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ABSTRACT

In this  dissertation we propose,  test  and develop a novel  search interaction  model  to 

address two key problems associated with conducting an open-ended search task within a 

classical  information retrieval  system: (i)  the need to reformulate the query within the 

context of a shifting conception of the problem and (ii)  the need to integrate relevant 

results across a number of separate results sets. In our model the user issues just one high-

recall query and then performs a sequence of more focused, distinct aspect searches by 

browsing the static structured context of a spatial-semantic visualization of this retrieved 

document  set.  Our  thesis  is  that  unsupervised  spatial-semantic  visualization  can 

automatically  classify  retrieved  documents  into  a  two-level  hierarchy  of  relevance.  In 

particular  we  hypothesise  that  the  locality  of  any  given  aspect  exemplar  will  tend  to 

comprise a sufficient proportion of same-aspect documents to support a visually guided 

strategy  for  focused,  same-aspect  searching  that  we  term  the  aspect  cluster  growing 

strategy. We examine spatial-semantic classification and potential aspect cluster growing 

performance across three scenarios derived from topics and relevance judgements from 

the  TREC test  collection.  Our  analyses  show  that  the  expected  classification  can  be 

represented in spatial-semantic structures created from document similarities computed by 

a  simple  vector  space text  analysis  procedure.  We compare two diametrically  opposed 

approaches to layout optimisation: a global approach that focuses on preserving the all 

similarities and a local approach that focuses only on the strongest similarities. We find that 

the local approach, based on a minimum spanning tree of similarities, produces a better 

classification  and,  as  observed  from  strategy  simulation,  more  efficient  aspect  cluster 

growing  performance  in  most  situations,  compared  to  the  global  approach  of  multi-

dimensional scaling. We show that a small but significant proportion of aspect clustering 

growing cases can be problematic, regardless of the layout algorithm used. We identify the 

characteristics of these cases and, on this basis, demonstrate a set of novel interactive tools 

that provide additional semantic cues to aid the user in locating same-aspect documents. 
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Chapter 1: Introduction

CHAPTER 1: INTRODUCTION

1.1. Introduction
This dissertation proposes, evaluates and develops a new approach to the general problem 

of  answering  an  open-ended  question  using  the  results  returned  from  an  on-line 

information retrieval system. Such questions are traditionally difficult to answer because 

the problem scope may be broad and complex,  consisting of multiple  related ideas or 

aspects. Moreover, the searcher’s mental model of this problem space will tend to evolve as 

the search progresses (Bates, 1989), due to encounters with unexpected information that 

generate new perspectives on the problem (O’Day and Jeffries, 1993). 

The remainder of this chapter is organised as follows: We begin by describing how ill-

defined information needs can be classified as either narrowing or expansive in nature. We 

then explain why these needs are difficult to satisfy using classic (query driven) information 

retrieval  systems.  We outline  how query  expansion tools  can support  the  problem of 

specifying a query but explain why they are more useful for simple, narrowing needs than 

for more complex and expansive information needs. We then outline a solution path by 

introducing an interaction model originally proposed by Leuski (2001) that simplifies the 

process of isolating relevant documents within a retrieved document set by representing 

the  inter-document  similarity  structure  as  a  spatial-semantic  visualization.  As  relevant 

documents tend to form a cluster within the visualization (Leuski, 2001; Allan et al., 2001), 

this  allows a simple strategy whereby the cluster  of  relevant  documents is  ‘grown’,  by 

following relative proximity cues from one or more known relevant exemplars. We argue 

that this interaction model might be extended to support an open-ended search, where the 

searcher  must  both  discover  distinct  aspects  of  relevance  and  grow  multiple  distinct 

clusters of documents associated with each aspect, by allowing such a search to take place 

within a single, consistent visual representation. Potential issues are outlined and research 

questions presented. Finally, an outline of the methodological approach is presented. 
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Chapter 1: Introduction

1.2. Background and motivation
Despite  a  rapidly  changing  information  landscape  and  user  population,  the  classic 

information retrieval (IR) model is still a popular means of access, particularly for large or 

dynamic document collections. In this model documents are represented and accessed in 

concrete  terms.  There  are  many  advantages  to  this  approach,  particularly  if  source 

documents are available in electronic format. The process of indexing and retrieval requires 

no human intervention and can therefore be automated, creating a fast and highly scaleable 

system. The method of document access, specification of a logical query statement, is also 

optimal for certain retrieval tasks (e.g., finding known or well-defined targets).

In  the  classic  model,  searches  are  conducted  by  specifying  a  logical  statement  of 

information need or query that the system then matches against an index of terms linked to 

documents. The system returns a list of documents that match or closely match the query. 

Normally this list  is  ranked in order of degree of match or relevance.  In the standard 

interaction cycle the query is refined by changing, adding or removing terms, until the top 

results  (i.e.,  the first page) contains the desired document or an acceptable number of 

relevant documents.

The classic model remains a highly effective method of satisfying well-defined needs. For 

example, the tasks of retrieving a known article or answering a closed question such as 

"How old was Benjamin Franklin when he died" are easily accomplished. This is because 

the key facets of a correct response are known and can be readily specified. 

Yet, many information needs are initially only partially defined in the mind of the searcher 

(Belkin et al., 1982). Before the searcher can specify their need in logical terms, they must 

first refine their conception of the underlying problem (Taylor, 1968). Such needs are hard 

to satisfy in a classical system (Belkin et al., 1982) because a fundamental mismatch exists 

between the system requirements for a logical  description of relevance criteria  and the 

ability of the searcher to form such an expression; the searcher possesses gaps in their 

knowledge rather than a well-defined need and these gaps can only be bridged by exploring 

the contents of a suitable document collection.  

Newby (1998) defines three types of information need. In addition to targeted or well-

defined needs of the kind already described, a search can also be driven by both narrowing 

and expansive needs. In both cases the problem is ill-defined, but the two need types are 
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qualitatively different. A single search episode, particularly with respect to an open-ended 

question, can involve the pursuit of all three of these types of need in varying combinations 

(Newby, 1998; Bates, 1989).

Narrowing needs occur when a searcher is looking for something in particular and will 

recognise it on sight (Toms, 1998), but cannot define this target (or set of related targets) 

precisely a priori. Although unable to express their need precisely, they are able to make 

incremental  relevance  judgements  when  presented  with  a  series  of  imperfect  but 

converging  options  (Newby,  1998).  For  this  reason,  hierarchical  classifications  or 

interactive menus are particularly useful for this kind of need as they allow the user to 

navigate through a sequence of ever more specific options until they arrive at a suitably 

focused and relevant document or sub-collection of documents. 

Instantiations of narrowing needs would comprise closed or at least highly constrained 

questions. For instance, the searcher may want to find a simple explanation of how to sort 

a  variable  array.  Using  the  Open  Directory  ™,  a  web  directory,  they  would  start  by 

selecting the “Computers” node, then “Algorithms” and finally “Sorting and searching” to 

produce a short list which contains a high proportion of potentially relevant links. 

Expansive needs are fundamentally opposed to narrowing needs in that the searcher is 

trying to broaden their knowledge within a topical  domain (Newby, 1998),  rather than 

refine their specification of a certain target. The motivating problem or question is open-

ended and so the full range of relevant facets that define the problem may not be initially 

apparent to the searcher. Further, these facets may be quite diffuse as well as convergent 

(relevant documents will not necessarily be closely related in their content), whereby the 

solution to the problem can be divided into a range of distinct, yet topically-related aspects 

(Muresan,  2002;  Muresan  and Harper,  2004).  O'Day  and Jeffries  (1993)  use  the  term 

progressive searching to describe how searches can take in a broad range of aspects within 

the  scope  of  the  general  motivating  problem.  Bates  (1989)  uses  the  notion  of 

evolving/berrypicking  search  to  describe  this  process  where  the  query  being  pursued 

becomes  a  dynamic  and  shifting  entity,  rather  than  a  static  goal,  with  much relevant 

information being discovered accidentally or incidentally (Bates, 1989; Toms, 1998) rather 

than as a result of any systematic strategy. In a manual environment this kind of searching 

can often manifest as browsing the shelves or area scanning (Bates, 1989). This strategy is 

highly data-driven and thus requires a highly structured environment where rich patches of 
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broadly relevant items can be easily identified and where it is possible to search in a non-

linear fashion, making connections between similar yet non-proximal information items. 

The  optimal  electronic  environment  for  such  a  search  pattern  is  currently  hypertext 

(Newby,  1998;  Toms,  1998).  Hypertext  allows  for  the  expression  of  a  rich  semantic 

topology; an embedded link can relate even a relatively minor concept within a document 

to another that describes that idea more completely. 

An instantiation of an expansive need might be to form a general literature review on a 

topic or to answer an otherwise open-ended question. For instance, the searcher may want 

to learn about the full range of different garden plants that might suit different parts of his 

garden. In contrast to a narrowing need, the relevant facets that describe specific groups of 

plants may be diffuse; there may be several aspects to the problem. The searcher might 

seek both annuals  and perennials,  plants  that  like  light  and shade.  Within  a  hypertext 

network, links from a single page or document can be made to a diffuse range of related 

concepts.  The potential  is  there  for the user to follow unorthodox paths that  lead to 

accidental or chance discoveries (Toms, 1998). It is through the making and following up 

of chance discoveries that the user is able to define and resolve their ill-defined problem.

Newby  (1998)  stresses  that  these  needs  are  not  exclusive  and  can  occur  in  various 

combinations; it is not uncommon for a search episode to consist of all three types. This 

view of information seeking is consistent with other well-known models of the search 

process (e.g., Bates, 1989; Xie, 2000, 2002) and is likely to be particularly true for cases 

where the question, or information problem is open-ended in nature. 

As we have discussed,  narrowing and expansive  needs  are  ill-defined and thus  favour 

browsing strategies whilst  targeted needs are well-defined and most effectively satisfied 

through query specification. The interface requirements for browsing and searching are 

quite distinct, however. Browsing requires a rich semantic structure that can be efficiently 

scanned and navigated, whereas searching requires the facility to retrieve documents that 

are  relevant  to  a  specifiable  need.  We  argue  that  answering  an  open-ended  question 

requires an interface that can support both browsing and searching within a consistent 

context.  Modern  IR  systems  can  support  browsing  as  well  as  searching,  albeit  in  a 

somewhat counter-intuitive way, providing appropriate strategies are applied. This may be 

necessary if suitable, structured interfaces are not available. We now discuss the benefits 
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and limitations of strategies available to the user of a classic IR system involved in this kind 

of complex, evolving search.

1.3. Information retrieval strategies for complex needs
The  classic  IR  interaction  model  was  not  designed  to  help  users  resolve  ill-defined 

problems. In fact, standard interfaces to IR systems are based upon a model that is an 

extrapolation of database retrieval. In database retrieval, searches are typically fact-oriented, 

highly  structured and performed by users  who are  expert  in  the  database  schema.  In 

information retrieval, however, information needs tend to be less well defined (Belkin et al., 

1993). Expert searchers (e.g., intermediaries) have adapted to the constraints of this model 

by developing a number of formal strategies that simplify the task of specifying a query for 

a non-trivial need. Many of these tend to be quite algorithmic in process, whereby the 

searcher breaks the problem down into distinct facets (concepts) and refines these sub-

queries  separately,  by  ORing  synonymous  or  related  terms,  before  systematically 

recombining them. For example, in the building blocks strategy, once all the facets are 

specified the intersection or conjunct of the sub-sets retrieved by each of these queries is 

found by ANDing them together to form a single query. The successive fractions strategy 

is slightly different in that the major facets are combined first then, if necessary, further, 

less specific facets are joined to the query until the desired recall and precision levels are 

achieved. A variety of other variations on the facet strategies exist (see Harter, 1986).

Such strategies are collectively referred to as analytical strategies as they are planned and 

algorithmic in execution. Facets are identified and defined before the interaction begins 

with  the  IR system.  The  retrieval  sets  that  result  from submitted  queries  tend  to  be 

evaluated more in terms of set size (e.g., a manageable or acceptable number of references) 

rather than content. These strategies are best suited to formal information environments 

(e.g., a library) where documents are catalogued and represented as semantically consistent 

bibliographic meta-data rather than their literal content, where the terms used to describe 

the same concepts  can be highly  variable  (Furnas et  al.,  1987).  The use of  controlled 

vocabulary means that, with expert knowledge of subject descriptor schemes, precise and 

exhaustive facet expressions can be constructed relatively quickly and easily.

Hence,  the classic  IR model  and the analytical  strategies  developed to exploit  systems 

based on it are a legacy of the early days of online searching when searches typically took 

place in formal, structured environments and where expert intermediaries were on hand to 
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help clients to define their problem and formulate suitable queries. Further, in the early 

days on-line IR access was relatively expensive so casual exploration of online resources 

was discouraged.

However,  even  in  formal,  mediated  information  environments,  experts  have  since 

recognised there is a need for more informal, exploratory strategies that place a greater 

emphasis on interaction with, and learning from, document content (Marchionini, 1995). 

These strategies are particularly important if the information problem is poorly defined; 

perhaps just a general topic that must be explored, or idiosyncratic to the extent that the 

facet structure may not be easily defined, even by a search expert. There are two such 

strategies of particular interest here: pearl growing and interactive scanning.

The pearl growing strategy (Markey and Cochrane, 1981; Harter, 1986; Marchionini, 1995) 

involves examining the attributes of known relevant documents to build an exhaustive 

query. Relevant examples (the pearl) may be brought to the task or discovered through a 

brief search (Harter, 1986) where a simple query (e.g., 2 or 3 terms) can be used to identify 

one or two relevant ‘example’ documents. The query developed from the initial sample of 

exemplars is iteratively refined using new exemplars from each subsequent search. Hence, 

the layers of the pearl (known relevant documents) are slowly grown around the initial core 

by further specifying the facets of the query with key terms extracted from the exemplars. 

Given the bottom up approach, pearl growing has limited use for expansive searching, and 

is  most  suited  to narrowing  searches  where  the  object  of  the  search  is  quite  specific 

(relevant documents are conceptually quite similar). 

Interactive scanning (Harter, 1986; Marchionini, 1995) is another useful interactive strategy, 

particularly if there are no known relevant documents to use as a starting point. In contrast 

to pearl growing, this is a top down approach that begins with a tentative or high-recall 

query  that  is  sufficiently  broad  to  capture  documents  discussing  most  facets  of  the 

problem, albeit along with a large number of other, non-relevant items. The user examines 

the results of the initial query (or at least a top ranks sample of it) and notes key facets that 

appear relevant to the problem. A number of successive searches are then performed using 

these facets. In this sense pearl growing may be used in conjunction with this strategy to 

grow these facets from the contexts in which they are discovered. The top down nature of 

interactive scanning means that it is possible to identify quite diverse facets relating to the 

problem, hence this can also be a useful strategy for an expansive need.
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Even these less formal analytical strategies can be too complex or involved for novice users 

to use in unsupervised settings (Harter, 1986; Marchionini, 1995). They involve continuous 

attention,  and  careful  judgement  of  which  terms  are  key.  Further,  many  modern, 

particularly web-based, resources are indexed automatically from raw text and may have 

little or nothing in the way of consistent meta-data. The vocabulary mismatch between 

relevant document representations compounds the problem of facet specification (Furnas 

et al., 1987). In the case of a top-down exploratory approach like interactive scanning there 

is also the extra burden of building a model of facet structure (how terms logically relate to 

each other), a model that may well be complex and that will evolve and shift in structure as 

the search progresses (Bates, 1989; O'Day and Jeffries, 1993).

There  have  been  efforts  to  support  both  of  these  kinds  of  interactive  strategy.  Such 

systems, however, have tended to focus on one strategy or the other and are thus quite 

distinct  in  nature.  For  instance,  interactive  scanning  can  be  supported  by  document 

organisation techniques such as clustering (Hearst and Pederson, 1996) or spatial-semantic 

visualization (Lin,  1997;  Wise et  al.,  1995;  Skupin,  2002)  that can provide a  high-level 

overviews  of  themes  within  a  given  collection.  These  techniques,  whilst  superficially 

impressive  have  not  been  empirically  evaluated  as  expansive  search  tools,  due  to  the 

inherent methodological issues associated with measuring efficacy in unstructured search 

tasks  (although see Chen et  al.,  1998).  There is,  however,  a  longer  tradition  in  IR of 

supporting  the pearl growing strategy (narrowing needs) with techniques that infer the 

user’s intentions by means of document relevance feedback.

Automatic or semi-automatic query expansion (QE) has received a lot of attention within 

the IR field. Key terms are extracted automatically using statistical analyses that compare 

the content of known or assumed relevant documents to other documents. There are a 

number of different approaches. The conventional approach is for the user to provide 

explicit feedback on retrieved documents by marking relevant items. Relevance feedback 

approaches  generally  lead to good improvements  in  query precision  (see for  example, 

Salton and Buckley, 1990) when used correctly (i.e., the user indicates a sufficient number 

of relevant examples), although studies show that non-expert users are often reluctant to or 

fail to understand the importance of providing sufficient examples (Hearst, 1999). 

Local  feedback (Attar  and Fraenkel,  1977),  sometimes referred to as pseudo relevance 

feedback,  avoids  the requirement  to evaluate  and mark relevant  documents  by simply 
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assuming that the top ranked documents are likely to be more relevant than lower ranked 

ones and examining the differences between these two sub-sets. Local feedback can be 

effective, although performance tends to be highly dependent on the precision of the initial 

query (see Xu and Croft, 1996; Xu and Croft, 2000). Incremental feedback (Aahlsberg, 

1992)  is  an  alternative  approach  that  reduces  the  burden  of  identifying  exemplars  by 

presenting  just  one  candidate,  the  next  most  relevant  unseen  document,  at  each  QE 

iteration. This also alleviates another problem experienced by QE users – confusion and 

disorientation  caused  by  constant  re-ranking  of  both  seen  and  unseen  documents 

(Aahlsberg, 1992).

QE approaches also vary on the degree to which the user can control the reformulation 

process. Fully automatic QE approaches hide the query reformulation process completely 

from the searcher, whilst semi-automatic approaches let the searcher select candidate terms 

before  they  are  added.  Koenemann and Belkin  (1996)  have  shown,  for  instance,  that 

allowing users to 'filter' candidate terms results in fewer iterations being needed to achieve 

an optimal query. 

Despite these advances, most QE techniques are of limited use for complex,  evolving 

needs because the process is, by design a tool for narrowing a specific query – filtering 

relevant  from  non-relevant  documents  and  exhaustively  defining  the  shared  and 

convergent facets that define relevance (Belkin et al., 2000). Even though the burden of 

explicit facet identification and specification is alleviated, there is the implicit assumption, 

as with many analytical  strategies, that there is a single,  optimal response, which is the 

intersection of the document sub-sets relevant to each specified facet. 

If  the  information  need  is  complex,  however,  facets  may  form  multiple,  diffuse 

intersections where each sub-set of relevant documents is semantically and thus lexically 

distinct from the other sub-sets; each sub-set therefore comprises documents that discuss 

or refer to a distinct aspect of relevance to the problem and thus have more in common 

with each than they do to other relevant documents (Muresan and Harper, 2004). 

If the documents marked as relevant are diffuse in this way, the QE algorithm is likely to 

be unable to select a good set of expansion terms that are both common to most known 

documents yet discriminating enough to filter out non-relevant documents. Furthermore, if 

the aim is to search expansively, new aspects of the problem will emerge as the search 
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proceeds (Bates, 1989; O'Day and Jeffries, 1993). Changing the focus of the query mid-way 

through a QE cycle would violate the core principle of query expansion (Bates, 1989), 

which is that there is a specific thing or set of closely related things the user wishes to 

isolate from the database – a one-time query (Bates, 1989) requiring a linear process of 

query refinement. If the user’s query were to shift significantly at any point then multiple 

new examples would be required before the actual query statement converged on the new 

focus and, as a consequence of this shift, it is likely that items that were relevant to the 

earlier query would drop out of the top ranks of the retrieved set. 

Searching  for  distinct  aspects  using  relevance  feedback  is  therefore  likely  to  require 

multiple discrete episodes each focusing on a specific  aspect.  As the outcome of each 

aspect  search will  be a separate retrieval  set  and it  is  the responsibility  of the user to 

understand the relationships  (e.g.,  overlaps)  between these sets.  More importantly,  this 

interaction model is counter-intuitive to the notion of an evolving query as semantically 

distinct new ideas (query shifts) triggered during a QE episode would need to be placed on 

hold and followed up during later QE cycles. 

1.4. The cluster growing strategy
In  light  of  these  problems,  a  promising  alternative  to  query  expansion  for 

complex/evolving  search is  inspired  by  the work of  Leuski  (2001),  whose Lighthouse 

interface turns the task of  locating  similar  documents into a  simple  visual  search task 

(Leuski, 2001; Allan et al., 2001). Leuski's interaction model sees the searcher performing a 

brief search for their topic of interest. The system takes the top 50 documents from the 

retrieved documents and constructs a spatial-semantic model based on a model of inter-

document  similarities  of  these  items.  In  a  spatial-semantic  model,  documents  are 

represented as nodes or points in 2D or 3D space and their relative semantic similarity is 

conveyed  by  their  proximity  in  this  space.  Inter-document  similarity  is  computed 

automatically by measuring the overlap between term frequency vectors of each pair of 

documents (see Salton and McGill, 1983). 

The  first  strong  assumption  of  spatial-semantic  visualization  is  therefore  that  relevant 

documents will have more similar term usage profiles. The rationale for this is rooted in 

the cluster hypothesis of IR (van Rijsbergen, 1979), which states that similar documents 

tend to be relevant to the same requests. A second strong assumption of spatial-semantic 

visualization is that this inter-document similarity model,  or at least the sub-set of this 
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model that relates to relevant documents, can be effectively conveyed in visual space. The 

truth of the specific hypothesis for spatial-semantic modelling, at least for simple topics, 

has been supported by the work of Leuski (2001) and others (Rorvig and Fitzpatrick, 1998; 

Sullivan and Rorvig, 1998). Work with discrete clustering algorithms also supports the idea 

of organising relevant documents according to measures of their lexical similarity (Hearst 

and Pederson, 1996; Wu et al., 2001).

Leuski  (2001)  evaluated  the  performance  of  a  strategy  that  begins  with  the  searcher 

browsing  the  conventional  ranked  list  from  the  top.  When  a  relevant  document  is 

encountered the searcher selects this item in the list and switches their attention to the 

spatial-semantic visualization. The relevant node, which is highlighted, is used as the seed 

or anchor point from which to find further relevant items. The searcher examines nodes in 

proximity order. We call this the cluster growing strategy, because the user literally grows a 

cluster of relevant items guided by spatial-semantic cues within the visualization. Hence, 

cluster growing is a visual surrogate of QE and, more fundamentally, the pearl growing 

strategy. When further relevant documents are found, these are also marked. As more 

relevant documents are encountered, the distribution of the relevant cluster becomes more 

apparent, making it easier to find further items. Leuski (2001) found that the strategy was 

just as efficient as conventional QE, and sometimes more so, with additional benefit that 

there was no iterative cycle that restructured the view of potentially relevant documents. 

This is important because earlier studies of relevance feedback have found that searchers 

can become confused or disoriented by changes in document order that tend to happen at 

each successive iteration (Aalbersberg, 1992). 

In this thesis, we view complex information needs as being composed of multiple aspects 

that are specific instances of the problem but relatively distinct from each other. According 

to the spatial-semantic principle, when a document containing multiple aspects of the same 

complex topic is visualized, documents discussing the same aspects should cluster more 

coherently  than  those  that  are  relevant,  but  discuss  other  aspects.  Hence,  rather  than 

building a single cluster within the visualization,  the user is able to build a number of 

aspectually distinct clusters. A significant benefit of this approach is that the external model 

of documents, seen and unseen, that is presented to the user remains constant throughout 

the whole process.  
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This  consistency  of  context  is  important  for  a  complex,  evolving  search.  Studies  of 

hypertext browsing have advocated the use of context maps to support the formation of a 

mental  model,  and  avoid  disorientation  between  changes  in  focus  (see  Vicente  and 

Willeges, 1988; Stanney and Salvendy, 1995; Hook et al.,  1996).  Studies also show that 

spatial-semantic models of large document collections appear to provide useful thematic 

overviews (Wise et al., 1995; Chen et al., 1998; Skupin, 2002) that can facilitate expansive 

browsing, for example finding an interesting item within a collection (Chen et al., 1998). 

However, whilst evidence supports the use of spatial-semantic visualization to facilitate 

focused retrieval in small  ad hoc document sets on the one hand, and general, expansive 

browsing in large collections on the other, it is unclear as to whether visualizations of more 

complex and somewhat larger ad hoc retrieval sets could support the kind of multi-aspect, 

evolving search required to resolve an open-ended question.

In the next section we propose that the cluster growing strategy can be adapted to support 

more complex, evolving information problems. We describe the essence of our interaction 

model and define the scope of the problems relating to this model that will be dealt with in 

the remainder of this dissertation. 

1.5. Aspect cluster growing
Our general thesis is that Leuski’s (2001) interaction model can be extended to support the 

resolution of an open-ended question by allowing multiple aspects to be searched, using 

the cluster growing strategy, within a consistent spatial-semantic context. An example of 

the kind of open-ended question considered might be:

“What are the most significant achievements made using the Hubble space telescope since 

its launch?”

This represents an information need that is certainly complex – relevant answers range 

from estimations of the age of the universe to the effects of gravitational lenses. If we 

assume the searcher is not particularly familiar with the topic then it is also an expansive, 

evolving query.  

We propose a model where, following a high-recall (broad) query, the user explores the 

content of the retrieved set and identifies a range of distinct aspects of the relevant topic. 

At some point following the identification of an aspect, the user attempts to locate the sub-
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set of other available (retrieved), aspect relevant documents. These focused searches are 

achieved  by  applying  the  cluster  growing  strategy,  beginning  at  the  location  of  the 

document in which it was discovered. The relative proximities  of nodes to the known 

exemplar (i.e., the pearl) are the cues that guide the order in which unseen documents are 

viewed. From hereon, we term this sub-task of locating same aspect documents within the 

context of the retrieved set visualization as aspect cluster growing and the strategy of following 

relative proximity cues as the aspect cluster growing strategy.  Our revised interaction model is 

described in greater detail in section 2.2.

The focus of this work is on the ease with which, given a known exemplar document, the 

application of the aspect cluster growing strategy leads to successful and efficient retrieval 

of  other  aspect-relevant  documents.  We  do  not  directly  consider  how  these  initial 

exemplars  are  discovered.  These  discoveries  could  equally  result  from  browsing  and 

marking sample of the top ranked documents, as in Leuski’s (2001) original model, or by 

browsing the visualization directly (Chen et al., 1998). 

Also outside of the scope of this work is formal consideration of the order in which the 

sub-tasks of aspect discovery and single aspect retrieval occur. Given the evolving nature 

of ill-defined and complex information problems (Bates, 1989; O’Day and Jeffries, 1993) 

this is likely to be a continuous cycle where new aspect instances are discovered at various 

stages of interaction with the retrieved set. 

Hence, the primary focus of this work is on the process of aspect cluster growing and how 

to generate the structures required to support this strategy. In the next section we will 

outline the general problems that will be investigated in subsequent chapters. 

1.6. Problem definition
Our interaction model makes two strong assumptions. The first assumption is that it is 

possible to automatically classify documents into a two-level relevance hierarchy based on 

the  structure  of  the  similarity  matrix  computed  from  text  analysis  of  the  retrieved 

document set. In other words we assume that document similarities effectively partition 

same aspect documents from those that are both non-relevant and, to a lesser degree, 

relevant but discuss different aspects of the topic. 

The second assumption is that it is possible to map this modelled structure to a spatial-

semantic layout using an unsupervised layout algorithm. This is not necessarily a given, as 
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earlier work in document retrieval set clustering has demonstrated (Wu et al., 2001). Wu et 

al.  (2001)  studied  the  use  of  clustering  to  organise  a  complex  topic  within  retrieved 

document sets. They found that although relevant documents tended to gather within one 

or  two  main  clusters  (within  a  six  or  seven  cluster  solution),  this  clustering  did  not 

effectively partition documents relevant to the same aspect(s) of relevance.

More pertinently, to date there has been no formal study of topical aspect clustering within 

retrieved document sets that are visualised using the spatial-semantic metaphor (although 

see Swan and Allen, 1998 for a related approach). Most work of this kind has focused on 

the extent to which these visualizations are able to simply partition relevant from non-

relevant documents (e.g., Leuski, 2001, Rorvig and Fitzpatrick, 1998). 

Whilst Leuski (Leuski, 2001; Allan et al., 2001) conducted a rigorous formal study of cluster 

growing efficiency for simple topic retrieval, even comparing the use of 2D versus 3D 

visualization, he only offers anecdotal evidence to demonstrate the potential with respect 

to the aspect level retrieval. In their final conclusions, Allen et al. (2001) comment on the 

difficulties associated with applying their strategy to complex topics  and discussing the 

need for future research and development to adapt Lighthouse to support this kind of task. 

Leuski (2001) does propose various interactive tools that might dynamically augment the 

static spatial structure in response to relevance feedback, to support aspect cluster growing. 

However, these are not formally evaluated either in the form of simulated or actual user 

studies. Furthermore, these tools are essentially simple adaptations of tools known to work 

for simple topic retrieval situations rather than being developed on the basis of a detailed 

understanding of aspect clustering behaviour within spatial-semantic visualizations. 

In this thesis, we take the view that prior to developing interactive tools, it is important to 

attempt  to  optimise  the  spatial-semantic  layout  process  so  that,  as  far  as  possible, 

exploration and aspect cluster growing can occur as a seamless browsing process, much 

like browsing the shelves of a library, rather than being an activity that is heavily dependent 

upon secondary  interaction  tasks  such as  making document  relevance  judgements and 

identifying terms for query reformulation. The interactive tools that we eventually develop 

(Chapter 6) are based on our acquired knowledge of the factors or circumstances that tend 

to lead to failure of aspect cluster growing using spatial cues alone. 
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In the next section we translate the problems discussed into the three general research 

questions that form the main strands of this dissertation.

1.7. Research questions
The feasibility of our interaction model rests upon the assumption that it is possible to 

generate,  using  unsupervised  procedures,  spatial-semantic  visualizations  of  retrieved 

document  sets  that  effectively  organise  documents  according  to  the  structure  of  the 

intended topic. In particular, for the sake of the aspect cluster growing strategy, we require 

that documents relevant to the same aspects of the relevant topic form cohesive visual 

clusters.  To this end Chapters 3, 4 and 5 provide a series of analyses that (i) show that 

inter-document  similarity  measures  effectively  classify  the  relevant  topic,  (ii)  compare 

different approaches to spatial-semantic visualization for representing  this  classification 

and (iii) determine the conditions under which the aspect cluster growing strategy fails. 

We examine two information problems or open-ended questions of the kind presented at 

the start of section 1.3. For each question we retrieve a set of documents from a larger 

collection using a simple query, based on the question or topic description, designed to 

capture the full breadth of the topic (from many aspects). As such the retrieved document 

sets are generally complex in their topical structure, containing many aspects of the relevant 

topic as well as many non-relevant topics. Amongst the relevant documents, there is likely 

to  be  considerable  variation  in,  for  instance,  the  extent  to  which  specific  aspects  are 

discussed (i.e.,  document  frequency),  the  consistency  with which the  same aspects  are 

discussed within documents and the breadth of topical focus of specific documents (i.e., 

whether they focus on just one or several aspects of the topic).    

Given the nature of these scenarios and the requirements of our interaction model, we ask 

three related questions:

1. To what extent can a standard text analysis  procedure model the general  semantic 

structure expected by our interaction model and particularly the low-level  structure 

required by the aspect cluster growing strategy? 

2. Given an adequate semantic model,  which approach to spatial-semantic layout best 

preserves  the  general  and,  in  particular,  the  low-level  structure  expected  by  our 

interaction model? 
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3. Under what conditions does the aspect cluster growing strategy tend to fail and how 

can we use this knowledge to guide development of interactive support tools?

The process of answering these questions is incremental in nature and the approach used 

to answer each question is, to a great extent, dependent upon the outcome of the previous 

stages of analysis. A detailed overview of the issues surrounding each question follows.

The first question relates to the validity of the cluster hypothesis (van Rijsbergen, 1979), 

which predicts that documents relevant to the same requests (queries) will tend to be more 

similar in their content than they are to other documents. For our interaction model to 

work it is necessary, if not sufficient, that the semantic models of complex ad hoc document 

sets should effectively classify documents to two levels of topical relevance. In other words 

documents that discuss the same general topic (are generally relevant to the question) must 

tend to be more similar to each other than they are to other, non-relevant documents. In 

turn, documents that discuss the same aspect of the relevant topic must tend to be more 

similar to each other than they are to other relevant documents. 

We require, therefore, that aspect similar documents will be generally the most lexically 

similar documents within a retrieved set. If this is the case then the aspect cluster growing 

strategy will be efficient in that the user wastes a minimal amount of time examining non-

relevant items and will not get overly distracted by relevant documents discussing different 

aspects. That said, given the evolving nature of the search a degree of accidental discovery 

of new distinct aspects is desirable, particularly as the user begins to exhaust their search as 

they approach the edge of the current aspect cluster. Hence, it is also desirable that the 

generally relevant items should be more similar to each other, even if they discuss different 

aspects, than they are to non-relevant items.

There is some evidence to suggest these requirements can be met (Muresan, 2002; Muresan 

and Harper, 2004). In their experiment, the authors examined a medium-sized collection 

(747  documents),  mostly  comprising  documents  known to  be  relevant  to  six  defined 

topics, where aspects of each topic had also been defined and document relevance judged 

in each case. In addition to known relevant documents, the document set was ‘polluted’ by 

non-relevant items that were frequently retrieved by topical queries.  The semantic model 

was  created  using  a  standard  text  analysis  method  where  inter-document  similarity  is 

measured by  calculating  the  correlation  in  term (words)  usage.  Three  conditions  were 
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examined:  all  document  similarities,  same-topic  document  similarities  and  same-aspect 

document similarities. The authors found significant general trend in mean similarity in the 

expected direction (Muresan, 2002). 

However, the semantic properties of the studied document set was highly contrived and 

somewhat  different  to  the  structure  we  would  expect  within  an  ad  hoc retrieval  set. 

Muresan’s (2002) set comprised several well-defined and distinct topics. Whilst there would 

have been some semantic overlap between these different topic classes, in the majority 

cases one would expect inter-topic similarity to be relatively low.  In a real high-recall,  ad 

hoc retrieval set, however, the distinction between relevant and non-relevant may be less 

clear, given that all documents will be, to varying extents, relevant to the same request. 

Thus the set will comprise not only relevant documents and clearly non-relevant items but, 

between these sub-sets,  there will  be a  third sub-set of documents that are somewhat 

related to relevant items but not relevant to the user’s information need. 

Therefore, to establish the feasibility of our interaction model, we first need to consider 

whether  the  high  occurrence  of  similar  yet  not  relevant  items  will  distort  the  neat 

classification of documents by topic and aspect that was observed by Muresan (2002). To 

this  end,  in  chapter  3  we develop a  test  bed  of  two complex  topical  scenarios,  each 

comprising  an  ad  hoc retrieval  set  retrieved  using  a  broad,  high-recall  query.  We then 

conduct a similar analysis to that of Muresan (2002) for both scenarios where we measure 

the degree of topical classification for the single relevant topic. Our method of analysis is 

adapted accordingly.

Assuming that the required classification of documents is present within such semantic 

models, the second question concerns layout or how best to represent this all-important 

structure as a visualization. 

Given the fundamental principle of the spatial-semantic metaphor – that the proximity 

between a pair of nodes maps directly to the degree of similarity between the documents 

being represented - the most natural, and therefore common approach to spatial-semantic 

visualization is some form of multi-dimensional scaling (MDS). A form of MDS called 

force-directed placement is used by Leuski (2001) to create the Lighthouse visualization. 

MDS algorithms work by accepting a matrix of inter-document proximities as input and 

using some iterative procedure that attempts to locate documents as points or nodes into a 
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spatial configuration where the inter-node proximities match, as closely as possible the 

input proximities.  Thus, these algorithms treat layout as a global optimisation problem, 

where all inter-document relationships are treated as equally important and preserved to 

the best extent. 

A fundamental obstacle, however, for any approach to spatial-semantic layout is that a 

considerable  amount  of  structural  information  represented in  the  semantic  model  will 

inevitably be lost due to the dimension reduction process. To understand the reason for 

this, let us first consider the problem of plotting a matrix of inter-city proximities to 2D 

visual space. This is a simple problem with a perfect solution because the proximities were 

calculated from an origin space of equal dimensionality. In contrast, a semantic model will 

normally  have  a  high  dimensionality  equivalent  to  the  number  of  unique  terms  (the 

vocabulary)  used  to  represent  the  content  of  each  document.  After  applying  pruning 

heuristics to remove terms that are likely to be poor discriminators (see Salton and McGill, 

1983), even quite small document collections are likely to be defined by a term-space of 

several  thousand  dimensions.  Projecting  such  a  space  onto  two-  or  three-dimensions 

results  in  considerable  compromises  in  node  location,  because  there  are  insufficient 

degrees of freedom to position every node at the appropriate relative distance to all other 

nodes. In mathematical terms, misplacements occur because dimension reduction gives rise 

to many situations where the triangle inequality is violated - where for three given nodes, 

the distance from A to C becomes greater than the sum of the distances between A to B 

and B to C.  Such inequalities  will  often result  in compromised location of nodes,  or 

misplacements, where nodes that are closely associated in the semantic model may be 

located far apart in the output space or, in contrast, quite unrelated nodes may be located 

close together. The likelihood of misplacement is also intimately tied to the number of 

nodes  that  must  be mapped,  whereby the  complexity  of  layout optimisation  increases 

exponentially with set size.

Taking  the  view  that  information  loss  during  dimension  reduction  is  inevitable,  it  is 

important to select  a layout algorithm that focuses on preserving and representing the 

elements of the underlying topology that are most relevant to the information need of the 

user (Skupin and Fabrikant, 2003). For our interaction model, we are most concerned with 

emphasising the relationships between same aspect documents. Given our hypothesis that 

these tend to be the stronger relations within the semantic model, we ask whether it is 

more appropriate to apply a layout algorithm that emphasises local (the strongest inter-
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document similarities), rather than global optimisation. In chapter 2, we discuss algorithms 

that follow the local approach along with previous work that has applied such techniques 

to document visualization. In chapters 4 and 5, using our topical scenarios (from chapter 

3), we examine the relative efficacy of local and global optimisation techniques to create 

spatial-semantic  models  that  retain  the  desired  structure  and  therefore  optimise  the 

efficiency of the aspect cluster growing strategy. 

Given that compromises in layout are inevitable, regardless of the algorithm applied, our 

third question asks why spatial-semantic cues fail to support aspect cluster growing in 

certain situations and what we can do to accommodate such failures.  In this dissertation, a 

failure of spatial-semantic cues is broadly defined as occurring when few or none of the 

nearest  neighbours  of  an exemplar  discuss the  aspect  that  captured the user’s  interest 

within  that  document.  Such a  failure  would  cause  a  user  following  the  aspect  cluster 

growing strategy to browse through an unacceptable number of non-relevant items before 

encountering a relevant item. 

By building a model of the factors associated with failure situations we aim to develop 

appropriate interactive tools that will provide the kind of visual-semantic cues required to 

dynamically  reintroduce  lost  structural  information  into  the  visualization.  It  is  seen  as 

important that the  ad hoc cues can be elicited in a way that minimises the required input 

(particularly with respect to query specification) from the user.

There are two general reasons why spatial-semantic cues might be insufficient to afford 

efficient aspect cluster growing from a given exemplar document. First, this may occur 

simply because there is little or no correlation between the term vectors of the exemplar 

and aspect similar documents, in other words the aspect relationship is poorly encoded 

within  the  underlying  semantic  model.  This  situation  would  arise  from limitations  of 

automatic text analysis, e.g., vocabulary mismatch (Furnas et al., 1987), and is beyond the 

scope of this thesis. 

Instead, we focus upon a second general situation where although the association between 

the exemplar and other aspect relevant documents may be quite strong, searching nodes in 

proximity  order proves  to be a  relatively  inefficient  strategy.  This  situation may occur 

because the immediate locality around the exemplar is crowded with documents discussing 

various related concepts  in addition to the aspect of interest.  Hornbaek and Froekjaer 
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(1999)  found this  was  a  common problem experienced  by  users  when searching  and 

browsing  within  a  spatial-semantic  model  of  a  heterogeneous  document  collection. 

Alternatively, compromises in the spatial-semantic layout process may cause the exemplar 

to become relatively isolated from the main aspect cluster. Such trade-offs might occur 

when the exemplar is  relatively  focused on the specific  aspect  of  interest  whilst  other 

aspectually related documents tend to be more ‘topical’ discussing several aspects of the 

general topic (see Muresan, 2002). The converse situation, where the exemplar is highly 

topical  and  the  aspect  relations  highly  focused,  would  also  present  similar  problems. 

Furthermore, we anticipate that such problems would be compounded if the other topical 

aspects  discussed  by  the  related  documents  happen to  be  represented  relatively  more 

prominently within the set (in more documents) than the user’s current query. 

We predict that whichever layout algorithm is used, however optimal it is, it is likely to be 

necessary at some stages of the search process to support the user in their aspect cluster 

growing by supplementing the static spatial-semantic cues with dynamic cues. The reasons 

for the failure of spatial-semantic cues are likely to be highly variable and difficult to model 

exhaustively.  Hence,  our  more  realistic  aim  is  to  model  the  distinctive  features  of 

problematic exemplars and to apply this model to the development of simple to use, but 

powerful interactive tools that provide additional cues that can help the user to resolve 

such ambiguity.    

1.8. Summary of research goal
Having defined our three main problems, our general research goal can be summarised as 

follows:

To develop and evaluate the potential utility of a novel interaction model to support the answering of an  

open-ended question using documents retrieved by a high-recall query.

To recap our specific research questions are as follows:

1. To what extent can a standard text analysis  procedure model the general  semantic 

structure expected by our interaction model and particularly the low-level  structure 

required by the aspect cluster growing strategy? 
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2. Given an adequate semantic model,  which approach to spatial-semantic layout best 

preserves  the  general  and,  in  particular,  the  low-level  structure  expected  by  our 

interaction model? 

3. Under what conditions does the aspect cluster growing strategy tend to fail and how 

can we use this knowledge to guide development of interactive support tools?

1.9. Approach
Our  approach  is  to  follow  the  work  of  Leuski  (2001)  and  others  (e.g.,  Rorvig  and 

Fitzpatrick, 1998; Sullivan and Rorvig, 1998; Swan and Allen, 1998) by examining our three 

questions within the framework of the Text REtrieval Conference (TREC) test collection 

(Voorhees and Harman, 1997; Voorhees and Harman, 1998). Specifically, we utilise topics 

and relevance data from the interactive  track. The associated topics simulate an open-

ended search task and provide benchmark relevance data that allows IR system evaluation 

to proceed effectively without the need for user studies. Each topic comprises an open-

ended question (the topic description), definitions of distinct aspects of the topic known to 

exist within a specific source collection, and reasonably exhaustive relevance data linking 

one or more documents in the source collection to each defined aspect. 

This resource allows us to create scenarios in which specific hypotheses,  pertaining to 

spatial-semantic  visualization  structure  and  search  strategy  performance,  can  be  tested 

using objective and reliable experiments. This is seen as preferable to user testing, where it 

is  expensive  and  time  consuming  to  test  a  sufficiently  large  sample  and  where 

measurements may be confounded by complex interactions between individual differences 

such  as  cognitive  ability,  reading  speed,  familiarity  with  visualization  interaction,  topic 

familiarity  and  general  information  retrieval  experience.  It  also  allows  us  to  analyse 

clustering and the cluster growing strategy across a much larger,  and broader range of 

situations and to reliably identify factors that may both facilitate and hurt the efficiency of 

our strategy. As we will show in chapter 6, we can use the knowledge gained from these 

factorial  analyses to guide  the  development  of  appropriate  interactive  strategy support 

tools.

Using this approach, we examine topic-aspect classification, first within high-dimensional 

term space  and simple  discrete  cluster  solutions  (Chapter  3),  and  then  within  spatial-

semantic visualizations generated using different layout algorithms (Chapter 4).  We will 
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also analyse the efficiency of the cluster growing strategy (Chapters 3 and 5) for aspects 

using a simple adaptation of the strategy based evaluation (SBE) method developed by 

Leuski (2001) for his original investigations. This approach simulates user behaviour by 

calculating a search function, which predicts the order in which unseen documents are 

viewed (e.g., based on their similarity or proximity to a known, relevant document node). 

As  indicated  above,  this  method  allows  for  objective  comparison  of  cluster  growing 

efficiency  across  different  visualization  schemes  and  different  information  problems 

without the need to consider the influence of user differences. It also allows us to identify 

factors  that  hurt  aspect  cluster  growing  efficiency  for  poorly  performing  exemplars 

(Chapter 5). This knowledge is then used to guide the design of interactive tools that are 

intended  to  help  users  to  continue  searching  effectively  when  both  inter-document 

similarity and spatial-semantic cues are sub-optimal (Chapter 6).

1.10. Structure of dissertation
In Chapter 2, we carry forward our three questions and consider the relevant literature in 

more detail. From this literature review we develop specific hypotheses for each question, 

which we carry forward to and test in our main analyses (Chapters 3 to 5).

In chapter 3,  we develop our test  bed of three topical  scenarios based on two topics 

provided by the TREC-6 (Over, 1997) and TREC-7 (Over, 1998) interactive tracks. The 

selected topics differ significantly in the degree of document overlap between aspect sub-

sets. For each topic a document set is retrieved using a high recall query and a text analysis 

is run to generate a semantic model. Relevant summary statistics for each of these elements 

of the test bed are provided. In particular, we determine whether the semantic models 

produced by text analysis classify documents into the structure required by the interaction 

model (question one). We also examine the effects of topical structure (overlapping vs. 

distinct aspects) and set size on classification efficacy. Discrete cluster solutions of our 

semantic  models  are  presented  and analysed  to provide  a  preliminary  insight  into  the 

feasibility of representing this structure effectively in low-dimensional space, to provide a 

comparison with earlier work that has examined aspect partitioning using this method (e.g., 

Wu et al., 2001) and to demonstrate the importance of interpreting the resulting structure 

of clustering/scaling algorithms within the context of the known structural properties of 

the underlying semantic model.
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In Chapter 4, we move on to address question two. We begin the chapter by describing the 

creation of our spatial-semantic solutions using two distinct visualization schemes. We then 

present  a  visual  analysis,  using  augmented versions  of  the  solutions,  that  provides  an 

illustrated overview of the comparative efficacy with which the schemes communicate key 

semantic features including the relevant topic, distinct aspects and also the discrete cluster 

structures produced by k-means in Chapter 3. Finally, we present a detailed quantitative 

analysis of the topic classification performance of both visualization schemes. Given our 

focus on the cluster growing strategy,  we take a perspective  where potential  exemplar 

documents are treated as distinct cases or units of analysis (i.e., a relevant documents in a 

retrieval set). We compare the main and interactive effects of the visualization scheme and 

scenario specific attributes. The aim of this analysis is to compare, at a general level, the 

fidelity of relevant topic-aspect classification within the visualization schemes. 

In Chapter 5, we draw conclusions with respect to question two and begin to answer 

question  three.  We simulate  the  aspect  cluster  growing  strategy  for  both  visualization 

schemes across all scenarios. This time, each exemplar case is considered once for each 

aspect it  discusses, hence we measure strategy efficiency for all  possible aspect cluster-

growing  ‘micro-episodes’  that  might  occur.  Comparisons  of  the  main  and  interactive 

effects of visualization scheme and topical scenario, allow us to determine the superior 

scheme for our interaction model. In the second part of the chapter, we begin to deal with 

question three. We then focus on the extent to which node-misplacements are responsible 

for poor aspect cluster growing performance, by comparing the relative performance of 

our strategy  using  pure  similarity  cues to the  use of  spatial-semantic  cues.  Finally,  we 

perform an exploratory analysis to determine the correlates of overall poor exemplar cases 

i.e., aspect representatives that fail to make good exemplars, even when similarity cues are 

provided. This analysis helps us to form hypotheses with respect to the kinds of interactive 

tools that might best support aspect cluster growing. 

In Chapter 6, we first reflect upon the findings of the earlier analysis chapters and discuss 

the implications for the design of interactive tools to support aspect-clustering growing. In 

the second part we complete our answer to question three by proposing a new conceptual 

approach called contexts in context that extends the principle of simple relevance feedback 

to address the observed limitations of the approach identified in Chapter 5. 
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In  Chapter  7,  we  review  the  main  outcomes  of  our  analyses  and  summarise  the 

contributions made. We then discuss the known limitations of this work and, on this basis, 

make suggestions for future work.
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CHAPTER 2: FORMULATION OF 
APPROACH AND HYPOTHESES

2.1. Introduction
In chapter 1, we outlined the problems associated with answering an open-ended question 

using a classical information retrieval (IR) system and proposed an alternative interaction 

model. In this chapter we discuss the issues that need to be addressed in order to evaluate 

the general feasibility of the approach and to optimise its implementation. The outcome of 

this  chapter  is  a  set  of  formal  hypotheses  that  will  be  used  to  answer  our  research 

questions. We propose two formal tests that will enable these analyses. We begin in this 

section, by restating the research problem, goal and questions of this dissertation before 

outlining the structure of the remainder of the chapter.

An open-ended question is characterised by an information need that is both complex, and 

so cannot be easily specified in a single, precise query and evolving, in that the relevant 

aspects of the problem are only partially known up front and tend to transpire during the 

course of the search process, as a result of accidental discoveries and inferences made as a 

result of interactions with retrieved document content and meta-data. We argued that this 

kind of searching is problematic in classic IR interfaces for several reasons. First, early 

queries are likely to be broad and ambiguous in nature. The lack of semantic structure 

afforded  by  the  ranked  list  presentation  format  makes  the  process  of  identifying  and 

defining key aspects of relevance within a long and diverse document set (i.e., interactive 

scanning) a tedious and cognitively demanding task. Second, as the search proceeds, the 

user must constantly reformulate their query as their perspective on the problem evolves 

and shifts. Third, as the query is shifting between conceptually diverse aspects of relevance, 

there is no single optimal set of results. Rather, relevant material is retrieved in bits and 

pieces across a number of query iterations. The onus is therefore on the user to collate this 

material, and to comprehend the significant relationships between information retrieved at 

different points during the process.  
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We proposed a potential solution to this problem in the form of an interaction model that 

uses spatial-semantic document visualization to organise documents, retrieved in response 

to  a  high-recall  query,  so that  the  proximities  between document  nodes  are  inversely 

proportional to their respective content similarity. Our model is based upon an existing 

model that was proposed and evaluated by previous work (Leuski, 2001; Allan et al., 2001). 

