms [5]. Most existing modified Metropolis—Hastings (MH) algorithms are developed
for single variables or assume independence among parameters, while the intrinsic interde-
pendence among hydrological model parameters is often ignored. In hydrological models,
parameters associated with different physical processes jointly control model behavior,
and their interactions—arising from nonlinear model structures and coupled hydrological
processes—can have a substantial impact on simulated hydrological responses. As a result,
statistical inference and uncertainty quantification are often hindered by unknown and
complex dependence structures among parameters, leading to inefficient sampling and
slow convergence in conventional MCMC implementations.

As a multivariate probability distribution with its marginal distribution being uni-
form, a copula can describe the dependency structure well for correlated random variables.
The copula method was first developed by Sklar [34] and has received great attention in
deriving multivariate statistical analysis in fields like economics, finance, and geology. In
recent years, copulas have been widely used to model the joint distribution functions in
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water resource systems such as probabilistic modeling of drought events, stochastic opti-
mal operation of reservoirs [35], performance evaluation of regional hydrometeorological
networks [22], probabilistic modeling of flood characterizations [36], prediction of extreme
flood quantiles, and so on.

However, previous studies have primarily focused on independence-based MCMC
schemes, which have a limited ability to capture parameter dependence, thus restricting
sampling efficiency in hydrological applications. Therefore, the primary objective of this
study is to develop a copula-based Metropolis—-Hastings (CopMH) algorithm that explicitly
incorporates parameter dependence into the MCMC sampling procedure. Specifically, the
objectives are to (1) develop a CopMH algorithm that accounts for interdependence among
hydrological model parameters; (2) evaluate its effectiveness in improving sampling effi-
ciency and posterior inference relative to conventional MH algorithms; and (3) demonstrate
its applicability for uncertainty quantification through a real-world hydrological modeling
case study in the Ruihe River watershed, Northwest China.

2. Methodology

This paper aims to leverage copulas in conjunction with the MH algorithm to improve
reliability and robustness of MH in uncertainty characterization for hydrological models.
The copula-modified MH algorithm (i.e., CopMH) will be compared to the original MH
algorithm to evaluate their performance in parameter estimation for hydrological models.
CopMH is designed to systematically address parameter uncertainties and their interactions
in hydrological modeling. As illustrated in Figure 1, the overall workflow follows a fixed
and unified procedure and is applicable to hydrological simulations driven by commonly
used hydrometeorological variables, including precipitation, potential evapotranspiration,
soil moisture-related state variables, and streamflow.

Set the iterations(N) and initial Input Data
value of parameters from a

Hymod -
uniform distribution ymo Rainfall: P(t)

ForK=1 X~ U(XminXmax) =

P(®) E(t) Evaporation: E(t)
Proppse candidate (1) G
Y k+1 "~ N(Xk,S%Xk)

Initial storage
x_loss x_slow

{Propos“e candidate (2)
Y k+1~ Cop(Xk)
{-\ccept/Reject X
ratio(k+1) = (f(Y kM)q(Xle k+1)/f(Xk)q(Y Kk+1 |Xk) Nash
z~U(0,1) . as
If z < ratio(k+1): Xis1 =Y ks1
otherwise: Xx+1 = Xk RMSE
K=K+1
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—{ convergence ‘
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—{ Posterior distributions ‘

stop Markov chain —

Figure 1. The general framework of the copula-based Bayesian inference approaches.
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In this study, the Hymod model is employed as the hydrological modeling core, pro-
viding the fundamental hydrologic framework that links model parameters to hydrological
responses, particularly streamflow [37]. The model is forced by precipitation and evap-
otranspiration inputs, while internal soil moisture states govern runoff generation and
routing processes. Based on the hydrologic protocol, posterior distributions of parame-
ters are inferred using two MCMC algorithms: the conventional MH algorithm, and the
proposed CopMH algorithm. The convergence of the MCMC chains is assessed using
Heidelberger and Welch’s convergence diagnostic with the help of the coda package in
R. The performance of CopMH is evaluated in comparison with the MH algorithm for
identifying the five parameters of the Hymod. The convergence and robustness of pro-
posed methods, as well as intercorrelations among the five Hymod parameters, will be
analyzed. In addition, a benchmark optimization algorithm, the Shuffled Complex Evolu-
tion (SCE) algorithm, is employed to further assess and compare the simulation accuracy
of the proposed CopMH algorithm.

2.1. Bayesian Inference

According to the Bayes equation [38], the posterior distribution p(6p|Q,ps) of the
parameter set 0y is derived from the prior distribution p(fp) conditioned on observed data
Qops as follows:

p(GH)p(Qobs‘gH)
p (Qobs)
where p(fy) is the prior distribution of hydrological model parameters, and

L(0g|Qops) = p(Qops|0r) denotes the likelihood function, with residual error as follows:
&; = Qopsi — Qsim,i- The prior distribution p(6y) explains the information about hydro-

p(9H|Qobs): 1)

logical model parameter set 6y, before any data are collected. The likelihood function
L(0y |Qops) is used to summarize the residual errors between the model simulations and
corresponding observations. In this study, the residual errors ¢; are assumed to be indepen-
dent and identically normally distributed with zero mean and constant variance oZ. The
likelihood is constructed under the Gaussian residual error assumption, as described below:

L(9H|Qob5/ 0_82 _ (Qobs Qszm) ‘| (2)

n 1
)= g \/27mo? expl 207

The essence of the parameter estimation problem in the Bayesian filtering framework
is to construct the posterior probability density functions of parameters on all previous
observations (X1.x) and current proposed candidate Y*..1 [39].

2.2. Metropolis—Hastings Algorithm

The basis of MCMC simulation is a Markov chain that generates a random walk
through the search space and successively visits solutions with stable frequencies stemming
from a stationary distribution f. The earliest MCMC approach is the Metropolis algorithm
introduced by Metropolis et al. (1953) [25]. Then, Hastings [24] introduced a general
form of the MCMC algorithm, namely the Metropolis-Hastings algorithm (MH algorithm).
To generate a Markov chain (X | k=0, 1, 2, ..., n) with stable frequencies stemming
from a stationary distribution, the MH algorithm determines trial moves from the current
state X} to a new state Xj,;. In the MH algorithm, all the proposed candidates Y
were generated by transition density q(.|Xy). The transition density is more flexible. No
matter what form of the proposed distribution is selected, the MH algorithm can tend to an
equilibrium distribution. But it is more important to choose the transition density, as the
convergence speed can be accelerated with a well-selected transition density.
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A very popular choice for the transition density q(-|X) is the normal distribution
N (X, 07), with a mean of X and fixed variance of o7. In our study, o7 is selected as 5% Xj.
The proposed candidate Y';,1 is then accepted or rejected according to ratio(k + 1), which
was calculated as follows:

f(Y]::,q)q(Xk | Ylj.g_l)
FXa G | Xe)

ratio(k+1) = (3)

where f(-) is the target distribution of the Markov chain. If runif (1) <ratio(k + 1), the
proposed candidate Y is accepted, and X1 = Y'\.1; otherwise, the proposed candidate
Y'i41 is rejected, and Xy41 = X Target distribution f(+) is the posterior probability density
functions of parameters in our parametric uncertainty analysis problem. According to
the Bayes equation and Equations (1)—(3), Equation (4) can be converted to Equation (4)

as follows:
P(Yiiq |Q§im,k+1fQobs)‘7(Xk ‘ Vi)
p(Xk|Qsim,k/Qahs)q(Y]:+1 |Xk) (4)
_ ey |Y1<*+1'Q:im,k+1rQobs)P(YI:H)‘?(Xk |Ye)
- p(sk|kaQsim,k/Qubs)p(Xk)q(lell |Xk)

ratio(lk+1) =

In this research, all of the prior distributions p(-) are assumed to be uniform distribu-
tions, and if the transition density g(-|-) in the MH algorithm is assumed to be a normal
distribution with symmetric dependencies, then

p(Ylj+l>q(Xk|Y1:+1)

=1 (5)
P(X)a(Vf | X)

Therefore, Equation (5) can translate into Equation (6) equivalently.

2

k

n 1 (e41,)

I1 — ex 5

i=1, /2704 205
Ek+1 k+1

ratio(k+1) =

The proposal distribution g(-|-) plays a crucial role in the performance of the MH
algorithm, as it directly governs the size and direction of proposed moves. Algorithmic
efficiency is determined by an appropriate balance between acceptance and effective ex-
ploration of the parameter space. An excessively high acceptance rate usually indicates
that proposed moves are too small, which leads to slow exploration and highly correlated
samples, whereas an excessively low acceptance rate implies that most proposals are re-
jected, resulting in poor mixing. In standard MH implementations, Gaussian proposal
distributions are widely adopted. However, such proposal distributions often perform
poorly in high-dimensional parameter spaces, as they tend to generate small moves and
frequent repeated samples. Moreover, the standard MH algorithm typically ignores the
intrinsic dependencies among hydrological parameters. Strong parameter dependencies
combined with high-dimensional sampling spaces force MH algorithms to adopt overly
conservative update schemes, further reducing sampling efficiency. Therefore, to perform
efficient inference in hydrological models, it is essential to explicitly account for parame-
ter dependence when designing proposal distributions, motivating the development of
alternative, dependence-aware proposals within the MH framework.