Central to this model is a strategy in which unseen, relevant documents are located by 

exploring unseen document nodes in order of relative proximity to the nodes of known 

relevant  items.  The notion  that  relevant documents are highly  similar  in  their  content 

similarity  (compared to non-relevant documents) is  based on a logical  corollary of the 

cluster hypothesis of IR which states that similar documents tend to be relevant to the 

same requests (van Rijsbergen, 1979). Leuski’s (2001) evaluation showed this to be the case 

for  simple  retrieval  tasks;  isolating  relevant  from  non-relevant  documents  within  the 

retrieved set. This ‘cluster growing’ strategy was equivalent to, or better than, following the 

initial  ranked-list  ordering  and as  good as  automatically  reformulating  the  query  using 

relevance feedback. 

Our thesis  is  that  the cluster  growing strategy will  also prove effective  for a complex 

evolving search, where multiple aspects of relevance must be searched. We see the user 

entering their initial, tentative query using just one or two ‘topical’ keywords from their 

ambiguous question statement and then growing multiple clusters within the context of a 

single, static visualization created from the retrieved documents. We refer to the process of 

growing a cluster of same-aspect documents, by following cues within the visualization, as 

the aspect cluster growing strategy. 

The existing model (Leuski, 2001; Allan et al., 2001) has only been evaluated within the 

context of simple information retrieval problems (i.e., isolating a static set of closely related 

relevant  documents),  as  opposed  to  a  complex  information  need  where  relevant 

documents separate into many sub-clusters or ‘pockets’ of relevance (Leuski, 2001). We 

therefore need to evaluate the feasibility of our proposed model. Specifically, our proposed 

model  makes  two  distinct  assumptions  that  cannot  be  verified  directly  by  previous 

experimental work. The first assumption is that it is possible to automatically compute a 

matrix of inter-document similarities from the texts of retrieved documents that classifies 

documents  to  two-levels  of  relevance  (same-topic  and  same-aspect).  The  second 

assumption is that it is possible to visualise this represented structure as a spatial-semantic 

visualization. 
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The formal goal (presented in section 1.8) of this dissertation is  to develop and evaluate the  

potential utility  of a novel interaction model to support the answering of an open-ended question using  

documents retrieved by a high-recall query.

We will  achieve this goal by answering the following research questions (introduced in 

section 1.7):

1. To what extent can a standard text analysis  procedure model the general  semantic 

structure expected by our interaction model and particularly the low-level  structure 

required by the aspect cluster growing strategy? 

2. Given an adequate semantic model,  which approach to spatial-semantic layout best 

preserves  the  general  and,  in  particular,  the  low-level  structure  expected  by  our 

interaction model? 

3. Under what conditions does the aspect cluster growing strategy tend to fail and how 

can we use this knowledge to guide development of interactive support tools?

In this chapter we examine these questions within the context of the available literature. 

From this  critical  review,  we develop a  set  of  specific  hypotheses  in  relation  to each 

question,  along  with  two formal  tests  that  will  enable  us  to  test  these  hypotheses  in 

subsequent chapters. The structure and specific aims of this chapter is as follows. 

Section 2.2 outlines  our interaction model in more detail,  focusing specifically  on the 

aspect cluster growing strategy. We define how this strategy fits into our interaction model 

and its relevance to the underlying search task. We then explain how our approach differs 

from  that  evaluated  by  Leuski  (2001)  and  identify  potential  issues  that  need  to  be 

addressed. 

Section  2.3  discusses  the  rationale  and  empirical  evidence  in  support  of  the  spatial-

semantic  metaphor,  focusing  particularly  on  its  role  in  document  presentation  and 

information seeking. The section concludes by describing the process of spatial-semantic 

visualization, placing the three research questions within this context.

Section 2.4 discusses the how the semantic structure of a document collection might be 

modelled using an unsupervised approach based on the vector space model. The rationale 

for doing this is discussed within the context of the IR cluster hypothesis. We then discuss 
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the empirical evidence that supports this general hypothesis before focusing on a recent, 

special case termed the aspectual cluster hypothesis (Muresan and Harper, 2004), which 

predicts the behaviour of inter-document similarities of relevant documents in the case of 

a complex information need.

Section 2.5 discusses existing methods for testing the cluster hypothesis within a given 

topology. We reflect upon these methods and propose two tests that enable us to test the 

feasibility of our interaction model from two perspectives. The aspect cluster separation 

test allows us to measure the extent to which average computed inter-document similarity 

increases  as  the  semantic  distance  between  documents  decreases.  The  nearest  aspect 

neighbours  test  simulates  the  aspect  cluster  growing  strategy  by  measuring  the  rank-

distance between any given aspect-relevant document and its nearest relevant neighbours. 

This provides us with an effective measure of maximum performance for the strategy in 

any  given  circumstance.  We  specify  formal  hypotheses  that  will  allow  us  to  answer 

research question one, using these two tests, within a range of quite distinct scenarios. 

Section 2.6 focuses on the problem of representing the modelled structures using the 

spatial-semantic metaphor (research question two). We begin by providing an overview of 

the  common  approaches  to  spatial-semantic  visualization.  We  then  emphasise  the 

fundamental  problem of dimension reduction and the inevitable  information loss  that 

occurs during this process and that (global)  approaches which attempt to preserve all 

inter-document relations are likely to be sub-optimal. We respond by suggesting that a 

spatial-semantic  layout  approach that  emphasises  local  structure  may prove  to be  the 

optimal  technique  for  our  interaction  model.  We  posit  formal  hypotheses  that  will 

compare globally and locally optimised spatial-semantic visualizations in a range of distinct 

scenarios.

Section 2.7 deals with research question three. We explore the problem of how to support 

the aspect cluster growing strategy when spatial-semantic cues fail. We begin by discussing 

the potential of augmenting the visualization using relative similarity cues, specifying a 

hypothesis that most failures are due to node misplacement during the layout process. We 

then explore the problem situation of cases where an aspect exemplar is not sufficiently 

similar to its same-aspect relations to support the strategy, even using similarity cues. We 

discuss potential solutions to this problem, but caution that the final solution (presented in 

Chapter 6) is mainly dependent upon the outcome of our formal analyses.

27



Chapter 2: Formulation of methodology and hypotheses

2.2. Interaction model
In this section, we outline our interaction model. This model is derived from the model 

underlying  the  Lighthouse  interface  (Leuski,  2001).  We  begin  by  introducing  Leuski’s 

(2001) model before describing how we propose to extend the model for the kind of open-

ended search task described at the beginning of this dissertation. Finally, we discuss key 

differences in the nature and underlying assumptions of our approaches.

2.2.1. Lighthouse
Lighthouse was developed by Leuski (2001) as a means of alleviating an inherent problem 

associated  with  locating  relevant  documents  within  a  traditional  ranked-list  model  of 

document organisation: that locating one or more relevant items provides the user with no 

direct cues as to the location of other relevant items. We now describe the rationale for 

Lighthouse and its use of clustering to support the process of locating relevant documents 

within a retrieved set.

In the ranked list, documents retrieved by the query (or more usually surrogates based on 

meta-data) are presented in order of their similarity to the query. The user begins their 

evaluation of the retrieved set at the top of the list (most relevant document) and searches 

for one or more relevant documents by browsing sequentially through items in the list, 

possibly  interacting  with  document  content  if  this  facility  is  available  (e.g.,  through 

hyperlinks). If the query is a precise description of the user’s information need then this 

strategy is effective as most of the top ranking documents will be relevant to their need. 

If the query is not particularly precise then the strategy becomes less efficient as relevant 

documents may be distributed irregularly across the ranked list, which may number tens to 

thousands of documents. As similarity  to the query is  the only organisational  cue, the 

location of the first relevant document usually provides no clue as to the location of other 

relevant documents. If  documents are scattered too thinly or irregularly within the top 

ranks of the list the user is likely to draw one of two conclusions: that the query needs to 

be reformulated or that the system cannot satisfy their query. Whichever conclusion is 

drawn, the user is unlikely to keep browsing through more than a 10-20 items (see Jansen 

et  al.,  2000),  particularly  if  the  potential  rewards  look  slim.  Non-expert  searchers  in 

particular are most likely to draw the latter conclusion as they may fail to appreciate why 

their  query  failed  and/or  understand  the  importance  of  query  reformulation.  More 

experienced searchers  may reformulate  their  query (either  manually  or  using  relevance 
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feedback tools) but this can be a time consuming process and also often, in one sense, an 

unnecessary process as many of the relevant documents may already have been retrieved, 

they are just difficult to locate in the ranked list format. In other words, the problem can be 

viewed as one of document organisation and presentation rather than a fault in the query 

or retrieval process.

Given this,  Leuski  (2001)  considered the potential  of using document clustering as  an 

alternative  means  of  representing  the  retrieval  set.  The  idea  of  applying  document 

clustering to support browsing of a retrieved set was not a new idea. What was new was 

the use of multi-dimensional scaling to convey clusters of similar documents, rather than 

discrete cluster allocation (e.g. Hearst and Pederson, 1996), and the combination of this 

visualization with the ranked list.

The rationale for clustering a retrieval set stems from the cluster hypothesis of information 

retrieval  which states  that documents that  are similar  tend to be relevant to the same 

queries (van Rijsbergen, 1979). This hypothesis emerged from studies of the vector space 

model of document representation, where documents are represented as vectors within a 

common  high-dimensional  term  space,  which  showed  that  the  similarity  between 

documents relevant to a defined topic tends to be greater than those between the same 

documents and other documents that discuss different topics. By similar documents, we 

mean documents that exhibit a similar pattern of term usage. A logical corollary of the 

cluster hypothesis is that if the user has already found one or more relevant examples then 

clues that  indicate  which other documents are highly  similar  will  guide  the user more 

efficiently to further relevant documents (Leuski, 2001). 

One way to provide such clues is to organise documents based on their similarity using a 

clustering algorithm. Clustering algorithms have two aims: to create sets of highly similar 

objects and to maximise the distance (or dissimilarity) between these sets. Previous studies 

of retrieval set clustering have shown positive results whereby relevant documents tend to 

converge on a small number of clusters within the solution (e.g., Hearst and Pederson, 

1996; Wu et al., 2001). 

Leuski (2001) also conducted an experiment that compared clustered representations of a 

retrieved document set with the traditional ranked list and also a ranked list enhanced by a 

relevance feedback tool (LCA: Xu and Croft, 1996) that re-ranked documents as relevant 
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items  were  identified.  These  simulated  user  studies  showed  that  applying  a  strategy 

whereby  the  user  focused  on  clusters  that  were  already  known  to  contain  relevant 

documents resulted in an increase in search efficiency (precision) of over 10% compared to 

browsing  a  traditional  ranked  list.  Furthermore,  performance  was  equivalent  to  that 

observed when relevance feedback tool was applied. 

Whilst  this  experiment  provided  further  evidence  to  support  the  use  of  post-retrieval 

document  clustering,  Leuski  (2001)  observed  a  key  limitation  of  the  model:  Whilst 

documents can be assumed to be similar if they reside in the same cluster, a discrete cluster 

representation provides no clues as to the extent to which documents residing in different 

clusters are similar. This is critically important given the empirical evidence, which shows 

that although there is often a single cluster that contains a large proportion of relevant 

items, a significant number of the remaining relevant documents will be scattered across 

one or more other clusters (Hearst and Pederson, 1996). This fragmentation of relevant 

documents is likely to increase if the topic has more than one aspect (Muresan and Harper, 

2004).

As a response to this Leuski (2001) proposed the use of multi-dimensional scaling (MDS) 

as  a  means  of  organising  and  representing  documents  by  their  similarity.  In  MDS 

representations,  highly  similar  documents,  represented as  points  or nodes,  will  tend to 

form coherent clusters. However, the aim of MDS is not to produce clusters per se; rather 

these features emerge from a process that simply seeks to find the best inverse match 

between  input  document  similarities  and  output  node  proximities  within  a  specified 

number of dimensions. A key benefit of this MDS is that whilst highly similar documents 

can form coherent  visual  features, as would be the case in a discrete cluster  solution, 

documents that discuss multiple, key themes can be placed, for example, at the intersection 

between the respective clusters. Where two clusters that happen to contain several highly 

similar documents (e.g., the relevant documents), an emergent result might be the overlap 

of these otherwise distinct clusters within the visualization. 

Based on this  notion,  Leuski  (2001)  proposed an interaction model  where  the system 

presents the retrieved set in both a ranked list and spatial-semantic format and the user 

exercises an effective browsing strategy that combines the cues provided by these two 

representations. Figure 2.1 shows the basic interface. The node of the currently selected 

document, the top ranked item, is highlighted with a black ring along with a context label 
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showing summary details.  The spatial-semantic visualization was created using a spring 

model  variant  of  MDS originally  proposed  by  Fruchterman and Reingold  (1991).  We 

discuss variants of MDS and other layout algorithms in more detail in section 2.6. 

Figure 2.1: The Lighthouse interface (reproduced from Leuski, 2001, p. 47).

From his experience with retrieval engines and the test collection, Leuski (2001) had found 

that the good representatives of relevance tend to be quite highly ranked in the ranked list. 

Given this he proposed a strategy where the user begins by browsing from the top of the 

ranked list  in the classical  way.  However,  once a relevant exemplar is  found, the user 

switches their attention to the visualization and continues browsing from there. Within the 

visualization the user employs a simple visual search strategy, which we will hereon refer to 

as the cluster growing strategy, to retrieve further relevant documents. The strategy proceeds as 

follows. The user marks the first relevant document before switching their attention to the 

visualization  wherein  the  node  describing  the  location  of  the  relevant  document  is 

highlighted. Following the corollary of the cluster hypothesis (van Rijsbergen, 1979) that 

the other relevant documents will  be more similar (and thus more proximal within the 
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visualization) than non-relevant documents, the user proceeds to view documents in order 

of their node proximity to the exemplar. When another relevant document is found then 

the centre of the relevant cluster shifts to the spatial intersection and the unseen document 

that is most proximal to this point is viewed. This process is illustrated in Figure 2.2, which 

shows three sequential steps of the cluster growing process. In the figure, known relevant 

documents  are  shown in  black,  known non-relevant  documents  in  white  and  unseen 

documents in grey. We can see how the centre point of the known relevant cluster (the 

black cross) shifts closer to the actual centre of the relevant subset (on the right) as more 

examples are identified. This process continues until the user decides, for whatever reason, 

to terminate the search.

Figure 2.2: The ‘cluster growing’ search strategy (reproduced from Leuski, 2001, p. 34).

Leuski (2001) compared the precision of the cluster growing strategy to that of the ranked 

list strategy (documents browsed in their rank order) and a relevance feedback strategy 

where the query is iteratively refined when each new relevant document is found using 

local context analysis (LCA: Xu and Croft, 1996). The precision of the cluster growing 

strategy was also compared across different structures that used both the proximities of 2D 

and 3D spatial-semantic solutions and also the pure similarities computed between the 

documents in vector space representation. These comparisons were repeated across a 50 

topics taken from the TREC-5 and TREC-6 conference test beds (Voorhees and Harmen, 

1996,1997).

They found that the cluster growing strategy was, on average, around 20% more efficient at 

retrieving relevant documents than the ranked list strategy applied to a standard relevance 

ranking.  The  difference  was  significant  regardless  of  the  source  of  inter-document 
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proximities. Furthermore, when using both the 3D (spatial-semantic) and D-space (pure 

similarity)  structure,  precision  was  significantly  higher  than  applying  LCA  relevance 

feedback.  The  precision  of  the  strategy  using  the  2D  structure  was  not  significantly 

different  from the relevance  feedback  strategy.  Furthermore,  performance on 3D was 

significantly better then 2D.

Hence, it seems that the additional dimension provided by 3D over 2D allowed for a more 

faithful  representation of inter-document similarities.  However,  subsequent user studies 

showed  that  the  additional  demands  involved  in  comprehending  a  3D  structure 

outweighed the more accurate spatial-semantic cues. This effect was also found in another, 

unrelated study of spatial-semantic search (Westerman and Cribbin, 2000). The problems 

associated with the drastic dimension reduction required by spatial-semantic visualization 

and the trade-offs that must be made between using all spatial dimensions (3D) to map the 

similarity topology and the relative simplicity, for the user, of searching in 2D rather than 

3D space are considered in more detail in section 2.6.

2.2.2. Aspect cluster growing 
Towards  the  end  of  his  thesis  Leuski  (2001)  considers  the  potential  for  using  the 

Lighthouse model and cluster growing to support retrieval of more complex, multi-aspect 

topics.  He observes  that  certain queries  that  were clearly  ambiguous in  meaning were 

represented  within  the  visualization  by  distinct  ‘pockets’  or  clusters  of  relevance.  For 

instance the query “Samuel Adams” was used to describe documents about the legendry 

American beer maker and revolutionary. The fact that this man is famous for two distinct 

reasons was clearly represented in the visualization as can be seen in Figure 2.3, where 

documents known to be about Samuel Adams beer are shown in solid green whilst those 

about  Samuel  Adams  the  revolutionary  are  shown  in  yellow.  Known  non-relevant 

documents, for example about other people called Samuel Adams, are shown in solid red. 

The lighter shades indicate documents that are estimated to be relevant to a known aspect, 

based on their similarity to the known relevant (or non-relevant) exemplars. The ‘shade 

wizard’ is based on an intelligent agent that uses relevance feedback to model the topic of 

interest  and  is  one  of  several  visual  tools  that  Leuski  (2001)  implements  to  provide 

additional  cues to support  the basic spatial-semantic cue driven strategy. We return to 

discuss the need for and potential requirements of interactive tools later on in section 2.7.

33



Chapter 2: Formulation of methodology and hypotheses

We can see that the two aspects form quite distinct clusters within the visualization and 

both are well separated from non-relevant items. On this basis, Leuski’s interaction model 

seems  a  promising  means  of  supporting  complex  needs,  for  example  an  open  ended 

question such as:

What are the most significant achievements of the Hubble space telescope since its launch?

We see the user beginning their search by formulating a simple free form query such as 

“hubble space telescope” or even just “hubble” and submitting this to an appropriate index 

for retrieval. Aspects exemplars could be identified either, as in Leuski’s model, by using 

the  top ranks  of  the ranked list,  or  alternatively  the  user could browse the  visualized 

structure  directly,  perhaps  aided  by  landmarks  such  as  contextual  key  terms  as 

demonstrated in larger, collection-wide thematic maps (see, for example Wise et al., 1995; 

Lin, 1997; Hornbaek and Frokjaer, 1999; Skupin, 2000).

Figure 2.3: The Lighthouse interface showing the different aspects of the “Samuel Adams” query (reproduced 
from Leuski, 2001, p. 68).
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As a new aspect  is  discovered,  the user would be able to employ the cluster growing 

strategy to find further, similarly relevant items. If other aspects are encountered during the 

process then the user can simply mark these in a different colour and return to them later 

once retrieval for the existing intention is seen as complete. They could equally temporarily 

abandon their current intention and return to it later as the distinct colour assigned to 

documents marked relevant to that aspect would allow the user to readily re-orientate to 

the  earlier  intention.  In  Chapter  1  we defined  this  application  of  the  cluster  growing 

strategy as aspect cluster growing to differentiate it from the simple task of general retrieval of a 

single homogeneous sub-set of relevant items.

The kind of  search we are describing  is  very close  to what Bates (1989)  describes as 

berrypicking/evolving  search  and  O’Day  and  Jeffries  (1993)  describe  as  progressive 

searching. This view of search as a non-linear, unpredictable and complex process is much 

closer to most real search episodes than the simple classical view that has dictated the 

design of the majority of information retrieval system designs and evaluations, including 

Leuski’s  (2001).  The  great  potential  strength  of  spatial-semantic  visualization,  and  the 

aspect cluster growing strategy, is that together they allow both exploration of the topic 

and directed browsing of multiple, diverse aspects of the topic to take place within the 

same structural  view.  Users  do  not  have  to  reformulate  the  query  statement  as  their 

intentions change and they have a persistent history of their search progress and can easily 

distinguish between different intentions that they have followed. Adopting such non-linear 

behaviour imposes a huge cognitive  demand on users of  traditional  interfaces such as 

hypertext or the ranked list because they lack this persistent overview context; users must 

construct their own, complex mental model, integrating between views as their intentions 

shift (Vicente and Willeges, 1988) and remembering how to command or navigate back to 

earlier intentions if they are left incomplete. 

2.2.3. Proposed model
Hence, our proposed interaction model, of which aspect cluster growing strategy is  an 

element and the focus of this thesis, can be summarised as follows:

1. The user specifies and issues a general query (e.g., one or two salient terms from 

their question) to the information retrieval system.
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2. The system retrieves matching documents and downloads all or part of their full-

text,  computes  an inter-document  similarity  matrix  and  uses  a  spatial-semantic 

layout algorithm to project the similarity structure on to a 2D or 3D space.

3. The system presents  the  retrieved documents  as  an interactive  spatial-semantic 

visualization. Documents may also be represented as a ranked list, as in Lighthouse, 

although this is not an essential requirement of our model.

4. The user browses the visualization (or possibly the ranked list) with the intention 

of locating an unseen relevant document discussing a distinctly novel aspect of the 

topic.

5. If a new aspect is found then go to stage 6, else if the user decides that all relevant 

documents and aspects have been identified then go to stage 8

6. The user locates  the relevant aspect exemplar in the visualization and browses 

unseen document nodes in proximity order, marking aspect-relevant documents as 

they are found until the decision is made to terminate the current aspect cluster 

growing intention. 

7. If the user has terminated to pursue another aspect then go back to stage 6 else if 

the user considers that no further aspect-relevant documents will be found then go 

back to stage 4

8. End of search interaction

There are several key features/benefits of this approach. First, multiple aspectually distinct 

clusters of documents are grown over the course of the search episode. Second, as all 

clusters are grown within the same spatial-semantic structure of the retrieved set the user is 

able  to  become  familiar  with  the  thematic  structure  and  use  spatial  cues  to  infer 

relationships between aspect clusters. Third, given this stable structure, the user is able to 

grow aspect clusters in parallel;  for instance, if a new aspect is discovered, the current 

cluster can be temporarily abandoned whilst the user pursues this new query, yet easily 

relocated once the  user decides to resume the  old  search.  Fourth,  despite  a  complex, 

evolving conception of information need, the user never has to explicitly reformulate their 

query; the search task is more akin to navigation rather than one of specification.
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As already noted, this model is an adaptation of the Lighthouse model (Leuski,  2001). 

Leuski (2001) discussed the possibility of adapting Lighthouse to solve complex retrieval 

problems,  but  did  not  formally  evaluate  his  system within  this  task context.  He does 

provide an illustrative example, the Samuel Adams query, which demonstrates how spatial-

semantic structure might support multi-aspect retrieval scenario. However, we intend our 

interaction model to be useful for far more complex search scenarios. We now outline the 

key differences in our approaches and discuss some of the additional challenges we will 

need to address. 

2.2.4. Key differences in approach
The Samuel Adams example illustrates the basic essence of how our interaction model 

would work. However, this is a relatively simple example for a number of reasons. First, 

there are just two aspects. Second, these aspects are conceptually quite distinct. Third, each 

aspect is well represented in the retrieved set, forming a significant feature. Fourth, there is 

no  overlap  between aspects  in  terms of  the  documents  that  represent  them;  relevant 

documents  are  aspectually  distinct.  Fifth,  the  retrieved  set  is  relatively  small,  just  50 

documents.

Many  open-ended  search  tasks  involve  topics  that  are  significantly  more  complex, 

comprising both highly distinct and more closely related aspects. Some aspects may be 

discussed by a large sub-set of retrieved documents, whilst other aspects might be more 

esoteric or idiosyncratic in nature and therefore discussed by relatively few documents. In 

an ideal world, relevant documents would be highly focused on just one aspect, but in 

reality  some  documents  might  be  more  ‘topical’,  discussing  many  relevant  aspects. 

Furthermore, whilst one document might make only a brief, single sentence reference to a 

relevant aspect another might devote several paragraphs. Finally, in our interaction model 

we expect the query that retrieves the visualized document set to be quite ambiguous and 

broad in scope, retrieving document sets in the order of hundreds, or in the case of a web 

search, possibly thousands of documents. To ensure a representative sample of distinct 

aspects and associated documents, it would be desirable to visualize at least the top one or 

two hundred retrieved documents.

The potential utility of our approach increases inline with the complexity of the search 

problem.  We therefore wanted to demonstrate the feasibility  of  our interaction model 

within the context of more demanding scenarios, rather than simple cases like the Samuel 
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Adams example. As such, both topics chosen for our test scenarios (see section 3.2) are 

highly  complex,  comprising at least  20 distinct  aspects each.  Further,  all  retrieved and 

visualized sets are in the order of hundreds of documents, rather than just a few dozen top 

ranking items.  In Chapters 3, 4 and 5 our analyses specifically address the impact of aspect 

overlap (where documents discuss multiple aspects) and increasing document set size. The 

potential effects of both these factors are discussed later in sections 2.5 and 2.6 and specific 

hypotheses are presented. 

From section 2.4 we begin formulate the hypotheses that will be directly addressed by our 

analyses in Chapters 3 to 5. Before we do this, we explore the general rationale for using 

the spatial-semantic metaphor to visualize document structure, and discuss the results from 

empirical studies that have evaluated the utility of the spatial-semantic approach as means 

of supporting a range of information seeking tasks. 

2.3. Spatial-semantic metaphor 
The purpose of this section is twofold. First, we introduce the spatial-semantic metaphor 

and discuss the rationale for its application to document organisation, reviewing empirical 

evidence that shows that people can understand the spatial-semantic metaphor and can 

utilise  this  understanding  to support  semantic  browsing  and searching  tasks.  We then 

conceptualise the process of implementing interactive document visualizations as a pipeline 

of inter-dependent stages of unsupervised modelling and user interaction, and explain how 

the three questions directly relate and justified by this process. 

In this section, we explain why relative proximity is an effective cue to object similarity and 

present  evidence  that  indicates  users  can  readily  equate  object  similarity  with  object 

proximity.  Focusing on systems that use proximity to convey general similarity between 

documents  we  review  the  results  of  empirical  studies  that  demonstrate  how  spatial-

semantic cues can support information browsing and search.    

2.3.1. Proximity as an organising cue
When searching a physical environment, the spatial organisation of items is a critical factor 

that governs task success. For example, we explore and retrieve known items by browsing 

the ordered shelves of a library (Bates, 1989) or supermarket. We organise our workspace 

by sorting and filtering incoming documents into arranged piles or trays on the desktop 

(Pirolli and Card, 1999). Often there is hierarchy to such organisation, whereby items are 
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iteratively separated into more specific conceptual sub-sets of the overall collection. The 

use of hierarchical classification is intricately tied up with the notion of semantic distance 

between concepts  within  psychological  space  (see  Brooks,  1998)  and as  such physical 

instantiations of a hierarchy tend to group objects progressively closer as the concepts that 

link  them  become  more  narrowly  defined.  Spatial-semantic  visualization  exploits  our 

natural expectation that objects that are conceptually closer will be physically located more 

closely (Montello et al., 2003). In this thesis we refer to this principle of organising objects 

so  that  spatial  proximity  corresponds  to  semantic  distance  as  the  spatial-semantic 

metaphor.  So  why  do we  consider  spatial-organisation  to  be  such a  powerful  cue  to 

conceptual similarity and what other cues do we use to structure our visual environment? 

Whilst, we are able to consciously infer sense from complex or ambiguous visual images 

(as shown in studies of visual illusions), in order to make basic sense of the vast, changing 

flow of visual data that we receive moment by moment, much of our visual perception is 

achieved pre-attentively. The processes of pre-attentive perception are fast and effortless 

and their impact on our conscious experience of the world can be compelling. A red car in 

a car park full  of blue cars will  immediately attract our attention.  We can differentiate 

immediately between a birds flying in formation and birds acting independently on the 

basis of their relative speed and direction of movement.  

Early, seminal work by the Gestalt school proposed that there are number of fundamental 

laws or rules that govern the way we organise visual stimuli (Koffka, 1935; Eysenck and 

Keane, 1990). In addition to proximity, we also perceive structure based on the similarity, 

closure, good continuation and common fate of objects sensed in the visual field.  

a) Law of proximity b) Law of similarity c) Law of closure d) Law of good 

continuation

Figure 2.4: Gestalt laws of perceptual organisation
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The law of proximity states that objects that are relatively near to one another tend to be 

seen as  related.  For instance,  in  figure 2.4a we see columns rather than rows of  dots 

because  the  horizontal  separation  is  greater  than  the  vertical  separation.  The  law  of 

similarity  describes  how  we  tend  to  group  together  objects  that  are  visually  similar 

regardless of their spatial configuration. In figure 2.4b, for instance, even though nodes are 

equidistant we perceive three columns of dots, rather than a single grid. Likewise, in an 

array of mostly blue nodes a single red node will instantly ‘pop out’ as an anomaly. The law 

of closure states that if a pattern implies a coherent form, but is incomplete, the implied 

form will be perceived nevertheless. Figure 2.4c shows a good example where we perceive 

two overlapping circles even though only one circle is actually present. The law of good 

continuation states that visual elements that appear to follow the same path or pattern will 

tend to be associated together. In figure 2.4d, it is hard ignore a line running from bottom 

left to top right, despite the presence of a dense cluster overlapping the bottom end of this 

formation. Finally, the law of common fate says that elements that appear to be moving in 

the same direction will be grouped together. The bird formation example presented in the 

earlier paragraph illustrates the action of this law. 

Fundamentally, spatial-semantic visualization is based upon the law of proximity. However, 

all of these laws can be incorporated into visualization design to emphasise conceptual 

groupings. Furthermore, these laws are by no means independent. As we shall see later, in 

section 2.3.2, research into the spatial-semantic metaphor shows how emergent features 

(e.g.,  clusters,  lines)  can  interfere  with  the  interpretation  of  relative  proximity  cues 

(Montello et al., 2003). 

So far we have talked about how visual-spatial cues enable us to group objects together. 

Visual-spatial cues can also be used to encode ordinal and quantitative data. Related to this 

is  the work of Bertin (1983)  in  the field  of  data graphics.  Bertin (1983) explains how 

objects or marks within a graphic are organised according to their relative values with 

respect to one or more visual variables. Visual variables differ in terms of the level of data 

they  can  convey.  For  instance,  whilst  the  length,  area  or  location  of  a  mark  can 

communicate quantities,  relative  and absolute,  the shape of  a mark can generally  only 

communicate nominal level attributes (e.g., discrete group membership).  

Visual variables can be classified into two types: planar and retinal. Planar variables are 

those that utilise the spatial substrate, whereby distance along an axis might convey the 
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absolute  value  of  an object  for  specific  variable,  whilst  relative  proximity  can convey 

associations  between objects.  Retinal  variables  are  those  that  affect  the  appearance of 

marks, such as size or shape, and thus exploit similarity as an organising principle. Retinal 

and planer variables can be used in combination, but there is a limit to the number of 

variables that can be perceived pre-attentively and integrated into a single, coherent image 

or whole. According to Bertin (1983) this limit  is two planar variables and one retinal 

variable. Interactive computer graphics may permit the use of a third spatial dimension for 

certain  applications  although,  as  we  will  discuss  in  section  2.3.2,  the  use  of  3D can 

significantly increase the cognitive effort and ability required to interpret a visualization. If 

any more than one retinal variable is represented, then interpretation of the visualization 

also becomes more effortful and slow as the task of discriminating groups of related marks 

or perceiving correspondence between marks on basis of one retinal variable, is likely to be 

subject to interference from other, possibly more compelling organising cues. Bertin (1983) 

refers to this problem as a violation of the single image, which results from the fact there is 

no one simple, unambiguous form (Koffka, 1935).

Although, as already noted, proximity is by no means the only visual cue to similarity, it is 

possibly  the  most  powerful  and  certainly  the  most  flexible  in  terms  of  the  type  of 

information it can convey (Bertin, 1983; Card et al., 1999). The spatial substrate can be 

used to communicate all levels of correspondence between abstractly defined objects, from 

category membership, as discrete groups or clusters, to quantitative differences and ratios 

represented by relative distance (Bertin, 1983). One of the most common applications of 

spatial cues in this context is the scatter plot, or point display (Montello et al., 2003), where 

objects are projected as points onto a two- or three-dimensional plane. Each dimension of 

the plane represents a single common attribute of the set of objects and the location of an 

object along this dimension indicates its value. Given this scheme it is possible to not only 

interpret the absolute value of an object with respect to attributes but also to make relative 

judgements between objects along each attribute. 

A particularly useful affordance of the scatter-plot, as an exploratory analysis tool, is the 

fact that straight-line distance between objects allows direct interpretation of their general 

similarity in terms of all  spatially  encoded attributes (i.e.,  dimensions).  Objects that are 

similar in all respects will form coherent clusters, whilst objects that differ on one or more 

attributes will be more distal, with the magnitude of this distance increasing inline with 

magnitude of the difference. Objects that are particularly different in their attribute profiles 

41



Chapter 2: Formulation of methodology and hypotheses

(e.g., are distinct or erroneous cases) to most other objects become instantly detectable, 

appearing as isolated ‘outliers’ within the plot. 

The application of scatter-plots  to communicate general  similarity  can be taken a step 

further by using procedures that attempt to organise objects onto a visual plane based 

upon either their average similarity with respect to many different variables (e.g., vector 

similarity) or human judgements of their similarity. In other words the axes of a scatter plot 

do not necessarily relate to known or definable variables. This is often achieved using a 

class of techniques known as multi-dimensional scaling (MDS). MDS algorithms take a 

matrix of inter-object similarities (or dissimilarities) as input and output a low dimensional 

spatial configuration. The aim is to represent objects as a scatter plot of points in such a 

way that  the  relative  distances  between object  points  reflect  empirical  relationships  in 

underlying data (Coxon, 1982). Although clustering is not a specific aim of the algorithm 

high-density regions of nodes will often emerge in the resulting configuration and will be 

perceived by the viewer as clusters. As we will see in the next sub-section, such features will 

tend to be perceived as groups of objects that are highly similar in some respect.

As indicated,  the similarity  data to be scaled may be acquired directly  from subjective 

observations (e.g., asking people to rate the similarity of objects or concepts) or indirectly 

by measuring the correlation between objects with respect to a large number of defined 

attributes. For example, if the aim is to identify homogeneous groups of customers, then 

these attribute measures might relate to the frequency with which specific items or item 

types are purchased. More pertinent to this dissertation, if the aim is to model the structure 

of  a  large,  heterogeneous  collection of  documents then objects  (documents)  might  be 

defined in terms of their word frequencies. A measure of inter-document similarity can 

then be computed based on the  assumption  that  documents  with similar  word usage 

patterns will tend to be similar in their content. 

We apply a similar approach when creating our semantic models in Chapter 3. Before we 

do this, however, in section 2.4 we spend some time introducing the vector space model of 

document  representation  and discuss  how measures  of  document  similarity  computed 

from such representations can create meaningful  semantic models that can be used to 

automatically classify documents by topic. 
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Later in this section, we discuss how scatter plots of general similarity, for example those 

created  using  MDS,  have  been  applied  to  the  problem  of  browsing  and  searching 

document sets. First, we review the empirical evidence that supports the assumption that 

people can equate object similarity with node proximity within a scatter plot.

2.3.2. Comprehension of  spatial-semantic structures
So far in this section, we have argued that spatial cues are key to the way in which we make 

sense  of  our  environment.  We  explained  how  relative  proximity  is  a  powerful 

organisational  cue that  not only  implies  group membership,  but also relative  similarity 

between objects.  We then described how scatter plots  are traditionally  used to convey 

abstract relationships between objects in terms of one, two or three distinct attributes. We 

then extended this traditional view of the scatter plot by explaining how techniques like 

MDS can allow this medium to be used in a way that can convey general similarity between 

objects in terms of a complex range of distinct attributes.  

The idea of conveying a general similarity structures using relative, continuous proximity 

cues is  a compelling one. This is the essence of the spatial-semantic metaphor. In this 

section, we review some key studies that elucidate the human response to spatial-semantic 

document visualizations. 

Montello et al. (2003) describe the spatial-semantic metaphor (which they call the distance-

similarity  metaphor)  as  the  most  fundamental  principle  applied  to  any  information 

visualization that exploits the spatial substrate. As such they embody this principle in what 

they call the first law of cognitive geography. The terminology reflects the author’s geographic 

background and their aim to apply cartographic principles to spatial-semantic visualization. 

Their law derives from the first law of geography, which states that things that are relatively 

proximal within the environment tend to have similar properties (e.g., rainfall patterns, soil 

type etc.) 

The first law of cognitive geography states that: “people believe closer things to be more 

similar than distant things.” (Montello et al., 2003, p. 317). The authors were seeking to test 

the  truth  of  this  hypothesis  by  means  of  an  experiment  in  which  participants  were 

presented with a series of scatter plots and told that points (nodes) represented documents 

(Montello et al., 2003). For each trial, a source node (A) and two target nodes (1 and 2) 

were highlighted in the scatter plot. Participants were asked to judge, along a continuous 
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scale,  which pair  (A-1 or A-2) was more similar.  They found general  support  for the 

hypothesis – participants did tend to rate the more proximal pair as more similar and rated 

equidistant pairs as equally similar. 

However, they found that so-called feature emergent effects could override the effect of 

raw inter-node proximity cues, leading the participants to apply a feature rather a distance 

similarity metaphor. For instance, an emergent cluster effect occurred when A and one of 

the targets resided in the same high-density field of nodes (i.e., a visual cluster). The same 

cluster pair tended to be rated as more similar even if the second pair was more proximal. 

A similar effect resulted from linear features that emerged when a series of intervening 

nodes between one of the two pairs that was dense enough to create an effective pathway 

between the nodes.

This work has important implications for our interaction model.  Firstly,  it  could partly 

explain why, in his user study, Leuski (2001) found that users often had trouble making 

accurate proximity judgements, a problem that lead him to implement the star wizard to 

elucidate the rank order of the three most proximal documents. Secondly, these results 

suggest that visualizations that create a structure that is rich in emergent features (i.e., with 

many coherent clusters and possibly pathways) may provide the strongest visual cues to 

guide cluster growing, providing these features indeed convey same-aspect relationships. 

Classical MDS algorithms attempt to convey the relationships between all node pairs. This 

can result in somewhat amorphous (feature poor) visualizations. Later, in section 2.6, we 

describe an approach that can create scaled solutions that emphasise only the most salient 

inter-node similarities. Given that same-aspect document similarities are likely to be the 

some of the strongest within a given collection (Muresan and Harper, 2004: see section 

2.4.5), we propose in section 2.6.3 that the local optimisation approach can create a spatial-

semantic visualization that is rich in task relevant emergent features.

Montello et al.’s (2003) study was carefully designed so as to purely test the effects of 

spatial variables on assumed similarity of given node pairs. They did not test the utility of 

spatial-semantic cues for supporting the location of an actual semantic target. Westerman 

and  Cribbin  (2000)  conducted  an  experiment  where  participants  searched  a  spatial-

semantic scatter plot for target nodes representing concrete things. The main hypothesis 

was that participants would use the cues or ‘scent’ (Pirolli and Card, 1999) provided by the 
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spatial-semantic structure (i.e., knowledge of the location of similar and dissimilar nodes) to 

incrementally direct their navigation towards the target. 

The semantic objects used varied in their conceptual similarity, belonging to three distinct 

but potentially related classes: buildings (e.g., church, house), rooms (e.g., hall, lounge) and 

contents of buildings (e.g., chair, table).  Trials were run under 2 and 3 dimensional scatter 

plots conditions. The spatial-semantic structure was derived from a consensus matrix of 

inter-object similarity judgements acquired from human judges. A second factor, variance, 

created a second set of conditions where the fidelity of the spatial-semantic structure of 

both 2D and 3D visualizations was manipulated by adding varying amounts of noise to the 

original  scaled  solutions.  The  specific  hypothesis  was  that  if  participants  were  using 

proximity  as  a  cue  then performance  would  decrease  as  the  match between semantic 

similarity and relative proximity decreased.

The results of this study showed a significant linear relationship, between spatial-semantic 

match and user performance,  in  the expected direction:  performance decreased as  the 

location of nodes became more random. A second important finding was that whilst the 

use of the third dimension allowed for a better spatial-semantic solution, this benefit was 

outweighed by the additional cognitive demands associated with navigating in 3D space.

Finally,  and  perhaps  most  pertinently,  Leuski  (2001)  conducted  a  small  user  study  to 

establish the viability of the visual cluster growing strategy. Similar to Montello et al. (2003), 

for each trial, participants were presented with a scatter plot and told the nodes represented 

documents, with one of the nodes already highlighted as relevant. They were told to locate 

all other relevant nodes in the space (these were actual spatial-semantic solutions of TREC 

topic retrieval sets). As they clicked on unseen nodes they would change colour to indicate 

whether they were relevant or non-relevant. Hence, whilst they could not read the content 

of the underlying documents, as more nodes were clicked, the distribution of relevant and 

non-relevant documents in the space became more apparent.

Leuski (2001) found that users understood the spatial-semantic visualization and that the 

visual cluster growing strategy enabled them to locate relevant documents more quickly 

than they would have done using the ranked list.  However, similar to Westerman and 

Cribbin   (2000)  they  found  that  the  potential  benefits  of  a  3D  representation  were 

outweighed by the additional cognitive demands of interpreting and navigating the extra 
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dimension. Whilst Leuski’s (2001) simulated user algorithm was able to exploit the better 

preservation of inter-document similarity information within the 3D solution, users could 

not;  users  actually  performed  better  when  only  2D  cues  were  presented.  The  extra 

dimension seemed to make it harder for users to choose which unseen node was the next 

most proximal to the centre of the relevant cluster. We return to discuss the 2D versus 3D 

debate in more detail in section 2.6. 

In summary, there is good evidence that people understand the spatial-semantic principle 

and are able to apply this principle to support simple information search tasks. We have 

also  reviewed  evidence  that  suggests  that  2D  visualizations  are  likely  to  be  more 

comprehensible  than 3D visualizations,  despite  the  fact  that  3D can produce a  better 

spatial-semantic solution (a more faithful mapping of similarity to proximity). In the next 

section  we  consider  empirical  evaluations  of  interactive  visualizations  that  have  been 

applied to actual information retrieval tasks where users interact with the visualization in 

order to access and evaluate document content. 

2.3.3. Information seeking and spatial-semantic visualization 
Since  the  early  1990s  there  have been several  notable  attempts  to apply  and evaluate 

spatial-semantic techniques for document browsing and retrieval.  A common application 

of  such  visualizations  is  to  provide  thematic  overviews  of  document  collections.  A 

significant  value  of  this  approach is  in  the  ability  to  represent  large,  complex  topical 

structures within a compact space (Lin, 1997). For instance, there are examples of such 

overviews representing  the topical  structure,  and the position  of  individual  documents 

within this context, for collections of hundreds or thousands of items (Wise et al., 1995; 

Lin, 1997; Chen et al., 1998; Skupin, 2002).

These large-scale visualizations seem to be useful for providing users with an overview of a 

large collections, for instance to facilitate an understanding of the relationships between 

key terms and documents (Lin, 1997) and for providing users with clues to what topics are 

available and which terms might be used to begin more focused lines of enquiry (Chen et 

al., 1998). 

Chen et  al.  (1998)  conducted  studies  that  examined  browsing  and retrieval  behaviour 

within the Yahoo™ entertainment category and a self-organising map (SOM) visualization 

of  the  same  documents.  When  participants  were  asked  to  find  an  ‘interesting’  page 
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performance rates were comparable between the two browsing schemes, with 14 out 16 

Yahoo hierarchy users found an interesting page within 10 minutes compared to 11 out of 

15 SOM users. Subjectively, users liked the visualization because they were able to browse 

in a non-linear fashion, easily jumping from one part of the map to another, which is a 

difficult and time-consuming navigational task when using a menu-based system. 

However, whilst participants responded well to the visualization for the exploration task, 

participants disliked the lack of explicit structure present within the SOM, particularly the 

lack of  hierarchy.  Participants  also suggested that  alphabetical  listings  of  key terms be 

provided to support orientation. More recent work has gone someway to address these 

complaints. For instance, Skupin (2000) has applied hierarchical clustering to the document 

similarity data prior to layout, which results in a visualization that has a clear, three-level 

structure. This structure is made explicit through the use of legibility techniques borrowed 

from cartography such as proportional term label sizes and recursive bounding of zones to 

convey hierarchy and is similar in essence to the Treemap technique first proposed by 

Johnson and Shneiderman (1991). Also, Fabrikant (2000) demonstrated how term lists can 

be integrated with a spatial-semantic visualization.

Whether the negative feedback Chen et al. (1998) received on the SOM reflected a genuine 

lack  of  a  logical  structure  or  simply  that  users  were  more  comfortable  with  familiar 

schemes of web directories (i.e., alphabetical listings and human generated categories) than 

the computer generated structure is unclear. However, it is interesting to note the result 

when  participants  were  asked  to  relocate  their  interesting  item  in  the  other  scheme. 

Participants switching from the hierarchy to the SOM were considerably less successful: 

only two out of 16 participants found the same page in the SOM compared to eight out of 

15 participants who switched to the hierarchy.  The authors concluded that in order to be a 

successful  search  tool,  the  system  must  be  modified  to  integrate  both  querying  and 

browsing.

A later study by Hornbaek and Frokjær (1999) evaluated a hybrid system that combined 

spatial-semantic  visualization  with  querying.  Like  Chen  et  al.  (1998),  they  found  that 

participants valued the overview provided by a spatial-semantic visualization but found 

more directed browsing (e.g., finding similar documents) somewhat more problematic. The 

authors provided participants with a zoomable scatter-plot visualization of documents that 

was annotated with contextually placed key terms. They found that these terms were useful 

47



Chapter 2: Formulation of methodology and hypotheses

for inspiring  more focused searches.  They were also able to enter queries  and see the 

results of highlighted in context. They particularly liked this feature as it enabled them to 

understand the distribution (and relations) of retrieved documents and the relationship of 

retrieved documents to other terms. As with the Montello et al. (2003) study, emergent 

features (e.g., dense patches or clusters) proved particularly attractive to participants when 

browsing, for instance a cluster of documents resulting from a query would immediately 

attract attention.

However, whilst they understood the idea of spatial-semantic cues, participants often had 

trouble understanding the relationships between adjacent documents. It is not clear how 

often this was due to misplacements and how often this was simply because items were not 

similar in the expected sense (i.e., current query). On the other hand, users were also prone 

to place too much faith in the spatial-semantic model, often assuming that a document 

adjacent to a relevant item must also be relevant when this was not the case. These issues 

suggest that users not only need to see which documents are similar but also need to 

understand why neighbouring documents are similar. This is likely to be a particular issue 

when the object of browsing is to locate documents that are similar for a specific reason, as 

would be the case for the aspect cluster growing strategy.

This  seems  to  be  somewhat  contradictory  to  the  outcome  of  Leuski’s  (2001)  cluster 

growing experiments which found that directed browsing (retrieval) could be efficiently 

achieved using spatial-semantic cues. However, it is worth noting that the document sets 

visualized  by  Leuski  were  formed using  reasonably  precise  queries,  hence the  ratio  of 

relevant to non-relevant documents within the visualised set was high.  Also, because the 

relevant  topics  would  often  have  constituted  major  themes  within  their  associated 

document set it is likely that the relevant sub-set would generally have formed a major 

cluster feature within the visualization. As no formal analysis of the cluster growing strategy 

for more specific sub-topics was conducted, it is possible that the problems experienced by 

Hornbaek and Frokjær’s (1999) participants may have manifested amongst users of the 

Lighthouse  interface  (Leuski,  2001),  had the  focus  been on growing  more minor  and 

distinct clusters of relevance.

In summary, there is  good theoretical  and empirical  evidence that users can intuitively 

understand the principle of spatial-semantic mapping. There is also evidence to suggest 

that they can apply this understanding effectively to certain information seeking tasks, even 
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retrieval  tasks providing the relevant topic forms a major feature within the visualized 

collection. However, on balance of the evidence, spatial-semantic cues seem to be more 

useful and reliable for opportunistic searching (overview, exploration) rather than focused 

search tasks. The outstanding problem therefore seems to be that whilst spatial-semantic 

visualizations convey the general topical structure (major themes) of a document set or 

collection, more specific sub-topics are likely to be somewhat more obscurely represented 

within the structure.

The success of our interaction model depends first on whether it is possible to model the 

two-level  relevance structure and then on whether a visualization layout algorithm can 

render this structure effectively to 2D space. A notable feature of all the studies we have 

reviewed is that they only evaluate the utility of the visualization itself. There is no data 

reported  on the  extent  to  which  the  underlying  semantic  model  conveys  the  relevant 

structure or the extent to which node misplacement during the visualization process might 

have impacted negatively on user search performance. In this dissertation, we not only 

evaluate our interaction model and our core search strategy within the context  of our 

visualizations  but  also within  the  context  of  the  underlying  semantic  model.  We now 

further explain our rationale for performing the latter analysis by explaining the process of 

spatial-semantic visualization. 

2.3.4. The visualization pipeline 
Card et al. (1999) present a reference model for visualization (see Figure 2.5), which defines 

a process or pipeline that begins with raw data and ends in a structured, interactive view of 

the data. The raw data is first transformed into structured data tables of cases represented 

by specified, common variables. The next step is to encode the values of specified data 

variables  into appropriate visual variables  in order to create a visual structure that will 

convey the desired information. Each data case is represented by a mark (visual object) 

within the visualization. The value of a case for a specific variable can be encoded into the 

mark  either  by  varying  its  spatial  location  along  a  given  dimension  or  by  altering  its 

appearance along some visual scale such as brightness or size (see section 2.3.2). Finally, a 

view transformation presents this visual structure on screen. This is not the end of the 

process, however. In an interactive system, the user can then modify the default view of 

the visual structure and even the structure itself. View transformations might include, for 

example, changing the point of view (e.g., zoom and pan), selecting cases (location probes) 
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or filtering out unwanted cases. Changes to the visual structure itself by changing the visual 

mappings of existing variables or redefining which variables are to be mapped. 