https:/ /doi.org/10.3390 /hydrology13020050


https://doi.org/10.3390/hydrology13020050

Hydrology 2026, 13, 50

6 of 20

T,

Ty

T;

—

4

2.3. Modeling Multiple Dependence Through Copulas

A d-dimensional copula is the function mapping from [0, 1]? to [0, 1]. Consider
random vectors Xy, X, ..., X; with the marginal distributions denoted as F1, F2, ..., Fd
and the joint distribution denoted as F(x1, x2, . .., Xz). According to Sklar’s theorem, for all
x€R, Re(—o00, +0), there exists a copula C, and the relationship between joint distribution
F(x1, x2, ..., x7) and copula function C can be expressed as follows [35]:

F(x1,x2,- - xg) = C[F(x1), Fa(x2), -+, Fa(xq)] = C(u1,u2,- -+, uq) 7)

where C (.) is a copula function; F; is a continuous function; and u; = F;(x;) and u; ~ U(0,1)
fori=1,2,...,d. If fi(x;) is the probability density corresponding to F;(x;) and c(.) is the
density function corresponding to copula C(.), then c(uq, up, ..., uy) and f(x1,x2,...,%4)
can be described as follows:

_ adc(ul/uZI e ,Md)

C(M1, w2, ’ud) - aulauz cee aud (8)
d
flx1,x0,- -+, xq) = c(uy,u, - -, ug) [ T fi(x) )

i=1

As modeling of the marginal distributions can be conveniently separated from the
dependence modeling, there is flexibility in selecting both marginal and dependent models
of copulas [1,39]. More details on the theoretical background and properties of various
copula families can be found in [36,40]. A number of bivariate copula functions have been
developed, mainly including the Archimedean, elliptical, and extreme value copulas [33].
However, for random variables larger than three, there exist only a limited number of
available copula families that allow for efficient sample generation and the standard
multivariate copulas may not model their interdependence [39]. With the development
of the pair-copula approach, multivariate copulas have recently been greatly extended
through d(d — 1)/2 bivariate copulas [41]. Among the possible pair-copula constructions,
the vine copulas including the canonical vine (C-vine) and D-vine were used widely as
decomposition structures. The structures of the C-vine and D-vine for five random variables
are shown in Figure 2.

T

T

—3
~

Ca51123 35012

(a)C-vine Structure (b)D-vine Structure

Figure 2. The structures of the C-vine and D-vine for five random variables.
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For C-vine,
5
f12345 = €12€13€14€15C23)1Coa)1 €251 C34[12C3512Ca5(123] | fi (10)
i=1
For D-vine,
5
f12345 = €12€23€34C45C13)2C24/3C35(4C14/23C25(34C15(234] | fi (11)

i=1

The pair-copula constructions decompose a multivariate probability density into
bivariate copulas, with each pair-copula chosen independently from the others, which
allows for enormous flexibility in dependence modeling [39].

2.4. MH and CopMH Algorithms

In the CopMH algorithm, the dependence structure of model parameters is quantified
through copulas, and model parameters are then sampled based on the obtained copula
functions. The CopMH algorithm improves upon the standard MH algorithm through
generating new proposal candidates Y, 41 based on the joint probability function of the
parameters derived from the vine copula, and by applying a joint parameter update scheme
in each proposal distribution. Essentially, CopMH constitutes a dependence-sampling
algorithm with a proposal distribution that closely approximates the target distribution,
resulting in higher sampling efficiency. The main difference between MH and CopMH lies
in the transition densities q(-| X ) of the proposed candidates Y; 11+ In detail, the transition
density g (+|Xk) is anormal distribution N (X, ¢07) in MH, whereas the transition density
qcopmH (+|Xx) is a joint probability function obtained from the vine copula in CopMH. In our
implementation, the Gaussian copula-based proposals are designed to preserve symmetry
in the marginal jumps of the parameters. Therefore, the standard Metropolis acceptance
criterion can be applied. However, we note that if an asymmetric proposal distribution
were used, the MH framework would be necessary to correctly account for the asymmetry
in the acceptance probability, ensuring proper convergence of the Markov chain.

In addition, it is important to note that the computational efficiency and stability of
the CopMH algorithm depend on the dimensionality of the database. Higher-dimensional
parameter spaces increase the computational burden of fitting the vine copula and require
more samples to achieve convergence, while finer temporal resolution enlarges the dataset
and extends computation time. A trade-off between computational cost and solution
fidelity can be managed by selecting appropriate parameter subsets or applying temporal
aggregation when dealing with very large or high-resolution datasets.

The detailed procedure is presented below, while Algorithm S1 in the Supplementary
Material provides concise descriptions and pseudocode for the MH and CopMH algo-
rithms. The number of iterations (N) and the initial values of the parameters are set by
sampling from their corresponding uniform distributions [4]. Here, X; denotes the initial
parameter vector, and X; i, and X; 4 denote the predefined lower and upper bounds of
each parameter x;, respectively.

1.  Generate an initial Markov chain. At any step K + 1, the model parameters Xy, for
the current step can be forecasted based on the prior parameters Xy in step K and the
simulated observations Qg in the current step. The simulated observations Qg;y,
are obtained through Hymod with model parameters Xy, ;. An initial Markov chain
xj;i=1,...,1000;j =1,2,3,4,5 were generated.

2. Uniformization: Based on initial Markov chain x;, the marginal distributions of each
parameter are assumed to be normally distributed with mean X; and variance o;.
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Xj and o; are the mean value and variance value of the prior 1000 prerun samples.
Depending on the cumulative probability density function of every Markov chain,
each prerun sample x; ; can be transformed to norm_x; ; in the range [0, 1] using the
“pnorm” function in R.

3. Fitting the D-vine copula model. Using norm_x; j, we fit an n-parameterized D-vine
copula density, assuming all of the D-vine pair-copula families were Frank copulas.
The pair-copula parameters of 5-dimensional D-vine copula models were sequentially
estimated using the “CDVineSeqEst” function in “CDVine Package”.

4. Generate proposed candidate Y}/, ; according to the D-vine copula model. A 1 x 5 matrix
of data y_copula was simulated from the above D-vine copula model using the
“CDVineSim” function in “CDVine Package”. Then the proposed candidates Y;',
were generated as a quantile function of the normal distribution based on inversion
of pnorm using the “qnorm” function in R.

5. Generate proposed candidates for the CopMH algorithm.

Now, let i1 be a random MH algorithm proposed candidate of choice, and y, be
a CopMH algorithm proposed candidate.

6.  Generation of the Markov chain. Run Hymod with model parameters y;_ ;, and
obtain the simulated observations Q*,;,,. Then calculate ratio(k 4+ 1) according to
Equation (7). Loop iterations until K = 20,000.

3. Case Study

3.1. Hydrologic Simulation and Model Calibration and Validation
3.1.1. Hydrologic Simulation

In this study, rainfall-runoff simulation is performed using a simple conceptual
model—Hymod—to generate daily streamflows. The general concept of the model is
based on the probability distribution of soil moisture modeling proposed by Moore [42].
Water storage dynamics are based on mass balance principles with inflow from rainfall,
losses to evaporation, drainage to groundwater (recharge), and production of direct runoff.
In brief, a catchment is represented as consisting of infinitely many points, each defined by
a soil moisture capacity C. Soil moisture capacities vary within the catchment as a result of
variability in soil texture and depth. A cumulative distribution function (CDF) is used to
describe the variability of catchment soil moisture (Equation (13)):

0 < ¢ < Cmax (12)

R —1- [1_ c :|Bexp

Cmax

where c is soil moisture capacity, Cmax is the maximum storage capacity, and the expo-
nent Bexp is the degree of spatial variability of storage capacity over the basin. Alpha is
introduced to represent how much of the subsurface runoff is routed over the fast (Rq) and
slow (Rs) pathway. The descriptions and initial fluctuating ranges of the five parameters
are shown in Table 1. Daily input data of precipitation, P (mm/d), and potential evapo-
transpiration, E (mm/d), are used to drive the conceptual rainfall-runoff model. The five
parameters, including Cmax, Bexp, Alpha, Rs, and Rq, cannot be measured directly, but
can be obtained through a model calibration process [8]. A schematic representation of the
Hymod model is shown in Figure 1. For the sake of brevity, we refer our readers to [42,43]
for a comprehensive description of Hymod.
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Table 1. The descriptions and initial fluctuating ranges of Hymod parameters.
Parameter Description Range References
Cmax Maximum soil moisture capacity within the catchment (mm) [200, 500]
Bexp Sh-ape f:actor that is .d-ependent on the degree of spatial variability in [0.01, 2]
soil moisture capacities
Fraction coefficient for distribution of water between slow and [4,11,12,43]
Alpha . . [0.5,0.9]
quick reservoirs
Rq, Inverse of residence time in quick reservoirs (1/day) [0.01, 0.2]
Rs, Inverse of residence time in a slow reservoir (1/day) [0.3,0.7]