Figure 2.5: Reference model for visualization (reproduced from Card et al., 1999, p.17)

We can describe our approach to spatial-semantic visualization as a special case within the 

context of this model. Our raw data is the text of the documents retrieved as a result of the 

user’s high-recall query. This is transformed into a semantic model (a set of data tables) by 

means of automatic text analysis. In this thesis we use a method based on the vector space 

model (Salton and McGill, 1983), which is described in greater detail in section 2.4.1. The 

important output of this process is an inter-document similarity matrix that contains values 

describing the lexical similarity (degree of term overlap) between all possible document 

pairs.  The visual  (spatial-semantic)  structure  is  then  created by  inputting  the  similarity 

matrix into a layout algorithm, which represents each document as a node to be located in 

visual (in our case 2D) space. The algorithm attempts to place each node in a location such 

that its  relative distance to other nodes is  inversely proportional  to their  similarity.  As 

already discussed, this approach is typically referred to as multi-dimensional scaling (MDS) 

and  is  discussed  in  more  detail  in  section  2.6,  where  we  consider  potential  layout 

algorithms  for  creating  our  spatial-semantic  document  visualizations.  A  default  view 

transformation creates an initial view of the spatial-semantic structure. In our interaction 

model, we envisage that this should be an overview showing the entire structure. In an 

interactive system, however, view transformations will occur throughout the search process 

as a result of user selections and commands. It is important to note that, for our purposes, 

the spatial structure of nodes remains static in order to provide a consistent,  learnable 

model of the retrieved document space. All changes to the visual structure are therefore 

augmentations of this persistent structure that make use of retinal variables (e.g., changing 
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the colour or transparency of a node) or add contextual objects to the visualization (e.g., 

term labels).

In summary our visualization pipeline consists of the following stages:

1. Creation of an inter-document similarity matrix by means of automatic text analysis 

of retrieved documents.

2. Transformation of the similarity matrix into a 2D spatial-semantic visualization.

3. Augmentation of the spatial-semantic structure based on user interaction.

Our  three  research  questions  are  both  inter-dependent  and  intricately  linked  to  the 

described  pipeline  of  transformations.  The  feasibility  of  our  interaction  model  and 

specifically  the  aspect  cluster  growing  strategy  is  ultimately  dependent  upon  the 

correspondence between inter-document similarity and the general and aspectual structure 

of the relevant topic as this serves as the sole input to the layout algorithm. It is then 

dependent  upon  the  ability  of  the  layout  algorithm to  preserve  the  key  parts  of  this 

modelled structure. Finally, any deficits in spatial-semantic structure need to be resolved by 

means of interaction between user and system. 

The underlying semantic model is critical to our approach. Relevant documents must be 

more  similar  to  each  other  than  they  are  to  non-relevant  documents  and  documents 

relevant to a specific aspect must be more similar to each other than they are to documents 

that discuss other aspects. The presence of this asymmetric, two-level hierarchical structure 

within the similarity matrix is key to our approach. Most importantly, for the purpose of 

the aspect cluster growing strategy, documents that discuss the same aspect of relevance 

must tend to be more similar to each other than they are to any other documents in the 

retrieved set. 

Hence, question one asks: To what extent can a standard text analysis procedure model the general  

semantic structure expected by our interaction model and particularly the low-level structure required by the  

aspect cluster growing strategy?

We examine the literature relating to this question in sections 2.4 and 2.5. We consolidate 

what is known about the potential to model the structure of the relevant topic within a 

retrieved document set. We find that this question has not yet been addressed directly by 
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previous work and therefore present a series of hypotheses that will be tested in Chapter 3 

and propose two tests to enable this analysis.   

Given a good similarity matrix, it is the responsibility of the layout algorithm to represent 

this structure faithfully as a 2D spatial-semantic structure. Information loss is inevitable 

during spatial-semantic visualization due to the dimension reduction involved. We need to 

ensure that we at least preserve the elements of this structure that describe the relationships 

between relevant documents. 

Given this we proposed question two, which asks:  Given an adequate semantic model, which  

approach to spatial-semantic layout best preserves the general and, in particular, the low-level structure  

expected by our interaction model?

In  section  2.6  we  explain  the  issues  associated  with  spatial-semantic  visualization  and 

propose  an approach that  we anticipate  will  optimise  the  preservation  of  same-aspect 

document  associations,  whilst  preserving  the  general  two-level  classification.  A  set  of 

related hypotheses is presented that will be tested in Chapters 4 and 5.

Finally, user interaction with the spatial-semantic structure is likely to be highly important. 

As we discussed in section 2.2.4, modelling and conveying topical structure in the absence 

of user feedback is always going to be a challenging, if not impossible goal.  The user must 

be able to indicate what is relevant and the system should respond to this feedback with 

cues that augment the spatial-semantic view in ways that support the search process.

As such, question three asks: Under what conditions does the aspect cluster growing strategy tend to fail  

and how can we use this knowledge to guide development of interactive support tools?

In section 2.7, we discuss how document search might be supported when spatial-semantic 

cues fail to adequately support the aspect cluster growing strategy. We suggest that many 

problems  may  result  from  compromises  in  the  spatial-semantic  layout  process.  We 

therefore discuss how the reinstatement of relative similarity cues might usefully support 

aspect cluster growing. We then reflect on our discussion in section 2.2.4 and suggest that 

in some cases the general similarity relationship between same-aspect documents may not 

be particularly strong due to conceptual diversity in the exemplar and/or its relations.   
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We propose the notion that exploring the influence of exemplar factors might lead to a 

better understanding of the conditions that result in low similarity between same-aspect 

documents. Exemplars are representatives of a specific aspect that may be used as the basis 

for  aspect  cluster  growing.  Exemplar  factors  describe  the  relationship  between  the 

exemplar and other aspect-relevant documents within the context of all documents within 

the retrieved set, for example the size of the aspect, and the complexity of the exemplar 

contents within the context of the topic. We suggest that by understanding the nature of 

documents that make poor exemplars we can develop effective interactive tools to support 

the aspect cluster growing strategy.

In this section, we first discussed the evidence that supports the use of spatial-semantic 

visualization  as  a  means  of  supporting  information  seeking.  We  then  outlined  the 

visualization  pipeline,  which describes  the process of  spatial-semantic  visualization  and 

places our research questions within the context of this process. Hence, the remaining 

purpose of this chapter is to review the literature pertaining to the three main research 

questions. In the next section, we focus on question one and, through a review of the 

empirical evidence, demonstrate that it may be possible to model create the required two-

level semantic model using a simple text analysis procedure. 

2.4. Modelling topical structure
The kinds of spatial-semantic visualization described in the previous sections, and required 

by our interaction  mode,  are created using automatic (unsupervised)  procedures.  They 

therefore  depend on the  assumption that  documents  that  discuss  the  same or  closely 

related concepts tend to have quantitatively similar representations within the underlying 

data model. In most cases, inter-document similarity  measurement is made possible by 

representing documents as high-dimensional term occurrence vectors. We now discuss the 

vector space model and examine the theoretical basis for its utility in modelling the topical 

structure of a document collection.

2.4.1. Vector space model
In the early days of online IR, documents were represented as bibliographic data, using a 

strictly controlled vocabulary for content descriptors. Modern systems now also index and 

match documents to queries according to their literal content, be it full text or abstract 

only. Retrieval is no longer dependent upon a perfect match; document relevance can be 

calculated  on  a  continuous  scale  based  on  the  similarity  to  the  query  (which  might 
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comprise dozens of terms). This allows two things: the use of more natural language or 

free form (as opposed to faceted Boolean) queries and more fine-grained relevance ranking 

of retrieved documents.

Similarity searching of primary content is made possible by the application of the vector 

space model (VSM) to document representation. The origins and development of the core 

principles and techniques of the vector space model approach can be traced to the SMART 

project,  which began at  Harvard University  in  1961 (Salton,  1991;  Salton and McGill, 

1983). In this model, documents are represented as high-dimensional vectors where each 

dimension is associated with a unique term (e.g., word or phrase). A term vector for a given 

document therefore represents a profile,  within a common space (term vocabulary),  of 

term weights that can be directly correlated to either a query, represented in the same 

format,  or  other  document  vectors.  This  correlation  provides  a  measure  of  general 

similarity between any two items. The most commonly used similarity metrics in IR are 

based  normalised  measures  based  on  the  dot  product  such  as  Cosine  and  Dice  (see 

Korfhage, 1995). These produce continuous values in the range of 0 (no similarity) to 1 

(identical). 

The primary focus of this work is the use of vector space representations to build a semantic  

model of a given document collection or sub-set, rather than to perform retrieval per se. The 

term  semantic  model  is  used  here  to  describe  both  the  term-document  vector  space 

representation of  documents (term -  document  matrix)  and the matrix of  inter-document 

similarity values (similarity matrix) derived from the comparison of document vectors. We 

will refer to the process of creating a vector space model and deriving a similarity matrix as 

automatic text analysis.

The creation of a semantic model and particularly the similarity matrix is a computationally 

expensive  procedure.  It  normally  begins  by  parsing  the  document  texts  to  identify  all 

unique terms that occur. The size of this ‘vocabulary’ can increase rapidly in as the number 

of documents considered increases, particularly if the nature of the content is quite diverse. 

For instance, in the test scenarios we build in Chapter 3, a set of 127 reasonably short 

newspaper articles contains over 5000 unique words.

Traditional indexing heuristics can be applied to reduce the size of the vocabulary (see 

Salton and McGill, 1983). For instance stop-words (e.g., and, their, also) can be removed as 
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can low frequency words (e.g., those that occur in only one document) and stemming can 

be applied to merge morphological variants of words (see Porter, 1980). Even after such 

measures, however, the size of the common term space for a collection of even a few 

hundred documents is likely to remain in the thousands.  Computing document similarities 

for  all  possible  pairs  from a  vector  space  of  this  magnitude  can  be  computationally 

expensive as  (N2 – N)/2 comparisons, where N is the number of documents, must be 

made to create a complete similarity matrix. Hence, there have been many attempts to 

reduce the size of vocabularies even further, including the application of a statistical factor 

analysis on the term-document representation to represent terms as a smaller number of 

common  factors  (LSA:  Deerwester  et  al.,  1990)  and  the  replacement  of  terms  with 

concepts  modelled  using  neural  networks  (Wise  et  al.,  1995;  Lin  et  al.,  1991).  In  this 

dissertation,  however,  we  do  not  explore  the  relative  merits  of  these  more  advanced 

techniques,  focusing  instead  on  the  potential  of  semantic  models  produced  using  a 

standard term vector space approach. 

2.4.2. The cluster hypothesis
Having covered the application of the vector space model to semantic modelling, we now 

consider the theoretical  rational  for applying clustering and scaling techniques to these 

models in order to improve the representational structure of documents retrieved by a 

given query.

The cluster hypothesis of IR states that closely associated documents tend to be relevant to 

the same requests (Van Rijsgergen, 1979). In the classic information retrieval model, the 

goal of the query reformulation process is to move the query vector closer to the centre of 

the cluster of relevant document vectors. The corollary of the cluster hypothesis is that 

relevant documents, for any given query, should be more similar to each other than they 

are to other, non-relevant documents within a collection.

If  this  derived  hypothesis  is  true,  this  leads  to  the  possibility  that  applying  cluster 

algorithms to either the document collection or a sub-set of it may be a valuable tool for IR 

system design (van Rijsbergen, 1979).  Since the cluster hypothesis was proposed, there 

have been two main applications of clustering in experimental IR systems: improving recall 

and efficiency  of retrieval  by pre-clustering the collection and matching queries  to the 

centroids (mean vectors) of document clusters rather than individual documents; and post-

retrieval clustering as a means of improving the organisation of search results.
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2.4.3. Cluster-based retrieval
The first attempts to exploit the clustering properties of document vectors applied a one 

time hierarchical  clustering to an entire document collection (Willett,  1988).  In cluster-

based retrieval,  when a query is issued, the system searches the cluster tree in either a 

bottom-up or top-down fashion retrieving all documents belonging to clusters that match 

the query above some threshold similarity score. There have been many variations on this 

strategy, however evaluations of experimental systems suggest that successful results only 

occur when the IR system comprises a relatively small document collection (Willett, 1988). 

Voorhees (1985) compared traditional  sequential  searching with cluster-based searching 

across four different collections. The author also compared these strategies to a hybrid 

strategy where individual documents within matching clusters are matched to the query 

rather than just retrieved by default. The results showed that the cluster-based searching 

generally  resulted in poorer  performance than the other  two strategies.  Also,  while  all 

strategies were affected by the general extent to which relevant documents clustered within 

a collection,  highly cohesive relevant sub-sets did not tend to favour the cluster-based 

retrieval strategy.

2.4.4. Retrieval set organisation
Hearst  and Pederson (1996)  hypothesised  that  the  poor  performance  of  cluster-based 

retrieval methods might be partly because inter-document similarity and therefore tendency 

to cluster was seen as a static property that could be computed once and independently of 

all  possible  query  situations.  They  suggested  that  the  relative  similarity  of  a  pair  of 

documents would depend upon the context in which they were considered. The logic of 

this is sound: if document A is about cats and dogs and document B is about only dogs, 

then  when  considered  within  the  context  of  a  query  focused  on  dogs  they  would 

potentially be quite similar, but dissimilar were the query focused on a cat related topic. 

Based on their assumptions regarding the importance of context, Hearst and Pederson 

(1996) proposed the use of dynamic, post-retrieval clustering where only the frequency of 

terms  that  characterised  the  retrieval  set  were  used  to  calculate  document  similarity. 

Evaluation of this interface, called Scatter/Gather, showed that clustering documents on 

the basis of similarity within the ‘local context’ of the query reliably produced solutions 

where the majority of relevant documents would tend to be assigned to the same 1 or 2 

clusters within a 5-cluster solution.
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The importance of  regarding document similarity  as a context-dependent  property has 

been further emphasised by Tombros and van Rijsbergen (2001), who suggest that when 

clustering a retrieval set, the measurement of document similarity should be biased towards 

the co-occurrence of terms that appear within the user’s query. Their approach yielded a 

more coherent clustering between relevant documents compared to traditional similarity 

measures that treat all terms appearing within the retrieval set as equal. 

On a more pertinent  note,  Rorvig and Fitzpatrick (1998)  have evaluated post-retrieval 

document organisation using MDS derived spatial-semantic solutions. They found that, 

using an appropriate scaling technique, most documents relevant to the query tended to 

converge, forming a single dense, ‘bulls-eye’ cluster within the centre of the visualization. 

The work of Leuski (2001), which we described in section 2.2, has also demonstrated the 

tendency of relevant documents to cluster within a scaled solution or retrieved documents, 

as evidenced by the promising results of his cluster growing strategy.

2.4.5. Aspectual cluster hypothesis
Wu et al. (2001) also conducted a study of post-retrieval clustering, similar to Hearst and 

Pederson (1996),  but deliberately  studied more complex topics.  These topics,  from the 

TREC interactive track (see Over, 1997), comprised relevance judgements that were sub-

divided into distinct aspects of relevance to the topic, allowing them to test not only the 

extent to which relevant documents converged on the same cluster(s) but also the extent to 

which same aspect documents converged. They too found documents that were relevant to 

the  topic  as  a  whole  tended  to  converge  on  one  or  two clusters  (solutions  generally 

comprised six or seven clusters). However, documents relevant to the same aspect did not 

generally tend to converge on same cluster, as one might expect. 

The work of Muresan and Harper (2004) sheds some light over why clustering might have 

failed at the aspect level. Their studies showed that, for complex topics, there was a non-

reciprocal  relationship  between  relevance  and  similarity.  This  is  summarised  in  their 

aspectual cluster hypothesis, which states that:

Similar documents tend to be relevant to the same requests, but documents relevant to the  

same requests are not necessarily similar. They tend to be dissimilar if they cover different  

aspects of the same complex topic 

(Muresan and Harper, 2004, p.896)

57



Chapter 2: Formulation of methodology and hypotheses

Their experiments (which also used the TREC interactive test collection) showed that the 

distribution  of  computed  similarities  between  relevant  document  pairs  was  positively 

skewed, with many values approaching zero. When they considered only document pairs 

that discussed the same aspect of the topic, they found that the skew, whilst still apparent 

was  far  less  pronounced,  and  the  mean  similarity  of  same  aspect  documents  was 

significantly  greater  than  mean  topic  similarity  and,  in  turn  mean  set  similarity  (all 

similarities).

They also studied a large range of clustering solutions. Like Wu et al. (2001) they found 

that most solutions comprised a small proportion of good clusters containing most of the 

relevant documents. However, they also noted that documents in the best clusters tended 

to be ones that were highly topical; they discussed more than one aspect of the relevant 

topic.  The  explanation  for  this  is  that  the  more  aspects  of  the  relevant  topic  that  a 

document discusses, the more likely it is to be highly similar to another relevant document. 

A  non-hierarchical  (i.e.,  k-means)  clustering  algorithm  will  aim  to  find  large  groups 

(depending on the target number of clusters) of generally  similar objects,  hence highly 

topical (multi-aspect) documents stand the best chance of being allocated to the cluster 

that contains most of the relevant documents. The reverse consequence of this is  that 

documents that are highly focused on only one aspect of a complex topic are likely to be, 

on average less similar to other relevant documents, and as such tend to be scattered over 

the cluster structure. This goes some way to explaining the poor outcome of Wu et al.’s 

(2001) clustering study.

Muresan’s (2002) solution to the problem was to develop a system that assisted the user in 

generating  multiple  queries,  each one being  focused on a  distinct  aspect  of  relevance. 

Evaluation  of  this  system  produced  positive  results,  however  this  mediated  retrieval 

system,  WebCluster,  is  dependent  upon  the  availability  of  an  appropriate,  existing, 

structured resource that can be browsed in order to identify a set of aspect exemplars. 

These  exemplars  are  then  used  to  formulate  a  set  of  focused  aspect-queries  that  are 

subsequently issued to a larger document index. In his study, this resource was manually 

constructed for the purpose of the experiments. In effect our approach is dealing with the 

problem  of  how  to  automatically  generate  such  a  useful  structured  resource  from 

documents retrieved from an early, tentative query.
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The implications of Muresan’s (2002) findings, combined with those of Leuski (2001) and 

Wu et al. (2001) suggest that clustering may not be an appropriate document organisation 

technique for our needs. This is because the identification of a relevant aspect exemplar in 

a particular cluster would not necessarily help the user in locating further documents about 

that aspect, as they stand a good chance of occurring in other clusters. For example the 

user might be browsing a good representative cluster, the expected strategy when using a 

discrete clustering solution (Hearst and Pederson, 1996), and come across a document that 

discusses the novel  aspect,  A.  It  appears  in  the good cluster  because it  also discusses 

aspects B and C. Unfortunately, the two other documents that discuss aspect A discuss 

only that relevant aspect. According to the aspectual cluster hypothesis, the consequence is 

a high likelihood they will reside in another cluster: the cluster structure provides no clues 

as to where to find other documents that discuss aspect A.  Furthermore, if they are highly 

distinct with respect to the relevant topic, and also discuss other non-relevant topics there 

is no guarantee that they will reside in the same cluster. In other words a sub-set of three 

documents discussing the same aspect could quite easily be scattered across three clusters.

A central hypothesis in this work is that spatial-semantic document organisation will be less 

affected by this problem because association between documents is represented along a 

two-dimensional,  continuous  scale  rather  than  by  discrete  membership.  In  theory,  a 

document that discusses more than one aspect can be placed at a point of inter-section 

between these aspect sub-sets. The anticipated consequence is that there will be a good 

chance that aspects comprising both highly topical and aspectually distinct documents will 

not be grossly separated within the organisational structure. There is currently no direct 

evidence to support this notion. Although previous studies have examined general topic 

clustering (i.e., Rorvig and Fitzpatrick, 1998; Allen et al., 2001), as far as we know there has 

been no work that has formally evaluated the tendency of distinct aspects to cluster within 

a spatial-semantic visualization of a retrieval set,  although Swan and Allan (1998) have 

shown how spatial-semantic visualization can be used to determine which newly retrieved 

documents  are  most  likely  to  be  relevant,  but  aspectually-distinct  from  those  already 

retrieved. Hence, such an evaluation is primary aim of this thesis (question two) and is 

discussed further, in this chapter, in section 2.6. 

More pertinent  at  this  stage is  the  question  of  whether  the  classification  observed by 

Muresan and Harper (2004), where relevant documents that discuss the same aspect of the 

topic are more similar to each other than relevant documents that discuss different aspects, 
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generalises  to  the  context  of  our  interaction  model.  Their  test  bed  consisted  of  175 

documents  known  to  be  relevant  to  six  different  TREC  Interactive  topics,  and  572 

documents judged to be non-relevant to these six topics. 

In our interaction model the set to be organised is retrieved with one topic in mind, but is 

likely to contain many documents discussing other topics. Whilst non-relevant documents 

might well form topical clusters, this possibility is not considered in our following analyses 

(Chapters 3 to 5).  We are only interested in creating one main relevant cluster that is 

reasonably distinct from non-relevant items, and in organising the contents of this cluster 

according to aspects of the relevant topic. A major concern, that the trend observed by 

Muresan and Harper (2004) might not be observed in a query-retrieved set, stems from the 

fact that within such a set, many documents will be similar to relevant documents, despite 

being non-relevant to the intended topic. In Muresan’s study (Muresan, 2002; Muresan and 

Harper,  2004)  documents  were  manually  selected  on  the  basis  of  relevance  and near 

relevance  to  several  distinct  topics.  This  would  have  almost  certainly  exaggerated  the 

difference between the same-topic and all  document distributions.  Hence, there are no 

guarantees that the same hierarchical structure can be produced in this context. 

Given this we now return to our first research question that we posed in Chapter 1:  To 

what extent can a standard text analysis procedure model the general semantic structure expected by our  

interaction model and particularly the low-level structure required by the aspect cluster growing strategy?

By semantic structure we mean a two-level hierarchical classification. The first level of the 

hierarchy consists of relevant and non-relevant documents, and the second level is broken 

down into aspects of relevance. For our purposes this is a non-symmetric hierarchy, as we 

do not consider the topical or aspectual structure of non-relevant documents. Following 

the  results  of  Muresan  and  Harper  (2004),  we  would  expect  a  general  trend  where 

documents discussing the same aspect will be most similar, documents discussing different 

aspects  of  the  relevant topic  to be significantly  less  similar,  and documents discussing 

different topics to be least similar.   

Muresan and Harper (2004) also found that the allocation of individual documents to the 

second level nodes is not exclusive: some documents will discuss more than one aspect of 

the topic.  Whilst  we would expect  that  documents allocated to the same node at  the 

second level to generally be the most similar pairs within the collection, we would also 
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expect  the  extent  to which  aspect  sub-sets  overlap  to  affect  the  degree  of  separation 

between the same-topic and same-aspect similarity distributions.

In the next section, we construct methodologies for testing both the general classification 

hypothesis and the potential success of the aspect cluster-growing hypothesis. We form 

general hypotheses relating to the expected success of these tests when applied to the 

semantic models associated with specific test scenarios. We also form a specific hypothesis 

relating to the effect of aspect overlap on relevant classification within the semantic model. 

Finally, we return to our earlier discussion of the importance of a topically-focused context 

by  considering  and formulating  a  hypothesis  with respect  to the  effect  of  set  size  on 

relevant classification within a semantic model for a given test scenario.

2.5. Testing the cluster hypothesis 
In evaluating the feasibility of our interaction model, we could just progress directly to a 

proof of concept by applying our semantic models to, and evaluating the results of, various 

spatial-semantic layout algorithms. Whilst this is an intuitive approach, this methodology 

alone is flawed because it ignores the variation in configurations that are possible from one 

clustering or scaling algorithm to another. For instance, Rorvig and Fitzpatrick (1998) only 

observed the characteristic bulls-eye effect for relevant documents when they applied a 

particular type of scaling that implemented a maximum-likelihood estimation procedure.  

Following on from our discussion of the cluster and aspectual cluster hypotheses, in this 

section we argue the importance of testing the potential  for relevant documents to be 

clustered, or their classifiability, by studying the clustering properties of documents within 

the  vector  space  itself,  before  performing  and  evaluating  any  practical  clustering 

experiments. This is important for two reasons. First, if relevant documents do not cluster 

in vector (similarity)  space according to the expected topology,  then it  is  unlikely  that 

clustering will be successful and it may be beneficial to first look at alternative methods of 

modelling  the  semantic  structure  of  the  collection  prior  to  attempting  any  kind  of 

clustering.  Second, if analysis shows evidence of the required classification structure in 

similarity  space,  then  poor  clustering  performance  of  a  particular  algorithm  should 

motivate  attempts  to  first  test  alternative  algorithms  before  considering  an  outright 

rejection of the cluster hypothesis. 
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There are two main,  traditional  approaches to testing the cluster  hypothesis  from this 

perspective. In this section, we begin by reviewing these methods. We then explain why 

these methods are inadequate, in their existing format, for testing our interaction model as 

they  only  consider  document  relevance  as  a  simple  binary  property  (relevant  or  non-

relevant). We then introduce the test that Muresan (Muresan, 2002; Muresan and Harper, 

2004) used to test the aspectual cluster hypothesis. We present a revised version of this test 

that reflects the goals of our hypotheses.  

2.5.1. Cluster hypothesis tests
There are two well-known approaches that have been used to test the cluster hypothesis 

from  this  fundamental  perspective.  Although  these  apply  a  simple  binary  model  of 

relevance, rather than the hierarchical  model that we are interested in, it is worthwhile 

outlining these approaches first as they view the problem of testing the cluster hypothesis 

from quite different perspectives.

The original  cluster  hypothesis  test,  which we will  refer to as  the separation test,  was 

proposed  by  Jardine  and  van  Rijsbergen  (1971)  and  is  also  discussed  later  by  van 

Rijsbergen in his book (van Rijsbergen, 1979). Positive results from early applications of 

this test were used to demonstrate the potential of cluster-based searching within specific 

collections (Jardine and van Rijsbergen, 1971; van Rijsbergen and Sparck-Jones, 1973).

In this  test,  given a test  collection  and set  of  queries,  two distributions  of  values  are 

calculated. This first comprises all similarities between relevant document pairs (R-R). The 

second distribution comprises all similarities between pairs of relevant and non-relevant 

documents  (R-NR).  The operational  hypothesis  is  that  mean R-R will  be  significantly 

higher than mean R-NR, meaning that relevant documents tend to be more similar to each 

other than they are to non-relevant items. 

Voorhees (1985) argued that the separation test was flawed because it concealed the effect 

of  non-relevant  documents  that  were  also  highly  similar  to  relevant  documents.  For 

example, an R-NR sample may contain an equal number of highly similar document pairs 

to  the  R-R sample,  but  because  the  former  sample  is  larger,  these  strong  similarities 

contribute relatively little to the mean.  Hence, it is possible for there to be a significant 

difference between the R-R and R-NR distributions even though there may be a significant 

number  of  non-relevant  documents  that  are  equally,  if  not  more  similar  to  relevant 
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documents than other relevant documents. The extent to which relevant documents form 

exclusive clusters is clearly important when it comes to both cluster-based searching and 

dynamic clustering application. Given this, Voorhees proposed the nearest neighbour test.

The test involves taking all relevant documents, for all queries comprising more than one 

relevant document, and counting the number of relevant documents occurring in the top n 

(Voorhees used n=5) most similar documents for each case. Voorhees found that nearest 

neighbour values varied widely between collections, providing an explanation as to why 

cluster-based searching tended to be less successful in some test collections than others.

One can view these two tests as providing complementary data on the suitability  of a 

document  set  for  clustering.  The separation test  simply  measures  the  extent to which 

relevant documents will tend to form a cluster in term space, whilst the nearest neighbours 

test provides a measure of the extent to which relevant documents tend to form exclusive 

clusters. 

2.5.2. Testing the aspectual cluster hypothesis
Whilst these tests are useful for measuring relevant document clustering for simple topics, 

in this work we are interested in clustering complex topics. More specifically we seek an 

asymmetric  hierarchical  classification  that  distinguishes  relevant  from  non-relevant 

documents at the top level and distinct aspects of the relevant topic at the second level.

Muresan (2002)  proposed  and applied  a  test  for  this  kind  of  classification.  Originally, 

Muresan intended to simply adapt the cluster separation test by including the similarity 

distributions for same aspect and different aspect pairs. However, the impact of aspect 

overlap,  where  documents  discuss  more  than  one  aspect,  created  a  problem.  Aspect 

overlap would mean that many document pair similarity values would contribute to both 

aspect level distributions – a pair that were similar on aspect A could also be dissimilar with 

respect to aspect B. 

Muresan therefore proposed a simplified version of the separation test. In this test three 

distributions are calculated. These are: all similarities between all document pairs within the 

set;  topic  similarities between all pairs of topically relevant documents within the set; and 

aspect similarities between all  pairs of topically  relevant documents that discuss the same 

aspect.  The hypothesis  was  steady increase  in  mean from all,  through topic  to aspect 

similarity distributions. 
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Muresan’s test treats each valid document pair as a single case. Inevitably, the distributions 

increase  in  size  as  the  semantic  focus  becomes  less  specific,  meaning  that  there  are 

considerably  more  topic  similarities  than  aspect  similarities  and  considerably  more  set 

similarities than topic similarities, making analysis of variance comparisons problematic. 

Given this and the nature of our interaction model, we modify Muresan’s separation test 

slightly. The aspect cluster growing strategy demands that any relevant document should be 

a good aspect cluster growing exemplar, that is the document is more similar (therefore 

proximal in visual space) to documents that discuss the same aspect than to documents 

that  discuss  different  aspects  or  different  (non-relevant)  topics.  Hence,  we  treat  each 

relevant document, rather than each similarity value per se, as a distinct case. 

In our test, we generate three distributions of k cases, where k is the number of relevant 

documents for the given set. For each case we compute mean aspect similarity, mean topic 

similarity and mean set similarity. This test, therefore, measures the cluster separation of 

same-aspect, same-topic documents within the overall distribution of documents present in 

a given collection. If our cluster growing strategy is feasible then as the comparison set 

becomes semantically broader, we would expect mean similarity to drop. For continuity, 

we will refer to this test as the aspect cluster separation (ACS) test. Hence, our first hypothesis 

(H1), which considers all topical scenarios under study, is that:

H1: The two level  classification  structure  (topic  and aspect  cluster  separation)  will  be  evident  for  all  

scenarios whereby relevant documents will be, on average, more similar to the sub-set of documents that  

discuss the same aspect(s) than they are to the sub-set of generally relevant documents and, in turn, least  

similar to the retrieval set as a whole.

This test has the same limitation of van Rijsbergen’s (1979) test: it can prove that aspect 

similar documents tend to be more similar than documents that discuss different aspects or 

different topics, but it does not allow us to predict the potential precision of the cluster 

growing strategy, for instance how many relevant but aspect different documents, or non-

relevant  documents  intermingle  within  the  same aspect  cluster.  We therefore  propose 

another, complementary test based on the nearest neighbours test (Voorhees, 1985). We 

call this the  nearest aspect neighbours (NAN) test.  In this test we measure, relative to each 

relevant document, the rank order position of the first and second same aspect documents. 

These raw measures can be analysed in pure form or we can calculate a variant on the R-
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precision measure used in the TREC evaluations (see Muresan and Harper, 2004).   R-

precision is the precision at rank R where R equals the number of relevant documents. 

However, as exemplars will vary widely in their aspect sub-set size, we apply a standardised 

precision measure, which we term R2-precision, to compare between cases. R2-precision is 

the precision of the explored sub-set at the point where the second relevant document is 

found. 

It is difficult to set a concrete hypothesis for this test when applied to a given semantic 

model as we are considering a single distribution. However, Muresan and Harper (2004), 

when  evaluating  their  mediated  query  techniques,  report  that  nearest-neighbour  R-

precision values for single exemplar aspect queries in their test collection averaged around 

0.18. Research also shows that searchers typically have little patience for browsing further 

than around 10 to 20 items in ranked list presentation format (Jansen et al, 2000). We 

therefore consider two positive finds within 10 documents (10-precision=0.2) to indicate a 

reasonable criterion for a successful search. As such for H2 we will  be looking for an 

average R2-precision of at least 0.2 (the rank of second closest relevant document will tend 

to be equal to, or less than, 10):

H2: R2-precision for NAN in similarity space will be equal to or exceed 0.2 in most exemplar cases. 

Naturally,  if  H1 and H2 are  supported,  we  need  to know how best  to  translate  this 

classification faithfully to a spatial-semantic layout. We can apply these same tests to the 

inter-document proximity data associated with our spatial-semantic solutions. In particular, 

we find that our nearest neighbour test applied to spatial-semantic proximities provides a 

suitable means of simulating the basic aspect cluster growing strategy, where the user is 

expected  to  view  documents  in  proximity  order  to  the  exemplar.  We  set  hypotheses 

relevant to this question and discuss methodology later in section 2.5. 

First,  however,  we consider  two factors  that  are  likely  to influence  the  fidelity  of  the 

classification that we are seeking in our semantic models: these are aspect overlap and 

retrieved document set size.

2.5.3. Aspect overlap
The success of the aspect cluster  growing strategy depends upon the extent to which 

documents relevant to each aspect form reasonably coherent and exclusive sub-sets within 

scaled space. In order for this to be possible,  the necessary structure must at least be 
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present within the semantic model.  In the previous sub-section, we specified a general 

hypothesis that predicted a two level classification whereby relevant documents tend to 

form a general cluster within the general vector space of the retrieved set and, in turn, 

aspects form coherent and distinct sub-clusters within this general cluster. We outlined two 

tests that allow us to test this hypothesis with respect to vector space models. 

The tendency of aspect sub-sets to form distinct clusters will depend upon the extent to 

which the document members are conceptually similar to each other and distinct from 

other documents in the retrieved set. Ideally, all relevant documents should be focused 

texts that discuss only one aspect of the topic. In reality documents may talk about more 

than one aspect  of  the  relevant topic  and many other concepts  besides.  Furthermore, 

topical structure is likely to vary within an aspect sub-set from one document to the next. 

We need to study both the lower and upper bounds of conditions that might face our 

interaction model. As such, we will compare two topical scenarios - a topical scenario in this 

context comprises an open-ended question or topic, a set of known aspects of that topic, 

and a retrieved document set that contains one or more documents relevant to each of 

those aspects. We will choose one where the topical structure is conducive to aspect cluster 

growing and another where the use of the strategy is more challenging.

A conducive topical scenario is one where relevant documents (from our test collection) 

tend to focus mainly or only on one definable aspect of the relevant topic. In other words, 

aspects  are relatively  distinct  within  the context  of  the  similarity  matrix  because these 

related documents will tend to be relatively similar to each other in comparison to other 

relevant and non-relevant documents. For the more challenging scenario, we will select a 

topic where many relevant documents tend to discuss several aspects of the topic. From 

the work of Muresan and Harper (2004) we know that relevant documents that are more 

topical in nature (discuss several aspects) tend to converge on to large thematic clusters and 

may thus become relatively segregated from other documents that discuss only one related 

aspect of the topic, particularly when dimension reduction algorithms (e.g., clustering) are 

applied. 

This  means that  we would expect  that  in  the  more challenging  scenario,  same aspect 

documents  will  tend  to  be  spread  more  broadly  around  relevant  document  nodes, 

particularly  those specific  documents that are known to discuss many aspect.  In other 
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words, we would expect the difference between mean aspect and mean topic similarities to 

be smaller. 

Correspondingly  we  would  also  expect,  for  the  challenging  scenario,  that  the  local 

neighbourhoods  of  relevant  documents would be  more likely  to contain  a  mixture of 

different  aspects,  meaning  that  for  a  given  document  and  specific  aspect,  the  nearest 

relevant neighbours will be relatively less highly-ranked than would generally be the case in 

the more conducive scenario.

Hence, with respect to the first perspective, our third hypothesis (H3) is:

H3: In the overlapping aspect scenario, topic and aspect level cluster separation and mean R2-precision  

scores will be lower than in the distinct aspect scenario.

2.5.4. Document set size
The main argument for dynamic rather than static document clustering is that document 

similarity is a dynamic quality that is dependent upon the context in which it is considered 

(Hearst and Pederson, 1996). Two documents that are highly similar within the context of 

a topically  precise retrieval  set may be relatively dissimilar when considered within the 

context of a large document collection.

In our interaction model, we assume our searcher is unable to specify a precise query but 

they are able to specify one or two key terms that broadly define their topic. Although a 

large number of non-relevant documents will  remain,  retrieving documents relevant to 

such a query will significantly increase the salience of the topic and its aspects within the set 

of documents to be browsed. Most importantly, this will be reflected within the vocabulary 

used to define document vectors, where terms that define the topical structure will form a 

much larger proportion of all  terms and therefore play a larger role  in defining inter-

document similarity.

Potentially, such a broad query could still retrieve a very large number of documents. An 

important question is what proportion of the top ranking retrieved documents should be 

retained and visualised? First, there is a trade-off to be made between maximising recall of 

relevant documents and maximising precision,  which is likely  to fall  as recall  increases 

(Salton and McGill, 1983). Second, as precision drops so does the salience of the topic 

within the conceptual space. Furthermore, as set size increases the complexity of spatial-
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semantic  layout  increases  exponentially  (see  section  2.6.2),  resulting  in  more  node 

misplacements  and  therefore  potentially  poorer  aspect  clustering.  Furthermore,  if 

documents  are  to  be  represented  by  distinct  nodes  (visual  marks),  then  problem  of 

displaying these nodes legibly also increases with set size.

We return to spatial-semantic issues relating to set size in section 2.6.5. With respect to 

classification fidelity within the semantic model we would expect this to decrease as set size 

increases, which leads to our fourth hypothesis:

H4: In the smaller retrieval set scenario, topic and aspect level cluster separation and R2-precision scores  

will be greater.  

2.6. Optimising layout for aspect cluster growing 
Having considered the importance of testing classification properties  of the underlying 

semantic model and appropriate methods for doing so, in this section we take the next step 

forward to consider  spatial-semantic  visualization  issues.  We critically  discuss  different 

approaches to spatial-semantic visualization within the context of our interaction model. 

We suggest that an algorithm that focuses on optimising local structures may be more 

effective than more commonly used algorithms that attempt to create globally  optimal 

solutions. We therefore propose a comparison between algorithms of each type. 

The aim of spatial-semantic visualization is to represent the inter-document similarities 

described in high-dimensional vector space as accurately as possible as proximities in two 

or three dimensional visual space. More specifically, the resulting proximities must partition 

relevant documents from non-relevant ones and most pertinently of all, for the purpose of 

aspect cluster growing, partition the aspect sub-sets. 

In this section, we consider the issues associated with translating the required structure 

from similarity to visual space. Hence, we assume that hypotheses 1 and 2 are supported 

and the problem is one of choosing the most appropriate layout algorithm. This relates 

directly to question 2, which asks:  Given an adequate semantic model, which approach to spatial-

semantic  layout  best  preserves  the  general  and,  in  particular,  the  low-level  structure  expected  by  our  

interaction model?

To  this  end,  we  review  the  common  spatial-semantic  visualization  approaches,  most 

notably  multi-dimensional  scaling  (MDS)  algorithms,  hybrid  approaches  that  combine 
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discrete clustering with MDS and factor analysis.  We then explain that the principle barrier 

to  achieving  a  good  translation  is  the  fact  that  similarity  information  is  lost  by  the 

dimension  reduction  process  and  that  the  main  consequence  of  this  with  existing 

approaches is that only major features (clusters) are retained, at the expense of more minor 

conceptual relationships.  We then present an alternative approach where we view layout as 

a graphing problem where, instead of trying to preserve all inter-document similarities, we 

focus only  on presenting the minimum-spanning tree (MST) of the complete network 

implied by the similarity matrix. We hypothesise that MST will produce more appropriate 

visualizations  for  our  interaction  model.  We  then  proceed  to  discuss  the  potential 

mediating factors that are expected to affect the success of the aspect cluster growing 

strategy in spatial-semantic visualizations.

2.6.1. Common approaches to spatial-semantic layout
The most common techniques used to create spatial-semantic visualizations belong to a 

class of algorithms that can be collectively referred to as multi-dimensional scaling (MDS). 

Although these approaches vary in the models that are applied, they are similar in that they 

all aim to optimise the mapping between input similarities and output proximities. This is 

identical to the goal of the spatial-semantic metaphor, making them an intuitive choice.

The traditional approach to MDS is to start with a random configuration and to make 

iterative adjustments to object locations in order to maximise the ‘goodness of fit’ between 

input similarities (or dissimilarities) and output proximities. There are several tests that can 

be used to measure this fit,  the primary one being a stress function that measures the 

degree of disparity between input and output proximities. Additionally, fit can be measured 

in terms of the squared correlation coefficient (r-squared) between the input and output 

data  that  measures  the  percentage  of  total  variance  accounted  for  by  the  MDS 

configuration. Normally the algorithm continues until the observed improvement in the 

stress function for the last iteration drops below a certain threshold.

The development of MDS algorithms began in the 1950s (Torgerson, 1952), as computer 

technology made possible the complex calculations required to produce scaled solutions. 

Early metric approaches (e.g., Torgerson, 1952) were followed in the 1960s by non-metric 

MDS (e.g.,  Shepard, 1962; Kruskal,  1964),  which relaxed the constraint on inter-object 

distances needing to be parametric in nature. This development was significant in that it 

allowed application of the technique to a much broader range of domains such as, for 
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example,  document  similarity  visualization  where  similarity  data  may  not  necessarily 

normally distributed. For a full discussion of the origins of MDS see Young and Hamer 

(1987).  The  most  common algorithms  in  use  today  include  Alternating  Least  Squares 

Scaling  (ALSCAL:  Takane,  Young  and  De  Leeuw,  1977)  and  PROXSCAL  (Busing, 

Commandeur  and Heiser,  1997).  Both these  algorithms  support  a  full  range of  MDS 

models (including metric and non-metric scaling) and are available for use in statistical 

applications like SPSS and SAS. PROXSCAL, however, is a more recent evolution of MDS 

and is generally accepted as superior to ALSCAL, most notably because the criterion used 

for optimization is based on distances rather than squared distances. 

The main use for MDS has been for exploratory analysis of either pure similarity data (e.g., 

human judgements of object or concept similarity) or similarity data derived from high-

dimensional  common  attribute  spaces  (e.g.,  questionnaire  responses).  As  discussed  in 

section  2.3.1,  in  our  application,  inter-document  similarities  are  generally  measured by 

calculating the angle (e.g., Cosine, Dice) between high-dimensional document term vectors.

There  are  several  examples  of  document  visualizations  created  using  this  traditional 

approach to MDS (Wise et al.,  1995;  Hornbaek and Frokjaer,  1999;  Westerman et al., 

2005).  Wise  et  al.  (1995)  used  a  metric  MDS  algorithm  to  generate  the  Galaxies 

visualisation, which represents the semantic space of medium sized document collection 

onto 3D space. The name was chosen because of the visual effect of a star-field that was 

produced, with thematically similar document nodes forming ‘constellations’  within the 

overall  visual  structure.  Hornbaek  and  Frokjaer  (1999)  applied  MDS  to  visualise  a 

collection  of  436  documents  assembled  from  a  bibliography  of  human-computer 

interaction resources. They further augmented the legibility of the visualization by selecting 

the top 20 most discriminating terms (terms that are common in a few documents) using a 

function provided by Salton and McGill  (1983) and locating each term as a label  at a 

location on the plane that represented the central point of its most common occurrence. 

As noted in section 2.3, users were attracted to the clusters that emerged from the spatial-

semantic layout. Large, dense regions of nodes tended to attract the attention of users, 

particularly  if  there  was  an interesting  term attached.  More recently,  Westerman et  al. 

(2005) applied MDS (ALSCAL) to study the effects of dimensionality (2D vs. 3D) on topic 

retrieval in spatial-semantic visualisations. 
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In addition to traditional MDS techniques, there is an alternative sub-class of approaches 

we will call force-directed placement algorithms. These were created to solve the problem 

of producing aesthetically pleasing layouts of undirected graphs such as networks and trees 

but, as we will discuss, can also be applied to spatial-semantic visualization tasks by viewing 

the  similarity  matrix  as  a  fully  connected,  or  complete  graph  where  similarities  are 

equivalent to edge weights.

Essentially the graph, composed of nodes (often called vertices in the graphing literature) 

and links (often called edges), is treated as a physical system whereby nodes can be thought 

of as rings and those that are joined by edges are connected by springs. The springs exert 

an attractive force that pulls connected nodes together. These attractive forces are balanced 

out by repulsive forces that act between all pairs of nodes regardless of whether they are 

connected. When the algorithm is run, the sum effect of these forces is calculated at each 

iteration and vertices moved accordingly. These iterations continue until the system reaches 

a state of low energy (or stress).

The original approach to force-directed placement was called the spring-embedder model 

(Eades, 1984). This is a fairly simple system where the attractive force is equal for all edges, 

being calculated as a function of the log distance between edges multiplied by a constant. 

Repulsive forces are calculated as the inverse square of the distance between each pair of 

vertices.  More  recent  refinements  have  improved  upon  Eades’  (1984)  algorithm.  For 

example, the algorithm proposed by Kamada and Kawai (1989) incorporates Hooke’s law 

into  the  force  calculations,  meaning  that  springs  can  have  a  natural  length  that  the 

algorithm aspires  to preserve.  This  is  useful  for graphs with weighted edges and thus 

particularly useful for representing similarity between document nodes.

By viewing the document similarity matrix as a complete, non-directed graph we can apply 

these algorithms to spatial-semantic visualization. A classic example of the application of 

force-directed placement for document layout is  BEAD (Chalmers and Chitson,  1992; 

Chalmers, 1993). However, these algorithms are designed for partially rather than complete 

networks.  Leuski  (2001)  warns  that  applying  force-directed  placement  attempts  to  a 

complete, weighted graph can result in a very tight and somewhat amorphous formation 

that retains little spatial-semantic structure. His solution for Lighthouse, following Swan 

and Allan (1998), was to minimise the attractive forces between nodes where the similarity 

was below a certain threshold, by squaring these values. By effectively pruning the less 
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important edges of the graph it was possible to produce visualisations where sub-sets of 

related documents formed distinctive clusters (see figure 2.3, for example). In section 2.6.3, 

we  return  the  notion  of  edge  pruning  when  we  consider  alternative  approaches  to 

optimising spatial-semantic structure for aspect cluster growing.

Another approach to spatial-semantic layout is  factor or principal  components analysis 

(PCA). In PCA the dimensionality of the vector space is reduced to a much lower number 

of factors. These factors are linear functions of the original dimensions (e.g., term weights 

or  document  similarities)  that  are  independent  from each  other  (account  for  separate 

portions of the overall variance).  Documents are then plotted according to their weight 

along the top two or three dimensions. The end results of PCA can be very similar to the 

MDS techniques  already described,  although the approach to node placement  is  quite 

different.  First,  it  is  a  definite,  statistical  procedure,  unlike  MDS where  there  may  be 

multiple final solutions depending on the starting configuration of nodes and the number 

of iterations allowed before the configuration is accepted as a solution. Second, the aim of 

the procedure, as far as spatial-semantic visualization is concerned, is to map nodes to 

visual  space  according  to the  two independent  factors  that  together  explain  the  most 

variance,  rather than to preserve the correspondence between document similarity  and 

node proximity. 

The benefit of PCA over MDS is that the dimensions (axes) of the visualisation tend to be 

more explicit  and meaningful and can be labelled if  required to support  overview and 

comparison of features.  The relative disadvantage is that PCA often does not scale well. 

As the complexity of the semantic model increases so the top two or three factors will 

account for less of the overall variance, which can result in a fan-like configuration where 

many documents reside at the origin because they have little or no relation to either of the 

principle factors (see Chen, 1999a; Cribbin and Chen, 2001).

A key  problem with  either  traditional  and force-directed MDS approaches  is  that  the 

relationship between node set size and computational complexity associated with finding a 

globally optimal (low stress) solution is exponential in nature: each time the number of 

nodes  doubles  the  number  of  calculations  that  must  be  performed  at  each  iteration 

quadruples. This places significant limits on the feasibility of using MDS for dynamic or 

interactive applications. Furthermore, as set size increases so does dimensionality of the 
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underlying  vector  space,  which  leads  to  greater  information  loss  during  dimension 

reduction and thus more node misplacements (see sub-section 2.6.2).

A solution to this is to divide the problem of layout into smaller chunks. There have been a 

number of recent examples of algorithms that combine clustering with MDS. The general 

aim is to place nodes in relation to thematic points of interest rather than trying to preserve 

all possible inter-relationships within similarity space. This is an evolution of the principle 

advocated by  an earlier  system known as  VIBE (Olsen et  al.,  1993),  where  points  of 

interest were specified query terms rather than derived concepts. 

For instance the SPIRE project team found that the practical maximum for traditional 

MDS was around 1500 documents (Wise, 1999). In order to visualize larger sets (up to 

6,000 documents) they applied the anchored least stress (ALS) algorithm to the Galaxies 

visualization (Wise, 1999).  ALS applies clustering to the data first. The centroids (mid-

points)  of  these  clusters  are  then  projected  onto  a  visual  plane  (using  PCA).  Finally, 

documents are projected onto the same plane at location that best represents their relative 

similarity to each cluster,  rather than each document. Wise (1999) notes that there are 

benefits of this technique, not only in terms of the reduction in computation time, but also 

because the algorithm places a greater emphasis on conveying the most important themes 

in the document node configuration, rather than focusing on small adjustments between 

document node pairs.

A similar approach was adopted by Andrews et al. (2002) with their InfoSky system. In this 

system documents are assigned to a hierarchical classification, which can be either pre-

existing  or  dynamically  computed.  When  the  user  selects  a  node  in  the  hierarchy  all 

documents sub-ordinate this node are visualised in the following steps. First, the centroids 

of all the sub-ordinate classes are mapped to visual space based on their similarity. A bias is 

introduced  to  ensure  that  sibling  classes  of  the  hierarchy  tend  to  cluster.  Second, 

documents belonging to these each sub-ordinate node are then organised by similarity 

within a bounded region surrounding their centroid.