3.1.2. Model Performance Evaluation

Model calibration is an essential procedure to obtain the optimal parameter values,
which match simulated data and observed data as closely as possible. In this study, cali-
bration and validation are performed according to the three algorithms. For the goodness
of fit, Nash-Sutcliffe model efficiency (Nash) and the root mean square error (RMSE) are
used to assess the predictive power of model results. Nash is commonly used for model
evaluations [44,45], because it involves standardization of the residual variance and its
expected value does not change with the length of the record or the scale of the runoff.
Here, the objective functions adopted can be represented as follows [46,47]:

Zzn:l(Qobs,i - Qsim,i)2

Nash =1 — 5 (13)
Z?:1 (Qobs,i - Qobs)
The RMSE can be expressed as
2
— ¢ L (Quns = Q) ”

where Qq;,, is the simulated runoff, Q, is the observed runoff, and Qs is the mean value
of the observed runoff. n is the sample size.

3.2. Study Catchment and Data Acquisition
3.2.1. Study Catchment

The developed CopMH approach is applied to address parameter uncertainties and
their interactions for the Ruihe River, which is a tributary of Jinghe River located in the
middle of the Loess Plateau in China. The catchment area of the Ruihe River is 1670 km?
with a main stream length of 119 km, and the elevation varies from 1200 to 2645 m. The
average annual temperature represents the spatially varying annual mean temperature
across the catchment, ranging from 7.7 °C to 10 °C due to elevation differences. The average
annual precipitation is 562 mm, and nearly 60-70% of precipitation occurs between June and
September. Evapotranspiration (E) in this study was calculated using the Penman-Monteith
method. The Ruihe River plays an important role in mitigating water loss, reducing soil
erosion, and protecting the ecosystem of the middle reach of the Jinghe River. Hydrological
modeling in this watershed is thus desired, which can help to more accurately describe the
hydrological processes and promote water resource management.

3.2.2. Data Acquisition

A series of model inputs is required for Hymod model simulation, including daily
evaporation, daily precipitation, and initial water loss. In this study, the data of the Ruihe
River watershed in these categories were collected from different sources. The areal daily
precipitation (denoted as P) data were interpolated from site precipitation measurements
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distributed over the catchment, and the areal potential daily evapotranspiration (denoted as
E) data were interpolated from the E data at the national meteorological stations as shown
in Figure 3a. The daily runoff data of the Ruihe River (from 1981 to 1987) were obtained
from Yuanjiaan Hydrometric Station as shown in Figure 3b. The input topography map
was collected to derive the flow direction and hydrographic network. DEMs (1:250,000)
were obtained from the Data Center for Resources and Environmental Sciences, Chinese
Academy of Sciences (RESDC) (http://www.resdc.cn).
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Figure 3. The location of the studied catchments: (a) the Jing River basin and (b) the Ruihe River
basin. The blue triangles show the location of national meteorological stations used to generate the
potential evapotranspiration and precipitation, and the purple cycles indicate the location of the
gauge station.

3.2.3. Data Analysis

In this study, four-year daily discharge observations (1461 samples) were used for
parameter calibration. The discrepancy between the observed and simulated discharges
was characterized by model residuals, which were assumed to be independently and
identically distributed Gaussian variables with zero mean. This assumption enables ob-
servational uncertainty to be explicitly incorporated into the likelihood-based inference
framework. The Nash values were employed as a performance metric to evaluate model
simulations [48,49]. To avoid the influence of initial transients, the first 50 samples were
excluded when computing Nash values.

Convergence of the Markov chains was assessed using the Heidelberger and Welch di-
agnostic to ensure that posterior samples were drawn from a stationary distribution [50,51].
For this purpose, the first 1000 iterations of each chain were discarded as burn-in. The
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diagnostic is based on the Cramér—von Mises statistic, which tests the null hypothesis that
the sampled values originate from a stationary process. The detailed procedure follows Hei-
delberger and Welch [4] and was implemented using the Output Analysis and Diagnostics
for MCMC (CODA) package in R.

To compare the performance of the MH and CopMH algorithms, the marginal posterior
probability density functions (PDFs) of the five Hymod parameters were estimated using
Gaussian kernel density estimation based on the last 10,000 samples of each Markov chain.
Furthermore, to assess the robustness of the proposed method, three algorithms (MH,
CopMH, and the benchmark algorithm) were independently repeated 15 times under
the same sampling scenario with 20,000 iterations. Boxplots of the five parameters and
Nash values, derived from the last 10,000 samples of each Markov chain, are presented to
illustrate the variability and stability of parameter estimates across different runs.

4. Results and Discussion
4.1. Convergence of Algorithm

In this study, the prior densities for five parameters of Hymod are assumed to cover
a wide range to represent vague prior knowledge and are sampled uniformly from their
prespecified intervals, as presented in Table 1. Figure 4 illustrates path diagrams of the
parameters estimated using the MH and CopMH algorithms, with each Markov chain
containing 20,000 iterations for each parameter. The results indicate that all five Hymod
parameters are well identified after certain a number of iterations, even under wide prior
distributions. Markov chains with more than 10,000 iterations appear sufficient to charac-
terize the posterior parameter distributions with relatively limited ranges. As shown in
Figure 4, the Markov chains obtained using the MH algorithm exhibit unstable behavior
with wide fluctuations (e.g., Alpha, Rq). In contrast, the proposed CopMH algorithm
leads to parameter evolution within clearly narrow fluctuation ranges, suggesting that
copula-based proposals can substantially improve sampling efficiency and accuracy.

Table 2 presents the significance level (p-value) of Markov chains containing
1000-20,000 iterations. A p-value larger than 0.05 indicates that the null hypothesis is
accepted, suggesting convergence of the chain. From Table 2, all p-values—except Rq
obtained by MH and Rq obtained by CopMH—exceed 0.05, demonstrating the convergence
of the proposed method. Moreover, examination of the parameter trace plots shows that
CopMH converges faster than MH, indicating improved efficiency achieved by introducing
the copula proposal distribution.

Table 2. The significance level (p-value) of Markov chains containing 10,000-20,000 iterations tested
using the Cramer—von Mises statistic.

Cmax Bexp Alpha Rs Rq
MH 0.333 0.190 0.270 0.558 0.009
CopMH 0.896 0.843 0.586 0.678 0.492

Compared with the original MH algorithm, significant improvements in the Nash
value are also observed in the CopMH algorithm, as shown in Figure 4. In detail, after
10,000 iterations, Nash values of simulation results obtained by the MH algorithm ranged
from 0.6 to 0.75, and few Nash values were less than 0.6. Meanwhile, the Nash values were
basically stable around 0.76 (Figure 4) for CopMH under the same iterations. The results
indicated the simulation accuracy is greatly improved and the simulation error caused by
parameters is reduced through introducing the copula.
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Figure 4. Path diagram of the parameters estimated using MH (blue curves), CopMH (red curves),
and their hybrid approach (green curves), with one Markov chain containing 20,000 iterations for
each parameter.

4.2. Intercorrelation Analysis Between Parameters

In hydrological models, multiple parameters generally have interactive effects on
model outputs [20], which thus depend on the values of the interrelated parameters [10].
Similarly, such interrelationships among parameters exist in the parameter iteration process.

Figure 5 presents the correlogram of parameter intercorrelations of Hymod measured
through Pearson correlations with MH and CopMH. As shown in Figure 5, the interrela-
tionships among different pairs of parameters are varied under the two algorithms. Taking
MH as an example, Cmax-Bexp pairs showed a strong positive correlation while Alpha-Rq
pairs exhibited a significant negative correlation structure. At the same time, Rs-Rq and
Alpha-Rs showed a weak positive correlation and Bexp-Rs showed a weak negative cor-
relation. The results indicate that the interdependence structures of the five parameters
in Hymod are ubiquitous but not always significant. Previous studies have shown that
the correlations between Hymod model parameters are related to precipitation, potential
evapotranspiration, and streamflow discharge, and such correlations mainly showed non-
linear features. The results also reflected that the introduction of copulas in multivariate
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hydrologic modeling is meaningful and necessary, which can reflect the interdependent
structure between parameters.

Correlogram of parameter intercorrelations (MH) Correlogram of parameter intercorrelations (CopMH)

-0.20 -0.28 -0.46 0.27 Rq -0.24 -0.36 -0.61 0.04 Rq

Figure 5. Correlogram of Pearson correlation coefficients among Hymod parameters estimated by
the MH and CopMH algorithms. Shaded cells in the lower triangle indicate correlation magnitude
(blue: positive; red: negative), while pie charts in the upper triangle represent correlation strength.
Numerical values are shown within each cell.