Hence, the essence of both of these techniques is the same: to first organise themes or 

points  of  interest  according  to  their  similarity,  then  to  locate  individual  documents 

according to their relationship to these points of interest. Both of these systems produce 
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similar, galaxy type visualizations where documents that discuss a predominant theme form 

distinct ‘constellations’ within the configuration. 

In summary, MDS approaches are generally most widely used due to their intuitive appeal 

and are most commonly applied for visualising moderately sized document sets. PCA can 

produce similar results to MDS, within more definable dimensions, but the value of this 

technique  depends  upon  the  size  and  topical  complexity  of  the  document  set  being 

visualised.  Divide and conquer approaches that combine clustering with MDS can reduce 

computation time for large spaces and produce more distinctive, thematic structures.

2.6.2. Dimension reduction problem
A fundamental obstacle in spatial-semantic visualisation is that whilst we are limited to 

perceiving the correspondence between objects in at most three spatial dimensions, the 

dimensionality  of  the semantic  models  of  interest  can run into many thousands.  Such 

drastic  dimension reduction inevitably  leads to compromises in node placement in the 

resulting spatial configuration whereby unrelated nodes may be located proximally whilst 

similar nodes are placed unexpectedly distally.

Following the example in chapter 1, mapping a matrix of inter-city proximities to 2D space 

is  a  trivial  task as  the dimensionality  of  input  space  is  equal  to  the  output space.  All 

proximities  are preserved perfectly.  Now let  us imagine the more problematic  task of 

mapping  the  structure of  an equilateral  triangle,  with vertices  A,  B and C to a  single 

dimension (a line). By placing, A, B and C in sequence within equal distances between 

nodes, we can map the proximities AB and BC perfectly but the resulting distance AC is 

twice what it should be (AB + BC). If we attempt to resolve this by moving C to the same 

location as B this preserves AB and AC but the relationship BC is obscured. Whichever 

combination of node locations we try we always end up with a degree of disparity between 

the input and output proximities. We would get the same problem when we try to visualise 

the edges of a pyramid, a 3D structure, in 2 dimensions.

In order to create a perfect solution in 2D space, the rule of triangle inequality must be 

followed for all possible combinations of three nodes. This rule states that, for any three 

nodes, AC cannot be greater than the sum of AB and BC. In a similarity matrix of tens or 

hundreds of documents that is derived from a high-dimensional semantic model, there will 

be many instances where this  rule is  violated.  The dimension reduction algorithm will 
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attempt  to  find  the  best  compromise,  but  inevitably  disparities  will  occur  regularly. 

Sometimes these will be quite minor and in other cases relatively drastic. 

As previously  noted,  using 3D spatial  representation can produce a solution of higher 

fidelity (Leuski, 2001; Westerman and Cribbin, 2000) but this comes at the expense of 

usability: nodes are occluded, absolute distances are difficult to judge in the z-plane, harder 

to build a cognitive map of the structure. Westerman and Cribbin (2000) found that the 

fidelity of spatial-semantic mapping of a 3D solution had to be at least 40% higher than a 

2D solution, and for some measures twice as high before any net gains in user search 

performance were observed. Likewise, Leuski (2001) found that the benefits of 3D over 

2D observed  in  the  simulated  user  trials  did  not  translate  into  superior  performance 

amongst real users. In fact user performance was slightly but significantly poorer in the 3D 

condition.

In summary, whilst the additional dimension provided by 3D visualization can convey the 

semantic model more accurately, users cannot capitalise on this extra information. We need 

to seek an alternative strategy for creating more informative visualizations using only 2 

dimensions.  One  approach is  to  utilise  an  algorithm that  is  selective  in  terms  of  the 

semantic features that are preserved during layout.

A major limitation with the MDS family of algorithms is that they seek a globally optimal 

solution. In seeking to reduce the stress in the solution, MDS places the same emphasis on 

all pairs of nodes. This not only makes the task computationally expensive, with (n2 - n)/2 

pairs  to consider,  but also means that the compromise in placement is  spread equally 

across the whole of the structure.

In other words, MDS sees all document similarities as equally important. Given what our 

discussions of retrieval set clustering, it is apparent that this is not the case. According to 

the  cluster  hypothesis,  relevant  documents  tend  to  be  highly  similar  relative  to  the 

distribution of all document similarities (van Rijsbergen, 1979). According to the aspectual 

cluster hypothesis, documents relevant to the same aspect of the topic will be highly similar 

(Muresan  and Harper,  2004).  In  our  interaction  model,  we  are  most  concerned  with 

representing  same  aspect  document  similarities  and,  to  a  lesser  extent,  same  topic 

similarities. If H1 and H2 are correct, then aspects represent distinct features or localities 
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within similarity  space.  It  may be more prudent,  therefore,  to select  an algorithm that 

places an emphasis on retaining local features rather than global structure.

2.6.3. Local optimisation
In sub-section 2.5.1, we discussed the value of hybrid approaches that combine clustering 

with MDS (Wise, 1999; Andrews et al., 2002). The primary advantage of these techniques 

is that they scale well, reducing the complexity of the node layout problem by representing 

document nodes in terms of their similarity to thematic points of reference rather than 

each and every other node in the set. This makes them well suited to organising larger and 

topically diverse collections. However, we envisage our interaction model will generally be 

applied to just the top ranked portion of a retrieved set, a few hundred documents at most, 

rather than thousands of documents, so layout computation time is not a primary issue. 

Although scalability is not a current issue in our case, the combination of clustering and 

MDS seems initially appealing as a means of biasing the spatial-semantic structure towards 

emphasising strong local features or emergent themes. Additionally the points of interest 

themselves, if labelled, would provide useful overview landmarks within the visualization. 

However,  the  value  of  this  approach  would  depend  on  the  ability  of  the  clustering 

algorithm to isolate the concepts of interest. We know from previous studies of document 

clustering that whilst major themes (e.g., the general relevant topic) are easily identified, 

more specific and minor themes are easily lost. As a reminder, both Wu et al. (2001) and 

Muresan and Harper (2004) found that documents relevant to specific aspects were often 

split across the cluster structure. The problem with clustering is that it is highly parametric 

in nature – the determination of values for factors such as the number of specified clusters 

(i.e., k-means) or the choice of partition level (i.e., hierarchical clustering) usually requires 

extensive trial and error. What we seek for our interaction model is a procedure that can 

run in an unsupervised fashion and still  reliably  preserve the most salient,  intra-aspect 

document relationships.   

A second, more promising path is to look again at the layout problem as a graph drawing 

problem. In our discussion of force-directed placement algorithms we noted how limiting 

the  magnitude  of  certain  attractive  forces  between  document  nodes  produced  more 

distinctive structures. Leuski (2001) adopted a threshold strategy where similarities below a 

specified  value  were  squared  to  minimise  their  effect  on  the  final  configuration.  By 
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effectively pruning weaker links so that the configuration is based mainly on the effects of 

stronger  similarities,  Leuski  (2001)  was  able  to  produce  a  structure  where  documents 

clearly divided into cluster sub-sets. 

This approach is likely to require some trial and error to determine the optimal threshold 

value, with different optimal values likely for each topic and its associated retrieved set. So 

as  with clustering  and hybrid  approaches,  we are running into the problem of setting 

parameters that are likely to be moving targets, influenced by numerous variables such as 

topical complexity, document set size and so on.

An alternative,  but related solution  is  to  apply  some absolute  criterion  when deciding 

which edges to retain. We have strong evidence to suggest that within the distribution of 

document  similarities,  same aspect  document  pairs  will  tend  to be  amongst  the  most 

strongly related document pairs (Muresan and Harper, 2004).  We seek to confirm this 

characteristic within the context of our topical retrieved set scenarios by testing H1 and 

H2. This leads us to think of spatial-semantic layout as one of emphasising the shortest 

paths between documents in the set. 

Minimum spanning trees (MST) are a class of algorithm that, given a connected, undirected 

weighted graph,  seek to find sub-graph that is  the spanning tree of minimum cost.  A 

spanning tree is a sub-graph where all nodes are connected to at least one other node. 

There may be many spanning trees for a given graph, but the MST is the one where the 

summed total of retained edge weights is the lowest. 

Prim’s algorithm (Prim, 1957) computes the MST by growing a single tree until all nodes 

are connected. The algorithm begins by selecting the lowest cost edge, which forms the 

beginnings  of  our MST.  For our purposes this  would be  the document  pair  with the 

highest similarity of all document pairs. The next iteration searches for the lowest cost edge 

that would connect an unconnected node to a node that is currently in the tree. This edge 

is selected and the edge selection iterations continue until all nodes are connected to the 

tree.  An  alternative  to  Prim’s  is  Kruskal’s  (1956)  original  MST  algorithm.  The  main 

difference  is  that  Kruskal’s  (1956)  algorithm  proceeds  to  build  a  forest  of  trees  that 

ultimately become connected into a single MST. Hence, on each iteration, the next lightest 

edge is selected regardless of whether either node is already part of the tree, providing it 

does not form a cycle (connect two nodes that are already indirectly connected).  

77



Chapter 2: Formulation of methodology and hypotheses

An MST always has N-1 edges, just enough to connect each node to the resulting tree. 

There are no initial parameters to set, which means the algorithm can find an optimal (or 

near optimal) solution without any supervision. We add the near optimal clause because 

there may be branching points during the execution of the algorithm when it encounters 

ties, that is equally viable candidates, meaning that there may be more than one MST for a 

given graph.

Closely  related are  Pathfinder  networks  (PFNET: Schvaneveldt,  1989)  which resemble 

MSTs when mapped to visual space. The main difference in appearance is that PFNETs 

tend to retain slightly  more than N-1 edges of the original  graph.  This is  because the 

algorithm allows cycles to occur in the structure (which is why they are networks and not 

trees)  providing  the  triangle inequality  condition is  met.  PFNET and MST are closely 

related, for example a minimum cost PFNET can be thought of as the set union of all 

possible MST solutions (see Chen, 1999b). 

Spatial layout of an MST or PFNET can be easily accomplished using a force-directed 

placement algorithm. For example, later in this dissertation we introduce Neato, part of the 

GraphViz toolkit from the AT&T Laboratory (see North, 2002), which uses the algorithm 

developed by Kamada and Kawai (1989) to layout the undirected graph.

Both MST and PFNET have been applied to various document visualization tasks. For 

instance, Chen has applied PFNETs to author citation (Chen et al., 2002) and co-citation 

networks  (Chen,  1999a;  Chen  and Paul,  2001)  in  order  to  visualise  the  structure  and 

evolution of knowledge domains such as scientific fields. Chen has also compared MST 

and PFNET (Chen and Morris, 2003) for visualizing co-citation networks. Generally, Chen 

favours PFNET over MST (Chen and Morris, 2003; Chen, 1999a) for knowledge domain 

visualization because the cycles that emerge provide more complete communication of 

salient local features. 

However,  Cribbin  and Chen  (2001)  compared  MST,  PFNET and PCA visualizations 

across a range of topics and associated information retrieval tasks. Participants browsed 

these  spatial-semantic  visualizations  (200  newspaper  articles)  in  search  of  documents 

relevant to range of increasingly specific queries (each subsequent query formed a sub-set 

of  the  previous  query).  Both MST and PFNET visualizations  enabled  better  retrieval 

performance on the tasks than the PCA visualization and, correspondingly, participants felt 
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these visualizations were easier to navigate and were less cluttered than PCA. However, 

there were some differences between MST and PFNET. Compared to the PCA condition, 

participants were much faster in locating the first relevant document when using PFNET 

but MST users were not significantly faster. In contrast, retrieval performance, as measured 

by the harmonic mean of retrieved document precision and recall, was significantly better 

compared to PCA user, for MST users but PFNET users (although there was a substantial 

mean difference between PFNET and PCA).  

More interestingly, the results showed that for several measures, the differential between 

PCA and MST/PFNET performance was greatest for queries that required the location of 

just  two  closely  related  documents  (both  documents  discussed  the  same  event). 

Specifically, browsing was considerably more efficient in MST/PFNET compared to PCA. 

In terms of differences in actual retrieval success (relevant documents marked), MST users 

performed consistently better than PFNET and PCA.

This was only a small study (N=16) and it is difficult to draw any firm conclusions about 

the relative superiority of MST and PFNET. What we can conclude from Cribbin and 

Chen’s (2001) study is that the spatial-semantic structure provided by MST is consistently 

more useful for a range of retrieval tasks than the PCA structure, and at least as useful as 

the structure provided by PFNET. 

In the analysis that follows in Chapters 4 and 5, we will compare aspect clustering and 

simulated cluster growing performance in both locally and globally optimised visualization 

schemes. We will examine the utility of MST rather than PFNET. Only one is chosen, as 

any differences in structure are likely to be small between the two types of structure. MST 

is selected as it represents the most extreme level of edge pruning possible within a single 

graph. The globally optimised comparison scheme is PROXSCAL, a modern evolution of 

traditional MDS (Busing, Commandeur and Heiser, 1997). Force-directed placement was 

rejected due to reported problems associated with visualising complete (fully connected) 

graphs when similarities are derived from full-text vectors (see Leuski, 2001). 

As a reminder, question 2 asked:  Given an adequate semantic model, which approach to spatial-

semantic  layout  best  preserves  the  general  and,  in  particular,  the  low-level  structure  expected  by  our  

interaction model?
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Firstly, we will test the hypothesis that a faithful representation of the required two-level 

classification  structure  is  present  to  a  significant  extent  in  at  least  one  of  the  two 

visualization schemes. We will apply the ACS test applied to earlier hypotheses relating to 

structure of the underlying semantic models (H1, H3 and H4).

H5: The two level classification will be effectively conveyed by spatial relations in (i) MDS and (ii) MST.

Next, we predict that MST, due to its emphasis on preserving local structure, will locate 

relevant documents more closely to other same aspect documents than MDS:

H6: Aspect  level  cluster  separation  will  be  greater  for  MST  visualizations  than  for  the  MDS 

visualizations.

Finally, we predict that the aspect cluster growing strategy will be more efficient in MST 

due to a higher chance of nearest neighbours of known relevant exemplars being also 

relevant. We will test this by simulating user performance of the aspect cluster growing 

strategy for a large range of exemplar/specific aspect cases. The simulated strategy function 

is a repeat of the NAN test applied to H2, H3 and H4, using scaled proximities rather than 

similarities.

H7:  Aspect cluster growing will be more efficient when using the MST visualizations compared to the  

MDS visualizations.

2.6.4. Aspect overlap
In section 2.5.3 we discussed how the suitability of our interaction model, and particularly 

the aspect clustering growing strategy, might be affected by the extent to which the sub-

sets of documents relevant to each aspect overlap. On this basis we proposed that we 

should evaluate the effect of  two types of topical  scenario that  differ in terms of  the 

average number of aspects discussed per relevant document.

Aspect overlap would not be a significant problem if the overlap between sub-sets was 

symmetrical, that is all documents that discuss a specific aspect discuss the same secondary 

aspects. The result would likely be a highly focused and topical cluster that would be easy 

to search for all of the discussed aspects.   

A more realistic situation, however, is that members of the relevant sub-set for a given 

aspect will differ somewhat in their topic structures. Some may discuss only the one aspect 
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whilst many may be more topical, discussing many different aspects that may or may not 

be shared within other aspect members. In the high-dimensional space of the semantic 

model,  it  is  possible  that  such  complexity  can  be  accommodated  and  effectively 

represented.

In  dimensionally  reduced  spatial-semantic  representations,  however,  this  kind  of 

complexity is liable to cause certain compromises to be made in the layout of nodes. With 

respect to the use of clustering algorithms, Muresan (2002) concluded:

Clustering  algorithms  tend to  group together  documents  that cover  focused  topics,  or  

aspects of complex topic. Documents covering distinct aspects of complex topics tend to be  

spread over the cluster structure.

(Muresan, 2002, p.244). 

In  clustering  solutions,  at  least,  relevant  documents  behave  differently  depending  on 

whether they are highly topical or relatively distinct in their content. Documents, which 

discuss several aspects tend to converge on the highly topical clusters because they tend to 

be relatively similar to a critical mass of relevant documents. Likewise, if a specific aspect is 

well represented within the set, so long as the relevant documents are highly focused on 

that  aspect,  they  may  converge  on  and  dominate  a  particular  cluster.  However,  if 

documents are distinct, discussing only a minor aspect of the topic, they could be assigned 

almost arbitrarily to a cluster.

It is known that highly topical  documents tend to converge on a central dense cluster 

within retrieved set visualizations (Rorvig and Fitzpatrick, 1998; Leuski, 2001). It is not 

clear to what extent MDS or MST solutions can cope with situations where, for instance, 

the aspect sub-set is small and distinct, or where the sub-set is composed of both highly 

topical and highly focused documents.

Our next hypothesis predicts that the topical scenario where aspects overlap will be more 

challenging for both of our layout algorithms, resulting in poorer ACS (H8) and lower 

aspect clustering growing efficiency (H9).

H8: Aspect level cluster separation will be lower in the overlapping aspect scenario than the distinct aspect  

scenario.
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H9: Aspect cluster growing will be less efficient in the overlapping aspect scenario compared to the distinct  

aspect scenario.

In terms of differences between the two layout schemes, we might conjecture that MST 

will  cope well with distinct,  focused aspect sub-sets due to its emphasis on preserving 

salient  local  relations  whereas  MDS,  with  its  focus  on  global  optimisation  may  do  a 

relatively good job of organising sets comprising many highly topical documents perhaps 

finding a more balanced comprise in such situations. We expected MST to be generally 

better at aspect clustering than MDS (H6, H7), however we would expect that MST would 

have a greater advantage when mapping the scenario containing more distinct aspect sub-

sets. Hence, we form the hypothesis:

H10: The expected differences between MST and MDS will be greatest for the distinct aspect scenario. 

2.6.5. Document set size
As we discussed earlier in this section, the problem of spatial-semantic layout increases 

exponentially with document set size. We would therefore expect the fidelity of solutions 

to decrease in line with set size:

H11: Aspect level cluster separation will be lower in visualizations of the larger retrieval set.

H12: Aspect cluster growing will be less efficient when using the larger retrieval set.

Comparing the two schemes, we would expect MST to be more resistant to the complexity 

introduced  by  increasing  set  size,  principally  because  the  number  of  inter-document 

similarities that must be preserved increases only linearly, rather than exponentially as in 

the case of MDS. Furthermore, document pairs that were highly similar in the smaller set 

should also be relatively similar in the larger set so links that are present in the smaller set 

should, to a great extent be retained in the larger set. Hence, our hypothesis is:

H13: The expected differences between MST and MDS will be greatest for the larger retrieval set. 

2.7. Refining local context cues
Spatial-semantic  visualization  is  a  process  of  dimension  reduction.  Whichever  layout 

algorithm is used, disparities between the structure of the similarity matrix and that of the 

visualization are inevitable. In some cases, the user will find the spatial-semantic cues alone 
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are sufficient to grow an aspect cluster. In other cases, relevant documents may be badly 

situated in relation to other relevant documents. 

An obvious solution is to employ some sort of relevance feedback mechanism that can 

then be used to dynamically augment the visualization. There are two possible ways of 

providing this feedback to the system: 1) the user supplies some key terms based on key 

features of their aspect of interest or 2) the user simply asks the system which are the most 

similar documents to this exemplar.

In this section, we explore the possible solutions to the problem of what to do if spatial-

semantic cues are inadequate to guide aspect cluster growing. We begin by explaining why 

it is inappropriate to expect the user to formulate a query indicating their intention, before 

discussing alternative, interactive strategies that might resolve the problem. 

2.7.1. Query in context
Previous studies have demonstrated the principle of allowing users to see the results of a 

query within the context of a spatial-semantic visualization, for instance by highlighting 

document  nodes  that  are  relevant  to the  query.  For  instance,  users  in  Hornbaek  and 

Froekjaer’s  (1999)  study  were  drawn  towards  particularly  dense  clusters  of  matching 

documents. However, in our interaction model, the emphasis is on a consistent mode of 

interaction,  where  users  browse  throughout  the  whole  interaction  episode.  Studies 

including Hornbaek and Frokjaer (1999; Campagnoni and Ehrlich, 1989) have found that 

forcing users to switch between different interaction modes (i.e., referential to command 

line  input)  causes  additional  cognitive  demands  that  break  the  flow  of  the  primary 

information seeking task. Also, choosing good key words to query a full-text, uncontrolled 

index  is  not  always  an easy  task.  For  instance,  choosing  terms that  are  too  broad or 

polysemous could lead to the user being overwhelmed by highlighted, but non-relevant 

documents.

2.7.2. Resolving the effect of  node misplacement
Instead, we opt for a strategy where the user simply needs to indicate to the system that the 

current document is relevant. A similarity search is then performed using the document 

vector as the query. This is familiar to users of web search engines where it is presented in 

the form of “show me more like  this” and can be termed simple  relevance feedback 
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(Hearst, 1999) in that it does not require the multiple document judgements required by 

conventional document relevance feedback. 

The results of a document similarity search can be presented in the visualization in the 

same  way  as  the  manual  query  results  were  in  Hornbaek  and  Froekjaer  (1999),  by 

highlighting the top ranked most similar nodes. The use of node highlighting (e.g., a colour 

change) has the advantage that the spatial-semantic cues remain stable. Furthermore, the 

user has the choice of following either cue individually or combining both together.

Leuski (2001) found that raw inter-document similarity cues as opposed to spatial-semantic 

cues  lead  to  significant  improvement  in  cluster  growing  performance,  although  the 

absolute differences in precision were quite small (a few percent). Of course, these results 

came  from a  study  where  the  topics  were  quite  homogeneous  and  formed  relatively 

coherent  clusters.  In  more  complex  topics,  we  would  expect  a  greater  amount  of 

misplacement of nodes in relation to their aspect sub-sets. It will be interesting to see the 

extent to which augmenting the space with such similarity cue will increase aspect cluster 

growing performance. Our next hypothesis considers the utility of using similarity cues 

alone and is as follows:

H14: The majority of problematic cluster growing cases are due to node misplacements and can thus be 

resolved by augmenting the visualization with relative similarity cues.

2.7.3. When similarity cues fail
We anticipate the possibility that in some cases even pure inter-document similarity cues 

might be insufficient to guide the user in their search. Factors such as vocabulary mismatch 

(Furnas  et  al.,  1987)  and the  conceptual  diversity  of  aspect  documents  (including  the 

exemplar)  are  likely  to  impact  on  the  tendency  for  same-aspect  documents  to  be 

identifiable by means of a measure of a simple measure of lexical similarity. 

In this dissertation,  faced with this  problem we seek a solution that helps the user to 

specify their intention when nominating a document as an aspect relevant exemplar, as 

opposed to one that will increase the general similarity between same-aspect documents. 

This is not to ignore the possibility that intra-aspect similarity can be enhanced through 

more advanced methods of text analysis. However, we accept the reality that unsupervised 

text analysis will always produce cases where the topical relationship between documents is 

not appropriately reflected in their inter-document similarity score.
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Our approach to this problem is to first perform an analysis that allows us to gain a clearer 

understanding of the conditions under which spatial-semantic and, more fundamentally, 

inter-document similarity cues fail. By understanding the nature of the exemplars or the 

specific  aspect  sub-sets  that  are associated with poor  performance we aim to develop 

refinements to the strategy or tools  that go beyond general similarity  to provide more 

informative cues to the user.

For example, it may be the case that the best aspect exemplars are documents that are 

highly relevant to the original query. If this is the case, then the task of identifying distinct 

aspect exemplars would be best achieved by browsing the top ranks of the retrieved list 

(Leuski, 2001), rather than through browsing the visualization directly. Alternatively, we 

may find that poor exemplars are primarily those that discuss multiple aspects of the topic, 

and thus fail as exemplars for certain aspects because they tend to be more similar to other 

aspect sub-sets. If this is a typical case then we would need to develop tools that would 

simplify the task of specifying the salient conceptual facets of the exemplar that relate it to 

other documents within the retrieved set. 

Given the latter observation, the problem would become one of query refinement. Given 

that we wish to avoid the need for the user to manually specify their query, our attention is 

turned to the field of automated and semi-automated query expansion. We have already 

introduced the nature and role of query expansion (QE) in Chapter 1. The classic approach 

works  using  document  relevance  feedback,  whereby  the  user  specifies  a  number  of 

documents (i.e., from the retrieved list resulting from the current query) and the system 

extracts the discriminating terms from these documents and adds these to the query. This 

approach, however, relies on the user specifying multiple good examples of relevance and 

so may be problematic in situations where only one good exemplar is known or when the 

aspect is only represented by two or three documents within the retrieved set. 

Promising  alternative  approaches  are  those  do  not  require  the  user  to  provide  any 

relevance feedback at  all.  Local  feedback (Attar and Fraenkel,  1977)  and local  context 

analysis (Xu and Croft, 1996; Xu and Croft, 2000) work by assuming that the top ranking 

documents to the current query are mostly relevant to the intended query, thus saving the 

user from the responsibility of making document judgements. Local feedback works in a 

similar  way to standard relevance  feedback,  expanding  the  query  using  terms that  are 

relatively common within the local context of the query. Local context analysis (LCA) is a 
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more sophisticated approach that selects new query terms based on the extent to which 

they co-occur with existing terms (Xu and Croft,  1996;  Xu and Croft,  2000);  the key 

assumption is that the best terms will be those that occur in the same contexts as all or 

most of the existing query terms. By paying attention to the context in which existing query 

terms occur within retrieved documents, a key benefit of LCA over local feedback is that it 

can select good expansion terms even when a large number of non-relevant documents 

appear  within  the  top  ranks  of  the  retrieved  set  (Xu and Croft,  2000)  and  a  recent, 

independent evaluation study concluded that it can perform comparably against traditional 

relevance feedback based query expansion, and that users preferred LCA because of the 

reduced effort involved (Belkin et al., 2000).  

However, these approaches have only been proven in situations where the query expansion 

process begins with a manually defined query. In our case, the query is a document term 

frequency vector that may imply a broad range of concepts. Even a poorly defined user-

defined query is likely to be more specific than an entire document vector. Furthermore, if 

problematic  exemplars  tend  to  be  those  documents  that  are  most  heterogeneous  in 

content, we envisaged that this would present considerable problems for existing query 

expansion approaches. However, such an approach may work more effectively if the user 

is allowed to intervene in the query expansion process.

Term relevance feedback is  a promising approach that might ameliorate the ambiguity 

associated  with  cases  of  where  the  only  query  is  a  single  document  exemplar.  This 

approach can be based on existing query expansion approaches, such as those described 

above, as essentially it simply involves adding an extra step to the feedback process. Rather 

than automatically adding terms to the query, the user is allowed to choose, from the list of 

candidate terms identified by the system, those that are most relevant to their query and 

should  therefore  be  added.  Koenemann  and  Belkin  (1996)  compared  term  relevance 

feedback to standard ‘opaque’ document relevant feedback. They found that satisfactory 

queries were achieved in fewer feedback iterations if users were allowed to control which 

terms  were  added to  the  system.  Search  effectiveness  when using  the  term relevance 

feedback  system  was  significantly  better  than  the  control  condition  (manual  query 

reformulation), and slightly better than the standard document relevance feedback system. 

It  is  possible  that  some  combination  of  local  feedback  or  context  analysis  and  term 

relevance  feedback  could  provide  a  useful  tool  to  support  aspect  cluster  growing  if 
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problems do seem to arise from heterogeneity either in the exemplar or the local context of 

similar documents. Belkin et al. (2000) have already evaluated the combination of LCA 

with term relevance feedback and achieved promising results, however, to our knowledge, 

this combination has not yet been evaluated in situations where the query is a document. 

We envisage that the exact design of an effective term suggestion tool would depend upon 

the particular conditions associated with problematic exemplars. In chapter 5 (section 5.4) 

we model  the  conditions  associated  with  problematic  aspect  cluster  growing  cases  by 

exploring a number of variables relating to the structure of the exemplar itself and the 

retrieved  documents  that  are  semantically  related  to  the  exemplar.  As  this  was  an 

exploratory analysis, taking place within the context of the results of our previous analyses, 

it makes no sense to set a priori hypotheses at this stage of the dissertation. However the 

rationale for the variables explored during this analysis is outlined in detail in section 5.4.

In  chapter  6,  we  use  the  findings  from  this  exploratory  analysis  to  develop  a  term 

suggestion algorithm, called local context distillation, which allows the user to pick the 

terms, from a suggestion list, that best specify the reason for their interest in the given 

exemplar. We also demonstrate two visual tools that provide two different applications of 

local context distillation terms.

2.8. Summary of questions and hypotheses 
The purpose of this chapter was to define the conceptual framework that justifies and 

directs  the programme of work reported in  Chapters 3,  4,  5 and 6.  We have defined 

hypotheses  relating  to  our  three  main  research  questions  and  described  the  general 

methodological approach that will be used to test these hypotheses and explore related 

questions.

To summarise, we have formulated 14 hypotheses that will allow us to address the three 

research questions that were first put forward back in section 1.7. These hypotheses are as 

follows:

Research question one: To what extent can a standard text analysis procedure model the 

general semantic structure expected by our interaction model and particularly the low-level 

structure required by the aspect cluster growing strategy? 

H1: The two level  classification  structure  (topic  and aspect  cluster  separation)  will  be  evident  for  all  

scenarios whereby relevant documents will be, on average, more similar to the sub-set of documents that  
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discuss the same aspect(s) than they are to the sub-set of generally relevant documents and, in turn, least  

similar to the retrieval set as a whole.

H2: R2-precision for NAN in similarity space will be equal to or exceed 0.2 in most exemplar cases

H3: In the overlapping aspect scenario, topic and aspect level cluster separation and mean R2-precision  

scores will be lower than in the distinct aspect scenario.

H4: In the smaller retrieval set scenario, topic and aspect level cluster separation and R2-precision scores  

will be greater. 

Research question two: Given an adequate semantic model, which approach to spatial-

semantic  layout  best  preserves  the  general  and,  in  particular,  the  low-level  structure 

expected by our interaction model?

H5: The two level classification will be effectively conveyed by spatial relations in (i) MDS and (ii) MST.

H6: Aspect  level  cluster  separation  will  be  greater  for  MST  visualizations  than  for  the  MDS 

visualizations.

H7:  Aspect cluster growing will be more efficient when using the MST visualizations compared to the  

MDS visualizations.

H8: Aspect level cluster separation will be lower in the overlapping aspect scenario than the distinct aspect  

scenario. 

H9: Aspect cluster growing will be less efficient in the overlapping aspect scenario compared to the distinct  

aspect scenario.

H10: The expected differences between MST and MDS will be greatest for the distinct aspect scenario. 

H11: Aspect level cluster separation will be lower in visualizations of the larger retrieval set.

H12: Aspect cluster growing will be less efficient when using the larger retrieval set.

H13: The expected differences between MST and MDS will be greatest for the larger retrieval set. 
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Research question three: Under what conditions does the aspect cluster growing strategy 

tend to fail  and how can we use this  knowledge  to guide  development  of  interactive 

support tools?

H14: The majority of problematic cluster growing cases are due to node misplacements and can thus be  

resolved by augmenting the visualization with relative similarity cues.

Hypotheses H1, H2, H3 and H4 (research question one) are dealt with in Chapter 3, where 

we  begin  by  describing  the  development  of  our  test  scenarios  and  semantic  models. 

Hypotheses H5, H6, H8, H10, H11 and H13 (research question two), which focus on the 

expected two-level  relevance classification,  are tested in Chapter 4, where we begin by 

describing the creation of our spatial-semantic visualizations. Chapter 5 tests the remaining 

hypotheses associated with question two, focusing on the potential performance of the 

aspect cluster growing strategy (H7, H9, H10, H12 and H13). Hypothesis H10 (research 

question  three)  is  also  tested  in  Chapter  5,  where  we  conclude  by  performing  an 

exploratory analysis that allows us to specify the requirements of the interactive solutions 

that are subsequently presented and demonstrated in Chapter 6.

We therefore begin our analyses in the next chapter by describing the construction of our 

topical scenarios and testing the hypotheses relating to research question one.
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CHAPTER 3: MODELLING 
TOPICAL STRUCTURE

3.1. Introduction
In chapter 2, we discussed the challenges associated with the successful implementation of 

our interaction  model,  focusing particularly  on the  requirements for the aspect  cluster 

growing strategy. The three key questions that drive this research are incremental in nature 

and are each related, in turn, to a successive stage of the spatial-semantic visualization 

pipeline  (see  section  2.3.4):  modeling  semantic  structure  using  automatic  text  analysis, 

mapping the derived inter-document similarity structure to visual space and finally user 

interaction with and augmentation of the derived visualizations. 

In this chapter we focus on the first stage of this pipeline, modeling semantic structure. 

Question one asked: To what extent can a standard text analysis procedure model the general semantic  

structure expected by our interaction model and particularly the low-level structure required by the aspect  

cluster growing strategy?

We apply  text  analysis  to  create  a  semantic  model  of  a  given set  of  documents.  Our 

approach to text analysis works by converting document texts to a word term based vector 

space representation from which inter-document similarities are computed by measuring 

shared variance between document vectors. This is a long-standing approach (see Salton 

and McGill,  1983;  van Rijsbergen,  1979)  that  has  been consistently  applied  in  several 

successful studies of general topic (e.g., Hearst and Pederson, 1996; Rorvig and Fitzpatrick, 

1998) and aspect level (Muresan and Harper, 2004) document clustering. 

This chapter does two things. Firstly, we describe the creation of the semantic models for 

the three topical scenarios that will form the context for our analyses. Secondly, we begin 

our analyses by applying cluster hypothesis tests to these semantic models to determine the 

potential success of trials to produce spatial-semantic visualizations that will support our 

interaction model and, in particular, the aspect cluster growing strategy. 
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This chapter is organized as follows: In section 3.2, we describe the creation of our topical 

scenarios.  In  section  3.3,  we  describe  the  text  analysis  procedure  used  to  create  our 

semantic models and summarise and compare the general distributions of inter-document 

similarity scores for each scenario. In section 3.4, we describe and justify the procedure 

used  to  collection  our  experimental  data  that  we  used  to  perform  the  two  cluster 

hypothesis tests (ACS and NAN: see section 2.5) that form the core of our analyses. In 

section 3.5, we present the analysis from the ACS test, which provides us with an insight 

into  the  relevant  classification  properties  of  our  semantic  models.  In  section  3.6,  we 

estimate the maximum performance of the aspect cluster growing strategy by performing 

the NAN test based on pure inter-document similarity data. Finally,  in section 3.7, we 

present the solutions produced by a discrete clustering algorithm. A previous study of 

aspect level clustering, using a discrete clustering algorithm, showed disappointing results 

(Wu et al., 2001). The purpose of this evaluation is to demonstrate the importance of first 

verifying the cluster hypothesis in high-dimensional space; that layout algorithms can fail 

despite the relevant structure being present within the semantic model. These solutions 

also  provide  further  benchmarks  against  which  to  compare  the  spatial-semantic 

visualizations that we create in Chapter 4.

In the remainder of this section, we outline the rationale for first verifying the cluster 

hypothesis for our semantic models, define the nature and origin of our topical scenarios, 

and finally present the formal hypotheses that we will test in our analyses.

3.1.1. Verifying the cluster hypothesis in similarity space
The main requirement for aspect cluster growing is that documents are organized as nodes 

in  visual  space such that  those discussing  the  same aspect  of  the  relevant  topic  form 

coherent clusters. As the only input to the layout algorithm, in the second stage of the 

pipeline, is the high-dimensional semantic model, it is critical that the desired classification 

structure is present within this structure. 

This  is  because  considerable  information  loss,  in  relation  to  the  underlying,  high-

dimensional semantic model, is inevitable during clustering and spatial-semantic layout (see 

section 2.6). Much of the information within the semantic model is likely to be redundant 

or  non-critical  with  respect  to  the  intended  purpose  of  the  solution.  Clustering  and 

visualization algorithms deal with the dimension reduction problem by applying a wide 

range of optimization strategies and criteria. In many cases, key parameters (e.g., number of 
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clusters, similarity thresholds) must be optimized by trial and error in order to achieve a 

satisfactory result (see Leuski, 2001; Rorvig and Fitzpatrick, 1998). For this reason, it is 

important  that  we  experiment  with  and  compare  different  algorithms  and  different 

optimization  criteria  in  order  to  identify  the  layout  algorithm  that  best  preserves  the 

required structure (in our case the two level relevant cluster separation). For this reason, in 

chapter 4 we compare two different approaches to spatial-semantic layout optimization. 

However, in this chapter we argue that prior to comparatively evaluating layout algorithms, 

it is important to ensure whether (and the extent to which) the required structure is present 

within the high-dimensional semantic model. As the inter-document similarity matrix is the 

sole input to the layout algorithm, if the structure is not present for any given topic and 

document collection, then any layout approach is likely to fail and it will be fruitless to 

perform an extensive comparison. On the other hand, if the structure is present in the 

semantic model, but initial visualization approaches fail, then this would indicate that it is 

worth seeking and testing alternative  approaches or refinements to the layout process. 

Muresan and Harper (2004) caution that studies in document clustering may sometimes fail 

not  because  relevant  documents  are  not  similar,  but  simply  because  the  clustering 

algorithm or algorithms used were not able to organize documents in the required manner. 

Given the complexity of the structure we wish to convey, we argue that it is particularly 

important that we first evaluate the properties of our semantic models. We achieve this 

using the cluster hypothesis tests (the ACS and NAN tests) that were developed at the 

beginning of section 2.5. These tests measure the extent to which the desired classification 

structure is present within the original high-dimensional vector space model. To reiterate, 

conducting such tests is important for two reasons: firstly, if the required topology is not 

present  in  the  underlying  model  then  it  is  unlikely  that  attempts  to  produce  useful 

clustering or visualization models will be successful and would suggest the need to identify 

more appropriate semantic modeling techniques. Secondly, if the underlying topology is 

present but the visualization experiments are unsuccessful, then we know that the failure is 

due to the layout algorithm and can focus on identifying more effective methods in this 

respect. Our decision to perform this analysis is vindicated by the results of the analyses 

that follow. In section 3.7, we show that despite observing good clustering of semantically 

similar documents, both at the topic and aspect level of relevance, the solutions created by 

a discrete (k-means) clustering algorithm fail to aggregate many of the aspect sub-sets into 

the same clusters. Furthermore, in chapters 4 and 5 we show that the spatial-semantic 
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visualization  approach  can  produce  much  more  coherent  organization  of  same-aspect 

documents.

We now briefly describe the nature and origins of our test bed topical scenarios, before 

concluding this introduction with an outline of formal hypotheses to be tested.

3.1.2. Origins of  the topical scenarios
Each  of  our  semantic  models  and  their  respective  spatial-semantic  visualizations  are 

created from a topical scenario. Our test bed consists of three topical scenarios. A scenario 

consists of a topic definition (an open-ended question), a set of topical aspect definitions 

(aspects of relevance),  an ad hoc document set retrieved from a test collection using a 

simple, high-recall query, and a set of relevance judgments describing the relevance of each 

of the retrieved documents to the defined topic and aspect definitions.

This test bed will form the basis of the analysis we will use to seek answers the hypotheses 

set at the end of chapter 2. It consists of three scenarios each associated with a topic taken 

from the Text Retrieval Conference (TREC) interactive track (Voorhees & Harman, 1997, 

1998). 

TREC  is  an  annual  conference  that  provides  a  forum  for  testing  and  evaluation  of 

experimental (and live) information retrieval systems. Each year the organising committee 

specifies a set of information seeking problems relating to a number of specified task types 

(e.g., question answering, ad hoc retrieval, cross-language retrieval). Participants compete, 

normally within the context of a specific task, to test their IR system or interface against 

other  competing  participants.  Each  participant  applies  their  system  to  the  same  test 

collection  of  documents.  For  a  given  topic  and task,  the  documents  most  commonly 

retrieved by participants’ systems are pooled and evaluated for relevance manually by an 

independent judge or ‘assessor’. The rich reference data that results from these activities 

provides a coherent set of benchmarks against which new systems can be evaluated and 

compared with earlier systems.

Whilst this reference data is derived from IR experiments, it can also be exploited for the 

purpose  of  evaluating  document  visualisation  systems.  Traditionally,  evaluations  of 

visualizations are often quite bespoke in design, where researchers test their own systems in 

isolation using bespoke tasks and document collections. This approach not only makes 

comparison of similar systems (across studies) difficult (see Chen and Yu, 2000) but is also 
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requires  considerable  experimenter  and  user  overhead  making  it  expensive  and  time 

consuming.  Following  suggestions  made in  1996  at  the  Second Annual  Workshop on 

visual information retrieval interfaces (see Rorvig and Fitzpatrick, 1998), there have been 

several  examples  of  where  the  TREC  data  collections  have  been  used  to  evaluate 

document  visualization  systems  and  techniques.  For  example,  published  studies  have 

emerged that exploit this comprehensive test bed to test either complete interface systems 

(e.g., Swan and Allen, 1998; Allen et al., 2001; Leuski, 2001; Wu et al., 2001) or specific 

layout algorithms (e.g., Rorvig and Fitzpatrick, 1998; Sullivan and Rorvig, 1998). 

In this work, we use topics taken from the interactive track of TREC-6 (Voorhees and 

Harman, 1997) and TREC-7 (Voorhees and Harman, 1998). The interactive track is perfect 

for our purposes, because the associated topics come in the form of open-ended questions, 

where the task for the participants is to explore the test collection, using their IR system, to 

identify at least one instance of as many distinct aspects of the topic as possible. As such, 

the pooled relevance data not only specifies which documents are relevant, per se, but also 

defines distinct aspects of the topic and specifies which documents discuss each of the 

defined aspects.  

Once we have constructed our scenarios (section 3.2), we perform a text analysis on each 

to generate  a  semantic  model  (section  3.3),  comprising  a  term vector-space  model  of 

document representations and a derived matrix of inter-document similarities.  It  is the 

similarity  matrices  that  we  work  with  to  evaluate  the  ‘raw’  potential  for  automatic 

document organization. We first perform two types of cluster hypothesis test (sections 3.5 

and 3.6) before evaluating actual explicit document organization potential in the form of 

discrete (k-means) clustering solutions (section 3.7). As mentioned in the previous sub-

sections, we include a discrete clustering solution to vindicate our decision to perform 

cluster hypothesis testing at the level of the semantic model, and to compare the properties 

of our scenarios to those of earlier studies that used discrete clustering to classify complex 

topics (e.g., Wu et al., 2001; Muresan and Harper, 2004). We identify some benefits of such 

a  scheme,  for  our  interaction  model,  but  a  number  of  limitations  are  also  discussed, 

particularly in relation to the problem of performing focused aspect searches.
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3.1.3. Experimental hypotheses
Question one asked: To what extent can a standard text analysis procedure model the general semantic  

structure expected by our interaction model and particularly the low-level structure required by the aspect  

cluster growing strategy? 

The aim of our analysis in this Chapter is to test the following related hypotheses:

H1: The two level classification structure will be evident for all scenarios whereby relevant documents will be,  

on average, more similar to the sub-set of documents that discuss the same aspect(s) than they are to the sub-

set of generally relevant documents and, in turn, least similar to the retrieval set as a whole.

H2: R2-precision for NAN in similarity space will be equal to or exceed 0.2 in most exemplar cases 

H3: Topic and aspect level clusters will be less cohesive in the scenario where aspect sub-sets tend to overlap  

more and mean R2-precision scores will be lower.

H4: Topic and aspect level clusters will be more cohesive for smaller retrieval sets of the same query and  

mean R2-precision scores will be higher. 

3.2. Creation of topical scenarios
In this section, we describe how the topical scenarios were selected and created, along with 

a brief description of their characteristics. The test bed of scenarios we create is based 

upon  topics  and  documents  compiled  for  the  purposes  of  the  6th and  7th TREC 

conferences (Voorhees & Harman, 1997, 1998). The test collection used for both years 

Interactive Tasks comprised 210158 documents sourced from the Financial Times (FT) 

Newspaper during the period 1991-1994. 

3.2.1. Selection of  topics
Two topics were selected, one from TREC-6 and one from TREC-7. The first general 

criterion for selection was that the topic should contain a reasonable number of distinct 

aspects (at least 10). This guarantees a challenging and realistic level of complexity (e.g., 

compared to the Samuel Adams example in section 2.2) given our task context of an open-

ended question. It also provides us with a sufficient number of cases to conduct inferential 

statistics based on our cluster hypothesis tests.  The second general criterion was that, for 

the sake of the intended cluster separation and aspect cluster growing experiments, a good 

proportion of these aspects must be discussed in two or more known (as judged by the 
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TREC assessors) documents. Finally, given the first step of our interaction model, the third 

general criterion was that it should be possible to retrieve a good proportion of relevant 

documents (high recall) using a short, simple query, whilst, at the same time, maintaining a 

reasonable level of precision (ratio of relevant to non-relevant documents).  We decided 

that it should be possible to achieve such a set using just two super-ordinate key terms 

OR’d together as they might be in a typical tentative search by a naïve user (see Jansen et 

al., 2000). Finally, given our hypotheses, we required that the scenarios differed significantly 

in the degree of aspect overlap; the extent to which relevant documents refer to more than 

one aspect of the topic.

All interactive track topics from TREC-6 and 7 were evaluated by their relevance data and 

candidates that met the first two criteria were short-listed. Test retrievals were conducted 

for short-listed topics and recall levels evaluated. From the remaining candidates we chose 

topics 347i and 352i as they differed starkly in their degree of aspect overlap. Table 3.1 

summarises these topics. A full list of aspect descriptions is included in appendix A1. 

3.2.2. Retrieving the document sets
Simple software was developed to retrieve our test bed sub-collections. The aim was to 

retrieve sub-collections that contained most if not all relevant documents (as identified by 

TREC  judges)  for  a  given  topic  along  with  any  other  non-relevant  documents  that 

happened to satisfy the given query. As such, it was not seen as necessary to implement a 

full IR system, with term-document indexing. Instead, a simple sequential query-document 

matching procedure was used. To reduce search time, a working sub-collection of 26094 

documents (approx 12.5% of the collection) was created to reduce the search time for each 

query trial. This sub-collection comprised all documents that were marked as likely relevant 

based on the pooled data submitted by participants of the interactive task tracks across the 

TREC-6, 7 and 8 conferences combined (TREC-8 relevant documents were included to 

allow this sub-collection to be reused for acquisition of further scenarios in future work). 

This created a sub-total of 2119 documents. The remaining 23975 documents comprised 

documents extracted randomly across the full  temporal range of the FT archives, thus 

ensuring a good likelihood of matching, but topically non-relevant documents, would be 

retrieved by any given query. 

These documents were decompressed and saved sequentially in plain text format. Topic 

querying was then performed using a simple term-matching algorithm where up to two 
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terms  (words  or  phrases)  could  be  entered,  separated  by  an  OR operator  to  ensure 

maximum recall. The retrieved set of documents were ranked based on the sum of term 

frequencies: tf1 + tf2. To minimise a ranking preference biased towards longer documents, 

each tf value was multiplied by the inverse logarithm of the document length.

Topic Properties Topic Description

347i 
Wildlife 
Extinctio
n

26  aspects  identified 
within  the  test 
collection of which 12 
are  discussed  in  two 
or more documents

The spotted owl episode in America highlighted U.S. efforts 
to prevent the extinction of wildlife species.  What is not 
well known is the effort of other countries to prevent the 
demise of species native to their countries.  What other 
countries have begun efforts to prevent such declines? A relevant 
item will specify the country, the involved 
species, and steps taken to save the species.

352i 
British 
Chunnel 
Impacts

28  aspects  identified 
within  the  test 
collection of which 21 
are  discussed  in  two 
or more documents 

Impacts  of  the Chunnel  -  anticipated or actual  -  on the British 
economy and/or the life style of the British. 

Table 3.1: Specifications of selected topics

3.2.3. Summary of  the Extinction scenario
As already noted, the first scenario is  based on Topic 347i of TREC-6 (Voorhees and 

Harman, 1997). The key specifications are detailed in table 3.1. The searcher is required to 

identify as many different countries as possible that have initiated active efforts to conserve 

an endangered native species.

In the original TREC-6 testing, an initial pool consisting of 86 of the most commonly 

retrieved documents were forwarded to the topic assessor for evaluation. Of these, half 

(43) were judged relevant to the topic leading to the identification of 26 distinct aspects. 

Our key terms comprised “extinction”, as used repeatedly in the topic description, and 

“endangered  species”.  The  latter  alternative  term  was  initially  selected  as  a  common 

expression used in relation to living entities  that are at risk of extinction and, used in 

conjunction  with  term one,  seemed to result  in  the  highest  recall.  Of  the  43 definite 

relevant documents within the queried set, 33 were retrieved giving an overall recall of 
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77%. Within these 33 documents references are made to 22 out of the possible 26 aspects. 

Another  94  ‘non-relevant’  documents  were  also  retrieved,  giving  a  set  size  of  127 

documents. The overall precision of the retrieved set was 26%.  

Table  3.2  shows an even distribution  of  topically  relevant  documents  across  the  rank 

distribution, with overall precision remaining at approximately 30% across most of the set. 

In fact 18% of relevant documents occur in the bottom 21% of the list. There is a slight 

peak in precision at the 20th rank point due to a concentration of six relevant documents 

within the 11-20 range.  

Rank 10 Rank 20 Rank 50 Rank 100

Precision 30% 45% 34% 27%

Recall 9% 27% 52% 82%

# of Aspects 3 11 16 21

Table 3.2: Relevance and Precision of Retrieved Set for Extinction 

3.2.4. Summary of  the Chunnel scenarios
As previously noted, the second scenario is based on Topic 352i of TREC-7 (Voorhees 

and Harman, 1998). The important specifications are detailed in table 3.1. The task is to 

explore the source collection for documents that discuss how the Channel Tunnel, opened 

on 6th May 1994, did or was anticipated to impact on the lifestyle and economy of British 

citizens.  Hence, possible aspects could be both prospective and retrospective in nature. 

131 documents were originally pooled for evaluation by the TREC-7 judges for this topic. 

Only 89 of these documents were actually confirmed relevant by the judges and associated 

with one or more of 28 distinct aspect definitions.

Selection of key terms was relatively simple in this case. The OR combination of “Channel 

Tunnel” and “Chunnel” is an obvious one and retrieved 87 out of the 89 known relevant 

documents  within  the  collection.  Another  131  ‘non-relevant’  documents  were  also 

retrieved resulting in a total set size of 218 documents.
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Recall for the topic was almost perfect (98%), whilst overall precision was 40% (87 / 218). 

As  expected  from the  high  recall,  all  28  aspects  are  referred  to  within  the  retrieved 

collection. 

Table 3.3 shows the mean precision and cumulative recall over different portions of the 

rank distribution. We can see, once again, that relevant documents span the full length of 

the list,  with the  last  document ranked 213th out  of  218.   However,  steadily-declining 

precision levels as the distribution increases suggest that the simple relevance ranking has 

been slightly more effective here than was the case for the Extinction topic query. 

Rank 10 Rank 20 Rank 50 Rank 100 Rank 200

Precision 90% 70% 76% 63% 43%

Recall 10% 16% 44% 72% 98%

# of Aspects 13 16 23 25 27

Table 3.3: Relevance and Precision of Retrieved Set for Chunnel Scenario

This scenario comprises a much larger document set than Extinction. In order to allow us 

to make a fair comparison of the effect of aspect overlap between scenarios without the 

potential confound caused by document set size, we created a third scenario, based on the 

existing Chunnel document set, comprising only the top 127 retrieved documents. This 

scenario also allowed us to isolate  the effect  of  document set  size as  an independent 

variable.  From hereon,  we refer  to the  Chunnel  based scenarios  as  Chunnel  127 and 

Chunnel 218. Chunnel 127 comprises 67 (87 for Chunnel 218) relevant document cases 

representing 25 (28 for Chunnel 218) distinct aspects.

The  tendency  for  aspect  overlap  was  significantly  lower  in  the  Chunnel  scenarios, 

compared  to  the  Extinction  scenario.  The  analyses  that  examine  aspect  overlap  will 

compare Extinction to Chunnel 127 (Sections 3.5.2 and 3.6.2). Based on the documents 

retrieved and retained, the mean number of aspects discussed per relevant document was 

1.85 in Chunnel 127 and 1.18 in Extinction (p < .001).  
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3.3. Creation of the semantic models
In this section, we describe the method by which the semantic models were created for 

each document set. Section 3.3.1 outlines the general text analysis procedure. We then go 

on to describe the specific stages of the procedure and their outputs in sections 3.3.2 to 

3.3.3. Section 3.3.4 describes our software implementation of the procedure and in section 

3.5 we present a summary of the semantic models that were produced. The models will 

form  the  basis  of  all  subsequent  document  layouts  (clustering,  visualization)  and  the 

evaluation conducted in sections 3.5 to 3.6. 

3.3.1. Automatic text analysis procedure
The  approach  used  here  is  based  on  vector  representation  schemes  as  utilised  in 

experimental systems such as SMART (see Salton and McGill,  1983).  The text analysis 

procedure is completely unsupervised; although certain parameters are set beforehand, the 

procedure itself runs without human intervention. First, a term vocabulary is derived by 

parsing  the  input  text  for  unique  word  terms  occurring  within  the  document  set. 

Documents  are  then  represented  as  high-dimensional  vectors  where  each  dimension 

represents a vocabulary term. For a given document, the value along each dimension is 

calculated as a function of the importance of that term within a) the specific document and 

b) the document set as a whole. Once these term vector representations are formed, the 

similarities between these vectors are computed to determine the inter-document similarity 

between all document pairs.

The assumption of this approach is that documents that use the same terms to similar 

degrees are likely  to be discussing the same concepts and topics.  This “bag of words” 

approach assumes that it is not necessary to consider word order or grammar to determine 

useful measures of semantic similarity. 

Hence, there are two key stages of our text analysis procedure producing two specific 

outputs:  a  term-document  matrix  describing  the  location  of  all  documents  within  a 

common  term  space  and  an  inter-document  similarity  matrix  describing  the  general 

similarity between all pairs of documents.  The following sections detail the particulars of 

each of these two stages.
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3.3.2. Creating term vector space
The dimensionality of document vectors is determined by the number of unique and valid 

terms that occur within the whole collection. In this work, we use single words as terms, 

although  many  alternative  terms  schemes  are  possible,  including  n-grams  (Dameshek, 

1995) and higher order statistical ‘concepts’  (Deerwester et al.,  1990; Karypis and Han, 

2000).  It  is  usual  practice  to  automatically  remove  common  ‘stop’  words  from  the 

vocabulary. Such terms are common words such as conjunctions and pronouns that tend 

to be of low information value (e.g., ‘and’ and ‘before’) and their inclusion simply adds 

noise to the resulting vector space model. The list of common terms removed from our 

semantic models contains 347 terms.

In a real-time application, it is desirable to keep vocabulary size to a minimum in order to 

both reduce storage and computational overhead and to remove terms that are likely to be 

poor ‘discriminators’. In addition to stop word removal, we exclude terms that are shorter 

than four characters and occur in fewer than five documents. These constraints might 

seem a little strict, for instance many aspects are represented by fewer than five documents. 

However, we observed through our early trials that decreasing either of these parameter 

values resulted in an increase in vocabulary size that was disproportionate to any advantage 

gained in the structure of the resulting semantic model. Finally,  we also remove all the 

terms that occur in all documents, as these will have no discrimination value.

Other  methods  of  vocabulary  reduction  such  as  stemming  (Porter,  1980),  whereby 

grammatical  variants  of  the same word (e.g.,  bank,  banks,  banking)  are  removed,  and 

decomposition  of  raw  terms  into  a  lower  number  of  statistical  ‘concepts’  (e.g.,  LSI: 

Deerwester et al., 1990; Karypis and Han, 2000) are also possible but were not included in 

our algorithm. Fine-grained exploration and optimisation of the text analysis procedure 

was not a goal of this thesis. 

A document vector is a T-dimensional array where T represents the number of unique 

terms in the common vocabulary. For each document the vector is populated with values 

representing the weight of term within that document.  Term weights in this  work are 

calculated by  using  the  common TFIDF scheme (see  Salton  and McGill,  1983).  This 

weighting reduces the impact of terms that occur more frequently across the collection, 

based on the assumption that common words have low discrimination value. The variant 

of this weighting formula used by our algorithm is shown in Figure 3.1, where TF is the 
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term frequency, N represents document set size and n represents the document frequency 

of the term. Figure 3.2 provides an illustrative example of how document term vectors are 

represented as data table or matrix.

)(
n
NLogTFTFIDF •=

Figure 3.1: TFIDF weighting scheme

D1 D2 D3 D4
Term1 1.23 3.76 0.00 0.00
Term2 5.46 0.00 1.54 5.44
Term3 0.00 0.00 2.33 2.66
: : : : :
Termk 1.23 6.23 0.00 0.00
Figure 3.2: Example of a document-term vector matrix

3.3.3. Creating the similarity matrix
Document  relations  are  represented  mathematically  as  a  matrix  of  inter-document 

similarities. The similarity matrix was computed by measuring the cosine between all pairs 

of  document  vectors.  This  was  seen  as  preferable  to  measuring  node  proximity  (e.g., 

Euclidean distance)  per se which can be affected by variation in vector length, caused for 

example  by  variation  in  document  length  and key  term weightings.  There  are  several 

metrics that can be used for this purpose, all  of which are based upon the simple dot 

product calculation (see Korfhage, 1995; van Rijsbergen, 1979). Here we choose the cosine 

metric, which is a commonly applied (e.g., SMART: Salton and McGill, 1983), normalised 

derivative of dot product that controls for differences in vector length. Cosine coefficients 

always fall within the range of 0 to 1, with 0 indicating no observable similarity and 1 

indicating perfect similarity between data objects. The cosine measure is shown below in 

figure 3.3. The similarity matrix is represented formally as shown in figure 3.4.
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Figure 3.3: Cosine Similarity Metric (adapted from Salton and McGill, 1983)

D1 D2 --- DN

D1 1.00 0.23 : 0.16
D2 0.23 1.00 : .45
: : : : :
DN 0.16 0.45 : 1.00
Figure 3.4: Example of an inter-document similarity matrix

3.3.4. Implementation of  the procedure
The process described above was implemented as a simple automatic text analysis program 

that  transformed the  documents  for  each scenario into  a  weighted term vector  space 

representation  and  computed  an  inter-document  similarity  matrix.  This  implemented 

procedure can be broken down into four phases or sub-procedures: loading and cleaning 

documents  texts,  building  the  term  list,  computing  the  term-document  matrix  and 

computing the inter-document similarity matrix. 

In  the  first  phase,  the  program loads  in  the  sequential,  delimited  file  containing  the 

retrieved document texts in their rank relevance order (see section 3.2.2). The document 

texts are then parsed to replace all  punctuation with a blank space and to remove all 

common words (from a list of 347 words). The full text of each document is then parsed 

sequentially for all unique word terms (character strings delimited by spaces), creating an 

exhaustive term list or vocabulary for the set. During this phase document frequencies are 

also counted for each term. Once all text has been parsed, the vocabulary size is reduced 

further by removing all terms that appeared in all of the document texts (e.g., common 

SGML tags, the query terms), all those that appeared in four or fewer documents and all 

terms that had three or fewer characters. 

The next phase creates the term-document vector space matrix, represented internally as a 

two dimensional (document by term) array. For each document, the frequency of each 
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retained term (TF) is counted. Each TF value is then weighted by multiplying TF by the 

inverse of the document frequency (see figure 3.1 in section 3.3.2). 

The final phase computes the similarity matrix for the document set, based on the term-

document matrix. A similarity value (to three decimal places) is calculated using the cosine 

measure for all documents pairs. Similarity values are non-directional, hence the resulting 

matrix is symmetric and each pair is only calculated once (i.e., sim AB is the same as sim 

BA). This meant a total of (n2-n)/2 Cosine calculations for each run.

3.3.5. Summary of  semantic models
In this final sub-section we provide an overview of the resulting semantic models created 

by  this  procedure  for  our  topical  scenarios.  The  semantic  model  for  the  Extinction 

scenario comprised 1648 unique terms and resulted in a similarity matrix with a mean inter-

document similarity  of 0.058.  Chunnel  127 and 218 comprised 1289 and 2350 unique 

terms respectively with mean similarities of 0.074 and 0.061 respectively. 

Further summary statistics are detailed in table 3.4 and the distributions are visualised as 

histograms in  figure 3.5.  All  distributions  were highly  positively  skewed, with the vast 

majority (75%) of similarity values falling within a few points of the mean (sim = 0.7 - 

0.10).  For  all  scenarios  there  is  a  long flat  tail  to  the  upper  end of  distribution  (99 th 

percentile) containing a minority of much stronger similarities (sim = 0.26 - 0.31).  We 

anticipated  that  a  significant  proportion  of  these  top percentile  values  would describe 

aspectual relationships within the document sets. Our analyses in sections 3.5 and 3.6 will 

confirm if this is the case.

Extinction Chunnel 127 Chunnel 218
N 8001 8001 23653
Mean 0.058 0.074 0.061
Median 0.043 0.061 0.048
Mode 0.030 0.070 0.030
SD 0.059 0.058 0.052
Skewness 4.308 2.266 3.120
75th percentile 0.071 0.096 0.076
99th percentile 0.307 0.286 0.262
Table 3.4: Summary Statistics for the Semantic Models
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Figure 3.5: Distributions of all inter-document similarities for the three topical scenarios

3.4. Data collection methods
Data was collected from the scenarios and their semantic models, specifically the similarity 

matrices, for the purpose of the two experiments reported in sections 3.5 and 3.6. The first 

experiment, based on the ACS test, measures relative cluster separation between different 

semantic classes in our required two-level topical classification. The second experiment 

measures the upper bound potential performance of the cluster growing strategy using the 

nearest aspect neighbours (NAN) test. We now describe how these data were collected.

3.4.1. Aspect cluster separation test
Existing  approaches  to cluster  separation  tend  to consider  the  similarities  between all 

documents  within  a  document  class  as  single  cases  in  each  distribution  (e.g.,  van 

Rijsbergen, 1979; Muresan and Harper, 2004). For instance, Muresan and Harper (2004) 

computed  three  distributions:  all  similarities;  all  similarities  between  relevant-topic 

documents; and all similarities between same-aspect documents. 

Here,  we adopt  a  somewhat different  approach whereby each case is  actually  a  mean 

similarity measure rather than a single inter-document similarity measure. The procedure 

for preparing the required data is as follows. For each relevant document we compute its 

mean similarity  to same-aspect documents,  same-topic  (all  relevant)  documents and all 

documents. For brevity and consistency with continuity, these measures will be referred to 

respectively as R-AR, R-R, and R-ALL. We also use this approach in our analysis of spatial-

semantic solutions (Chapter 4), the only difference being that the means are of proximities 

(distances)  rather  than similarities.  If  the  desired two level  hierarchical  classification  is 

present in the semantic model of a scenario, we should find a linear or quadratic trend 

occurring as we move from R-ALL through R-R to R-AR. In other words, the sub-set of 
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same aspect documents around a relevant document will tend to be more similar to that 

exemplar than will the sub-set of same topic documents, which in turn will tend be more 

similar to the exemplar than the whole set containing documents that discuss other topics 

in addition to the relevant one. 

The rationale  for this  approach is  due to our focus being on the feasibility  of cluster 

growing strategy which makes us more interested in the extent to each relevant document 

would make good aspect cluster growing exemplar, or pearl from which to grow an aspect 

cluster. Like Muresan and Harper’s (2004) approach, our approach allows us to measure 

the tendency for increasingly similar classes of documents to form increasingly cohesive 

clusters. Additionally,  it permits the conduct of between scenario analyses, without any 

extreme differences in sample sizes. It also allows for analyses that study the effects of 

independent variables within a single scenario (e.g., between aspect differences or between 

cases that make good and bad exemplars). We exploit the advantage of the former property 

in our analyses in sections 3.5 and 3.6.  

In practice, our distributions are likely to be very similar in their statistical properties to the 

conventional all-pairs distributions used by, for instance, Muresan and Harper (2004). We 

are simply aggregating the data, perhaps losing some of the finer grained variance in the 

distribution in the process. In other words, for a given scenario, the difference in overall 

averages between our R-AR measure and, for instance, the all aspect similarities measure 

calculated by Muresan and Harper (2004) is likely to be quite small. 

3.4.2. Nearest aspect neighbour test
The nearest aspect neighbour (NAN) provides us with a more direct measure of cluster 

growing strategy potential and is a variation on Voorhees (1985) cluster hypothesis test. It 

is also similar in nature and aim to the strategy functions employed by Leuski (2001) in his 

strategy based evaluation methodology. In Voorhees (1985) original test, the density of 

relevant  documents  appearing  in  the  top  k-most  similar  documents  (the  local 

neighbourhood) is computed for each relevant document. The end result is expressed as a 

mean  percentage;  the  higher  the  percentage  the  better  the  support  for  the  cluster 

hypothesis.

This  original  procedure  would  not  be  particularly  informative  for  testing  aspect-level 

clustering because each scenario has multiple distinct aspects of relevance and any given 
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relevant document can discuss one or more of these aspects. As such, the pool of potential 

‘aspect relations’ would vary in size for each relevant document and so averaging the sum 

of values would not provide a valid overall measure of aspect clustering.  

We get around this problem with our NAN test, which only computes the rank positions 

of  the  two  most  similar  same-aspect  documents.  By  imposing  this  constant  recall 

threshold, we standardise the measure for all cases, regardless of the number of aspect 

relations. Because documents can be associated with several aspects, we compute separate 

NAN scores  for  each  relevant  document  and  each  distinct  aspect  discussed  by  each 

document. It could equally be used once for each document case, taking into account all 

related aspects, but in our case we wish the measure to reflect the potential for single-

aspect cluster growing.  This also allows us to compare the exemplar (starting point for 

cluster growing) value of given documents across different associated aspects. The value of 

this becomes more apparent in Chapter 5 (section 5.4) where we explore why documents 

cluster well to some related aspects but not to others.

Hence, a document that is associated with three distinct aspects would have three separate 

NAN scores.  This  means  that  a  NAN dataset  for  a  given  scenario  could  potentially 

comprise many more cases than there are relevant documents. This is particularly common 

in our Chunnel scenarios, which contain many multiple aspect documents. However, to 

compute each case requires that there the respective aspect sub-set comprises three or 

more documents in addition to the exemplar case. Hence, the total number of cases may 

be suppressed where cases fail to meet this criterion. For this reason many cases were 

dropped  from  the  Extinction  scenario  due  to  the  large  number  of  aspect  sub-sets 

comprising just two documents. 

3.5. Classification of topical structure
Having described how the ACS data was acquired, we now use this data to help us to 

understand the extent to which the expected document structure is  present within our 

semantic models. In this section, we evaluate the extent to which the two-level topical 

classification structure that we seek is present within the semantic model of each of our 

scenarios and the variation in both topic and aspect clustering caused by aspect overlap and 

document set size. We directly test hypotheses H1, H3 and H4. We use the ACS test to 

measure  general  integrity  of  classification  within  each  scenario.  We  then  derive  ratio 
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measures from these mean document-class similarity scores and use these to compare the 

cluster cohesion of relevant documents across the scenarios.

3.5.1. General classification
Our first hypothesis (H1: see section 3.1.3) predicts that the two-level classification will be 

generally apparent in the structure of all scenario semantic models. Figure 3.6 clearly shows 

the expected trend across all three scenarios. We can see from table 3.5 that ANOVA and 

pair-wise  contrast  statistics  confirm  that  both  the  general  trends  and  the  difference 

between adjacent class pairs are significant in every case. Figure 3.6 illustrates the general 

trends  graphically.  Most  notably,  for  all  scenarios,  the  slope  of  the  curve  increases 

significantly between R-R and R-AR, suggesting that same-aspect documents tend to be 

distinguished well by the inter-document similarity matrix. 

Scenario Overall R-ALL v R-R R-ALL v  R-AR R-R v R-AR
Exinction,  127 
docs (n=24)

F(2,46)= 
24.36***

*** *** ***

Chunnel,  127 
docs  (n= 66)

F(2,130)= 
115.59***

*** *** ***

Chunnel,  218 
docs (n=85)

F(2,168)= 
235.91***

*** *** ***

Overall (n=175) F(2,348)= 
244.78***

*** *** ***

*** p<.001; ** p<.01; * p<.05

Table 3.5: ANOVA and pair-wise comparisons of mean similarity of relevant documents to all documents (R-
ALL), topic (R-R) and same aspect (R-ALL).
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Figure 3.6a: Mean similarity of relevant documents 
to all  documents  (R-ALL),  topic (R-R)  and same 
aspect (R-AR)

Figure 3.6b:  Mean similarity,  by topical  scenario,  of 
relevant documents to all documents (R-ALL), topic 
(R-R) and same aspect (R-AR)
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3.5.2. Effect of  aspect overlap
Extinction and Chunnel differ significantly in terms of aspect overlap, that is the extent to 

which relevant documents discuss multiple aspects of the topic. We wished to examine the 

effects of this factor on cluster cohesion and separation. H3 predicted that the two-level 

(topic-aspect) semantic classification would be weaker for the overlapping scenario.

Rather than simply measuring the general effects of aspect overlap on relevant document-

class means per se, we felt it would be more meaningful to compare the relative cohesion 

of  documents  belonging  to  sub-ordinate  classes  (topic  and  aspects)  to  super-ordinate 

classes (whole set and topic). In terms of figure 3.6b, this means comparing the gradient of 

the edges. We are particularly interested in the relative cohesion of same aspect documents 

within the context of the topic and all documents in the retrieved set.

A two way mixed ANOVA (class by scenario), considering only Extinction and Chunnel 

127, reveals a two-way interaction: F(2,176) = 9.065, p<.001. In figure 3.6b we can see a 

steeper  incline  for  Extinction  on  both  edges,  indicating  that  the  topic  forms  a  more 

cohesive sub-set of the retrieved set and, in turn, aspects of the topic form more cohesive 

sub-sets of both the topic and retrieved set. Whilst both scenarios show a similar R-R 

mean, the R-AR mean is much higher for Extinction. 

To analyse this difference in classification integrity in more detail, we introduce three new 

measures. These measure the relative mean similarity of between all pairs of class means: 

R-ALL:R measures the ratio of R-ALL to R-R, R-ALL:AR measures the ratio of R-ALL to 

R-AR and R-R:AR measures the ratio of R-R to R-AR.

Class comparison Extinction Chunnel 127 t-value
R-ALL:R 0.682 (n=33) 0.866 (n=67) 12.35***
R-ALL:AR 0.419 (n=24) 0.580 (n=66) 3.45***
R-R:AR 0.629 (n=24) 0.670 (n=66) 0.73ns
Table 3.6: t-test comparisons between Extinction and Chunnel 127 of sub-cluster cohesion for all class pairs 
in common vector space. Lower values indicate more coherent clustering of the latter document class within 
the context of the former class.

A low value would suggest strong clustering (in term space) of documents belonging to the 

sub-ordinate document class (e.g., same-aspect) in relation to the specified super-ordinate 
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class (e.g., all documents). Calculating a ratio also provides a standardised measure, which 

allows us to make direct comparisons between scenarios even if the dispersion and range 

of their similarity distributions are quite different. 

Table 3.6 shows a comparison of Extinction and Chunnel 127 whereby scenarios differ in 

the degree of aspect overlap but are equal in document set size (N=127). Highly significant 

differences (p< .001) for R-ALL:R and R-ALL-AR indicate that similarity values separate 

relevant documents from non-topical documents more completely in the non-overlapping 

scenario, both at the topic and aspect levels of relevance. This suggests that aspect cluster 

growing will be more impeded by instances of non-topical documents in the overlapping 

scenario.  However,  there  is  no  significant  difference  between  scenarios  for  R-R:AR, 

suggesting that there will  be no difference in the extent to which topically relevant but 

aspectually non-relevant documents will impede the strategy. 

The combined impact of these observations on the potential efficiency of the aspect cluster 

growing strategy is currently unclear and we hope to solve this conundrum in section 3.6.2. 

However, at this stage, H3 is supported. 

3.5.3. Effect of  document set size
H4 predicted that increasing set size would lead to poor separation of the aspect cluster 

within the topic and set clusters. To this end we compared the two versions of the Chunnel 

topic scenario: Chunnel 127 and Chunnel 218. We can see from figure 3.6b that although 

there are differences in the mean document-class similarities between the two Chunnel 

scenarios, the slope of the edges of the curve are relatively parallel. This suggests no general 

interaction and this is confirmed by ANOVA (F(2,298)=0.035, ns). However, to examine 

scenario differences more closely, we repeated the pair-wise comparisons of class ratios 

conducted using the same method applied in section 3.5.2. 

Class comparison Chunnel 127 Chunnel 218 t-value
R-ALL:R 0.866 (n=67) 0.828 (n=87) 3.366***
R-ALL:AR 0.580 (n=66) 0.515 (n=85) 2.182*
R-R:AR 0.670 (n=66) 0.623 (n=85) 1.453ns
Table 3.7: t-test comparisons between Chunnel 127 and Chunnel 218 of sub-cluster cohesion for all class 
pairs in common vector space. Lower values indicate more coherent clustering of the latter document class 
within the context of the former class.
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Table 3.7 shows the results of this analysis. We can see that the effect of set size, whilst less 

significant, follows a similar trend to that seen for aspect overlap whereby the differences 

between the two scenarios are most significant in terms of the cohesion of topic and same 

aspect documents relative to the whole set (R:ALL:R and R-ALL:AR). Again, there is no 

significant difference in the ratio of mean topic similarity and mean aspect similarity (R-

R:AR). 

However, the differences are not in the expected direction, in that both the topic and 

same-aspect documents form more cohesive sub-clusters in the semantic model of the 

larger retrieved document set.  Hence, H4 is not supported, but the reasons at this stage are 

unclear. It could be because decreasing the rank cut-off threshold adds a proportionally 

greater number of non-relevant documents (see table 3.3, section 3.2.4), thus making the 

relevant topic and associated aspects more distinct  within the context  of the common 

vector  space.  The  observation  that  R-R:AR  does  not  change  significantly  between 

scenarios certainly supports this idea. 

This  conclusion  would  suggest  the  interesting  hypothesis  that,  within  limits  perhaps, 

increasing the recall-precision ratio may enhance the classification of topical structure. It is 

an interesting conjecture because it runs contrary to the views of Hearst and Pederson 

(1996)  and Tombros  and van Rijsbergen (2001)  who suggest  that  document similarity 

measures are more meaningful when the context (common term space) in which they are 

computed is more focused on the user’s query. 

We must be cautious at this stage, however, because these observations are only true within 

the  high-dimensional  context  of  vector  space.  Whether  this  benefit  translates  to 

dimensionally reduced visual space remains to be seen in the following chapter (section 

4.4.4). Prior to this, however, we will build upon these observations and those in previous 

sub-sections by applying our nearest neighbours analysis to determine the upper bound 

potential performance of the aspect cluster growing strategy. 

3.6. Upper bounds of strategy performance
In this  section,  we use the NAN test  to estimate the upper bounds of  aspect  cluster 

growing strategy performance across and within our scenarios. By using the NAN test, we 

are effectively simulating a user performing the strategy in high-dimensional space. As we 

did for the ACS tests, we look at general performance first, followed by the effects of 
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aspect overlap and document set size. We directly test hypothesis H2 (section 3.6.1), and 

find further evidence to test hypotheses H3 (section 3.6.2) and H4 (section 3.6.3).  We 

therefore begin by examining general performance of our strategy before examining the 

specific effects of aspect overlap and document set size.

3.6.1. General performance
H2 predicted that the aspect cluster growing strategy, guided by relative similarity cues, 

would result in an average precision of at least 0.2 at the point where the second relevant 

document is discovered. Table 3.8 shows the summary statistics for NAN analysis of our 

three scenarios. The most striking feature is the difference between the two topics. The 

local  structures seem very  similar  for both of  the Chunnel  variants.  In both  Chunnel 

scenarios, just over 70% of all potential cluster growing exemplars have at least two same-

aspect neighbours within the first ten nearest neighbours. Furthermore, at least 50% of 

exemplar cases have two same-aspect documents within the top five nearest neighbours.

In contrast, in the Extinction scenario only 17.6% of cases has two same-aspect documents 

within their  ten nearest  neighbours.  In fact  the for the worst  50% of cases,  the rank 

position of the second relevant document is at least 22 and in the worst case of all the rank 

position is  70.  The general  likelihood across cases,  however,  of  finding just  one same 

aspect document in the top 10 nearest neighbours, however, was much better, with this 

criterion being met for 82.4% of exemplar cases.

Scenario Average rank similarity of nearest 
aspect relevant neighbours 

R2-Precision % R2-P =< 0.2

1st relevant 2nd relevant
Exinction,  127 
docs (n=17)

6.824
(6.000)

28.824
(22.000)

0.069
(0.091)

17.6%

Chunnel,  127 
docs  (n= 110)

4.255
(2.000)

10.364
(5.000)

0.193
(0.400)

72.7%

Chunnel,  218 
docs (n=143)

5.007
(2.000)

10.322
(5.000)

0.194
(0.400)

71.3%

Overall (n=270) 4.815
(2.000)

11.504
(5.500)

0.174
(0.364)

68.5%

Table 3.8: Nearest aspect neighbours analysis for all three topical scenarios. For each cell means are shown 
first followed by median in brackets.
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In summary, the potential for efficient aspect cluster growing seems very good for the 

Chunnel Scenarios but less so for the Extinction scenario. H2 is therefore only partially 

supported. 

3.6.2. Effect of  aspect overlap
According to H3, strategy performance should be better for the distinct aspect scenario 

(Extinction). The semantic model for the Extinction scenario is quite different to that of 

the Chunnel scenario (see table 3.8). Whilst the Chunnel scenario meets our expectations 

quite nicely, in the Extinction scenario aspect sub-sets seem to be somewhat fragmented. 

On the one hand, the first NAN tends to be relatively high ranking for most relevant 

document cases, yet on the other hand, for a similar majority of cases, the rank interval to 

the second NANs seems to be disproportionately large.

Non-parametric  tests  (Mann-Whitney)  were  used  to  compare  the  NAN  scores  for 

Extinction and Chunnel 127, due to the strong positive skew on the distributions and large 

differences in standard deviation on the 2nd NAN distribution. These confirm a significant 

difference between the scenarios for both the first NAN (U=490, p= .001) and the second 

NAN (U=363.5, p< .001), with performance being superior within the Chunnel scenario 

in both cases.

The direction of these differences is counter-intuitive. We would have expected that the 

potential for efficient aspect cluster growing would be poorer for Chunnel because of the 

greater tendency for documents to be relevant for multiple reasons. In trying to explain this 

result,  the  first  question  to  we  asked  related  to  the  fact  that  the  sample  of  relevant 

document cases considered for Extinction is considerably smaller than for the previous 

analysis. This is due to the limited number of aspect sub-sets comprising three or more 

documents in this scenario. It  seemed possible that the difference in aspect-set cluster 

separation (R-ALL:AR) that we observed in section 3.5.2 could be mostly accounted for by 

the high similarity coefficients between the smaller, two document aspects. To verify this 

we repeated the NAN comparison (for the first nearest aspect neighbour) with the data for 

two-document  aspects  (raising  the  number  of  Extinction  case  to  29).  However,  the 

addition  of  these  cases  has  little  effect  on  the  observed  difference  between  the  two 

scenarios (U=1016, p=.002). 
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This is therefore an interesting problem that highlights the differences in the objectives of 

the two tests and, particularly, how topical structure may affect the sensitivity of the ACS 

method. Voorhees (1985) noted how differences in sample size between R-R and R-NR 

means could produce misleading results in the original cluster separation test. As the R-NR 

sample  would  generally  be  larger,  the  impact  of  a  similar  number  of  high  similarities 

(relative to the R-R sample) will be lower. The same problem exists when we compare 

Chunnel to Extinction, where relevant documents tend to have a higher number of same-

aspect  relations  (11.90  vs.  1.63).  R-AR means  for  each case  in  the  latter  scenario  are 

computed from a much larger sample and thus even though it seems that whilst there is a 

number of highly similar aspect relations in Chunnel, the mean is shifted further away from 

these high values by a relatively larger number of lower similarities.

It  is  possible  that  replacing  the  arithmetic  mean  with  an  alternative  central  tendency 

measure such as the median or mode might ameliorate the impact of differences in sample 

size.  This  would  be  an interesting  question  for  future  work.  The implication  for  this 

dissertation,  however,  is  that  whilst  the  ACS test  is  a  good preliminary  check  of  the 

integrity of the general topical classification within a retrieved set, it is not necessarily a 

good predictor of between scenario differences in cluster growing performance when the 

respective relevant documents tend to differ grossly in terms of their topicality. As such, 

the observed differences need to be viewed with caution and interpreted within the context 

of NAN test results. 

3.6.3. Effect of  document set size
H4  predicted  that  increasing  document  set  size  would  lead  to  less  efficient  strategy 

performance. In our ACS analysis, both topic and aspect clustering was stronger in the 

larger Chunnel scenario. We are interested to know what effect this has on structures local 

to relevant documents.  From viewing table 3.8, it seems that document set size has little 

effect on NAN scores. Mann-Whitney U-tests confirm the reliability of this observation 

for both 1st NAN (U=7686.5, p=.74) and 2nd NAN (U=7722.5, p=.80). 

Hence, even though both recall and precision vary between these scenarios, this has no 

effect  on  potential  aspect  cluster  growing  efficiency.  Combined  with our  results  from 

section 3.5.2, we must therefore reject H4. This is a promising result, which suggests that 

recall can be enhanced, by reducing the rank cut-off threshold, without incurring penalties 

on the precision of  aspect clustering.  However,  we have yet to see the impact of  the 
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increased dimensionality  associated with the larger document set on the fidelity  of any 

resulting spatial-semantic solutions. We will examine this question in Chapters 4 and 5.

3.7. Discrete clustering
The general  aim of  this  chapter  is  to  run  preliminary  tests  to  check  whether  topical 

classification required to support our interaction model is present within semantic models 

created using a standard automatic text analysis method and to estimate the upper bounds 

of potential aspect cluster growing strategy performance. To this end, we have conducted 

low-level analyses of the similarity data, measuring and comparing cluster separation (ACS 

test)  between the  set  and  relevant  sub-sets  and  also the  relative  similarity  of  relevant 

documents to other same-aspect documents (NAN test). Results were generally positive 

for the ACS tests and somewhat positive for the NAN tests, although in the latter instance 

performance was highly dependent on the topic under consideration. 

In this section, we break briefly from our hypothesis testing to examine the extent to which 

our  observed  classification  can  be  conveyed  by  a  discrete  clustering  algorithm.  The 

motivation  for  this  is  two-fold.  First,  previous  work  that  has  examined  unsupervised 

organisation  of  retrieved  documents  relevant  to  a  complex  topic  have  focused  on 

clustering  (e.g.,  Wu  et  al.,  2001;  Muresan  and  Harper,  2004)  as  opposed  to  scaling 

(although see Swan and Allan, 1998 for a similar approach). The studies cited have found 

that clustering algorithms tend to produce poor results with respect to assigning same-

aspect documents to the same clusters (Wu et al., 2001; Muresan and Harper, 2004).  We 

wish to see whether the same problems occur when we attempt to produce a cluster 

solution  for  our  semantic  models.  We  also  wish  to  extend  these  earlier  findings  by 

presenting a more detailed examination of the extent to which aspect clusters are accurately 

communicated. Our second motivation for this analysis is to provide an extra benchmark 

against which to evaluate the structure of our spatial-semantic visualizations in Chapter 4 

and to vindicate the methodological decision to verify the truth of the cluster hypothesis in 

high-dimensional  space  prior  to  performing  and  evaluating  document  organisation 

algorithms. 

Previous  work  has  shown that  relevant  documents  will  tend  to  converge  on  a  small 

number of clusters within a given solution (Hearst and Pederson, 1996; Wu et al., 2001), 

often with a single best cluster that contains most of the relevant documents (Hearst and 

Pederson, 1996; Muresan and Harper, 2004). This seems to be true for both simple and 
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complex topics. However, the studies that have looked at more complex topics, have also 

found that aspect sub-sets often become fragmented across the cluster structure (Wu et al., 

2001; Muresan and Harper, 2004). For instance Wu et al. (2001) found that although most 

relevant documents resided in one or two best clusters, documents relevant to the same 

aspect did not necessarily reside in the same cluster.

This seems initially like a counter-intuitive phenomenon: as same-aspect documents tend 

to be more similar than relevant documents discussing different aspects, we would expect 

them to be more likely to be clustered together. However, in reality, clustering algorithms, 

when  creating  a  useably  small  set  of  clusters,  necessarily  focus  on  a  high-level  of 

organisation,  seeking  to  maximise  the  thematic  coherence  of  a  significant  number  of 

documents  (rather  than  pairs)  within  clusters  and  maximise  the  thematic  distinction 

between  clusters.  Muresan  and  Harper  (2004)  demonstrated  this  effect  on  document 

organisation.  They found that  the  topicality  (i.e.,  number  of  same aspect  relations)  of 

documents has a major impact on clustering. Highly topical documents tend to be more 

similar to the relevant sub-set as a whole and are therefore more likely to be grouped 

together into a highly topical cluster. In contrast, documents that are distinct or highly 

focused in their perspective on the topic tend to be allocated to other clusters, sometimes 

apparently arbitrarily. 

We begin in section 3.7.1, by presenting and evaluating the cluster solutions created for 

each  scenario  at  the  topic  level  of  relevance,  before  examining,  in  section  3.7.2,  the 

organisation of aspect sub-sets within the solutions. 

3.7.1. 5-cluster solutions
Following  Hearst  and  Pederson  (1996),  we  created  flat  (non-hierarchical)  5-cluster 

solutions for each topical scenario. We used a standard k-means clustering algorithm as 

provided by SPSS v11.5. The input for each solution was a similarity matrix and all settings, 

apart from k were left on default. Tables 3.9 to 3.11 show the distribution of relevant and 

non-relevant documents in the solutions for each scenario. We will now briefly describe 

the key structural properties of these solutions as they relate to each topic.

We can see that relevant documents are scattered across at least four clusters in each of the 

solutions, although the extent to which relevant documents dominate each cluster varies 

considerably within each solution. The results of Cross-tabs (Chi-square) analyses for each 
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solution confirm that clusters tend to vary in their relevance bias and this was a highly 

significant effect for all scenarios (p<.001). Hence, topical relevance is exerting a significant 

influence on the resulting cluster structures.

Extinction Non-Relevant Relevant Pcl(Prl)
Cluster 1 41 (43.6%) 21 (63.6.%) .34 (.29)
Cluster 2   4   (4.3%)   6 (18.2%) .60 (.30)
Cluster 3   5   (5.3%)   5 (15.2%) .50 (.30)
Cluster 4   8   (8.5%)   0   (0.0%) .00 (.38)
Cluster 5 36 (38.3%)   1   (3.0%) .03 (.41)
Chi-square = 24.257, df = 4, p< .001
Table 3.9: Five-cluster solution for Extinction 

Chunnel 127 Non-Relevant Relevant Pcl (Prl)
Cluster 1 12 (20.0%) 29 (43.3%) .71 (.76)
Cluster 2 29 (48.3%)   8 (11.9%) .22 (.76)
Cluster 3   9 (15.0%)   8 (11.9%) .47 (.77)
Cluster 4   1   (1.7%) 11 (16.4%) .92 (.92)
Cluster 5   9 (15.0%) 11 (16.4%) .55 (.70)
Chi-square = 27.257 df = 4, p< .001
Table 3.10: Five-cluster solution for Chunnel 127 

Chunnel 218 Non-Relevant Relevant Pcl (Prl)
Cluster 1 15 (11.6%)   0   (0.0%) .00 (.80)
Cluster 2 22 (17.1%)   5   (5.6%) .19 (.78)
Cluster 3   8   (6.2%) 21 (23.6%) .72 (.76)
Cluster 4 58 (44.3%) 23 (26.4%) .28 (.60)
Cluster 5 28 (21.4%) 38 (43.7%) .58 (.65)
Chi-square = 41.205, df = 4, p< .001
Table 3.11: Five-cluster solution for Chunnel 218 

Hearst and Pederson (1996) found that there was generally a best cluster containing a large 

proportion (in most cases >50%) of relevant documents. We can see this effect in our 

solutions, albeit to a weaker extent. In Extinction this is cluster 1 (63.6%), in Chunnel 127 

this is cluster 1 (43.7%) and in Chunnel 218 this is cluster 5 (43.7%).  However, cluster 

sizes vary within each solution and although these clusters contain the largest proportion of 

relevant documents within the cluster structure, being relatively large clusters they also 

comprise a significant number of non-relevant items. 
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In other words, although they are a rich source of relevant documents, they are by no 

means exclusively relevant clusters. To put this into perspective, the figures in the far right 

column describe two precision figures for each cluster:  the first (Pcl)  is  proportion of 

relevant documents within the cluster and the second (Prl) is the proportion of relevant 

documents in the same number of top ranking documents. Hence, these two measures 

allow us to crudely compare a strategy of identifying, through whatever cues are provided 

by the interface (e.g., cluster size, key words), and looking at this ‘best’ cluster first, to a 

more conventional strategy of simply browsing systematically down the ranked list.  

We see  that  whilst  Pcl  is  marginally  greater  than  Prl  for  Extinction  (.34  vs.  .29),  the 

converse is true for both Chunnel solutions (Chunnel 127= .71 vs. .76; Chunnel 218= .72 

vs. .76). Hence, in neither case does browsing the best cluster first provide the user with a 

significant advantage. In fact, if we look at the remaining clusters we can see that, in each 

solution, the most precise or ‘topic rich’ clusters tend to be the smaller clusters. Even so, 

browsing these more precise clusters first would only represent a more efficient strategy 

than browsing the ranked list in the case of the Extinction scenario.

Comparing precision on a ‘by cluster’ basis is  probably a little  unfair to the document 

clustering model as precision is always likely to be relatively high in the top rank intervals 

of the retrieved set. The real benefit of clustering is likely to be in locating relevant items 

further down the list, where they are more sparse. A fairer evaluation of is therefore to look 

at the broader, more realistic strategy where the user filters out the least relevant clusters, 

based on their meta-data, and devotes their attention to browsing the more promising 

ones. In other words, we will look at how cluster summary data might help the user to 

navigate more efficiently to the majority of relevant documents.   

To demonstrate this strategy, we adapt our strategy function to simulate a user who decides 

to browse the top three most precise clusters together, rather than one cluster at a time. In 

doing so, we make the assumption that the most precise clusters will be summarised using 

terms that are clearly more relevant than those used to label other clusters (see for e.g. 

Hearst & Pederson, 1996). Hence, we are considering a much larger proportion of the 

retrieved set and compare the precision of this  strategy to that of  browsing the same 

number of top ranking documents. We find that benefits of document clustering are, again, 

most apparent for Extinction (Prl=.28; Pcl=  .39, +39.3%). The advantage in the Chunnel 
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scenarios is  less pronounced,  with moderate gains for Chunnel 127 (Prl=64;  Pcl= .70, 

+9.4%) and relatively slim gains for the Chunnel 218 scenario (Prl= .45; Pcl= .47, +4.4%).

Hence, we have shown, for our complex topical scenarios, that clustering documents by 

their similarity  can effectively separate relevant from non-relevant items although these 

solutions  are  by  no means  definitive;  relevant  documents  do  not  tend to  form large, 

exclusive clusters. Whilst there are some benefits to the user for general topic retrieval 

these seem to be significant only for the user who is prepared to browse through large 

numbers of documents in multiple clusters as opposed to the user who is only prepared to 

browse a few documents in the most promising cluster. It seems apparent that for our 

complex topics, Muresan and Harper’s (2004) aspectual cluster hypothesis is correct in that 

relevant documents are not always highly similar. Moreover, most relevant documents are 

neither similar enough nor sufficiently distinct from non-relevant documents to form large, 

exclusive clusters. 

Our analysis tells us that discrete clustering can, to a limited extent, effectively organise a 

document set retrieved for a complex information need in a manner that may, to some 

extent, facilitate the retrieval of relevant documents. However, the interaction model we 

proposed in section 2.2 assumes a task beginning with an open-ended question (an ill-

defined information need) where search proceeds in a berrypicking/evolving style (Bates, 

1989). In other words, the user is unable to define, up front, all aspects of relevance; indeed 

the relevance of some documents may not be apparent until the user has interacted with 

other documents. 

We therefore expect  that the user’s  query will  evolve  as  they interact  with documents 

(Bates,  1989;  O’Day  and Jeffries,  1993;  Xie,  2000),  meaning  that  their  intentions  will 

periodically  shift  from to  new and different  aspects  of  the  topic  based on accidental 

discoveries or insights (O’Day and Jeffries, 1993). Our interaction model assumes that in 

between these shifts the user will be temporarily focused on a specific aspect. This is the 

reason why the aspect cluster growing strategy is a central focus of our analyses throughout 

this dissertation. We are most interested in the extent to which document organisation 

algorithms can group not only generally relevant documents together, but also same-aspect 

documents. In other words, we ask to what extent can the user follow up their specific 

aspect  intention  without  going  beyond  the  cluster  in  which  the  first  instance  was 

discovered? 
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3.7.2. Aspect cohesion
At the beginning of section 3.7, we discussed the results of previous studies which suggest 

that  discrete  clustering  seems  to  do  a  relatively  poor  job  of  assigning  same-aspect 

documents to the same clusters (e.g., Wu et al., 2001; Muresan and Harper, 2004). This 

may be particularly true when the aspect sub-set comprises a mixture of both highly topical 

and highly focused or distinct documents (Muresan and Harper, 2004). We now look at the 

extent to which aspect sub-sets in our scenarios converge on the same clusters. 

Aspect 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Cluster 1 1 2 1 1 2 1 1 4 1 1
Cluster 2 1 1 1
Cluster 3 1 1 1 1 1
Cluster 4
Cluster 5
Aspect 15 16 17 18 19 20 21 22 23 24 25 26
Cluster 1 2 1 1 2 2 1
Cluster 2 1 2 1
Cluster 3 1 2
Cluster 4
Cluster 5 1

Table 3.12: Extinction aspect distribution across 5-cluster solution

Aspect 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Cluster 1 1 2 4 2 2 1 1 12 6 3 2
Cluster 2 1 1
Cluster 3 2 3 2 1
Cluster 4 2 1 3 1 1 6 3 6 1
Cluster 5 1 7 2 1
Aspect 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Cluster 1 2 4 1 1 4 1 1 2 1 1 1 1
Cluster 2 1 2 1 2 4 2
Cluster 3 1 1 1
Cluster 4 1
Cluster 5 6 1

Table 3.13: Chunnel 127 aspect distribution across 5-cluster solution

Aspect 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Cluster 1
Cluster 2 1 1 1
Cluster 3 4 1 5 1 3 1 7 3 12 3
Cluster 4 3 3 1 3 2 1 1 2
Cluster 5 4 10 1 2 3 13 9 6 2
Aspect 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Cluster 1
Cluster 2 1 1 1 1 2
Cluster 3 1 1 2
Cluster 4 1 4 1 1 1 1 2 4 2
Cluster 5 9 4 2 1 2 1 1 1 1

Table 3.14: Chunnel 218 aspect distribution across 5-cluster solution
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Tables 3.12 to 3.14 show, for each aspect, the distribution of associated documents across 

the cluster structure. Two main features are immediately apparent. The first feature, if we 

look within the rows of the tables, is the topical breadth of relevant clusters, particularly the 

smaller more, precise clusters. For instance in the Extinction solution, clusters two and 

three comprise only six and five relevant documents respectively, just under a third of all 

relevant  documents,  yet  they  account  for  six  and  seven  distinct  aspect  instances, 

respectively and ten (approximately 45% of all represented aspects) collectively. Likewise, 

the larger relevant cluster comprises 64% of all relevant documents, yet accounts for 73% 

of all distinct aspects. 

A similar pattern emerges from the Chunnel solutions. In Chunnel 127, the most precise 

cluster, cluster four, comprises 11 (16%) of relevant documents yet accounts for 10 (40%) 

of the 25 aspects represented by the modelled documents associated with this scenario. 

The largest proportion of relevant documents occurs in cluster one (43%), yet this cluster 

accounts for 92% of all represented aspects. Similarly, in Chunnel 218 the most precise 

cluster, cluster three, comprises 29 (24%) of relevant documents yet accounts for 13 (46%) 

of all  represented aspects.  The cluster with the largest number of relevant documents, 

cluster  five,  comprising  66  (44%)  relevant  documents,  accounts  for  18  (64%)  distinct 

aspects.

Hence, in both scenarios relevant clusters account, proportionately, for more aspects of the 

relevant topic than their recall of documents relevant to the topic implies. In other words, 

although topically similar documents are being clustered, there is a lot of aspectual overlap 

between  clusters.  As  expected,  this  overlap  is  greater  in  the  Chunnel  scenario  where 

documents tend to span multiple aspects.  The consequence of this can be seen as the 

second  major  feature  of  tables  3.12  to  3.14:  the  extent  to  which  aspect  sub-sets  are 

fragmented across the cluster structure.  

We can see that it is unlikely for aspect sub-sets of two or more documents to occur 

exclusively in the same cluster. Such fragmentation would be unhelpful for the searcher 

who,  having  discovered  a  new aspect,  wished  to  locate  all  the  other  documents  that 

discussed the same perspective on the topic. For Extinction, six out of the 11 aspects that 

are represented by two or more documents are spread over more than one cluster. For 

Chunnel, the proportion is higher with 19 out of the 21 multi-document aspects being 

spread over two or more clusters in Chunnel 218 and 16 out of 19 aspects in Chunnel 127. 
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Therefore, there is less aspect fragmentation in the Extinction scenario, which is consistent 

with the  differences in  aspect  overlap between the  scenarios  and our  hypotheses  that 

predict  better  aspect  separation  and  cluster  growing  performance  within  visual 

representations of the semantic models for the distinct aspect scenario (see section 2.6.4).

In summary, it seems that clustering is able to communicate high-level topical relations, but 

more  specific  aspect  level  relations  are  frequently  lost  in  the  document  organisation 

process. 

3.8. Conclusions 
In this chapter we have described the process by which our test bed, comprising three 

topical scenarios and semantic models of these scenarios, was created. We then dealt with 

question  one,  which  asked  whether  the  required  semantic  structure  would  be  present 

within our semantic models. To this end, sections 3.5 and 3.6 tested hypotheses relating to 

cluster  separation  and  simulated  aspect  cluster  growing  performance  using  the  inter-

document  similarities  computed  for  our  scenarios.  In  section  3.7,  we  explored  the 

organisation of documents within a discrete cluster solution. Overall our analyses show 

positive support for the feasibility of our interaction model, although there were also some 

rather surprising differences observed between the different scenarios. The limited value of 

discrete  clustering  for  organising  aspects  of  a  complex  topic  has  been confirmed and 

demonstrates the importance of testing the cluster hypothesis within the semantic model 

prior to performing studies of clustering or visualization algorithms. We now summarise 

the key results and draw some interim conclusions.

3.8.1. Classification and potential strategy performance
Question one asked: To what extent can a standard text analysis procedure model the general semantic  

structure expected by our interaction model and particularly the low-level structure required by the aspect  

cluster growing strategy?

Our results  show good support  for the two-level  cluster hypothesis  both at topic and 

aspect levels. As predicted by H1, relevant documents becoming increasingly similar to 

other documents as the comparison sub-set becomes more closely related to its content. 

However, potential strategy performance seems variable,  with good results (in line with 

H2) for the Chunnel scenario but not Extinction. This runs counter to our hypothesis (H3) 

and is even more surprising,  given that the ACS tests indicated that the relative mean 
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similarity of same-aspect documents was greater in the Extinction scenario. However, we 

conjecture that the superiority of Extinction in the ACS tests may have been an artefact 

caused by the gross differences in the average number of same aspect relations between 

scenarios, whereby mean intra-aspect similarities in the Chunnel scenario are more likely to 

be skewed by a larger proportion of relatively weak similarities,  even when there are a 

similar  number  of  strong  similarities.  This  suggests  that  the  use  of  median  or  modal 

similarity may be a more appropriate measure for the ACS test than the arithmetic mean.