4.3. Bayesian Inference of Model Parameters

Figure 6 presents the marginal posterior probability density functions (PDFs) of the
five Hymod parameters estimated using the MH and CopMH algorithms. From the
results, posterior distributions of the five parameters in this study differ in a range different
from their prior distributions. Take the MH algorithm as an example; the ranges of
posterior distributions are [45.80, 104.61] for Cmax, [0.34, 1.15] for Bexp, [0.016, 0.531] for
Alpha, [0.009, 0.054] for Rs, and [0.44, 0.79] for Rq (Figure 6a). The latter is approximately
normally distributed with a relative symmetric distribution, while significant skewness is
present in the posterior distributions of Cmax, Bexp, Alpha, and Rs. Compared with the
MH algorithm, significant narrow convergence ranges are observed through the CopMH
algorithm, specifically [61.16, 63.08] for Cmax, [0.56, 0.64] for Bexp, [0.258, 0.301] for Alpha,
[0.020,0.025] for Rs, and [0.59,0.62] for Rq. Moreover, the posterior distributions of the five
parameters estimated using the CopMH algorithm are approximately normal distributions
with a relatively symmetric distribution, indicating that the posterior distributions of
parameters are well defined by the CopMH algorithm. It is also found that the three
algorithms can obtain almost identical means and standard variances for each parameter
(Table 3), which indicates the estimation accuracy of the CopMH algorithm.

Table 3. Summary statistics of the posterior PDFs of the five Hymod parameters obtained using
the MH and CopMH algorithms. The variance reduction indicates the relative decrease in posterior
uncertainty achieved by CopMH.

Parameter MH CopMH Vari?nce
Mean Sd Mean Sd Reduction (%)
Cmax 63.68 7.90 62.14 0.15 99.96
Bexp 0.616 0.131 0.596 0.007 99.71
Alpha 0.219 0.109 0.279 0.005 99.79
Rs 0.0264 0.0081 0.0228 0.0006 99.45
Rq 0.6072 0.0473 0.6065 0.0031 99.57
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Figure 6. Posterior distributions of the five Hymod parameters obtained by the MH (a) and CopMH
(b) algorithms. Histograms indicate sampled parameter values, and the overlaid lines represent
Gaussian kernel-estimated density curves.

4.4. Robustness of Algorithm

Figure 7 presents boxplots of the five parameters and Nash values of each Markov
chain, obtained from 15 independent runs of the two algorithms. The performance of MH
exhibits significant variation with a relatively wide range especially for Alpha, Rs, Rq, and
Nash, as presented in Figure 7. Meanwhile, the distributions converged to a stationary
value with a markedly narrow range through CopMH and HCopMH. For instance, as
presented in Figure 7, the generated Rs values vary from 0.006 to 0.061 for MH while
the ranges are only 0.021-0.032 and 0.019-0.034 for CopMH and HCopMH across the
15 independent replicates. For the probabilistic forecasts obtained from MH, the associ-
ated Nash values range from 0.63 to 0.76, while Nash values obtained from CopMH and
HCopMH are approximately larger than 0.74 for all replicates. This indicates that the
performances of CopMH and HCopMH are generally quite reliable with limited fluctuating
ranges for all five parameters and the Nash indicator. By comparison, HCopMH exhibits
the strongest robustness.
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Figure 7. Boxplots of five parameters and Nash value of the last 10,000 samples in the Markov chains,
for 15 independent runs, obtained by MH (the first column) and CopMH (the second column).

4.5. Calibration and Verification of the Hydrologic Model

The uncertainty in model parameters can be propagated into hydrological model
simulation uncertainty and affect model calibration [10,47]. In this study, to investigate
the transmission of uncertainty, hydrological simulations with Hymod were performed
over a calibration period of 1461 continuous daily records (1981-1984), and then validated
using 1095 daily streamflow observations (1985-1987). Model calibration and validation
were conducted using the daily observation data at Yuanjiaan Hydrometric Station. The
95% confidence intervals of daily discharge of the posterior PDFs are presented in Figure 8.
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Figure 8. Comparison between predictions from different schemes and real observations: the red
points indicate the observed values while the blue line shows predictive means of daily streamflow
(Q: m3/s) during 1981-1987 at Yuanjiaan station at Ruihe River basin. The gray belt exhibits the
95% predictive intervals consisting of the 2.5% and 97.5% quantile values.