Another surprising result is the effect of document set size, where relative mean similarity 

of topics and same aspect documents was actually greater for the larger set. This runs 

contrary to H4 where we predicted that the decreased focus on the relevant topic within 

the  common  term  space  would  reduce  impact  negatively.  Furthermore,  our  NAN 

comparisons  did  not  show any  differences  in  performance between the  two Chunnel 

scenarios. This is interesting given that the overall precision value for the larger retrieved 

set  was  considerably  lower  and  the  size  of  the  term  space  considerably  higher.  This 

suggests  the  interesting  hypothesis  that  it  is  possible  to  automatically  compute  useful 

semantic models  from relatively  large (high-recall)  and low-precision retrieval  sets.  The 

testing of this hypothesis is left for future work. Furthermore, we do not yet know the 

impact of increasing set size on the fidelity of spatial-semantic visualizations. It will  be 

interesting  to  see  the  outcome  when  these  comparisons  are  repeated,  using  our 

visualizations, in Chapters 4 and 5.

In summary, the structure expected by our interaction model does seem to be present 

within semantic models created using a simple text analysis procedure, although early signs 

indicate that aspect cluster growing performance may be problematic for the Extinction 

scenario. 

3.8.2. Discrete clustering
We included an analysis of a discrete cluster solution in section 3.7, because we wished to 

confirm the same-aspect  document fragmentation problems observed in earlier  studies 

(Wu et al., 2001; Muresan and Harper, 2004) and demonstrate the importance of verifying 

the cluster hypothesis within the underlying, high-dimensional semantic model, prior to 

performing any clustering or visualization, so as to provide a ‘gold standard’ benchmark 

against which to judge the success or failure of a dimension reduction algorithm.
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The general pattern in our analysis was that clustering solutions performed relatively well in 

terms of partitioning relevant from non-relevant documents, yet the more fine-grained 

aspect relationships were not well preserved and communicated in the cluster structure. 

This is consistent with the findings of previous clustering experiments (e.g Wu et al., 2001; 

Muresan and Harper, 2004). It seems likely from our results that discrete clustering has 

limited potential  for aspect  level  clustering.  This seems to be due to the tendency for 

clustering  algorithms  to  communicate  general  themes  rather  than  fine-grained  inter-

document  relations.  The  observation  that  84-90%  of  multi-document  aspects  were 

fragmented in the two Chunnel (overlapping aspect) scenarios compared to 55% in  the 

Extinction scenario, where relevant documents tend to be more focused, supports this 

contention. The effect of topical diversity of relevant documents is likely to be further 

compounded  by  the  extent  to  which  other,  non-relevant  concepts  are  discussed. 

Unfortunately, such diversity is invisible in our test collections as, for obvious practical 

reasons, documents are only catalogued in terms of relevance to specified topics.

A key aim of this work is to demonstrate that spatial-semantic document organisation is 

better  able  to  communicate  complex  topical  structures  than  discrete  clustering.  The 

continuous nature of the organisational scheme along two dimensions should allow greater 

scope  for  representing  complex,  multi-faceted  relationships  between  documents.  In 

Chapters 4 and 5 we will examine the extent to which this is true.
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CHAPTER 4: VISUALIZING 
TOPICAL STRUCTURE

4.1. Introduction
In the previous chapter we described the creation of our test scenarios and the evaluation 

of  semantic  models  created  from these  scenarios.  Cluster  separation  test  results  were 

positive for all scenarios, with relevant documents tending to be most similar to the same-

aspect documents and least similar to non-relevant documents. However, despite the fact 

that the two-level topical classification was consistently detectable, when we applied the 

NAN test we found considerable variation in potential aspect cluster growing performance 

between topical scenarios. Consistent with a previous study by Wu et al. (2001), we found 

that  whilst  a  discrete  clustering  algorithm can effectively  partition  relevant  from non-

relevant  documents,  same-aspect  documents  are  frequently  scattered  across  multiple 

clusters. In this chapter we begin to address our second research question (section 1.7) and 

its associated hypotheses (section 2.8) by evaluating the extent to which spatial-semantic 

visualization is able to convey the topical classification structure observed in Chapter 3. 

Our purpose is to begin to determine which layout optimisation approach, global (MDS) 

or local (MST), is likely to produce the best spatial classification our interaction model, and 

to gain an initial impression of the potential for each layout scheme to provide the cues to 

support the aspect cluster growing strategy.

This chapter is divided into three parts. We begin in section 4.2, by describing how our 

visualization solutions were created. In section 4.3 we conduct an initial, visual analysis of 

the solutions, examining the extent to which key semantic features and also discrete cluster 

membership are conveyed by the spatial-semantic  structure.  Finally,  in  section 4.4,  we 

conduct a quantitative experiment where we apply the ACS test again to examine cluster 

separation  of  topic  and aspect  level  sub-sets.  Our  methodological  approach is  almost 

identical  to the previous chapter,  except that proximity or distance measures (in visual 

space) are now the measure used for comparison rather than similarities. 
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4.1.1. Research question and hypotheses
Research question two asked:  Given an adequate semantic model, which approach to spatial-semantic  

layout best preserves the general and, in particular, the low-level structure expected by our interaction model? 

In Chapter  2 (see section 2.8),  we defined nine  hypotheses that  we wished to test  in 

relation to this question. In this chapter we will test the following six hypotheses:

H5: The two level classification will be effectively conveyed by spatial relations in (i) MDS and (ii) MST.

H6:  Aspect  level  cluster  separation  will  be  greater  for  MST  visualizations  than  for  the  MDS  

visualizations.

H8: Aspect level cluster separation will be lower in the overlapping aspect scenario than the distinct aspect  

scenario.

H10: The expected differences between MST and MDS will be greatest for the distinct aspect scenario.

H11: Aspect level cluster separation will be lower in visualizations of the larger retrieval set.

H13: The expected differences between MST and MDS will be greatest for the larger retrieval set.

Hypotheses H7, H9 and H12 relate to the evaluation of the aspect cluster growing strategy 

and will be addressed in Chapter 5. 

4.2. Spatial-semantic visualization algorithms
Coherent  clustering  of  relevant  documents  is  critically  important  with  respect  to  our 

interaction model. Most importantly, the cluster growing strategy relies on documents that 

discuss  the  same aspect  of  the  topic  occurring  in  close  proximity  to  each  other.  We 

observed in the previous chapter (section 3.7) how discrete cluster structures, whilst able to 

communicate major themes, frequently fail to effectively convey more minor features such 

as aspect sub-sets. We hypothesise (H5) that the continuous, two-dimensional structure of 

a spatial-semantic visualization will afford better preservation of the topical classification, 

and  particularly  aspect  clustering,  that  we  observed  in  the  high-dimensional  semantic 

models. In section 2.6, we discussed the range of approaches available for creating these 

visualizations. We decided to compare two distinct approaches: one that aims to effectively 

map the relationships between all document pairs (global optimisation approach) and one 

that  concentrates  on  preserving  only  the  strongest  relationships  (local  optimisation 
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approach). We argued in section 2.6 that the latter approach would create better aspect-

level  cluster separation (H6), based on earlier  findings by Muresan and Harper (2004), 

which show that mean same-aspect document similarity tends to be significantly higher 

than the mean of both all-topic and same-topic document similarity.

4.2.1. Global versus local optimization
Previous  work  has  examined  spatial-semantic  visualizations  created  using  multi-

dimensional scaling (MDS) algorithms. These algorithms represent documents as a scatter 

plot of marks or visual points where the aim is to find the best inverse mapping between all 

input inter-document similarities and output inter-node proximities (e.g., see Wise et al., 

1995; Hornbaek and Froekjaer, 1999). We compare MDS to a more restricted approach to 

node layout based on the minimum spanning tree (MST) of the similarity matrix, when it is 

considered as a fully connected graph. We make this comparison based on the hypothesis 

that  a  layout algorithm that  focuses on preserving the strongest  relationships  between 

documents, or local optimisation, will result in more cohesive clustering of same-aspect 

documents than a global optimisation approach that attempts to produce proportionally 

accurate layout at all levels of similarity.

4.2.2. Algorithms
In this study our globally optimized solutions are created using the PROXSCAL algorithm 

(Busing et al., 1987) as implemented within SPSS v. 11.5. PROXSCAL represent several 

improvements over Alternating Least Squares Scaling (ALSCAL: Takane, Young and De 

Leeuw,  1977),  which  is  also  implemented  within  SPSS v.11.5  (base  system),  primarily 

because it aims to minimise Kruskal’s stress, a measure that is based on distances, rather 

than squared distances. Given the nature of our strategy, an ordinal model was seen as 

sufficient  and,  in  fact,  seemed  to  produce  more  aesthetic  and  distinctive  structures 

compared to interval or ratio models. Additionally, tied observations were left tied and all 

initial  configurations  were  set  to  the  simplex  model.  The  inputs  were  the  document 

similarity  matrices  described  in  the  last  Chapter,  which  were  converted to  proximities 

internally by the PROXSCAL algorithm prior to scaling.

Our local optimisation approach is to use force-directed placement to create a visualization 

of an MST of the similarity matrix. The MST is created by considering the similarity matrix 

as a fully connected graph, where all document nodes are connected by weighted edges 

(their similarity score). A MST is a weighted sub-graph that is created by pruning all but the 
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most salient  (lowest weight) edges, to leave a single tree (no cycles) of N nodes connected 

by N-1 edges. The set of document nodes is therefore connected as a tree structure where 

edges (document similarities) are of minimum weight (maximum similarity).  A previous 

empirical  study  (Cribbin  and  Chen,  2001)  showed  that  visual  information  retrieval 

performance is superior when using MST visualizations and that users find visualized MST 

structures more meaningful than the traditional MDS based scatter plot visualization.

We implemented a version of Prim’s (1957) algorithm in Visual Basic 6. This program 

takes the similarity matrix as input and ranks all document pairs from lowest to highest 

weight (largest to smallest inter-document similarity). The algorithm begins by starting with 

the top ranking document pair and the rest of the tree is ‘grown’ by iteratively connecting 

the  each  remaining  node.  At  each  iteration,  the  highest  ranked  edge  (inter-document 

similarity), that connects a node already within the tree with one outside of the tree, is 

added. This continues until all nodes are included within the tree. 

The visualizations of our MST sub-graphs were created using the Neato program from the 

Graphviz  suite  (North,  2002).  Neato uses the force-directed (spring  model)  placement 

algorithm by Kamada and Kawai (1989) to produce an aesthetic layout of nodes and edges 

with as few overlaps and edge crossings as possible. The input to Neato was a list of edges 

specified as node pairs along with edge weights (spring strength) specified as the square 

root of the similarity coefficient. The length of each edge within the visualized solution was 

set to constant.  The list,  as output by our MST program, was formatted in the “dot-

language” required by Neato (see appendix B.1 for an example). 

4.3. Visual analysis of solutions
In this section, we view the solutions created using the two layout approaches described 

above. We compare MST and MDS in terms of topic clustering (sub-section 4.3.1), aspect 

clustering (sub-section 4.3.3 and 4.3.4), and the cluster membership data (sub-section 4.3.2) 

produced by the k-means algorithm in the previous chapter (section 3.7). We show two 

samples of aspect clustering. In sub-section 4.3.3 we show the distribution of document 

nodes belonging to the aspect sub-sets that were poorly clustered by k-means (section 

3.7.2)  chapter.  In  sub-section  4.3.4,  by  way  of  contrast,  we  show the  distribution  of 

documents  within  the  most  cohesive  aspect  sub-sets  (highest  mean  inter-document 

similarities).

128



Chapter 4: Visualizing topical structure

H5 predicts that both layout schemes will produce reasonable clustering of both the topic 

and specific aspects. However, H6 predicts that the integrity of the classification will be 

noticeably better for MST, particularly at the aspect level. 

4.3.1. Topic clustering
Figure 4.1 shows the MDS and MST solutions for both document sets, with documents 

that  are  relevant  to  the  topic  (all  aspects)  marked  up  as  yellow.  Ignoring  the  topic 

augmentation briefly, we can see that the general structures created by MDS and MST are 

very different. The dendrite structure of MST creates visualizations with readily discernable 

features in the form of bunches and contiguous strings of document nodes. MDS on the 

other hand presents a more subtle structure, which on first inspection seems more uniform 

than the MST. Closer inspection, however, reveals considerable variation with a mixture of 

relatively dense and sparse regions of document nodes.

Returning  to  topic  augmentation,  in  all  of  the  MDS visualizations  the  topic  forms  a 

reasonably  coherent  cluster  within  the  overall  distribution  of  nodes.  This  clustering  is 

notably  more  coherent  in  the  smaller  scenarios  (Extinction  and  Chunnel  127).  In 

Extinction, if the worst two outliers are ignored, the topic occupies a clear elliptical area 

towards the bottom of the visualization, within which relevant documents form several 

distinct clumps and only a very small proportion of non-relevant documents are located. In 

Chunnel 127 relevant documents occupy a distinct circular area just right of centre in the 

MDS solution. The lower half of this feature contains a dense concentration of relevant 

documents.  The upper half  forms a tail  emanating from the lower half  (like  a comet) 

whereby  the  density  of  topical  nodes  decreases  as  the  top  of  the  main  feature  is 

approached. However, within this tail there are clear pockets of densely clustered relevant 

nodes. 

In Chunnel 218, the relevant documents again mainly occupy a coherent circular area, this 

time offset slightly left of centre. If the worst outliers are ignored, this circular feature is 

fragmented into three main sub-clusters (one above and two below) separated by relatively 

fallow areas of space or non-relevant documents. Within these clusters, many small clumps 

of two or three documents are apparent, along with several larger clumps of five or more 

relevant documents. 
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Extinction MDS Extinction MST

Chunnel 127 MDS Chunnel 127 MST

Chunnel 218 MDS Chunnel 218 MST

Figure  4.1:  Topic  clustering  in  the  spatial-semantic  visualizations  (MDS and  MST)  of  the  three  topical 
scenarios. Yellow nodes are relevant to at least one aspect of the general topic.  

MST also clusters relevant documents coherently, but in quite a different way to MDS. In 

Extinction, for example, the topic appears to be distributed more broadly across the total 

node structure, however 29 out of the 33 relevant document nodes are connected as a 

continuous sub-tree of the main structure. There are at least six key branching points that 
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seem to signify a clear change in topic from relevant to non-relevant. This suggests that 

labels that define the reason for definite branching points may be a useful aid to overview 

and navigation within this kind of visualization. 

The  Chunnel  distributions  are  quite  different  from  Extinction.  In  each  case,  unlike 

Extinction,  there is  no continuous sub-tree,  but rather a  number of  dense patches of 

relevance, appearing as a combination of bunches and strings. The distribution of relevant 

nodes in the Chunnel 127 solution is quite broad covering most of the structure. The only 

distinctive, differentiating feature is a branch extending to the left of the structure which 

contains mainly non-relevant items. In Chunnel 218, there are also multiple dense patches 

of relevant nodes, which mainly occupy the right hand side of the structure. The left hand 

side of the tree contains 87 document nodes but only four of these are relevant.

In summary, for all scenarios and both visualization schemes, relevant document nodes 

clearly cluster together. MDS solutions seem to gather topical documents into a neater, 

more homogenous feature, whilst MST seems more prone to disperse relevant nodes into 

smaller pockets or dense sub-clusters of relevance. This is most true for the overlapping 

topic, particularly Chunnel 127, where patches of relevant documents are scattered quite 

broadly over the tree. This latter result is consistent with our analysis of similarities in the 

previous chapter (Tables 3.6 and 3.7) where we observed a relatively small separation of 

the topic cluster within the whole set cluster (R-ALL:R). 

Whether the less cohesive clustering of the topic represents better separation of aspects 

within MST visualizations (H6) remains to be seen (in sub-sections 4.3.3 and 4.3.4) and 

later  in  our  more  comprehensive  quantitative  analysis  of  ACS scores  (in  section  4.4). 

Before we look at aspect level clustering, however, in the next sub-section we examine the 

similarity between spatial-semantic clustering and discrete clustering, by augmenting our 

visualizations with cluster membership information from the solutions reported in section 

3.7.

4.3.2. Compatibility with 5-cluster solutions
Despite the observed aspect fragmentation problems, the solutions discussed in Chapter 3 

conveyed a useful structure, at least in terms of partitioning relevant from non-relevant 

documents. Hence, in addition to finding out whether aspect clustering tends to be better 

in spatial-semantic structures, we were also interested to see whether the discrete cluster 
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structures would have anything in common with those of our visualizations. We examine 

the distribution of problematic aspects in section 4.3.3. First, in this sub-section we present 

and  discuss  versions  our  visualizations  augmented  with  discrete  cluster  membership 

information. 

Figure 4.2 shows our six solutions marked up to show document cluster membership.  The 

correlations between the discrete and continuous solutions are immediately apparent. Many 

clusters, even relatively large ones, are represented as quite cohesive visual features. In 

MDS visualizations,  some  clusters,  although  coherent  by  themselves,  tend  to  overlap 

significantly with other clusters. Clusters three and five for Chunnel 218 and, to a lesser 

extent,  clusters  one and two for Chunnel  127 are good examples  of  such clusters.  In 

contrast to this, in the MSTs, no such merging occurs. Instead, the same clusters seem to 

be sliced-up and tessellated. The question of whether these overlaps and inter-sections 

represent  same-aspect  documents  that  were  fragmented  within  the  discrete  cluster 

solutions is unclear at this level of analysis, but will be explored further in the next sub-

section.  

Some clusters  are  not  so  well  represented  in  the  spatial-semantic  structures.  It  is  not 

uncommon for a ‘bin’ cluster to emerge within a set of clusters where a residual sub-set of 

documents that do not fit the main theme of any of the other clusters tend to be consigned 

(Hearst  and  Pederson,  1996).   MDS  and  MST  handle  these  types  of  clusters  quite 

differently. For instance, cluster two (green nodes) of the Chunnel 127 scenario can be 

thought of as such a cluster, MDS seems to scatter documents in a horseshoe shaped arc 

across  the  visualization.  In  contrast,  MST  seems  to  scatter  these  documents  more 

purposefully into quite distinct sub-clusters, separated quite clearly by patches of nodes that 

belonging exclusively to other clusters. A similar effect can also be observed for cluster 

four (yellow nodes) of the Chunnel 218 scenario.
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Extinction MDS Extinction MST

Chunnel 127 MDS Chunnel 127 MDS

Chunnel 218 MDS Chunnel 218 MST

Cluster 1 Cluster 2 Cluster 3 Cluster 4Cluster 4 Cluster 5
Figure 4.2: Discrete cluster augmentation of spatial-semantic solutions

In summary, there seems to be a lot of correlation between discrete cluster membership 

and the grouping of documents within spatial-semantic solutions. However, some clusters 

seem to merge together or are spread over broader regions. Furthermore, MDS and MST 

seem to handle these clusters quite differently. First, whilst MDS might spread a cluster 

continuously across a large region of space, MST will segregate the same documents into 

coherent sub-clusters. Second, whilst two clusters might overlap within MDS, those same 

clusters will be partitioned and tessellated within the equivalent MST. 

Following on from this last point, in the next sub-section we ask whether spatial-semantic 

visualization  can  resolve  the  observed  organisational  limitations  inherent  to  discrete 

structures. We test investigate this by looking at how at the relative efficacy with which the 
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aspects that were most badly fragmented across the cluster structures are organised by our 

layout algorithms.

4.3.3. Clustering of  problematic aspects
In Chapter 3, we observed how many aspects were grossly fragmented across the discrete 

cluster  structures.  In this  sub-section we explore  the relative  utility  of  spatial-semantic 

visualization to resolve the fragmentation problems. To this end, we choose two of the 

mostly badly fragmented aspects from Extinction and three from each of the Chunnel 

scenarios and augment the visualizations with membership information for the aspects. 

Figure 4.3 shows the augmented visualizations. The numbers in round brackets after the 

aspect identifier show the clusters in which the aspect-relevant documents appear. The 

numbers within the square brackets show the number of relevant documents in each of 

these clusters.

Aspects 7 and 9 from Extinction were fragmented in the 5-cluster solution. Aspect 7 was 

distributed across clusters 1, 2 and 3. We can see that it is still badly fragmented in the 

MDS solution, with no document pairs occurring proximally to each other. We can also 

see that following the MDS cluster growing strategy from any exemplar would require the 

filtering  of  a  considerable  number  of  non-relevant  documents  before  a  same-aspect 

document would be encountered. In the MST, aspect clustering is somewhat better, with 

documents forming a reasonably coherent cluster and one pair of documents being directly 

linked and no document pairs separated by more than four links. 

Extinction MDS Extinction MST
Aspect 7 (Clusters 1, 2, 3 [2, 1, 1]) Aspect 9 (Clusters 1, 2, 3 [1, 1, 1])
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Chunnel 127 MDS Chunnel 127 MST
Aspect 1 (Clus. 1,4,5 [1,2,1])

Aspect 1/11Aspect 1/11  (shared documents)

Aspect 7 (Clus. 1,3,4 [2,3,1])

Aspect 7/11Aspect 7/11 (shared documents)

Aspect 11 (Clus. 1,3,4,5 [6,2,6,2])

Chunnel MDS Chunnel MST
Aspect 1 (Clus. 3, 4, 5 [4, 3, 4])

Aspect 1/7 Aspect 1/7 (shared documents)

Aspect 7 (Clus. 3, 4, 5 [3, 3, 3])

Aspect 7/20Aspect 7/20 (shared documents)

Aspect 20 (Cl. 2,3,4,5 [2,1,1,2])

Figure 4.3: Clustering of the most problematic aspects in spatial-semantic solutions

Aspect  9  is  rendered  better  in  MDS  with  the  associated  documents  forming  a  neat 

equilateral triangular structure. However, this is not a particularly coherent cluster: for each 

aspect case there are still several nodes that separate them from their same-aspect relations. 

The MST rendering of aspect 9 is quite similar to MDS in terms of raw proximity, although 

there is less crowding in the proximity and none of the relevant documents are more than 

three links away from each other.

Three problematic aspects were selected from the Chunnel 127 cluster solution. Aspect 1, 

comprising four documents, was split over three of the five clusters with the best cluster 

containing two documents. We can see that the same problem remains in both MDS and 

MST with the three red nodes and single yellow node (shared with aspect 11) scattered 

across the structures. As in the clustering solution two of the documents are very close 
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(one red, one yellow) in MDS but the others are isolated from all other representatives. 

The same pattern is evident in MST with two reasonably proximal nodes (although not 

quite as proximal as the cohesive pair in MDS) and two isolated nodes. Note that the 

yellow document that was part of the proximal pair in MDS is one of the isolated nodes in 

MDS. This highlights the grossly different approach to layout between the two algorithms.

Aspect  7  was  also spread over  three  clusters  in  the  k-means  solution.  The associated 

documents are shown as green and purple (shared with aspect 11) nodes in figure 4.3. This 

time the pattern is quite different between the two schemes. In MDS we can see that the 

three shared nodes are relatively cohesive but the other three green nodes are isolated and 

scattered  across  the  visualization.  The  organisation  is  somewhat  better  in  the  MST 

solution. The three purple nodes are again proximal, but form a distinctive continuous 

string. Better still,  the remaining three green nodes form an identical  string, albeit  in a 

separate region of the visualization.    

Finally,  aspect  11 is  represented by a  large sub-set  of  16 documents.  This  aspect  was 

particularly challenging for the k-means algorithm, which scattered relevant documents, 

over four of the five clusters. MDS performs a good job at organising this aspect, with a 

dense cluster of 13 out of 16 documents (purple, blue and yellow nodes) to the right of 

centre. This strong clustering may reflect a key strength of the global optimisation criterion 

for retaining major semantic features (i.e., themes), particularly when documents are highly 

topical,  as evidenced by the fact that documents associated with this aspect frequently 

discuss other aspects,  even within this  restricted sample.  In contrast,  MST does a less 

impressive job by splitting the aspect into two main clusters and leaving the yellow node 

isolated. 

Three aspects were selected from the Chunnel 218 cluster solution. Aspects 1 and 7 were 

distributed across three clusters, whilst aspect 20 was distributed across four clusters. Two 

documents are associated with both aspect 1 and aspect 7, and are differentiated through 

their  yellow  mark-up.  One  document  is  associated  with  aspects  7  and  20,  and  is 

differentiated by its purple mark-up. 

We can see that aspect 1 is still badly fragmented in both MDS and MST solutions. In 

MDS, four documents form a relatively coherent cluster but the other seven documents 

are quite fragmented. MST renders the aspect slightly better overall with all but one of the 
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relevant documents forming a relatively cohesive cluster, emphasised by a coherent chain 

of five relevant documents, which includes the two documents shared with aspect 7. This 

represented  a  considerable  improvement  over  the  discrete  clustering  solution  (section 

3.7.2) that was only able to partition four documents into a single cluster for this aspect. 

Aspect  7  is  also  broadly  distributed  across  both  visualisations.  In  MDS,  there  is  a 

reasonably coherent cluster of four document nodes (three green, one yellow) just left of 

centre. Whilst this is an improvement on the discrete cluster solution, all other documents 

are still quite distal. In MST, the relevant documents also form quite a broad distribution 

overall, however there is a reasonably coherent cluster of five documents (including both 

yellow and the  magenta node)  towards  the top of  the  structure and a chain of  three 

documents running vertically below the main clump, separated by three links (two non 

relevant nodes). The final node is completely isolated from the rest of the sub-set.

Finally, aspect 20 was the most fragmented of all aspects studied in Chapter 3 (section 

3.7.2). The distribution of this aspect is quite broad in MDS, although three documents 

(purple node and two adjacent blue nodes) cluster reasonably coherently. The situation is 

similar in MST, where there is a coherent cluster of three documents (towards the bottom 

left) with a fourth reasonably proximal, whilst the remaining two documents are quite distal 

from the main clump of four and each other.

In summary, there is some evidence that spatial-semantic visualization can provide better 

aspect clustering than a discrete cluster solution of the same similarity data. Even where the 

fragment clusters are no larger than those found in discrete clusters, they do at least tend 

stand a good chance of being organised relatively cohesively, which may not be the case 

were  they  organised  ‘within  cluster’  according  to  query  relevance  or  similarity  to  a 

conceptually higher-level cluster centroid (see Hearst and Pederson, 1996). 

MDS and MST consistently produce quite different aspect sub-set configurations. MST has 

a tendency to split complex aspects into several tight clumps whereas MDS is more prone 

to producing a relatively tight main cluster with the remaining nodes being left isolated in 

apparently random parts of the visualization. In terms of H6, it is difficult from these first 

impressions to determine the general superiority of either algorithm for dealing with the 

more  problematic  aspects.  On  balance  it  seems  that  MST  would  be  better  for  our 
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interaction model because it appears that the discovery of a novel aspect exemplar could be 

readily followed, using our strategy, to locate at least one other same aspect document. 

Given that these aspect examples were likely to be some of the most challenging aspects in 

the scenarios, we were not expecting perfect clustering in any of the cases.  Many of these 

aspect sub-sets are likely to cluster poorly because inter-document similarities tend to be 

quite low. This could be due to vagueness of the aspect definition or vocabulary mismatch 

between same-aspect documents. We now look at more favourable aspect cases, where 

intra-aspect document similarity is known to be high and we would therefore expect better 

clustering.

4.3.4. Clustering of  cohesive aspects
In this sub-section, we take three highly cohesive aspects from each scenario and evaluate 

the cohesion of their documents sub-sets within their respective spatial-semantic solutions. 

It is in this analysis that we expect the local approach, MST, to shine. Cohesive aspects 

were identified as those that appeared exclusively in a single cluster and had a relatively 

high mean intra-aspect similarity.  We can see immediately,  from figure 4.4, that for all 

scenarios, MST has the distinct advantage here. We would expect this given the bias of the 

MST approach to retaining the highest similarities.  Whilst MDS renders the Extinction 

aspects  reasonably  coherently,  those  in  the  Chunnel  set  are  considerably  less  so.  For 

example aspects 4 and 26 are particularly poorly rendered in the MDS solution for Chunnel 

218.

Extinction MDS Extinction MST

Aspect 24 (mean sim=0.50) Aspect 20 (mean sim=0.33) Aspect 5 (mean sim=0.31)
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Chunnel 127 MDS Chunnel 127 MST

Aspect 26 (mean sim=0.51) Aspect 4 (mean sim=0.26) Aspect 16 (mean sim=0.24)

Chunnel 218 MDS Chunnel 218 MST

Aspect 26 (mean sim=0.49) Aspect 14 (mean sim=0.46) Aspect 4 (mean sim=0.20)

Figure 4.4: Clustering of three cohesive aspects in spatial-semantic solutions

In contrast, MST handles all cases quite well or very well. The superiority of MST over 

MDS is most noticeable for Chunnel 218 where the three aspects form neat, well-separated 

clusters and Extinction where the two document aspects are always connected directly by a 

single link. Hence, as predicted by our H6 in section 2.6.3, the local bias afforded by MST 

has good potential to aggregate same-aspect documents, providing their lexical similarity is 

high. In contrast, MDS can isolate same-aspect documents despite their high similarity, 

which  suggests  that  global  optimisation  can  result  in  compromises  that  are  counter-

beneficial to our interaction model. 

4.3.5. Summary
The aim  of  this  section  was  to  provide  a  preliminary  overview  of  the  organisational 

performance  of  our  two visualization  schemes.  Although examination  of  only  a  small 
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sample of cases is possible (without consuming vast amounts of space), key differences 

between the two schemes are already apparent.

The  MDS  solutions  seem  relatively  amorphous  compared  with  the  distinctive  tree 

structures  of  MST.  However,  both  schemes  seem  to  communicate  a  more  useful 

classification than was possible using the k-means clustering algorithm (section 3.7). There 

seemed to be  a  high  degree  of  correlation  between spatial-semantic  structure  and the 

discrete cluster  structures but in  many of  the sampled cases,  the continuous structure 

allowed for far richer representation of the aspect and topic level relations.

MDS solutions tend to be very good at grouping the relevant topic but less capable of 

organising aspects into cohesive groups. It seems apparent that, like clustering algorithms, 

the global criterion of MDS favours the organisation of highly topical documents rather 

than more focused,  aspectually  distinct  ones.  In many cases,  MDS is  able to produce 

reasonable local configurations of same aspect documents, but often there is a tendency to 

isolate nodes within the same aspect sub-set, even when similarities are quite high. Topic 

clustering is noticeably superior to MST in the overlapping scenarios. 

The local bias of MST means that aspect clustering tends to be superior, particularly for 

small  highly  focused  document  sub-sets.  MST  seems  to  fragment  the  larger,  more 

overlapping aspects into two or more clumps of documents. This is not ideal, but for the 

purpose of aspect cluster growing is better than isolating many single nodes, as is often the 

case in the MDS solutions examined. In contrast to MDS, MST sacrifices topic clustering 

at the expense of preserving the strongest similarities. This is particularly noticeable in the 

overlapping scenarios where the topic fragments into a large number of distinct clumps. In 

this sense MST presents a more literal interpretation of the aspectual cluster hypothesis 

(Muresan  and Harper,  2004),  emphasising  the  differences  within  the  relevant  sub-set, 

whilst MDS focuses at the higher level and tries to find the common ground.

In  the  next  section,  we  present  a  more  comprehensive,  quantitative  analysis  of  topic 

classification structure using the ACS test that we presented in section 2.5.2 and have 

already implemented,  on the inter-document similarity  data,  in section 3.5.  Whilst  this 

visual  analysis  has  examined  the  clustering  of  a  sample  of  whole  aspect  sub-sets,  the 

analysis  that  follows  considers  clustering  from  the  perspective  of  specific,  relevant 

documents.  Each relevant  document is  seen as a potential  exemplar for aspect  cluster 
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growing. We are interested in examining the extent to which relevant documents tend to be 

located more proximally to same aspect and, to a lesser extent, same topic documents than 

they are to non-relevant documents. By considering this tendency within cases as a whole, 

we will be able to gain an impression of the extent to which the two-level classification, 

which is required by our interaction model,  can be conveyed within a spatial-semantic 

structure.

4.4. Classification of topical structure
In this section, we will quantify the integrity of the topical classifications conveyed by our 

visualization  solutions  and  to  build  a  clearer  picture  of  the  relative  cluster  separation 

performance of our schemes within different scenario situations. To this end we repeat the 

ACS test, this time using inter-node proximities rather than inter-document similarities as 

our low level measures. These observations allow us to test directly hypotheses H5, H6, 

H8, H10, H11 and H13 (see section 4.1.1). We begin by examining general classification 

performance, before focusing on the effects of visualization scheme, aspect overlap and 

document set size.

4.4.1. General classification
The ACS test results (Tables 4.1 and 4.2) confirm that both same-topic and same-aspect 

documents tend to cluster more cohesively around relevant documents than non-relevant 

documents  for  all  scenarios  and  both  visualization  schemes.  Furthermore,  relevant 

documents are consistently  more proximal to same-aspect documents than they are to 

other topical  documents. Figure 4.5 shows the differences between class means for all 

conditions.

Scenario Overall R-ALL v R-R R-ALL v  R-AR R-R v R-AR
Exinction,  127 
docs (n=24)

F(2,46)= 
49.70***

*** *** **

Chunnel,  127 
docs  (n= 66)

F(2,130)= 
138.93***

*** *** ***

Chunnel,  218 
docs (n=85)

F(2,168)= 
178.92***

*** *** ***

Overall (n=175) F(2,348)= 
328.64***

*** *** ***

*** p<.001; ** p<.01; * p<.05 (2-tailed)

Table 4.1: ANOVA and pair-wise comparisons of mean relevance level similarity for MDS

Scenario Overall R-ALL v R-R R-ALL v  R-AR R-R v R-AR
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Exinction,  127 
docs (n=24)

F(2,46)= 
90.49***

*** *** ***

Chunnel,  127 
docs  (n= 66)

F(2,130)= 
55.43***

*** *** ***

Chunnel,  218 
docs (n=85)

F(2,168)= 
72.80***

*** *** ***

Overall (n=175) F(2,348)= 
161.16***

*** *** ***

*** p<.001; ** p<.01; * p<.05 (2-tailed)

Table 4.2: ANOVA and pair-wise comparisons of mean relevance level similarity for MST
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Figure 4.5a: Mean proximity, in MDS solutions, of 
relevant documents to all documents (R-ALL), topic 
(R-R) and same-aspect (R-AR)

Figure  4.5b:  Mean similarity,  in  MST solutions,  of 
relevant documents to all documents (R-ALL), topic 
(R-R) and same-aspect (R-AR)

However, from the relative magnitude of the F-scores it seems that cluster separation is 

strongest  in  Extinction  when MST is  used but  strongest  in  Chunnel,  the  overlapping 

scenario, when MDS is applied. Further, from figure 4.5 it also appears as if the variability 

in performance between scenarios is greater for MST than MDS.

However, until we standardise the scores it is difficult to gauge whether there are any key 

differences  between  visualization  schemes  and  scenario  type.  We  now  perform  ratio 

transformations of our observed means, as we did previously in sections 3.5.2 and 3.5.3, in 

order to make a fairer comparison of our layout schemes and also to examine the main and 

interactive effects of aspect overlap and document set size.
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4.4.2. Effect of  layout algorithm
The analysis in the remainder of section 4.4 uses the document-class cluster ratio measures, 

computed by the  method first  used in  the  previous  chapter  (see  section  3.5.2).  Each 

measure  gives  a  value  that  describes  the  extent  to  which  semantically  more  specific 

document clusters separate within a larger cluster describing a less specific relationship. 

Hence,  R-ALL:AR  measures,  for  a  given  relevant  document,  the  ratio  of  the  mean 

proximity to all documents to mean proximity to same aspect documents. If, as we would 

expect (H5), same-aspect documents tend to be closer to the exemplar document than 

other documents, then the ratio should be greater than 1; for instance a ratio of 2 would 

indicate than same-aspect documents are, on average, twice as close to the exemplar than 

all other documents.   

Considering data from all scenarios together, table 4.3 shows the differences between the 

layout algorithms for all document class comparisons. We can see that aspect clustering is 

significantly superior within the MST visualizations. This is consistent with H6 (see section 

4.1.1).  However, this trend is reversed for topic-set cluster separation (R-ALL:R), which 

seems to be better within MDS solutions. 

Layout 
algorithm

R-ALL:R R-ALL:AR R-R:AR

MDS 1.21 1.76 1.45
MST 1.15 1.99 1.69
t-test (df=174) 5.39*** 2.84** 3.79***

Table 4.3: Comparison of MDS and MST visualizations using cluster ratio measures. Higher values indicate 
better separation of the semantically more specific document sub-set.

It is possible that differences exist between scenarios. In particular, there is the danger that 

this  overall  difference  is  skewed  by  the  larger  samples  associated  with  the  Chunnel 

scenarios. We will therefore now examine the effect of the different scenarios on general 

and specific visualization performance.

4.4.3. Effect of  aspect overlap
In Chapter 3 (section 3.5.2) we found, as predicted by H3, that both topic and same aspect 

level  clustering  was  more  cohesive  in  relation  to  the  overall  set  distribution  for  the 

Extinction semantic model.  H8 predicted that aspect  level  cluster separation would be 

poorer in the visualizations of the overlapping scenario. We will therefore now compare 

Extinction (distinct aspects) with Chunnel 127 (overlapping aspects). Both scenarios have 

equal  document  set  sizes  (N=127).  In  all  analyses,  the  standard  deviations  differed 
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significantly between the scenario samples (higher in Extinction) and this difference was 

taken into account when interpreting the results of the independent t-tests. 

Class  comparison Extinction  
MDS
MST

Chunnel 127 
MDS
MST

t-value
MDS
MST

R-ALL:R 1.42  (n=33)
1.30

1.14  (n=67)
1.03

9.46***  
10.21*** 

R-ALL:AR 2.79  (n=24)
3.97

1.62  (n=66)
1.52

2.59*  
5.44*** 

R-R:AR 1.98  (n=24)
2.91

1.41  (n=66)
1.48

1.72ns  
4.42*** 

Table 4.4: Comparisons of Extinction and Chunnel 127 for cluster ratio measures across the two layout 
schemes. Higher values indicate better separation of the more semantically specific document sub-set. All 
significance values are based on an assumption of unequal group variances.

We can see that cluster separation performance is consistently poorer for the overlapping 

scenario, regardless of visualization scheme. All computed differences for MST are highly 

significant (p<.001). The differences for MDS are slightly less conclusive, particularly in 

terms of aspect cluster separation. Although same-aspect and same-topic documents tend 

separate well within the overall set, separation of the same-aspect documents within the 

topic cluster was not significant.  Hence, we find general  support for H8 although the 

significance of the predicted difference depends on the visualization scheme. 

The  lower  significance  of  the  observed  differences  for  MDS  suggests  an  interaction 

between visualization and scenario. H10 predicted that the aspect clustering superiority of 

MST (predicted by H6) would be greatest for the Extinction scenario. The rationale for 

this was that the local optimisation approach would work best when documents are more 

focused on specific aspects of the topic (i.e., aspects are more distinct). 

If we look at table 4.4, we see for Extinction that the cluster separation of same-aspect 

documents tends to be greater for MST both in relation to the topic (R-R:AR) and all 

document (R-ALL:AR) distributions. Both these differences were significant (R-ALL:AR: 

t(23)=3.11,  p=.005;  R-R:AR:  t(23)=3.34,  p=.003).  However,  when  we  compare  the 

visualizations  for the Chunnel 127 scenario we find no significant differences between 

MDS and MST (R:ALL:AR: t(65)=1.13; R-R:AR: t(65)=.862). Furthermore, the observed 
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difference for R-ALL:AR is in the opposite direction to that predicted. Hence, H10 is 

supported  in  that  it  appears  that  MST is  superior,  in  terms of  clustering  same aspect 

documents,  for the distinct  aspect  scenario but no better  than MDS for the Chunnel 

scenario.

On an extra note, in the previous sub-section we observed that MDS held the advantage 

for general topic clustering. We can observe that this advantage is consistent across both 

scenarios studied in this section (Extinction: t(23)=4.59, p<.001; Chunnel 127: t(65)=9.38, 

p<.001). 

4.4.4. Effect of  document set size
In this sub-section, we compare the cluster ratio measures for the two Chunnel scenarios. 

H11 predicted that aspect separation would be poorer in the larger document set, due to 

the greater complexity of the layout problem. However, we observed in section 3.5.3 that 

H4 was not supported because both topic and aspect separation (relative to the set) was 

greater in the case of the larger version of the scenario. 

Surprisingly, despite the dimension reduction process, we see the same unexpected trend 

here (Table 4.5). However, document set size has a significant effect only on the structure 

of MST solutions. Topic separation is better in the larger scenario (p<.001). This effect was 

clearly illustrated in the two MST Chunnel solutions shown in figure 4.1. Aspect cluster 

separation from the whole set is also better (p<.05). However, aspect separation within the 

topic cluster remains more or less the same.

Class  comparison Chunnel 127
MDS
MST

Chunnel 218
MDS
MST 

t-value
MDS
MST

R-ALL:R 1.14  (n=67)
1.03

1.17  (n=87)
1.19

1.71ns
12.18***

R-ALL:AR 1.62  (n=66)
1.52

1.58  (n=85)
1.79

.60ns
2.40*

R-R:AR 1.41  (n=66)
1.48

1.33  (n=85)
1.52

1.55ns
.33ns

Table 4.5: t-test comparisons between Chunnel 127 and Chunnel 218 of cluster ratio measures across both 
visualization schemes. Higher values indicate better separation of the more semantically specific document 
sub-set.

H13 predicted that MST solutions would provide the greatest classification benefits over 

MDS for the larger document set  because the complexity  of the layout problem only 
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increases linearly rather than exponentially, as is the case for MDS. This is confirmed by 

our t-test analyses. Whilst there are no significant differences between MST and MDS 

within the Chunnel 127 scenario with respect to aspect clustering, the superiority of MST is 

significant  in  Chunnel  218,  both  with  respect  to  the  set  (t(84)=2.39,  p=.02)  and  the 

relevant topic (t(84)=2.41, p=.02). Furthermore, whilst topic clustering (R:ALL:R) is better 

in MDS for Chunnel 127 (t(65)=9.38, p<.001) this difference disappeared for the larger set 

(t(86)=.82, ns).   

4.5. Discussion and conclusions
It appears that the strength of MDS, given its global optimisation criterion, is in preserving 

the high-level structure (major themes) of the semantic model. As with k-means clustering, 

documents that are broadly similar (e.g., topically relevant but about different aspects) tend 

to get grouped or rather thrown together, on this high-level basis. In other words, the finer 

aspect  relations are sacrificed.  MST, on the other hand,  is  working  from the opposite 

perspective and sacrifices the higher-level relations somewhat in favour of preserving more 

distinct, albeit minor semantic features within the semantic model (see figure 4.4). 

The  observed  differences  in  relative  performance  of  the  layout  schemes  between  the 

distinct and overlapping scenarios seem to be consistent with their differing approaches to 

optimisation.  When  aspects  are  distinct  and  represented  by  focused,  single-aspect 

documents, the local criterion of MST tends to be superior. In the overlapping scenario, 

MST has more problems. This is because whilst documents may cluster cohesively with 

some  same-aspect  documents,  it  is  possible  that  the  aspect  sub-set  will  have  been 

fragmented across the visualization space into several smaller clusters (see figure 4.3). If 

relevant documents tend to discuss many such aspects then the problem is likely to be 

compounded. 

In MDS, on the other hand, although specific same-aspect sub-sets tend to be less cohesive 

(see figures 4.3 and 4.4), the grouping of the topic sub-set as a whole is more cohesive in 

relation  to  the  whole  visualization  space.  Therefore,  the  potential  maximum  distance 

between same-aspect (as well as different aspect) documents will be, on average, lower than 

in an MST solution. In other words, MDS appears to resolve the local contexts of relevant 

documents equally well in the overlapping scenario not because specific aspect clusters are 

more cohesive, but because the topical cluster is more cohesive.
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The  comparison  of  the  small  and  large  versions  of  the  Chunnel  scenario  produced 

unexpected  results,  with  cluster  separation  increasing  in  the  larger  scenario  for  MST, 

particularly for topic-set separation, yet remaining unchanged for MDS. The former result 

is particularly interesting. If we look at figure 4.1 again, we can see that there is a large 

branch (>80 documents) extending out to the left-hand side, which contains mostly non-

relevant documents. This could be an artefact that skewed the aspect and topic clustering 

means towards higher values. However, the improvement in performance is consistent 

with the cluster separation differences found between the Chunnel semantic models in 

Chapter 3 (section 3.5.3).  Either way, whilst there were no differences in aspect cluster 

separation between schemes in Chunnel 127, the advantage of MST seen in the Extinction 

scenario returns for Chunnel 218. Furthermore, whilst MDS consistently produced more 

cohesive  topic  clustering  for  the  two  smaller  scenarios,  this  advantage  is  eroded  in 

visualizations of the larger scenario. Together, these results provide strong support for H13 

and the general hypothesis that MST is a more scaleable visualization algorithm than MDS. 

The  question  is  why  does  document  clustering  improve  for  MST when  the  set  size 

increases? 

A possible explanation is that even though precision drops as recall increases the strength 

of  intra-aspect  similarities  remains.  We observed  from our  visual  analysis  of  cohesive 

aspects (Figure 4.4) that mean aspect similarities for aspects (specifically aspects 4 and 26) 

tend to remain equally high in the larger set. We also know from section 3.3.5 that, if 

anything, average inter-document similarity decreases as set size increases. Given this, the 

proportional increase in the number of retained similarities results in more of the strong 

aspect  similarities  being  retained.  An  interesting  focus  for  future  work  would  be  to 

determine how precision-recall ratios interact with the strength of intra-aspect similarity 

values. Another hypothesis is that pathfinder networks (PFNET: Schvaneveldt et al., 1989), 

which are similar to MSTs but retain more than N-1 edges so long as the triangle inequality 

is upheld, may convey aspect relations more completely than MST as more key similarities 

would be taken into account during layout. A strong advocate of the merits of PFNET 

over MST, albeit in a distinctly different domain, is Chen (Chen and Morris, 2003). In his 

study of knowledge domain visualization he found that key relationships, depicting higher-

order shortest paths between documents were often dropped by MST.

Overall our results show that MST is better than or equal to MDS in its ability to separate 

same-aspect documents from other, less strongly related or unrelated documents within the 
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visualized set. When the algorithm does perform poorly, at least it is relatively (compared 

to MDS) rare for an exemplar to be completely isolated from all same-aspect relations. 

Hence, we anticipate that aspect cluster growing in the overlapping scenario, at least for the 

first one or two nearest neighbours, will  be superior in MST even though the farthest 

neighbours may be more distal than in MDS. 

Our interaction model aims to support the user in what is ostensibly a preliminary and 

highly exploratory information-seeking task. The user has only an open question and lacks 

the knowledge to formulate useful, focused queries. We anticipate a berrypicking (Bates, 

1989) pattern of search, in which the focus of the query is highly dynamic. The user is most 

interested in expanding their knowledge (finding new aspects of the topic). Whilst the user 

will want to follow up new aspects as they are discovered, these focused searches are likely 

to be opportunistic and transitory intentions (Bates, 1989; Xie, 2000) rather than systematic 

and exhaustive searches. Having identified one or two good aspect examples, the user will 

be keen to find new instances of the topic or will  be more likely to be unintentionally 

distracted by new instances and so the query will shift again. As we discussed in Chapter 1, 

our interaction model is supporting an information-seeking goal that would traditionally be 

accomplished using the interactive  scanning strategy (Harter,  1986;  Marchionini,  1995). 

Only once the exploration of the high-recall retrieval set is complete would the user then 

proceed, armed their new knowledge of the topical structure and a few good examples of 

key aspect (pearls), to perform a series of more focused, exhaustive searches within the IR 

system. 

Returning to our visualization problem, it can therefore be seen as most important that 

each potential aspect exemplar is reliably located proximally to at least one or two similarly 

relevant documents. We have presented evidence here that spatial-semantic visualization 

holds the potential to remove the burden of query reformulation and cognitive integration 

of changing document views. Currently, MST seems like the algorithm that would most 

reliably and effectively satisfy this relaxed criterion. However, we need to test the potential 

utility of the aspect cluster growing strategy in a more explicit way.

Whilst the ACS test provides a broad impression of classification integrity, as we discussed 

in Chapter 3,  it  is  a crude test  that may be a misleading predictor of  cluster growing 

performance  particularly  for  scenarios  where  the  aspect  sub-sets  are  large  or  where 

unusually strong inter-documents similarities skew the mean. In the next chapter we see 
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whether our original conjecture (H7), that MST will enable more efficient aspect cluster 

growing performance, is correct by repeating our NAN test on the inter-node proximity 

data. This instantiation of the test is equivalent to a simulation of the user performing the 

aspect cluster growing strategy and is similar to the strategy based evaluation method used 

by Leuski (2001). Combined with our observations in this chapter, the results from the 

analyses of  the NAN test  data  will  allow us  to definitively  choose  the  optimal  layout 

scheme.
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CHAPTER 5: ASPECT CLUSTER 
GROWING STRATEGY

5.1. Introduction
So far we have examined the extent to which both high-dimensional semantic models and 

spatial-semantic  visualizations  of  these models  are able  to classify  the  structure of  the 

relevant topic  within the context  of  a retrieved set  containing  both relevant and non-

relevant items. Results show that the structure of both high and low (visual) dimensional 

models can effectively separate relevant documents from non-relevant items at two-levels 

of relevance to the topic: general and aspect.  In chapter 3, we evaluated the potential 

upper-bound  performance  of  a  key  strategy  afforded  by  this  kind  of  spatial-semantic 

visualization:  the aspect cluster growing strategy. This was achieved by performing the 

NAN test which simulated a user performing a focused aspect search, starting from a 

single known, relevant exemplar and examining unseen documents in relative similarity 

order. We found that this strategy, on average, enabled the user to identify two relevant 

documents in less than 10 viewing steps in nearly 70% of potential exemplar cases. 

In this chapter, we repeat the strategy simulation, using the NAN test, only this time we 

assume a user who is searching within a visualised representation of our semantic models. 

As such, aspect cluster growing is guided by spatial-semantic cues (relative proximity to the 

exemplar) rather than pure similarity cues. The first aim of this chapter is to conclude our 

analysis in relation to question two by determining whether the aspect cluster growing 

strategy  can  be  performed  efficiently  using  spatial-semantic  cues  present  within 

visualizations of the semantic models and to determine which layout approach, MDS or 

MST, is optimal for this purpose. 

Our second aim is to begin to address question three, where we seek to characterise the 

conditions associated with cases where the aspect cluster growing strategy fails. We will use 

the outcome of this analysis later, in Chapter 6, to guide the design of interactive tools that 

provide extra support to the user engaged in the strategy. Our analysis approach has two 

stages.  First,  in  section  5.3,  we  investigate  the  extent  to  which  cases  fail  due  to 
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compromises in the layout process (node misplacements) by comparing NAN scores in 

similarity space (from Chapter 3) with those achieved in the spatial-semantic structures. We 

find that  a  proportion  of  poor  cases  are  due to node misplacement and can thus  be 

resolved  simply  by  dynamically  encoding  relative  similarity  information  into  the 

visualization when an exemplar is selected. However, we find a significant proportion of 

cases where neither  similarity  nor spatial-semantic cues are sufficient  to allow efficient 

performance of the strategy.  In section 5.4, we take these residual problem cases and 

attempt to characterise the nature of these exemplar documents, their relationship to the 

topic  and  the  retrieved  set  in  general.  From our  analysis  we  identify  key  differences 

between  good  and  poor  cases  that  provide  us  with  a  basis  from  which  to  develop 

interactive tools that will provide more complete support for the aspect cluster growing 

strategy. 

We begin by restating the questions that are dealt  with in this  chapter along with the 

specific hypotheses.

5.1.1. Research questions and hypotheses
Question 2 asked: Given an adequate semantic model, which approach to spatial-semantic layout best  

preserves the general and, in particular, the low-level structure expected by our interaction model?

In chapter 4 we performed the first stage of analysis in relation to this question by testing 

hypotheses  relating  to  general  classification  of  the  topic  within  the  spatial-semantic 

visualizations.  In  this  chapter,  we  proceed  to  the  second  stage  of  analysis  of  spatial-

semantic structures where we evaluate the potential retrieval precision of the aspect cluster 

growing strategy, comparing performance between our two layout approaches and between 

scenarios. Our specific hypotheses for the following analyses are as follows:

H7: Aspect cluster growing will be more efficient when using the MST visualizations compared to the  

MDS visualizations

We expect MST to be generally superior due to its emphasis on preserving the strongest 

relations within the spatial-semantic structure. We have already observed that, as predicted 

by H6, aspect sub-set separation tends to be greatest with the MST visualizations. 

H9: Aspect cluster growing will be less efficient in the overlapping aspect scenario compared to the distinct  

aspect scenario.
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We will compare the distinct aspect scenario (Extinction) with the equal-sized overlapping 

scenario (Chunnel 127). We expect the overlapping scenarios to be more challenging to 

both layout schemes due to the multi-lateral nature of its topical document relations. We 

have already observed  that,  as  predicted  by  H8,  aspect  cluster  separation  tends  to  be 

greater within the distinct aspect scenario.

H10: The expected differences between MST and MDS will be greatest for the distinct aspect scenario.

We have already found support for this hypothesis in relation to ACS. As MST focuses on 

the strongest relations,  we would expect MST to perform better in the distinct  aspect 

scenario, as the differential between same aspect and same topic similarities seems to be 

greatest. 

H12: Aspect cluster growing will be less efficient when using the larger retrieval set.

As the complexity of node layout increases with set size, we would expect cluster growing 

efficiency to drop as set size increases. However, the related hypothesis, H11, was rejected 

in the previous chapter because aspect cluster separation was unaffected by set size for the 

MDS approach, and separation was actually better for the larger set when using the MST 

scheme. 

H13: The expected differences between MST and MDS will be greatest for the larger retrieval set.

We expect  that  MST will  handle  the  larger  set  better  because  the  rate  at  which  the 

complexity of the layout problem increases is considerably lower than for the global, MDS 

scheme (linear as opposed to exponential). We have already found partial support for this 

hypothesis whereby significant difference in aspect separation only occurred for the larger 

scenario.

Once  we  have  concluded  our  analyses  for  question  2  we  begin  to  answer  our  final 

question. Question 3 asked: Under what conditions does the aspect cluster growing strategy tend to fail  

and how can we use this knowledge to guide development of interactive support tools?

Our related hypothesis (H14) is as follows:

H14: The majority of problematic cluster growing cases are due to node misplacements and can thus be  

resolved by augmenting the visualization with relative similarity cues 
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If node misplacement is responsible then dynamic augmentation of the visualization with 

relative similarity cues, on selection by the user of an aspect exemplar should easily resolve 

a  problematic  aspect  cluster  growing  case.  We test  this  hypothesis  by  comparing  the 

relative utility of following similarity cues as opposed to spatial-semantic (proximity) cues 

for all cases.

We anticipated that in some extreme cases the strategy fails because the exemplar is simply 

not similar enough to the other aspect documents. In our final analysis section, we examine 

cases where the exemplar is both distal and relatively dissimilar to other aspect documents. 

We need to understand the nature of these cases, so that we can develop appropriate 

interactive tools to help the user help the user orientate to more profitable region of the 

visualization. We compare good and bad cases across a number of ‘exemplar factors’ that 

describe, from a number of perspectives, the relative importance of the target documents 

with respect to the exemplar and the retrieved set as a whole and also the conceptual 

ambiguity  of  the  exemplar.  This  analysis  was  exploratory  so  there  are  no  formal 

hypotheses.  The exemplar  factors  we consider are:  aspect  size (number of  documents 

relevant to the current aspect query), aspect relations (number of documents relevant to at 

least  one aspect  associated  with  the  exemplar),  aspectual  diversity  (number  of  distinct 

aspects discussed by the exemplar), aspect salience (ratio of aspect size to aspect relations), 

relevance ranking (of exemplar to the original  topic query) and aspect similarity  (mean 

similarity of exemplar to other documents relevant to the current aspect query).

Hence, in the next section we present stage two of the analysis for question two, before 

proceeding to address question three in the remaining sections.

5.2. Strategy performance
As in the NAN analysis in Chapter 3, each data case constitutes a simulation of the user 

performing the aspect cluster growing strategy, using a particular relevant document as the 

reference point for locating two further relevant documents. For each case, NAN scores 

are  calculated  by  sorting  all  documents  according  to  their  relative  proximity  to  the 

exemplar document within the respective visualization and observing the rank position of 

the 1st and the 2nd relevant documents for the aspect under consideration.

Hence, if a document discusses three relevant aspects it will constitute three distinct cases 

with the sample. Naturally cases were only calculated for aspects of three documents or 
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more. This means that the sample size for Extinction (n=17) is somewhat smaller than 

those for Chunnel 127 (n=110) and 218 (n=143) where aspects tend to be much larger and 

documents are more likely to discuss multiple aspects. 

Tables  5.1  and  5.2  summarise  NAN  score  averages,  R2-precision  averages  and  the 

percentage representing the proportion of cases where R2-precision is less than or equal to 

0.2 for MDS and MST respectively. R2-precision is a simple conversion of the 2nd NAN 

score to a format more familiar to the IR community and is calculated by dividing 2 (the 

number of retrieved documents) by the 2nd NAN score. The percentage in the far right 

column therefore  represents  the  proportion  of  cases  where  R2-precision  exceeds  our 

threshold criterion of 0.2 (see section 2.5.2). 

Scenario NAN  score  (Average  rank 
similarity of nearest aspect relevant 
neighbours)

R2-Precision % R2-P =< 0.2

1st relevant 2nd relevant
Exinction,  127 
docs (n=17)

14.35
(10.00)

28.94
(26.00)

0.069
(0.077)

5.9%

Chunnel,  127 
docs  (n= 110)

10.15
(4.50)

18.08
(11.50)

0.111
(0.174)

45.5%

Chunnel,  218 
docs (n=143)

14.42
(7.00)

31.02
(17.00)

0.064
(0.118)

34.3%

Overall (n=270) 12.68
(7.00)

25.62
(15.50)

0.078
(0.129)

37.0%

Table 5.1: MDS nearest neighbour analysis for all three topical scenarios. For each cell means are shown first  
followed by median in brackets.

Scenario Average rank similarity of nearest 
aspect relevant neighbours 

R2-Precision % R2-P =< 0.2

1st relevant 2nd relevant
Exinction,  127 
docs (n=17)

11.88
(7.00)

30.06
(13.00)

0.067
(0.154)

41.2%

Chunnel,  127 
docs  (n= 110)

10.55
(3.00)

18.34
(6.50)

0.109
(0.308)

65.5%

Chunnel,  218 
docs (n=143)

14.15
(3.00)

28.90
(7.00)

0.069
(0.286)

63.6%

Overall (n=270) 12.54
(3.00)

24.67
(7.00)

0.081
(0.286)

63.0%

Table 5.2: MST nearest neighbour analysis for all three topical scenarios. For each cell means are shown first 
followed by median in brackets.
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The key trend in both tables is one where median NAN scores are considerably lower than 

the means. This positive skew is caused by a small number of particularly poor NAN 

scores at the upper end of each distribution. Hence, the median average provides a better 

indication of typical performance than the mean average.

5.2.1. Effect of  layout algorithm
The first notable feature observed in tables 5.1 and 5.2 is that whilst performance means 

are quite similar from one visualization scheme to the other, median performance scores 

are considerably  lower  in the  MST scheme.  Given these skewed distributions  and the 

difference  in  skewness  between the  distributions  a  non-parametric  difference test  was 

chosen.  The  overall  performance  (considering  all  270  cases)  of  the  two schemes  was 

therefore compared using the Wilcoxon signed ranks test. 

Assuming an aspect cluster growing strategy guided by relative node proximity cues alone, 

the 1st relevant document was found sooner or equally soon within the MST for 63.7% of 

cases.  This  difference was significant  (z=2.83,  p=0.005).  Likewise,  for the 2nd relevant 

document MST was also superior, with the user locating the document sooner or equally 

soon in 62.6% of cases (z=2.71, p=0.007). Furthermore, in 63% of cases within the MST 

distribution two relevant documents are found in 10 viewings or less, compared with just 

37% of cases within MDS.  Hence, we can conclude that H7 is supported.     

However, although MST is generally equal to or better than MDS, it also provides the 

worst aspect cluster growing exemplars. If we take the worst 10% of cases for each scheme 

distribution, we find that MST is the poorer performer. The range of second NAN scores 

for MDS is 40-157 compared to 78-199 for MST. In other words, whilst MST generally 

offers superior cues for the aspect cluster growing strategy, it also provides the worst cases. 

5.2.2. Effect of  aspect overlap
So far we have found that MST generally provides the best support for our strategy when 

all cases for all scenarios are considered. We now consider the differences at the scenario 

level, comparing the extent to which each scheme supports our strategy when the aspects 

are either distinct or overlapping. 

In the previous chapter we found in our comparison of Extinction and Chunnel 127 that 

classification performance of both schemes was negatively affected by aspect overlap. We 
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also  found  that  whilst  MST  provided  superior  aspect  clustering  in  Extinction,  this 

advantage disappeared in the overlapping scenario.    

For MDS we find that cluster growing performance is superior in the overlapping scenario. 

This is true for both the first (z=2.73, p=.006) and the second relevant document (z=2.88, 

p=0.004).  Further, the proportion of exemplar cases where two documents are located 

within  10  viewings  is  much  higher  in  the  Chunnel  127  scenario  (45.5%)  than  in  the 

Extinction scenario (5.9%).  We find the same trend for MST, again both for the first 

(z=2.53, p=0.01) and the second relevant document (2.43, p=0.02).  The proportion of 

good cases is also higher in the Chunnel scenario (65.5%) than the Extinction scenario 

(41.2%), although we can see that the difference is less extreme. Hence, H9 is rejected 

because  the  observed  effect,  for  both  schemes,  is  in  the  opposite  direction  to  that 

predicted.

Given that MST provided better aspect cluster separation than MDS for Extinction (see 

section 4.4) and that the proportion of good cases is higher (41.2% vs. 5.9%) we expected 

that MST would be the better visualization scheme for this scenario. However, Wilcoxon 

signed ranks  test  shows no general  difference in  the  performance  of  MST and MDS 

(z=0.24, ns), with MST being better or equal in just 53% of cases. Again we suspected this 

would be due to a small number of extremely poorly performing exemplar cases in MST. 

This is confirmed if we look at the 90th percentile of NAN (2nd retrieval) scores where 

MDS (57.6) is considerably lower than MST (80.8).  

Likewise, for Chunnel 127, we find no difference between the two visualization schemes 

(z=0.94, ns) with MST being superior to MDS only 50% of the time and equal in 6.4% of 

cases.  Also, although the proportion of good cases was higher in MST (65.5% vs. 45.5%) 

the most poorly performing exemplars were worse in the MST distribution (90th percentile 

= 61.9) than MDS (90th percentile = 44.7).

Hence,  contrary to our observations in the previous chapter,  H10 is not supported in 

relation to aspect cluster growing performance because no significant differences occur 

between the two layout schemes in either of the two scenarios.

5.2.3. Effect of  document set size
We found in the last chapter that increasing the set size had either a non-significant effect 

(MDS) or a beneficial effect (MST) on aspect cluster separation. This went contrary to 
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H11, which predicted that cluster separation would be greater  for the smaller  set,  but 

consistent with the observations in chapter 3 where we also rejected H4 because topic and 

aspect cluster separation within the set cluster was significantly higher for the larger set. 

Here, we find that aspect cluster growing is less efficient in the larger set when using the 

MDS scheme both  for  the  1st (z=2.28,  p=0.023)  and  2nd retrieval  (z=3.32,  p=0.001). 

Further, the proportion of good cases (R2-precision <=0.2) is also lower in Chunnel 218 

(34.3%) in comparison to Chunnel 127 (45.5%). In contrast for MST we find that cluster 

growing performance does not change for either the 1st (z=0.143, ns) or 2nd (z=9.55, ns) 

retrieval as set size increases. Likewise, the proportion of good cases is almost equal (65.5% 

vs. 63.6%).  As mentioned earlier in this sub-section, this is consistent with the results of 

our analysis of clustering growing in similarity space (H4). Hence, H12 is only partially 

supported, in that it is true for MDS but not for MST.

We expected that MST would cope better with the increased layout demands of the larger 

set. We have already observed that there is no difference between the two visualization 

schemes for Chunnel 127 (z= 0.94, ns). However, the difference between MDS and MST 

is highly significant for Chunnel 218 (z=2.69, p=0.007). For both scenarios the proportion 

of good cases is higher (Chunnel 127: 65.5% vs. 45.5%; Chunnel 218: 63.6% vs. 34.3%). 

Hence, H13 is supported.

5.2.4. Summary 
Overall we find that that aspect cluster growing is, on average, at least if not more efficient 

when using a MST visualization compared to using a MDS visualization. Furthermore, we 

find  that  a  much  larger  proportion  of  MST  cases  meet  our  R2-precision  criterion. 

However,  the differences between the two visualization schemes are attenuated by the 

tendency for MST solutions to comprise a small number of very bad aspect exemplars; 

whilst MST seems to provide the better visualization scheme for our interaction model, 

there are a significant number of cases where the aspect cluster growing strategy cannot be 

effectively guided by spatial-semantic information.

Overall there are 37% of cases where the criterion for locating two documents in less than 

10 viewings is not met. In the Extinction scenario this proportion increases to 68.8%. Part 

of this shortfall is likely to be due to information loss during the dimension process. In the 

next section we evaluate the extent to which cluster growing performance for the worst 
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MST  cases  is  due  to  node  misplacements  that  occur  during  the  layout  process  by 

comparing  aspect  cluster  growing  performance  in  MST with  that  in  high-dimensional 

similarity space.

5.3. Effect of node misplacement
In this section, we determine the utility of replacing spatial-semantic cues with the original 

relative similarity information. We take the data used for the NAN testing in Chapter 3 and 

compare this to the MST data. By comparing these two distributions we can measure the 

extent to which compromises during layout limit the success of our strategy. We can also 

gain an impression of the relative benefits of augmenting the visualization with relative 

similarity information when an exemplar is identified to the system.  Such a tool would be 

akin to the ‘show me more like this’ relevance feedback tool that is available in some web 

search engines. This is a simple approach to relevance feedback that requires on a single 

example of relevance and is therefore less demanding on the user than full  document 

relevance feedback.  The user simply indicates that a document is relevant and the system 

uses the document vector as a query to retrieve similar documents and present these to the 

user in rank similarity order (see, for example, Jansen et al, 2000; Hearst, 1999). 

We  will  now  compare  the  relative  efficacy  of  similarity  and  spatial-semantic  cues  to 

establish the extent to which such a dynamic augmentation of the visualization would 

resolve the sub-sets of problematic cases we have observed.

5.3.1. Comparison of  similarity and spatial-semantic cues 
H14 predicted that the majority  of problematic  aspect cluster growing cases would be 

attributable to node misplacement. In other words, the replacing spatial-semantic cues with 

similarity cues will resolve most, if not all, problematic cases (i.e., increase R2-precision to 

0.2 or higher).

Table 5.3 repeats the results of the NAN test reported in Chapter 3 (section 3.6). If we 

compare these data with those of MST reported in section 5.2 (table 5.2) we see that 

overall following similarity order from a given aspect exemplar is generally more effective 

than following proximity order within an MST solution, both for the 1st (z=9.045, p<.001) 

and for the 2nd (7.362, p<.001). R2-precision median is 27.2% higher overall and the mean 

is  over  twice  as  high  (+214%).  Furthermore,  a  higher  proportion  of  cases  meet  our 
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precision criterion for the second nearest neighbour, however this benefit is only 9% (68.5 

vs. 63%) when considering all scenarios together. 

Comparing the data within each scenario we see that whilst performance is generally much 

better for the Chunnel scenarios, although following MST proximity cues actually appears 

to be more efficient than following similarity order in the Extinction scenario, at least for 

the 2nd nearest neighbour. Whilst this difference is not significant (z=0.426, ns) we can see 

that considerably more cases met the precision criterion for the second neighbour when 

following spatial-semantic cues in MST (41.2% vs. 17.6%). 

Scenario Average rank similarity of nearest 
aspect relevant neighbours 

R2-Precision % R2-P =< 0.2

1st relevant 2nd relevant
Exinction,  127 
docs (n=17)

6.824
(6.000)

28.824
(22.000)

0.069
(0.091)

17.6%

Chunnel,  127 
docs  (n= 110)

4.255
(2.000)

10.364
(5.000)

0.193
(0.400)

72.7%

Chunnel,  218 
docs (n=143)

5.007
(2.000)

10.322
(5.000)

0.194
(0.400)

71.3%

Overall (n=270) 4.815
(2.000)

11.504
(5.500)

0.174
(0.364)

68.5%

Table 5.3: Inter-document similarity nearest aspect neighbours analysis for all three topical scenarios. For each 
cell means are shown first followed by median in brackets

Hence,  in many cases, particularly  those of the Chunnel  scenarios,  following similarity 

order seems likely to prove a useful alternative strategy to following proximity cues. We 

could  envisage,  for  example,  an  interactive  tool  where  the  user  selects  the  exemplar 

document and the system highlights and possibly labels with rank position, the top 10 most 

similar documents. We now determine the extent to which this simple relevance feedback 

approach would resolve problematic aspect cluster growing cases in MST.

Problematic cases are defined as those where the strategy of following proximity cues falls 

below a precision of 0.2. We find that although this strategy is generally more efficient than 

following cues provided by the MST structure, providing relative similarity cues can does 

not resolve all of the cases that are problematic when using spatial-semantic cues. If we 

consider all aspect exemplar cases (n=270) and select only those cases where MST failed to 

meet the 20% precision criterion we can identify 89 out of the original 270 cases (33%) 
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where the first relevant document cannot be located in five or fewer viewings. Measuring 

the proportion of these 89 cases that satisfy the criterion when similarity, rather than MST 

proximity cues are used we find that 29.2% of the problematic MST cases can be resolved 

by substituting relative proximity cues with relative similarity  cues. Repeating the same 

analysis for the second relevant document, there are 100 out of the original  270 cases 

(37%) where MST fails the precision criterion. We find that 30% of these problematic 

cases can be resolved by substituting proximity cues with relative similarity cues.

Hence, the strategy of substituting spatial-semantic cues with similarity cues only resolves 

around 30% of problematic cases in the MST solutions to our topical scenarios. This still 

leaves a large proportion of all cases where aspect cluster growing cannot be supported by 

either proximity or relative similarity cues. Specifically this is 63 cases (23%) for the 1st 

retrieval and 70 cases (26%) for the 2nd retrieval. 

In these cases same aspect  documents are not sufficiently  similar  (in terms of general 

similarity) to cluster cohesively around the exemplar in either visual or high-dimensional 

term space. Clearly, a more appropriate and powerful alternative to simple ‘more like this’ 

relevance feedback is required for such cases. In the next chapter we propose an approach 

for enhancing the simple relevance feedback strategy. This approach is inspired by the 

analysis  that  follows  in  the  next  section,  where  we  model  the  specific  correlates  and 

potential causes of poor exemplar performance. 

5.4. Correlates of combined strategy performance
Given that 23-26% of document exemplar cases in our three scenarios fail to meet our 

20% precision criterion when either proximity or similarity cues are used to guide aspect 

cluster growing, we need to understand why general similarity values are an insufficient cue 

to guide  the  user’s  search.  In  this  section,  we compare  the  properties  of  problematic 

exemplar  cases to those  that  are able  to meet the precision criterion  in  either spatial-

semantic or similarity space. In doing so we gain a clearer understanding of why some 

documents make poor exemplars, this enables us to hypothesise (later in section 5.5) how 

simple  document  relevance  feedback  approach  can  be  enhanced  to  provide  a  more 

informative cues without incurring excessive, additional demands on the user.  

The fundamental cause of our problematic cases is that they are not similar enough to the 

other documents discussing the aspect of interest to constitute a good exemplar for cluster 
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growing. An obvious recourse here is look for ways of improving intra-aspect document 

similarity  at  the  text  analysis  stage  of  the  process.  Potentially  useful  avenues  include 

analysing text at the sub-document level,  perhaps by dividing documents into topically 

coherent  passages  (e.g.,  see  Hearst,  1997;  Ostler,  1999;  Larocca  Neto  et  al.,  2000; 

Kleinberg,  2002)  and  term-vector  dimension  reduction  approaches  such  as  LSA 

(Deerwester et al.,  1990;  Karypis and Han, 2000).  However, in this work we are most 

interested in developing techniques and strategies that make the most of the information 

already  available  in  a  given  semantic  model  rather  than  looking  to  optimise  semantic 

modelling per se. Hence, in this section, although we include relative similarity within the 

analysis for completeness, we do not view it as an explanatory variable per se. 

We compare the properties of cases where aspect cluster growing precision drops below 

0.2  for both SIM and MST with all  other  cases.  We examine a  number of  ‘exemplar 

factors’  that  were  introduced  in  section  5.1.1.  These  variables  describe,  from various 

perspectives,  the  relationships  between  the  exemplar,  the  aspect  subset  and  other 

documents in the set. If good and bad cases can be distinguished with respect to one or 

more of these variables,  then this will  provide us with clues to the kind of interactive 

support (additional cues) that might enhance the aspect cluster growing strategy. In the 

next sub-section we briefly justify our rationale.

5.4.1. Outline of  exemplar factors
As a reminder, the exemplar variables to be studied are aspect size, aspect relations (of the 

exemplar),  aspectual diversity  (of the exemplar),  aspect salience,  rank relevance (of the 

exemplar to the original  query)  and aspect  similarity  (relative  to the exemplar).  Aspect 

similarity  is  the  mean  inter-document  similarity  between  the  exemplar  and  all  aspect 

relevant documents and is included simply for reference and comparison. A significant 

difference between good and poor exemplars on this variable almost goes without saying 

as, by definition, poor cases are those where relative inter-document similarity is not high 

enough  to  guide  the  location  of  relevant  documents.  As  a  reminder,  our  aim  is  to 

characterise the nature of poor cluster growing situations so that we can go beyond simple 

similarity cues to provide additional, more specific cues (e.g., key terms) that can orientate 

the user more efficiently towards unseen relevant documents.  Hence, it is the observed 

differences on the remaining exemplar factors that will be of primary interest. We now 

define each factor and explain how significant differences between good and poor cases 

might inform the design of alternative interactive strategies and tools. 
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Aspect  size  is  simply  the  number  of  documents  relevant  to  the  topical  aspect  under 

consideration. If poor cases tend to be associated with a smaller aspect size, then our aim 

would be to develop a means of supporting the identification of distinct but minor features 

within a generously sized local context surrounding the exemplar. 

Aspect relations is the number of same aspect relations that the exemplar has within the 

document set. A significant difference between good and poor cases on this variable would 

be ambiguous by itself, because a high number of aspect relations might be due to high 

aspectual diversity within the document or a large aspect sub-set size, or both. Hence, the 

implications would depend on the co-occurrence of differences on one or more other 

variables. 

Aspectual diversity is the number of defined aspects associated with an exemplar case. 

Rationally, the likelihood of an exemplar becoming isolated from the main cluster of the 

current aspect will increase if it discusses several distinct aspects of the topic, particularly if 

the document tends to be more similar to documents about another aspect. Augmentation 

of  members  of  a  largish local  context  within  the  spatial-semantic  structure  might,  for 

instance, separate the local context into distinct clusters. What would be needed is a means 

of differentiating these emergent features using discriminating labels.

Aspect salience describes the salience of the aspect of interest within the local context of all 

documents that discuss the same aspect or aspects as the exemplar. It is calculated as the 

ratio of aspect size (minus one to allow for the exemplar) to all aspect relations. Hence, if a 

document focuses on only one aspect then salience equals one. If the exemplar discusses 

several aspects but most of the aspect relations are about the current aspect of interest then 

aspect salience would be greater than one-half. Clearly this measure is similar to aspect 

diversity as salience is likely to drop as exemplars become more diverse. However, it is 

slightly more sensitive in that it accounts for the relative size of the current aspect in multi-

aspect exemplar cases. If poor performance can be associated with lower salience, then it 

would mean that, if forced to make compromises the layout algorithm tends to locate a 

document within or near to the larger cluster of highly similar documents. Again, a solution 

that  describes  and  distinguishes  between emergent  local  context  features  might  be  an 

appropriate  solution  here.  In  particular  a  successful  approach  would  be  particularly 

sensitive to minor features or clusters within the local context.
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Finally,  rank  relevance  is  the  rank  position  of  the  exemplar  in  the  original  retrieved 

document list. More highly ranked documents are likely to be better representatives of the 

general topic and so may make better exemplars. If poor performance is associated with 

very low rank relevance, this would support Leuski’s (2001) approach of combining the 

ranked  list  information  with  the  spatial-semantic  visualization.  The  interface  might 

therefore encourage the user to identify distinct aspect instances from the top ranks of the 

list before switching to the visualization, rather than exploring the visualization directly. 

5.4.2. Factors that discriminate good and poor exemplar cases 
Table 5.4 shows the means and results of Mann-Whitney U-tests computed for each of the 

outlined variables between poor cases (where both MST proximity and similarity fail the 

0.2 precision criterion) and all other cases. Non-parametric tests were chosen due to a non-

normal distribution for the majority of the examined factors. 

Aspect similarity aside, we see that the most significant and consistent differences between 

the poor and the good aspect exemplar groups occur as a result of aspect size and aspect 

salience. The poorest exemplars are characterised by a smaller relevant aspect sub-set size 

an exemplar that is related to a relatively high proportion of documents discussing other 

aspects of the topic.   

Exemplar factor 1st NAN 2nd NAN

Poor (N=63) Good (N=207) Sig. Poor (N=70) Good (N=207) Sig.

Aspect size 8.02 9.93 ** 7.66 10.12 ***
Aspect relations 15.25 16.93 Ns 16.23 16.65 Ns
Aspectual diversity 2.38 2.31 Ns 2.50 2.27 *
Aspect salience 0.558 0.632 + 0.523 0.647 **
Rank relevance 53.16 62.15 Ns 48.51 64.09 *
Aspect similarity 0.114 0.174 *** 0.115 0.176 ***
+ p<.10, * p<.05, ** p<.01, *** p<.001 (2-tailed)

Table 5.4: Differences between good and poor exemplar cases with respect to our specified exemplar factors. 
Poor cases are exemplars that fail the 0.2 precision criterion for both relative similarity and proximity (MST) 
cues. Good cases are all non-poor cases.

There is also a weak effect of rank relevance and aspect diversity, although differences are 

only significant for the 2nd NAN. Poor exemplars tend to be ranked higher in the retrieved 
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set and tend to be slightly more topical than good exemplars although the effect size for 

the latter variable is very small. The former result is interesting in that it suggests that the 

strategy of identifying relevant exemplars by browsing the top ranks of the retrieved list 

(Leuski, 2001) may not be the optimal approach for the user. At least this appears to be the 

case when the object is to find aspect level, as opposed to topic level, exemplars.   

5.5. Discussion and conclusion
In this chapter we applied the NAN-test to the spatial-semantic structures provided by our 

visualization solutions, effectively simulating the use of the aspect cluster growing strategy 

for a large proportion (270 cases) of potential document exemplars across all three topical 

scenarios. We began in section 5.2, by comparing the relative performance of the aspect 

cluster  growing strategy,  using  only  spatial-semantic  cues,  within  our  two visualization 

schemes. These results combined with those obtained in Chapter 4 allow us to draw a 

conclusion on question two. We conclude that overall,  MST produces a better topical 

classification and facilitates more efficient cluster growing performance. In the second part 

of this chapter (sections 5.3 and 5.4) we addressed question three. In section 5.3, we found 

that whilst following similarity cues generally results in more efficient aspect retrieval than 

following  spatial-semantic  cues,  many  problematic  cases  are  not  due  to  node 

misplacements, but rather more fundamental failures in aspect clustering within similarity 

space. In section 5.4, we asked whether these most severe problem cases have common 

characteristics that would help us to develop appropriate interactive support. We identified 

two variables, aspect size and aspect salience that effectively distinguish good from bad 

cases. We will now discuss the implications for these results.

Research question two asked which visualization scheme provides the optimal layout for 

our interaction model. We have compared two distinct approaches, one where the layout 

algorithm seeks a globally optimal representation of underlying similarities,  and another 

where a priority is placed on preserving local features (strong inter-document similarities). 

We can conclude that the local optimisation approach, based on an MST representation of 

the similarity space, provides solutions that generally enable more efficient cluster growing 

in the majority of exemplar cases than the global approach, MDS. 

Even though MST is  superior  to  MDS in  most  cases,  there  are  still  around 37% of 

exemplar  cases  where  MST proximity  cues  are  insufficient  to  support  efficient  aspect 

retrieval. The dispersion of NAN scores in these problematic cases is also very broad with 
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the worst cases requiring a considerable proportion of the visualization to be searched. 

This phenomenon is illustrated clearly, for instance in figure 4.3 (section 4.3.3). The yellow 

node in the Chunnel 127 MST screenshot is grossly isolated from the main clusters of its 

two related aspects (blue and red nodes). 

We found that a higher proportion of problematic cases occurred in the non-overlapping 

scenario, Extinction. This was a curious result given that the results of our ACS tests in 

Chapter 4 indicated that same aspect documents formed generally more cohesive clusters 

in MST space. However, it is worth bearing in mind that many of the relevant aspects were 

not included the NAN analysis as they were represented by two or fewer instances within 

our retrieved set.  This  meant only  17 cases,  covering  five (out of  22)  distinct  aspects 

represented within the set were considered in the analysis. It is possible that the strong 

overall aspect clustering observed in the ACS test was largely due to the strong cohesion of 

the many small, two document aspects (see figure 4.4, section 4.3.4).  

In Chapter 4 we made the interesting observation that topical classification performance of 

both  MDS  and  MST  was  not  negatively  affected  by  increasing  document  set  size 

(increasing the rank cut-off point in the retrieved list). In fact topic and aspect separation 

relative  the  whole  set  was  actually  greater  within  the  MST visualization  of  the  larger 

Chunnel  scenario.  In  this  chapter,  we  found that  aspect  cluster  growing  performance 

within MDS was negatively affected by increasing, but MST performance was unaffected. 

Furthermore, whilst there was no significant difference cluster growing precision between 

the layout schemes for the smaller Chunnel scenario, as predicted MST had the advantage 

for the larger set. This is an encouraging result, which supports our initial expectation that 

MST would be more scaleable than MDS, given that the complexity of layout increases 

linearly rather than exponentially with increasing document set size.

Research question three was concerned with identifying the conditions under which the 

spatial-semantic cluster growing strategy fails and identifying ways of providing additional 

support to the user performing aspect cluster growing in these situations. Given that loss 

of structural information was inevitable due to the dimension reduction involved in spatial-

semantic  visualization,  our  first  recourse  was  to  determine  the  extent  to  which  poor 

exemplar cases are due to node misplacements within the visualization and can therefore 

be supported by substituting spatial cues with similarity information. Even with the aid of 
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similarity  cues,  it  seems that  the 23-26% of cases observed across our three scenarios 

remain problematic, with aspect precision falling below 0.2. 

Finally, we identified two major correlates of poor performance: aspect size and aspect 

salience.  We  found  that  these  problematic  cases  can  be  differentiated  from  non-

problematic cases in that they tend to occur when the size of the target aspect sub-set is 

smaller and the salience of this sub-set with the local semantic context (all topically related 

documents) is relatively small. This suggests that it may be possible to support the user by 

providing a means of identifying more minor, yet distinct concepts that relate the exemplar 

to documents that, whilst not highly similar, are at least reasonably similar in their general 

content.  

We also found a weak effect of rank relevance of the exemplar. Counter to our informal 

expectations,  documents that  are ranked more highly  in  the initial  retrieval  set  do not 

appear to make the best exemplars. Leuski (2001) proposed the strategy of identifying the 

first relevant example from the top ranks of retrieved documents before visually growing 

the relevant cluster from the location of this document within the visualization. Whilst this 

was shown to be effective for a simple topic retrieval task (Leuski, 2001) our observation 

suggests that it may not be the optimal strategy for identifying distinct aspect instances. It 

may be that direct browsing of the visualization, supported by useful overview cues to 

orientate  the  user  towards  dense  topic-relevant  patches,  would  be  a  more  effective 

exploration strategy. This question must remain, however, for future work.

In the next chapter we apply what we have learnt in this chapter to the development of a 

prototype interface and interactive tools to support aspect cluster growing in problematic 

exemplar  situations.  We  propose  a  means  of  identifying  and  describing  the  range  of 

exemplar relevant concepts represented within the local context of a given document. We 

call this approach to term suggestion: Local Context Distillation. We propose two ways in 

which terms suggested by this method can be implemented as visual cues to support aspect 

cluster growing in problematic situations.
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CHAPTER 6: SUPPORTING ASPECT 
CLUSTER GROWING USING 

LOCAL CONTEXT 
DISTILLATION

6.1. Introduction
In the previous chapter,  we demonstrated how the aspect cluster growing strategy can 

produce acceptable performance in a large proportion of cases across our three topical 

scenarios. However, in a significant proportion of cases the precision criterion (P=0.2) was 

not met. In some of these cases, this was due to misplacements and compromises in layout 

caused by the extent of dimension reduction. However, in a vast majority of cases, the 

problem could not be resolved by simply replacing spatial-semantic cues with pure relative 

similarity cues. For some reason, in these cases, computed similarity to documents related 

by  the  aspect  of  interest  is  too  low  (relative  to  other  related  documents)  for  these 

documents  to appear within  the  local  neighbourhood of  the  exemplar.  This  could be 

because the documents share no common key terms. However, we also reasoned that this 

could because other relating key terms were more salient either within the exemplar or 

across  documents  within  the  collection.  To  this  end  we  looked  for  correlates  of 

problematic cases, variables that tend to differ significant between the two groups (good 

and poor exemplars).  We identified,  two salient  variables  in  particular:  aspect  size and 

aspect salience.  In this Chapter we propose and demonstrate a solution that is based on 

our findings; an approach for supporting aspect cluster growing in the most problematic 

cases.

We begin by discussing the problem within the context of existing approaches to query 

formulation and refinement (section 6.2). We then introduce our approach, which has two 

parts: an algorithm, called Local Context Distillation, that applies a weighting function to 

terms to select potential query terms based on the common content of the exemplar and its 

near  neighbours  (section  6.3)  and  an  interface  integrating  two  visual  tools,  Concept 

Signposts  and Concept  Pulses,  that  use these terms to augment the  visualization with 
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additional  navigational  cues  (section  6.4).  Finally,  in  section  6.5  we  demonstrate  the 

potential of these visual tools using a series of problem case walkthroughs. Section 6.6 

discusses  the  implication  of  this  approach  and  avenues  for  future  research  and 

development. 

6.2. Related work 
In Chapter 5, we found that spatial-semantic cues are often sufficient to support aspect 

cluster growing, meeting or exceeding our precision criterion of 0.2 in 41% to 65% of 

potential exemplar cases, depending on the scenario. Across all scenarios, of the cases that 

fail, around 30% are due to misplacements in the layout (dimension reduction) process and 

can  be  resolved  by  adopting  a  simple  relevance  feedback  strategy  where  the  user  is 

provided with cues describing relative similarity of documents to the exemplar.

However, that still leaves a total of around a quarter of all observed cases where same 

aspect  documents  are  not  similar  enough  to  the  exemplar  for  the  simple  relevance 

feedback strategy to be successful. We examined these problematic cases in fine detail to 

determine which variables were able to differentiate good from problematic cases. From 

this analysis we found a number of variables that characterised poor exemplars. 

Predictably,  exemplars  that  were  less  similar  to  their  aspect  relations  did  not  enable 

efficient aspect cluster growing. This might be due to a number of possible factors such as 

vocabulary mismatch (the same aspect is discussed using different terms) or low salience of 

the aspect within either  the exemplar or related documents.  These problems could be 

directly addressed by looking at alternative semantic analysis techniques. Whilst this avenue 

of research is beyond the scope of the thesis, some relevant ideas are discussed for future 

work in Chapter 7.

More interestingly,  we found that problematic cases tend to occur when the aspect of 

interest is relatively small (it is represented by relatively few documents) and particularly 

when this  the  aspect  is  ‘competing’  with  one  or  more  other  aspects  discussed in  the 

exemplar and the documents sought form only a small proportion of all topically related 

documents (low aspect salience).  The most extreme cases are likely  to occur when the 

other  exemplar  aspects  are  represented  by  larger  and  typically  more  coherent  and/or 

proximal clusters within the semantic model. We therefore perceive a significant part of the 

problem as one where the local neighbourhood of the exemplar is polluted with a large 
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number of documents that, whilst similar, and possibly more similar to the exemplar, are 

related for reasons other than the current aspect of interest (i.e., they discuss other aspects). 

What is  needed is  a  means to allow the user to specify their  reason for selecting  the 

document as an exemplar more precisely.  

A simple solution, from the implementation perspective, would be to include a within-set 

query box feature so that the user could specify the nature of the aspect of interest by 

specifying one or more key words. Previous work in this area has combined manual within 

set  query  functionality  as  a  complement  to  spatial-semantic  cues  (e.g.,  Chalmers  and 

Chitson,  1992;  Hornbaek  and  Frokjaer,  1999),  whereby  matching  documents  are 

emphasised within the context of the visualization,  for example by changing colour or 

brightness.  However,  whilst  users  find  it  useful  to  see  the  results  of  their  queries  ‘in 

context’, particularly when the highlighted documents form distinct clusters (Hornbaek and 

Froekjaer,  1999),  the  requirement  to  shift  mode  between  referential  (browse)  and 

command line styles of interaction creates an additional cognitive demand that can cause 

users to lose focus on their primary, information-seeking task (Campagnoni and Ehrlich, 

1989; Hornbaek and Froekjaer, 1999). We wanted to protect the user from this additional 

demand. 

Further, having just identified an aspect of interest, selecting even just one or two good 

discriminating terms may not always be a trivial task, especially when the aspects of the 

document are quite close or overlapping in their semantics and thus terminology. As such, 

we seek a solution where the system attempts to guide the user towards their aspect of 

interest  by  making  evidence-based guesses  about  why the  selected exemplar  might  be 

relevant and allowing the user to select the closest match.

But how can the system infer the user’s information need simply from their indication that 

a document is a relevant exemplar? This is an impossible expectation, particularly if the 

document discusses many different concepts and possibly topics. What it can do, however, 

is to speculate on why the document might be relevant based on the overlap between its 

semantic features and those of its nearest neighbours. Our solution attempts to explain the 

topical diversity of the exemplar by performing an analysis of the overlap of term usage 

within the exemplar and its near neighbours. The most highly weighted terms are returned 

to the user who can then select the most discriminating terms that best explain their reason 

for  selecting  the  document  as  an  exemplar.  We  call  this  approach  Local  Context 
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Distillation (LCD) as we are trying to separate the potential user queries that the exemplar 

might represent, given the context of the retrieved set.

Given the nature of problematic exemplar cases, we propose that the system sometimes 

needs  to  consider  a  broad  sample  of  near  neighbours  to  ensure  that  at  least  one 

representative of the aspect of interest is captured. In the implementation, therefore, the 

user is able to dynamically adjust this threshold until the optimal keyword list is found. The 

essential aim of our solution is for the system to generate a set of key words that adequately 

describes and discriminates the full thematic spectrum of the exemplar; its minor as well as 

major concepts. 

In section 6.3 we describe our algorithm in more detail. Later in the chapter (sections 6.4 

and  6.5),  we  describe  how LCD terms  might  be  applied,  interactively  to  the  spatial-

semantic visualization in order to support aspect cluster growing. Before we introduce our 

approach, we will discuss previous work, mainly from the field of interactive information 

retrieval, which was considered during the development of LCD. 

6.2.1. Term suggestion and relevance feedback
In this section, we propose a novel extension to the simple relevance feedback strategy that 

enables the user to recognise rather than specify the reason for their interest in a given 

relevant document. We begin by providing an overview to existing techniques that can be 

used to elicit key terms that can be used to refine an initial query. We break these down 

into two types: query expansion and document cluster labelling.

Our first avenue of enquiry was to look at term relevance feedback as a technique used for 

query  expansion.  Term relevance  feedback  is  a  refinement  to  the  classical  document 

relevance  feedback  approach.  In  document  relevance  feedback,  the  user  browses  the 

retrieved documents and identifies  several  relevant  examples.  The system analyses this 

sample and weights occurring terms according their importance (e.g., the extent to which 

they  discriminate  known relevant  documents  from other  retrieved documents).  Highly 

weighted terms are then added to the query or, in some systems, the existing query terms 

are re-weighted based on their computed salience. 

In early systems this was an automatic or opaque process as far as the user was concerned. 

All they did was indicate a sample of relevant examples and the new query was formed and 

sent, leading to a revised retrieval list. However, a study by Koenemann and Belkin (1996) 
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found that relevance feedback was more effective when the users were able to moderate 

the terms selected by the system for query expansion. Not only were queries slightly more 

precise than when the process was automated, but also good queries were achieved in 

significantly fewer relevance feedback iterations.

We will refer to the strategy of suggesting terms, and allowing the user to have the final say 

on which ones are appropriate to add as term relevance feedback (Roussinov and Chen, 2001), 

to distinguish it from classical document relevance feedback where the query expansion 

process is hidden from the user. A key value in term relevance feedback is that the user is 

given control over the process of refining the query, specifying only those features that 

actually define their need, without having to think of terms themselves (Koenemann and 

Belkin, 1996).  This makes it a promising field to learn from in the development of our 

approach.

One key drawback of the term suggestion approach examined by Koenemann and Belkin 

(1996) is that, like standard document relevance feedback, it requires multiple document 

relevance  judgements.  This  technique  only  produces  useful  terms  if  supplied  with  a 

sufficient sample of relevant examples (Hearst, 1999; Hancock-Beaulieu and Walker, 1995). 

However, a requirement of LCD is that it must be able to suggest key terms immediately 

from only one relevant example document. 

A useful alternative approach to traditional document relevance feedback, that avoids this 

requirement,  is  local  or pseudo relevance feedback (Attar  and Fraenkel,  1977;  Xu and 

Croft, 1996). In a local feedback system the top k (e.g., 10 or 20) retrieved documents are 

assumed to be relevant. Using the same methods of document relevance feedback, the 

most salient terms can be identified through an analysis of the discriminating properties of 

this  sub-set.  This  idea  neatly  extends  our  simple  ‘more  like  this’  relevance  feedback 

approach, as the top k most similar documents to the exemplar can be assumed relevant 

and accordingly mined for good query terms. However, whilst local feedback minimises 

the demand on the user to evaluate document relevance and indicate good examples, it is 

also dependent upon the precision of the initial  query (Hearst,  1999,  p.308).  Although 

good results are possible if many of the top-ranked documents are relevant, if this is not 

the case then local feedback can produce erratic and unexpected results (see Xu and Croft, 

2000).

171



Chapter 6: Supporting aspect cluster growing using Local Context Distillation

For this reason a standard local feedback approach does not seem suitable for our needs. 

Our  problematic  cases  are  problematic  precisely  because  the  aspect  of  interest  is 

represented by a relatively small number of relevant documents and that these tend to be 

ranked relatively low in terms of similarity to the query (the exemplar document). Local 

feedback would likely  suggest  helpful  terms in  less  problematic  aspect  cluster  growing 

cases, where the aspect of interest already forms a salient feature within the top ranking 

documents, but this approach does not address our problematic cases. What we need is a 

means of identifying distinct,  yet relatively minor semantic features shared between the 

exemplar and the local context documents.

A possible solution is to perform document clustering on the sampled local context and to 

describe the topical structure by selecting the key terms associated with each computed 

cluster. Clustering interfaces usually select terms for a given cluster based on the centroid 

or average term vector of all cluster members. A simple approach is to select the most 

frequent or highly weighted terms from the centroid of each cluster (see Carey et al., 2000; 

Skupin, 2002), although a more effective approach for our needs is likely to be one where 

the best terms are those that are not only highly weighted within a cluster but also relatively 

rare outside of the cluster (Lundquist et al., 1997). This latter approach would ensure that a 

bias is placed on more distinctive rather than broadly topical terms. 

However, discrete clustering is, by nature a trial and error process and identifying optimal 

parameters  (e.g.,  number  of  clusters,  similarity  threshold)  can  require  significant  and 

knowledgeable human intervention (see Xu and Croft, 2000). We also know from our own 

analyses in Chapter 3 and those of others (see Wu et al., 2001; Muresan and Harper, 2004) 

that when cluster solutions tend to focus on the major themes to the detriment of more 

minor themes, documents discussing minor themes, such as our problematic aspects, can 

easily be separated, particularly if the documents vary in the breadth and nature of their 

semantic content. In other words, given that problematic cases tend to occur when the 

aspect of interest is small or has low salience in the local context, clustering may conceal 

the very features we are seeking to extract.

An alternative to approach to local context clustering is local context analysis (LCA: Xu 

and Croft, 2000). This approach is more discriminating than local feedback but does not 

rely on clustering. Like local feedback, the top ranks of the retrieved set are assumed to be 

generally relevant, but the algorithm judges terms based on the extent to which they co-
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occur, that is occur within the same contexts as the existing query terms. Hence, there is 

the potential to select a range of terms that are quite diffuse with respect to the query, 

rather than just terms that focus on the main feature of the local context (see Belkin et al., 

2000). 

However, in its original format as a query refinement device, term co-occurrences that are 

more common in the local context (compared to the global context) are also seen as more 

important.  To avoid problems of multi-topicality in long documents, the procedure begins 

by separating the local context into passages. The algorithm then assigns weights to terms 

based on the extent to which they tend to co-occur in the same passages as each query 

term. Terms that co-occur with all query terms are seen as most important and terms that 

co-occur with only one query term are seen as least important. Additionally, terms that are 

relatively infrequent in the global (whole collection) context are also weighted higher. A full 

description of the procedure with metrics and formulae can be found in Xu and Croft 

(2000).

Recently,  Belkin  et  al.  (2000)  compared  LCA with  the  document  relevance  feedback 

method of suggesting query terms for the purpose of an interactive search task. Users were 

performing the classic TREC interactive task of seeking an instance of as many different 

aspects of the topic as possible.  Hence, in line with our requirements, suggested terms 

needed to be diffuse in nature, rather than focused on the main theme of the topic.

In line with this expectation, they found that LCA suggested more unique terms and, in 

turn, LCA users selected more of these suggested terms for query expansion. However, a 

complaint from users was that many of the suggested terms were quite ambiguous, for 

example unusual proper nouns or numbers. In this thesis we believe this ambiguity is a 

necessary consequence of the goal of explaining topical diversity in the local context of a 

query but that such ambiguity can be resolved to a great extent by presenting terms in 

some sort of context. In section 6.4.2, we demonstrate how representing terms within the 

spatial-semantic context of the document visualization can, to a degree, alleviate single 

term ambiguity. 

Despite  these  observations,  overall  Belkin  et  al.  (2000)  found  that  instance  retrieval 

performance was roughly equal between groups using the two approaches. However, they 

concluded that LCA was better on balance because less cognitive effort was required from 
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users (i.e., evaluating documents for relevance). The important result was that it showed 

that multiple,  human document relevance judgements are not necessary to form a rich 

context of potentially useful query terms. 

The general LCA approach is therefore a promising one. Unfortunately it fails as a solution 

for  our  problem,  as  does  local  feedback,  in  one  key  respect:  it  is  a  query  expansion 

algorithm. In our problem, the user has not defined a short query to express their need; 

they have simply nominated a document text as an exemplar because somewhere, and to 

some extent, it describes an aspect of their information need. In other words, whilst the 

document is the query, more precisely it can be seen as a collection of terms that contains 

the intended query. 

Hence, our goal is somewhat opposed to that of traditional term suggestion approaches in 

that we wish to narrow the query, rather than expand it. In other words, our aim is to 

identify  possible  queries  based  on the  extant  relationships  between  the  exemplar  and 

documents in the local context. It seemed that whilst the LCA approach could be used to 

provide a diffuse set of terms using a document as the query, the number of unique terms 

in the query would make it too computationally expensive for real-time interaction. 

We have considered both QE techniques and document clustering. Neither adequately 

fulfils  our needs. QE techniques fail  because they require a query that is already quite 

specific  and local  context  co-occurrence analysis  of  all  document terms would be too 

computationally  expensive.  Local  clustering  is  not  a  good  option  either,  due  to  its 

parametric  nature  and bias  towards  preserving  major  features.  In  response  to  this  we 

propose Local Context Distillation (LCD), a novel approach to term suggestion. LCD is 

similar in some ways to LCA in that it selects good terms by analysing the local document 

context of the query. However, our approach is far simpler and more efficient, but is still 

capable of producing a conceptually diverse set of terms. Further, the weighting function is 

biased, but not exclusively so, towards minor features that relate the exemplar to the local 

context. This satisfies the main requirement identified in our analysis in Chapter 5. We now 

describe the development and implementation of our term suggestion algorithm.