The performance of the simulation was evaluated using the Nash-Sutcliffe efficiency
(Nash) and RMSE. The 2.5%, mean, and 97.5% values of Nash and RMSE for the calibration
and verification periods are presented in Table 4 for different algorithms. Most of the Nash
values are larger than 0.76 in the calibration period and larger than 0.64 in the verification
period, indicating that Hymod provides a reasonably good simulation of the Ruihe River
watershed. Compared with MH, CopMH performs better, achieving higher Nash values
and lower RMSE values in both calibration and verification periods. This improvement
is attributed to the consideration of parameter correlations through the copula, which
enhances the accuracy of the hydrological model results. It should be noted that, as
observed in Figure 8, the uncertainty bounds estimated by CopMH are slightly narrower
than those of MH. This is because CopMH improves sampling efficiency by capturing the
dependence structure among parameters, leading to reduced variability in the posterior
samples. While the uncertainty intervals are somewhat narrower, the parameter estimates
remain unbiased and the overall posterior distributions still provide a reliable quantification
of hydrological uncertainty.

Table 4. Performance comparison of MH, CopMH, and HCopMH on Hymod model at Ruihe River.

Nash RMSE
2.5% 97.5% mean 2.5% 97.5% mean
calibration 0.673 0.663 0.761 6.946 7.051 5.937
MH validation 0.432 0697. 0.635 5.834 4261 4678
Copypi  calibration 0.766 0.765 0.766 5.871 5.884 5.872
validation 0.637 0.649 0.642 4.665 4584 4628

Moreover, to compare and analyze simulation accuracy of the developed algorithm,
a benchmark optimization algorithm—the SCEUA algorithm—is also utilized in our study.
The five parameters are 209.1, 1.978, 0.50, 0.0287, and 0.568, respectively, estimated through
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SCEUA. The predictions of daily discharge calculated by SCEUA are presented in Figure 9.
And the corresponding Nash values of calibration and validation are 0.75 and 0.673. RMSE
values of calibration and validation obtained are 6.041 and 4.427. It is found that, in all
the three sample evolution schemes, some parameters may not converge to their true
values (e.g., Cmax, Bexp, and Alpha), which are obtained through SCEUA, while the
Nash values are equal to or higher than 0.75, which are obtained through SCEUA. The
results show the presence of equifinality during the modeling of Hymod in Jinghe River,
which is the phenomenon whereby multiple parameter sets produce an equally good
or bad simulation performance. Previous studies have reported that the equifinality
problem has been universally found in hydrological models [20,27]. Li et al. provide
a comprehensive discussion about the sources of equifinality in a distributed conceptual
hydrological model and find that overparameterization, systematic errors of input data,
and too few constraint conditions are the sources of equifinality in the model [45]. Her &
Chaubey also demonstrated that equifinality is responsive to the numbers of observations
and calibration parameters and substantial equifinality did not necessarily mean bad model
performance nor large uncertainty in the model outputs and parameters [45].

SCEUA calibration and validation period of 1981-1987
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Figure 9. Prediction from SCEUA and real observations: the red points indicate the observed values
while the blue line shows predictive means of daily streamflow (Q: m3/s) during 1981-1987 at
Yuanjiaan station at Ruihe River basin.

5. Conclusions

This study proposes a copula-based Metropolis—Hastings (CopMH) algorithm to
enhance Bayesian parameter inference in hydrological models by explicitly accounting
for interdependence among model parameters. By embedding copula functions into the
MH sampling framework, the proposed approach enables joint sampling from dependent
parameter spaces and improves sampling efficiency. Application to the Hymod model
in the Ruihe River watershed demonstrates that CopMH achieves faster convergence,
substantially reduced posterior uncertainty, and enhanced robustness compared with
the conventional MH algorithm, while maintaining comparable or improved simulation
performance in terms of the Nash-Sutcliffe efficiency and RMSE. These results confirm
that parameter interdependence is ubiquitous in hydrological models and that explicitly
modeling such dependence is both meaningful and beneficial for uncertainty quantification.

Despite these advantages, the CopMH approach is subject to several limitations.
Its performance depends on the choice of copula function, and the computational cost
may increase for higher-dimensional parameter spaces. Future research will focus on
adaptive or data-driven copula selection strategies, extension to more complex and
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distributed hydrological models, and broader evaluation across different climatic and
hydrological conditions.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390 /hydrology13020050/s1. Algorithm S1: The pseudo code
for MH and CopMH algorithm.
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