6.3. Local context distillation
To recap, our problematic exemplar cases tend to have the following characteristics:
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1. The nearest aspect relevant neighbours are quite distal in term of rank similarity to 

the  exemplar  (many  other  documents  are  more  similar  to  the  exemplar)  and 

possibly scattered quite widely within this distribution. 

2. The aspect is represented by a relatively small sub-set of documents.

3. The exemplar is related to other aspects of the relevant topic and the proportion of 

documents  discussing  the  aspect  of  interest  within  the  global  (retrieved  set) 

context, compared to those discussing other aspects is relatively low.

The consequence of the first characteristic is that the optimal size of the local context is a 

moving target – in some instances, a context of the top 20 documents might capture 

several relevant documents; in other cases a context of 50 or more documents might be 

required to capture a good sample of same aspect documents. 

In our solution, therefore, the user is able to dynamically adjust the size of the local context 

if  none of the suggested terms adequately  describe their  intention.  On selection of an 

exemplar, the local context size is set relatively low (top 10 documents). If the initial term 

suggestions are unhelpful this may be because the context is too small to capture a sample 

of relevant documents. To accommodate this possibility, the user is able to incrementally 

increase the context size and view the resulting impact of these increments on the term 

selections. 

The combined consequence of all  three characteristics is  that,  even assuming the local 

context to be analysed for terms is large enough to capture all of the relevant documents, 

the discriminating features that relate these documents to the exemplar may represent only 

a minor feature of the local context. Hence, relevant terms are likely to be suppressed by a 

large number of more salient, non-relevant relating terms. 

To support problematic aspect cluster growing cases, we therefore need a function that 

allows for the selection of terms specific to minor relating concepts with the local context 

sample. The ability to also identify major relating concepts is also potentially useful, but less 

critical because such information is likely to be readily represented by spatial proximity 

and/or general similarity cues.
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6.3.1. Term weighting function
We view this problem as one of distilling potential queries (distinct concepts) from the 

exemplar based on the characteristics of the local context (top k most similar documents to 

the exemplar). Our approach is therefore similar to those of local feedback and LCA where 

the top ranking documents are assumed to be a rich source of potentially useful new query 

terms. It is different in that we are not helping the user to expand their query, but to 

specify which aspect of the document exemplar best corresponds to their intentions.  

We  achieve  this  by  selecting  distinct  features  of  the  local  context,  placing  an  extra 

weighting on features that directly relate the exemplar to these documents. Hence, the 

most important terms are those that are both present in the exemplar and distinctive to the 

local context.

In developing our weighting function, we followed a standard premise of IR which is that 

for any given query there will be a set of optimal terms that effectively discriminate relevant 

from non-relevant documents within the collection (Salton and McGill, 1983). This leads 

us to form the strong assumption that:

For any given aspect of the relevant topic, in the retrieved set there will be at least one term  

that occurs in all the relevant documents and only in the relevant documents.

Hence, we are looking to place a high weight on terms that are exclusive to the exemplar 

and closely related documents. Given the characteristics of our problematic exemplars, it is 

important that terms that are rare in the local context stand an equal if not better chance of 

being  selected  than  those  that  dominate  it.  Given  this  we  reasoned  that  an  effective 

function might be one that simply measures how completely a term has been captured 

within the local context.  Lundquist et al.  (1997) found, in their  experiments with local 

feedback, that the best weighting metric for selecting query expansion terms was one that 

considered the ratio of term frequency within the local context to its frequency in the 

global context. Specifically, they found the best terms were selected from a function that 

divided local document frequency by the log function of global document frequency. 

As we wanted to emphasise the effect of terms that are globally rare (i.e., exclusive terms 

for  small  aspect  sub-sets)  we  removed  the  log  transformation  on  global  document 

frequency to create the following simple function, F, which describes how the weighting 

for a given term is computed: 
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global

local

df
dftermF =)(

Hence,  dfglobal is  the frequency of  the term within the retrieved set,  whilst  dflocal is  the 

frequency  of  the  term  within  the  local  context  sample,  including  the  exemplar.  Our 

informal  experiments  found  that  removal  of  the  log  function  did  seem  to  produce 

intuitively better term suggestions, particularly in problematic exemplar cases. Remember 

that the user is able to adjust the size of the local context until they are satisfied with at 

least some of the suggested terms. As soon as the local context is large enough to comprise 

most if not all relevant documents then any term, following our strong assumption, which 

is  exclusive  to  the  all  and  only  relevant  documents,  would  be  assigned  a  maximum 

weighting of 1.

Hence,  even if  only  two other  documents discuss the same aspect  and they are both 

scattered  and  relatively  distal  to  the  exemplar,  as  soon  as  the  context  completely 

encapsulates  them,  any  aspect  exclusive  terms  will  be  assigned  the  maximum weight. 

Furthermore, smaller aspects are somewhat favoured because the fewer the number of 

aspect  documents,  the  greater  the  impact  each  encapsulated  document  has  on  the 

importance of exclusive terms.  

In an ideal situation, this assumption would hold for all aspects of the topic. However, this 

perfect  situation is  unlikely  to be  the case.  Vocabulary  mismatch is  common between 

documents that discuss the same topics (Furnas et al., 1987). For operational purposes we 

therefore make the more relaxed assumption that:

For  any  given  aspect  there  will  be  at  least  one  key  term that  occurs  in  most  relevant  

documents and only occurs in a small number of non-relevant documents. 

Even so, our rationale remains sound. The best terms will be those that tend to mostly 

occur within the local context of the exemplar, even if this is a relatively large sub-set of the 

whole context (e.g., in cases where nearest aspect neighbour are fairly distal). Terms that 

are least suited to describing specific relationships to the exemplar will be those that are 

scattered across the entire global context; those that do not discriminate the relevant aspect 

in any way. Our observations in Chapter 4, and those of others (Muresan and Harper, 

2004; Wu et al., 2001), show that even complex relevant topics generally form a distinct 

sub-set of all documents, so even in problematic cases caused by an isolated exemplar or 
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poorly-clustered aspect, if relating key words exist they should be identifiable from a local 

context that is significantly smaller than the entire context.  

Note that F also does not include the weight of the term (TFIDF) within the exemplar or 

the local context. This is deliberate because we wanted to avoid inflating the weight of 

terms  that  have  already  contributed  strongly  to  inter-document  similarity  measures. 

However,  we found through informal  experimentation that  better  results  are obtained 

when F is moderated according to the presence or absence of the terms in the exemplar. In 

order to suppress the weight of terms that are absent from the exemplar, we divided F for 

these terms by a constant of 2, as this seemed to result in intuitively better term selections. 

This approach is better than simply excluding terms that do not occur in the exemplar. It 

means that whilst terms that occur in the exemplar are more likely to be selected, terms 

that are exclusive to the local context by higher order association also stand a good chance 

of being selected. Such terms may represent useful substitutes for exemplar terms when the 

exemplar shares few terms with other relevant items, for example when the exemplar or 

reference to the aspect within the exemplar is very brief. 

Hence, all terms are assigned a quantitative weight. For the demonstrations that follow we 

set an arbitrary threshold of the weight equal to the 15th mostly highly weighted term. This 

means that sometimes more than 15 terms are selected if  there are a  number of tied 

weights at the threshold. Having settled on our distillation term weighting function, we 

now describe its application within the visual context.

6.4. Applying local context cues to the interface 
In this section, we present two novel tools that utilise LCD derived terms to support the 

aspect cluster growing strategy. We then present a series of walkthroughs that demonstrate 

how these tools  might aid the user in locating same aspect  documents in problematic 

exemplar situations. 

The first tool, Concept Signposts, assigns each term to its best representative within the 

local context. The aim is to lead the user to the centre of the aspect cluster, assuming that it 

is well captured by the local context. The second, Concept Pulses, is an interactive tool that 

allows the user to gain an overview of the distribution of interesting terms, not only within 

the local context but also the whole context. To place these two tools in context, we first 

describe the prototype design of an interface that might accommodate them.

178



Chapter 6: Supporting aspect cluster growing using Local Context Distillation

6.4.1. Implementation of  prototype interface
The aim of this prototype was to implement a working interface that can integrate all of the 

main concepts that we have discussed over the course of this dissertation. These are the 

spatial-semantic  visualization  of  the  retrieved  document  set,  simple  ‘more  like  this’ 

relevance feedback, local context distillation, dynamic adjustment of local context size, and 

two visual tools that exploit LCD terms: Concept Signposts and Concept Pulses. In this 

section, we give a brief overview of how these concepts fit together within the interface.

As  this  is  an  early  prototype,  we  have  used  the  MS  Visual  Basic  6  programming 

environment for development. The use of a visual, high-level language has allowed ideas to 

be implemented,  tested and refined quickly  and simply.  Whilst  VB6 does not  provide 

optimal  performance  for  computationally  demanding  tasks  (e.g.,  3D  rendering),  the 

dynamic features of the interface are quite usable on our modestly specified development 

PC (Athlon XP1800+,  512MB RAM).  The visualization  was  implemented as  a  virtual 

environment  object,  using  the  freely  available  WildTangent  3D  API 

(http://www.wildtangent.com). Representing the visualization as a model within a virtual 

environment,  particularly  using  the  relatively  high-level  API provided  by WildTangent, 

greatly simplified the management of visual elements, allowing simple control over a range 

of visual (translucency, animation) and interactive effects (e.g., zoom and pan) using the 

built in objects and methods. Figure 6.1 shows a paper landscape (Brath, 2003) of the 

interface  at  its  current  stage  of  development.  There  are  four  main  elements:  the 

visualization view; the document view; the local context view; and the aspect view.

In the visualization view, each document node is initially represented as a blue, translucent 

sphere. Nodes are mapped to the X and Y coordinates computed for the earlier analysis 

and node object size scaled and camera distance set accordingly so that that node overlap is 

minimised and the entire visualization is visible.  Camera angle is orthogonal to the XY 

plane, looking along the Z-plane. For MST visualizations, it is possible to also show the 

retained links between nodes.
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Figure 6.1: Paper Landscape (Brath, 2003) of the prototype interface integrating spatial-semantic visualization 
view, document view, local context view and aspect view.
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Although the default node colour is blue, this can be varied to show different states and 

properties  in  response  to  user  interaction.  Each node  can  be  clicked  on  to  view  the 

document contents in the document view frame. The currently viewed document node is 

then encapsulated within a translucent white cube. If a node is selected as an exemplar, it 

turns opaque and yellow. In turn, all local context nodes become more opaque (appearing 

darker) and nodes that fall  outside of the current local context become suppressed by 

turning more transparent (appearing lighter). The opacity of a local context node varies as a 

logarithmic  function  of  the  rank  similarity.  This  is  a  subtle  effect  that  only  becomes 

noticeable as the local context size becomes quite large, and is simply intended to help the 

user differentiate between strongly- and weakly-similar documents. As we shall discuss later 

in  this  sub-section,  the  colour  of  nodes  can  also  be  changed  to  represent  aspect 

membership of known relevant items.  The text labels  in the visualization are Concept 

Signposts, which we introduce in the next sub-section. The user can also zoom and pan 

within the visualization, which can be useful when exploring dense regions of nodes and 

Signposts.

The document view simply shows the title and text of the currently selected document 

(bounded by the white cube). Within the text, all occurrences of LCD terms are capitalised 

and bounded by  triangular  brackets  in  order  to  facilitate  scan-browsing  within  longer 

documents. 

The aspect view is similar to the aspect windows system presented by Swan and Allan 

(1998).  Its purpose is to help the user keep track of their  search progress by showing 

documents  marked as  relevant  and to discriminate  between these  documents  by  their 

aspect.  This  view links  to the visualization  using colours.  Each aspect  is  headed by a 

distinct colour, which is used to colour the nodes marked as relevant for that aspect within 

the visualization. In figure 6.1, one aspect is recorded and corresponding marked nodes are 

shown in green within the visualization. Currently, although documents can be assigned to 

multiple aspects in the aspect view, each document node can only be assigned one colour 

in the visualization. There are many possible solutions to this problem. For instance, Allan 

et al., (2001) use a pie-slice metaphor to visually encode multiple aspect membership into 

document nodes. Another possibility is to cycle node colours between aspects or even to 

only show node-aspect membership on demand. However, this problem has not been the 

focus of our evaluation and must be left for future work.
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Finally,  the local  context  view frame handles user-system interaction relating to simple 

relevance feedback and LCD. The user nominates the current document as an exemplar by 

clicking on the button at the top of the frame. On doing so, the visualization immediately 

updates  by  emphasising  the  k most  similar  document  nodes  in  the  visualization  and 

suppressing all other nodes. The size of the local context, k, can be dynamically adjusted by 

the user using the slider bar. In figure 6.1,  k is set to 30 documents. The list box to the 

right of the frame is where the current local context terms are presented. Double clicking 

on individual terms initiates a Concept Pulse whereby nodes of documents that contain the 

term are animated within the visualization. We discuss the details of this tool in sub-section 

6.4.3.  Multiple  terms can also be selected and pasted into the query string box at the 

bottom of the frame. The matches of the query string are also represented within the 

visualization as Concept Pulses.

Having provided an overview of the main interface elements, we now introduce the two 

novel visual tools that integrate LCD terms into the visualization in order to support the 

user during non-trivial aspect cluster growing episodes.

6.4.2. Concept Signposts
The aim of Concept Signposts is to express to the user how the current LCD terms relate 

to spatial-semantic features associated with the local context documents (i.e., highlighted 

features within the visualization).  More specifically,  in situations where the exemplar is 

isolated from a more coherent cluster of relevant documents, Signposts provide cues to 

guide  the  user towards this  feature.  Even if  all  relevant  documents are  fragmented,  a 

discriminating aspect term stands a good chance of being attached to another relevant 

example. 

This is achieved by showing the LCD terms ‘in context’ by assigning each term to its best 

representative  within the local  context.  Currently,  the best  representative  is  simply  the 

document that has the highest weight (TFIDF) for a given term. In most cases, terms tend 

to be distributed relatively evenly across the distinct local context features and so serve to 

emphasise different reasons for exemplar similarity. 

Figure 6.2 shows an example from the Extinction scenario where the local context is set to 

40 documents. Local context nodes are highlighted in dark blue. We can see that key terms 

are  spread  quite  broadly  across  the  spatial-semantic  structure  of  the  local  context, 
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indicating that LCD has identified a reasonably diverse range of concepts. Most of the sub-

clusters of dark blue nodes are reasonably proximal to a signpost string although the nature 

of some of the more fragmented peripheral nodes is somewhat ambiguous. The exemplar 

document is entitled: 

How we saved the rhino with rifle and chainsaw: Elizabeth Robinson watches a desperate attempt to beat  

the poachers 

The article is about a project to save Rhinos from poachers by safely removing the prize 

that they seek – the animal’s horn. The project is based in Zimbabwe but was inspired by a 

similar project in Namibia. We can see that LCD has identified major exemplar key terms 

(e.g., Rhino, horn, Zimbabwe, poachers) that relate it to the local context documents. It has 

also identified relatively minor concept terms such as “Safari” and “Mozambique” that are 

both only mentioned once in what is a relatively long document (1307 words).  

Figure 6.2: Concept Signposts example within the MST visualization of the Extinction scenario.

This strategy has a useful corollary whereby terms that are closely associated tend to be 

assigned to the same, or highly proximal documents within the visualization. Hence, terms 

that may, by themselves, be ambiguous tend to disambiguate each other through their 

relative  proximity.  This  ‘magical’  term  clustering  emerges  from the  inherent  semantic 

structure of the visualization and the fact that documents that focus on the same concepts 
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tend to cluster coherently. In figure 6.2, for instance, the terms “rhino” and “horn” are 

assigned to the same node whilst the terms “poaching” and “shoot” occur proximally.

The Concept Signposts strategy differs from typical approaches to local context labelling in 

spatial-semantic  visualizations  in  that  most,  if  not  all,  terms  will  be  either  directly  or 

indirectly related to a specific document, the selected exemplar, rather than simply context-

free  representatives  of  the  major  features  within  the  current  structural  view (e.g.,  see 

Horbaek and Froekjaer, 1999).

One current limitation with Concept Signposts is that each term can only appear once in 

the visualization.  This may be a problem if  it  is  a highly key term within two distinct 

clusters  of  the  local  context.  Clearly,  it  is  not  feasible  to attach  each  term to  all  the 

documents in which it occurs due to the clutter and overlap this would create. Possible 

strategies might include assigning a term twice if the 1st and 2nd best representatives were 

relatively distal in the visualization, particularly if the 2nd representative did not yet possess 

any Concept Signpost string.

On a related note,  even with the ‘one term one assignation’  strategy, overlap between 

signpost strings can cause legibility problems, particularly when vertically adjacent nodes 

both have Concept Signpost strings. Strategies we have tried to combat this have included 

reducing the size of the font (although this causes readability problems at the overview 

level) and rotating the text object on its x-axis, which gives an effect akin to writing the text 

on a roller and spinning it along its long axis. The text object is one-sided, so it becomes 

invisible for half of the rotation phase. If all Signpost strings rotate at the same speed, but 

at different phases, then they no longer obscure each other.

6.4.3. Concept Pulses
Concept Pulses are intended to complement Concept Signposts, although user interaction 

and system response are quite different. Concept Signposts appear in direct response to 

simple  relevance  feedback and provide  the  user  with a  general  overview of  emergent 

feature characteristics. Concept Pulses, on the other hand, allow the user to engage in a 

form of  ad hoc dynamic querying (Williamson and Shneiderman, 1992). By selecting the 

most indicative terms, the user is provided with immediate visual feedback that shows the 

distribution  of  those  terms  within  the  spatial-semantic  visualization  and  their  relative 

salience within matching documents.    
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The  rationale  for  Concept  Pulses  stems  from  an  inherent  limitation  of  the  Concept 

Signposts  method:  that  each  term can  only  appear  in  one  location.  This  limitation  is 

inherent because multiple presentation of terms leads to excessively long label strings for 

specific nodes that tend to overlap and thus obscure each other. Also as labels become 

very  long (more  than four  average  length  terms)  it  becomes difficult  to  associate  the 

contextual origin of the tail end terms.

Given this inherent limitation of Concept Signposts, it is likely that in many cases a useful 

term will not be applied to a document that is relevant to the current aspect of interest, 

even though the term might be clearly discriminating and present within such documents. 

Concept Pulses  directly  address  the limitation by allowing the user to see immediately 

which documents contain the selected term. 

In their most simple usage, the user can select (by double clicking) any distilled term in the 

LCD term list. The system response to a pulse request is to rapidly inflate each document 

node to a size proportional to the weight of the selected term in the document. Hence, 

documents that discuss the term most frequently  will  become the largest nodes in the 

visualization (see figure 6.3). This is a dynamic animation within the visualization, where 

nodes rapidly inflate to a size proportional to their query match and slowly deflate again to 

their normal size.

Concept Pulses provide three types of information about the term’s usage: how often it 

occurs across the set (its document frequency); where it occurs and particularly where it 

seems to be a relating feature of a document cluster; and in which document(s) it is most 

salient (heavily used).  Nodes deflate at a constant rate, hence those that were inflated the 

most will remain over-sized for a relatively longer period than other nodes. This further 

aids the user in identifying the most salient documents and clusters, as these will be the last 

nodes to return to standard size.

Figure 6.3 shows an example within the Extinction visualization where the term ‘forest’ has 

been pulsed. The local context is the top 20 most similar documents. We can see in this 

case that most of the over-sized nodes are close neighbours (dark blue), however Concept 

Pulses also affect non-local nodes as can be see by the pair of oversized light blue nodes in 

the bottom left of the visualization. The exemplar document is in the middle of a cluster 

situated in the top left of the visualization. We can immediately see the importance of using 
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translucency with nodes. The fact that inflated nodes encroach on each other’s space does 

not affect the user’s  ability  to discriminate between nodes,  even when one completely 

occludes another.

Looking first at the local context nodes, we can see three documents within this cluster 

that  are  good  representatives  of  this  term,  one  of  which  is  clearly  the  strongest 

representative  in  the  set.  However,  we  can  also  see  two  other  distinct  clusters  of 

documents that clearly talk about forests, one of which is almost central to the visualization 

(four documents) and the other which is situated just a little further below by the ‘logging’ 

signpost (two documents). Closer inspection reveals that these three forest features are 

quite distinct in nature. The top left (most local) cluster discusses the argument for the 

preservation of temperate forests (as well as the traditionally popular tropical forests) due 

to environmental concerns, for example a common theme in this cluster is the reduction in 

numbers of the spotted owl in northwest American forests. The central cluster mostly 

discusses  the  forests  of  Africa,  in  particular  their  regeneration.  The  bottom  cluster 

discusses  the  arguments  of  environmental  groups  (e.g.,  Greenpeace  and  WWF)  for 

preserving forests, particularly the tropical forests. 

Figure 6.3: Concept Pulse for the term ‘forest’ within the MST visualization of the Extinction scenario.

Also  notable  are  two clustered light  blue  (non-local)  nodes  in  the  bottom left  of  the 

visualization. These are about illegal trade in specific forest dwelling animals such as tigers 
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in India and parrots in Paraguay. This shows another benefit of Concept Pulses, which is 

to highlight the occurrence of key concepts occurring in documents that are currently 

outside the specified local context. 

Concept Pulses also allow the user to rapidly build a query, by selecting a number of 

distilled terms from the Listbox and then clicking a search button. The search routine 

calculates  a  match  function  whereby  the  weight  of  each  term  that  occurs  within  a 

document has a cumulative effect on its pulsed size. Hence, the largest nodes will tend to 

be those that discuss more terms, but may also be nodes that discuss a small proportion to 

a great extent.

Figure 6.4: Concept Pulse for the terms “forest” and “logging” within the MST visualization of the Extinction 
scenario.

Figure 6.4 shows the effect of adding the term ‘logging’ to the simple ‘forest’ query shown 

above.  This produces some interesting  effects.  The importance of  the top left  cluster, 

which surrounds the exemplar, is emphasised further. This region mainly discusses the 

problems caused by the timber trade in temperate regions, particularly the United States. 

The bottom cluster of two documents has also become more salient, as predicted by the 

‘logging’ signpost. A particularly interesting effect is considerable increase in the salience of 

the isolated node on the far right. Closer examination reveals this node discusses a distinct 
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aspect of the query: the tensions between the importance of timber trade in the greater 

Soviet economy and the impact this has on local communities and wildlife habitats.

6.5. Using LCD terms to support aspect cluster growing
In this section, we select four of the problematic aspect cluster growing cases from the 

sample  that  came to  our  attention  in  Chapter  5.  We begin  with  an example  of  how 

Signposts alone can quickly support orientation in an aspect cluster growing situation. We 

follow this with another, more complex example, where both signposts and single keyword 

pulses are used together to solve the problem. Our third example demonstrates the value 

of  combining  LCD  terms  to  support  aspect  cluster  growing.  Finally,  we  present  an 

example where LCD terms fail, both in their signpost and pulse application. However, we 

resolve this by showing how the pulse principle can be extended to allow query by phrase 

or passage.

In each case, the exemplar was problematic for both first and second NANs; in other 

words these are extreme cases where the exemplar is likely to be isolated from any main 

aspect cluster or sub-clusters.

6.5.1. Discriminating two distinct exemplar themes 
Our first example case is one where the exemplar document is clearly split between two 

distinct themes. It is taken from our Extinction scenario, document #3, and is shown in 

full in appendix C.1. The first half of the document discusses the impact of a ruling by the 

convention on international trade in endangered species (CITES) to protect the elephant 

through controls on the ivory trade. This is a clearly relevant aspect of the Extinction topic 

(aspect 19) and the document is associated with two other documents based on this aspect, 

documents #59 and #14.  The second half of the document, however,  is  a large table 

detailing international balance of payment figures, and is clearly non-relevant. The general 

economic theme seems to have diluted the importance of the environmental theme of the 

document and its relationship to two other documents. In similarity  space, the nearest 

aspect relevant document is ranked 9th in the order of most similar documents and the 

second nearest is ranked 34th. 
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Figure 6.5:  Concept  Signposts  for  document #3 of  the Extinction scenario.  The user  has  selected this 
document (marked in yellow and surround by a translucent white box) as relevant because it discusses the 
efforts of CITEs in the protection of Elephants (aspect 19).   Relevant nodes are marked in green. The 
exemplar document is split between discussions of endangered species and general economics news (see 
Appendix C.1).  Signposts clearly show that document #3 has been located near to documents about the 
latter topic and that the main cluster for CITEs and elephants resides over to the left-side (aspect relevant 
documents highlighted in Green).

The effect is even more apparent when we view the distribution of these three documents 

in MST space. The two other relevant documents are situated some way to the left of our 

exemplar (see figure 6.5) and have been highlighted in green. 

Selecting a local context size of 50 documents reveals a number of distinct clusters within 

the visualization. The application of signposts immediately explains the two themes of the 

exemplar and provides clear cues to the user as to where to focus their attentions (see 

Figure 6.5). The proximal cluster of the local context (dark blue nodes) is clearly about 

economic matters, whilst terms about environmental concepts dominate the local context 

clusters  to  the  left,  which  comprise  the  two  relevant  documents.  One  of  the  related 

documents (document #59) is immediately proximal to the node that has the ‘CITES’ 

signpost label and the other document is within two nodes distance of the ‘Elephants’ 

term. 

6.5.2. Using Concept Signposts and Concept Pulses in combination
In  this  example  we  demonstrate  the  complementary  value  of  Concept  Signposts  and 

Pulses.  We have selected an exemplar of aspect 9, document #31 (see appendix C.2), from 
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the  Extinction  scenario,  which  again  proved  to  be  problematic  for  the  aspect  cluster 

growing strategy, even when similarity cues were followed. The local context size is 50 

documents. Following spatial-semantic cues, the first relevant document is ranked 9th in 

proximity to the exemplar and the second is ranked 13th. Following similarity cues, the first 

and  second  relevant  documents  are  ranked  9th and  34th respectively.  In  other  words, 

strategy performance is  poor using spatial-semantic cues but actually  better  than using 

similarity cues.

Aspect 9 has the definition “Zimbabwe, Rhino, Elephants”. Remember, the Extinction 

question  is  to  identify  the efforts  made by as  many different  countries  as  possible  to 

protect endangered species. Hence, the user will be primarily searching for documents that 

discuss Zimbabwe. There are two other relevant documents for this aspect, documents 

#116 and #96.  Both the  exemplar  and #96 discuss  the  country’s  efforts  to  preserve 

elephants, whilst #116 focuses on the Rhinoceros. 

Figure  6.6a:  Concept  Signposts  for  Extinction 
document #31, which is an exemplar for aspect 9 
(Zimbabwe, Rhino, Elephant). Local context size is 
50 documents. Relevant nodes are marked in green

Figure 6.6b: Concept Pulse for Extinction scenario 
document  #31  using  the  LCD  selected  term 
“Zimbabwe”.

Looking  at  the  left-hand screenshot  in  figure  6.6a  we can see  that  LCD has  selected 

Zimbabwe as a key term, along with “elephant(s)”. Other related terms include “ivory”, 

“poached”, “poachers”, “CITES”, which is a major international conference that discusses 

policy on animal trade, and “trading”. Note, however, that “rhino” is not present, most 
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probably  because  it  has  been  suppressed  by  the  weighting  procedure,  as  it  is  not  an 

exemplar term. 

We can see that the term “Zimbabwe” is associated with one of the relevant documents 

(#116).  As  a  primary  key  term,  this  should  allow  the  user  to  identify  this  document 

immediately. However, document #96 is less easy to find using Signposts alone. It is the 

representative  of  “poached”  and  is  proximal  to  the  representative  of  “ivory”  and 

“elephants”, but this area of the visualization has a dense concentration of documents 

discussing elephants and the ivory trade in a number of African countries and there is no 

clue here that document #96 may discuss Zimbabwe’s role in Elephant preservation.

By pulsing  “Zimbabwe” the  visualization  reveals  that  #96 is  the second best  (second 

largest  node)  representative  of  this  term (Figure  6.6b).  Concept  Pulsing,  in  this  case, 

therefore provides a strong cue that potentially  allows the user to locate both relevant 

documents within two viewings, a maximum precision of 1.

6.5.3. Pulsing multiple terms
So far, we have demonstrated the successful usage of both Concept Signposts and Concept 

Pulses for facilitating aspect cluster growing in problematic cases. Both these examples, 

however,  have  focused  on  the  Extinction  scenario  where  aspect  definitions  are  quite 

distinct  in  nature.  In  most  cases  aspects  are  distinguished  clearly  by  the  nation  or 

organisation of interest and in many cases the species of interest. In the Chunnel scenario, 

however, aspect definitions are less distinct and often somewhat broad in definition (see 

appendix A.2), which accounts for both the larger size and overlapping nature of the aspect 

sub-sets. For instance, aspect 11 is somewhat diverse in definition as relevant documents 

can talk about both improvements and harm to local economies caused by the new rail 

link.  Furthermore,  there are a number of closely  related sub-topics,  such as aspect  13 

(“Changes  in  Kent  economy/employment”)  and  aspect  7  (“Changes  in  real  estate 

market”), that one would expect to be, and indeed are discussed regularly discussed in the 

same documents.    

Hence,  we were expecting the Chunnel scenario to be a more challenging test of our 

solution. The aforementioned aspect 11 is a good example, even though it is a relatively 

well-represented aspect  (18 documents).  Document #197 proved to be a  poor cluster 

growing  exemplar  for  this  aspect,  with  the  1st and  2nd nearest  neighbours  within  the 
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visualization ranked, respectively, 9th and 18th most proximal. A key problem is that the 

exemplar is relevant to several aspects of the topic, including the closely related aspect 7 

(“Changes in real estate market”). It focuses primarily, however, on aspect 1 which is about 

environmental impacts of the Chunnel. The text of the document #197 can be found in 

appendix C.3.

The relevance of this document to aspect 11 is principally due to a brief reference to the 

local  regeneration and a new shopping centre development in Stratford, East London, 

which has grown up around the new rail line. However, this is simply a lead-in mechanism 

to the primary topic – the negative impact on the Kent countryside. As such most of the 

relevant nearest neighbours are about this aspect. 

Figure 6.7 shows the location of the exemplar (node marked in yellow surrounded by a 

translucent white box) and the distribution of the other relevant documents (marked in 

green) within the MST visualization. The local context size is 50 documents. LCD has 

identified  “Stratford”  as  a  key  term,  but  there  are  no  terms  that  clearly  relate  to 

regeneration or commercial developments. Signposts has attached the term “Stratford” to 

a document just above the exemplar (see figure 6.7). Whilst this is not relevant to either 

that aspect or the topic generally, we can see that if the user continued in this direction to 

the  next  node,  they  would  find  another  aspect  relevant  document.  Unfortunately,  no 

further relevant documents are located in this region. Seven of the remaining 16 relevant 

documents are located in a dog-leg shaped formation that begins just below the exemplar 

and stretches downwards and out towards the left side of the visualization. Another dense 

cluster of five documents occurs further down around the “mile” Signpost (see figure 6.7).
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Figure 6.7a: Concept Pulse using the term “stratford”, for a user interested in Chunnel aspect 11. This term 
has been selected by LCD based on the exemplar document #75 and a local context size of 50 documents. 
Relevant nodes are marked in green.

Figure  6.7b:  Multi-term Concept  Pulse,  for  a  user  interested  in  Chunnel  aspect  11,  applying  the  terms 
“ashford”, “stratford” and “gravesend” in combination.
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Let us assume that the user decides to pulse “Stratford” to see if any more information is 

available on the commercial redevelopment of Stratford or neighbouring areas. Figure 6.7a 

shows that the most salient nodes are situated around the Concept Signpost representative 

for this term. With the exception of the one relevant document already noted, documents 

in this area are focused more on aspects relating to the construction of the rail-link and its 

environmental impact. We can see one further relevant document, however, situated at the 

bottom  end  of  the  main  dogleg  feature.  Examination  of  this  document  reveals  that 

economic growth is expected, not just in London but also all along the proposed route, 

which will run through the county of Kent. In particular, Ashford is mentioned as an area 

of expected high growth. “Ashford” is already in the LCD term list. Additionally, the user 

might now note that “Gravesend”, another Kent town, is also mentioned in the LCD term 

list. The user might therefore consider it worth expanding the query to include the names 

of towns situated on or around the rail-link. 

Concept Pulses allow the user to select multiple LCD terms and assign a cumulative visual 

weighting to each node. Figure 6.7b shows the result when the query “ashford stratford 

gravesend” is pulsed. We can see that a dense cluster of nodes, that encapsulates the dogleg 

formation of relevant nodes, becomes the most salient region in visualization. The two 

largest, unseen nodes in this region are both relevant to aspect 11.

6.5.4. Pulsing a selected passage
Our experimentation with the system revealed that many of the problematic cases in our 

three  scenarios  could  be  adequately  resolved  using  single,  and  particularly  multi-term 

Concept Pulses that were formulated using LCD selected terms. However, there are several 

cases where LCD failed to identify sufficiently discriminating terms. 

One such example is the use of document #75 as an exemplar of aspect 2 of the Chunnel 

218 scenario. This aspect focuses on how the high-speed rail line, from London to the 

Chunnel, was financed (see appendix A.2), with most relevant documents focusing on the 

relative contributions of public and private finance.

Document #75 is a possible exemplar of this aspect, but is located somewhat distally from 

the main cluster near the top of the visualization (see figure 6.8a). Whilst it makes several 

brief references to the rail link plans, it differs from the majority of documents judged 
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relevant in that it focuses mainly on the proposed construction of a station complex near 

Dartford by a private investor called Blue Circle, that will support the line. 

Taking a local context size of 50 documents, as with previous examples, is sufficient to 

capture eight out of the 10 other documents relevant to aspect 2. However, whilst LCD 

selects distinctive terms such as “Blue”, “Circle” and “Dartford”, the only identified key 

term that  is  relevant to the aspect  as  defined by the stimulus extract  shown above is 

“Financed”. Figure 6.8a illustrates the problems faced by the user trying to locate the main 

cluster from document #75 using spatial-semantic or Concept Signpost cues. Nine out of a 

total of 11 (including the exemplar) relevant documents (green nodes) are organised into a 

dense, roughly T-shaped bunch of nodes at the top of the MST visualization. However, the 

exemplar (yellow node) is completely isolated and distal from this cluster and the user 

would  need  to  view  88  non-relevant  documents  before  finding  the  nearest  relevant 

neighbour if spatial-semantic cues alone were followed. It is encouraging that the Concept 

Signpost  for  the  LCD  term  “Financed”  is  located  near  to  the  main  cluster,  but 

unfortunately the Signposted document itself is not relevant. 

Pulsing  using  the  term “Financed”  produces  a  more  positive  result  (see  figure  6.8b). 

Although the  top  representative  of  this  term is  not  relevant,  the  next  largest  node  is 

adjacent and represents a relevant document.  There are two other slightly smaller nodes in 

the vicinity, one of which is also relevant. However, there are no clues to alert the user to 

the rich patch of relevant documents situated to the right of these nodes.

We asked why LCD might fail to select appropriate key terms, even in a situation like this 

where most of the aspect sub-set has been captured by the local context. We conjectured 

that this problem might stem, in some cases at least, from the fact that LCD focuses on 

individual  word terms and takes no account of the contextual  co-occurrence of  terms 

within documents. In cases like this one, it is combinations of terms, rather than individual 

words that seem to best describe the key concepts.  For instance,  where this exemplar 

document makes relevant references to the aspect, phrases like “Union Railways”, “rail 

link”, “high-speed” and “Pounds 2.5bn” occur that are common within and reasonably 

exclusive,  to  the  other  relevant  documents  in  the  main  aspect  cluster.  However,  by 

themselves, the component words of these phrases are likely to occur broadly across the 

global context of the set, so LCD does not consider them important.
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Figure 6.8a:  Local  context of document #75 from 
the Chunnel Scenario, which is an exemplar of aspect 
2 (Financing of high-speed rail line). Relevant nodes 
are marked in green.

Figure  6.8b:  Concept  Pulse  from  the  term 
“Financed”

Figure  6.8c:  Concept  Pulse  using  stimulus  passage 
selection

We reasoned that it is therefore necessary to consider the sum of several terms that tend to 

occur together, either as phrases, or nearby (e.g., within the same sentence) and that define 
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a good aspect  query,  even within  the  relatively  constrained context  of  a  retrieved set. 

Redesigning LCD to identify phrases creates a non-trivial set of problems such as whether 

to build phrases dynamically, so that they are specific to the local context, or to modify the 

global text analysis procedure to include phrase terms. The former solution would incur 

considerable computational overhead, which is likely to reduce the responsiveness of the 

LCD procedure significantly.  Likewise, phrase identification would also slow down the 

initial  semantic  modelling  process  and  the  increased  vocabulary  size  would  cause 

proportional increases in computation time for both inter-document similarity analysis and 

LCD term weighting.

Given  this,  we  decided  to  trial  a  simpler  solution  to  the  problem:  query  by  passage 

selection. This simple extension to the Concept Pulse tool provides a neat solution to the 

problem of a poor LCD response, by allowing the user to directly indicate the stimulus for 

their interest from within the document text itself. This strategy is similar to that supported 

by the TELLTALE (Pearce and Miller, 1997) and VOIR (Golovchinsky, 1997) dynamic 

hypertext systems. In our system, the user is able to select the relevant passage and submit 

it  as  a  query.  The  system parses  the  string  and  extracts  all  terms  that  occur  in  the 

vocabulary of the semantic model (the common term space). This is then passed to the 

Concept Pulse routine, which provides visual feedback in the regular way. 

For instance, the first and most notable reference to the rail link in document #75 is the 

following passage:

 “The land is on the route of the Pounds 2.5bn rail link, to be financed jointly by the private and public  

sectors, which was announced by the government earlier this week.”

This passage is  highlighted in bold in appendix C.4. If we pass this string to Concept 

Pulses, the following terms are extracted:

land route pounds rail financed jointly private public announced government earlier

Figure 6.8c shows the visual array resulting from the Concept Pulse. The relevant T-feature 

is clearly exaggerated and encapsulated within a dense region of significantly inflated nodes. 

Close inspection reveals that the largest node, which is relevant, actually falls outside of the 

local context, as indicated by its high transparency (light shading). The next largest green 

node is equally proportioned to the largest blue, non-relevant node. In total, eight out of a 
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possible 10 relevant nodes are significantly inflated. Hence, viewing the cumulative effects 

of several marginally relevant terms within a clearly relevant passage can produce a useful 

query.

6.6. Discussion and conclusion
In this Chapter, we reported the development of an approach to supporting aspect cluster 

growing  in  the  kind  of  problematic  situations  identified  in  Chapter  4.  Problematic 

situations are defined as those where the exemplar is isolated from same aspect documents 

in both spatial-semantic and high-dimensional vector space. Core to our solution is the 

concept of Local Context Distillation. The LCD algorithm aims to identify potential query 

terms in response to the nomination of an aspect exemplar document and to suggest these 

to the user. Whilst previous work in the area of term suggestion (e.g., Attar and Fraenkel, 

1977; Koenemann and Belkin , 1996; Xu and Croft, 2000) has focused on expanding an 

existing user-specified query, our problem is different as the aim is to narrow the query, to 

distil from the intended query from a single nominated document exemplar. Our solution 

is an algorithm that looks for terms that are exclusive to documents occurring in the local 

context document sample, placing a higher weighting on terms that occur in the exemplar 

itself. The user can manipulate the size of this sample until the optimal set of key terms is 

presented. 

We then introduced a prototype interface that integrates the LCD with a spatial-semantic 

view of the retrieved set. This interface also incorporates two novel visual tools that apply 

the terms suggested by LCD to the visualization context,  providing additional  cues to 

support  the  process  of  aspect  cluster  growing.  Concept  Signposts  use  LCD terms to 

augment the spatial-semantic  visualization.  Each term is  applied as  a  label  to the  best 

document representative within the local context. A useful consequence of applying terms 

to the spatial-semantic context is that related terms tend to congregate, providing further 

disambiguation  of  their  meaning  and  reinforcing  the  description  of  salient  document 

clusters within the local context. 

Concept Pulses provide the user with an alternative strategy, which supports search when 

the key LCD terms have multiple senses within the local context or when there is no 

coherent main cluster of aspect relevant documents. On selection of one or more LCD 

terms,  the  system  responds  by  rapidly  inflating  each  document  node  within  the 

visualization to a size proportional to the importance of the selected key terms within that 
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document. Nodes gradually return to normal size over a period of a few seconds. The 

visual array and flow effects created by this animation support search by allowing the user 

to quickly identify the best matches and dense regions of good matches within the stable 

and familiar context of the spatial-semantic overview. 

In the final part of this Chapter, we presented four examples of how these tools are able to 

facilitate aspect cluster growing in problematic cases. Our demonstrations show that LCD 

works best with the Extinction scenario. This is likely to be due to the more distinct and 

concrete nature of  the aspects  in  this  topic.  Aspects  are clearly  distinguishable  by  the 

particular country or organisation discussed by relevant documents and, in many cases, the 

species of interest. LCD was less successful in the Chunnel scenario, where aspects are 

more broadly defined and closely related. 

From our informal trials it was evident that, for many aspects in this scenario, useful terms 

were more likely to be phrases or other non-contiguous combinations of terms that by 

themselves  are  ambiguous  words  like  adjectives  that  tend  to  co-occur  within  relevant 

passages as opposed to single unambiguous keywords. Such words are not likely to be 

selected by LCD in its current implementation because, by themselves, they are not good 

discriminators as they are commonly used in a range of different contexts. Only when 

considered together do they become important query terms. 

We discussed the potential benefits of adapting LCD to identify key phrases in addition to 

single word terms and concluded that whilst identifying useful LCD phrases on an ad hoc 

basis is likely to prove a difficult problem to solve in an efficient manner, it is still  an 

interesting avenue for future research. Existing approaches to phrase identification, such as 

lexical  (term)  co-occurrence  (e.g.,  Xu  and  Croft,  2000;  Lund  and  Burgess,  1996)  or 

identification of noun-compounds (Anick and Vaithyanathan, 1997) are likely to be too 

computationally expensive for use in a real-time, interactive system.  LCA, discussed earlier 

in section 6.2, has shown that term co-occurrence analysis can be computationally feasible 

when terms are restricted to a local vocabulary and comparisons only need to be made 

between a small number of query terms and the local context vocabulary. However, in our 

problem the query is very long and mostly redundant (see section 6.2). The computation 

time would therefore be significantly increased for long exemplar cases or when a large 

context size is required to capture the key phrases.   
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Suffix  tree  clustering  (STC)  is  an  interesting  approach  that  is  worthy  of  further 

investigation (Zamir and Etzioni,  1998).  In this approach, documents are grouped into 

‘base’  clusters  based  on  a  shared  contiguous  sequence  of  terms.  Base  (single  phrase) 

clusters are then combined to produce larger clusters. This has been show to be a fast 

procedure for dynamic document clustering.  Potentially this procedure could be applied to 

identify key phrase strings within an exemplar, based on their co-occurrence within the 

local  context.  Another benefit  is  that it  a suffix tree can be built  incrementally,  which 

means that if necessary it can be stopped mid-way once a sufficient set of good phrases 

have appeared, or simply extended if the size of the context is increased. 

Whilst  adopting  phrases as  the term unit  could potentially  bring  benefits  to the  LCD 

approach, we have already shown that this limitation could be alleviated to an extent by a 

much simpler solution: query by passage selection. This approach allows the user to over-

ride the constraint of suggested terms by allowing them to highlight,  directly from the 

exemplar, the phrase or passage that stimulated their current query. The system extracts, 

from this more specific relevance exemplar, all the terms that occur within the vocabulary 

of the semantic model and executes a Concept Pulse from this query string. A similar 

approach to querying was used in the TELLTALE (Pearce and Miller, 1997) and VOIR 

(Golovchinsky, 1997) dynamic hypertext systems. However, this strategy currently requires 

an extra interaction step and analysis from the user and in many cases there may not be a 

single  coherent  passage  that  provides  a  definitive  exemplar.  One  way  to  alleviate  the 

analysis required by the user might be to visually organise the exemplar document into 

homogeneous or distinct passages. Existing work in the area of document summarisation 

(e.g., Hearst, 1997; Ostler, 1999; Larocca Neto et al., 2000; Kleinberg, 2002) could usefully 

inform the development of such a feature. 

To conclude, we have presented a solution approach to deal with the problematic exemplar 

cases identified in the previous chapter. We have been able to demonstrate a number of 

cases where the application of LCD terms to the visual context clearly facilitated the aspect 

cluster growing process. This is an open problem, however, and we have also proposed a 

number of avenues for further work, particularly with respect to LCD, that could enhance 

this solution approach still further.  
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CHAPTER 7: CONCLUSIONS

7.1. Introduction
The goal of this dissertation was to develop and evaluate the potential utility of a novel interaction 

model to support the answering of an open-ended question using documents retrieved by a high-recall query.  

In this chapter we discuss the achievement of our goal, drawing conclusions based on the 

analyses  we  have  presented  in  this  dissertation.  We begin  with  a  brief  review  of  the 

presented dissertation (section 7.2), followed by a summary of research outcomes (section 

7.3) where we discuss, within the framework of the three main research questions and their 

associated hypotheses, the extent to which the aims of this dissertation have been met. We 

then outline  the  general  and  specific  contributions  of  this  work  (section  7.4).  This  is 

followed by a discussion of the limitations of the reported work (section 7.5).  Finally, 

recommendations for future work are presented (section 7.6).

7.2. Review of dissertation
In Chapter 1, we introduced our thesis, by proposing a novel interaction model to support 

the problem of answering an open-ended question using an indexed, full-text document 

collection. In this interaction model, the user performs a high-recall query, which retrieves 

a broad cross-section of documents relevant to the intended topic, discussing many distinct 

aspects, along with many non-relevant documents. Spatial-semantic visualization is applied 

to provide a structured, interactive representation of retrieved documents, which allows the 

user to browse documents in an associative fashion, much like within the ordered shelves 

of a library. The utility  of spatial-semantic visualization to support expansive searching 

(exploration) and narrowing (query refinement) search on a well-represented topic is well 

supported by the results of previous work (Chen et al., 1998; Allan et al., 2001; Cribbin and 

Chen, 2001). We focus specifically on a key strategy associated with our interaction model: 

the aspect cluster growing strategy. On discovery of a novel aspect of the relevant topic the 

user applies this strategy to find other similarly relevant documents. This strategy simply 

involves  searching  unknown  documents  in  proximity  order  from the  known  relevant 

document  node.  This  strategy  of  cluster  growing has  been  shown to be  effective  for 
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retrieving  further  documents  relevant  to  a  topic  that  is  well  represented  within  a 

visualization of a retrieved document set (Allan et al., 2001). 

What was not clear was whether this  success will  transfer to situations where relevant 

documents  form  relatively  minor  features  within  the  spatial-semantic  model.  We 

hypothesised that the structure of a spatial-semantic visualization can adequately support 

this strategy. We formulated three specific questions that relate to the general problem. We 

needed to know how to create an interactive spatial-semantic context that will support the 

aspect cluster growing strategy whilst maintaining a stable global context that allows the 

user to monitor the progress of their search and build a mental model of the relationships 

between different aspects of relevance. To create a useful spatial-semantic visualization we 

needed to be able to automatically generate an underlying semantic model that organises 

retrieved documents in a way that corresponds to the aspectual structure of the relevant 

topic without any prior knowledge of document relevance. 

Our first question asked whether a standard approach to text analysis can create such a 

semantic  model.  Our second question  asked which  layout  algorithm best  conveys  the 

required structure.  Finally,  anticipating  that  spatial-semantic structure might  not  always 

provide good cues to support the aspect cluster growing strategy, question three asked 

what the conditions would be under which spatial-semantic cues tend to fail and how can 

we apply this knowledge to develop appropriate interactive tools to support the strategy. 

Our approach has been to perform this investigation by measuring, in objective terms, the 

extent  to  which  relevant  topical  structure  can  be  communicated  by  spatial-semantic 

visualization and by simulating user performance of the aspect cluster growing strategy. 

This objective approach allows us to measure the upper bounds of potential performance 

within different visualization schemes across a range of search scenarios and without the 

potentially confounding effects of individual differences. This approach is feasible because 

of the algorithmic nature of the aspect cluster growing strategy, which is dependent on 

well-defined and objectively measurable properties of spatial-semantic visualizations and 

the availability  of appropriate topics  and relevance data made available from past Text 

Retrieval Conference (TREC) experiments. 

Chapter  2  reviewed  the  literature  relevant  to  our  three  questions  and  formulated 

hypotheses that were to be tested in Chapters 3 to 5. We developed two different tests that 

allowed us to measure semantic document clustering from two perspectives. The aspect 
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cluster separation (ACS) test measures the degree of classification conveyed by document 

clustering at two levels of relevance – the general topic and specific topical aspect. The 

procedure involves computing three distributions for each scenario that describe, for each 

topically relevant document, the mean similarity or proximity between that document and 

same-aspect, same-topic and all documents within the document set. This allowed us to 

quantitatively test the hypothesis that the tendency for documents to cluster, in similarity 

(Chapter 3) and spatial-semantic space (Chapter 4), will increase as the semantic distance 

between them decreases. The second test is the nearest aspect neighbours (NAN) test. This 

is  adapted  from  Voorhees’  (1985)  nearest  neighbours  test,  to  provide  a  fair  test  of 

theoretical or potential aspect cluster growing performance. Given that aspect sub-sets can 

vary  widely  in  size,  this  test  measures  the  rank  distance  between  any  given  relevant 

exemplar and the first and second nearest aspect neighbours only. Additionally, from our 

discussions of spatial-semantic visualisation issues and specifically those associated with 

information loss (document node misplacement) due to dimension reduction, we identified 

two diametrically  opposed  approaches  to document  node  layout  that  we subsequently 

compared in order to select the optimal visualization scheme for our interaction model 

(research question two). The first is a classical approach to spatial-semantic layout, called 

multi-dimensional  scaling  (MDS)  whereby  the  algorithm  seeks  to  find  the  best 

correspondence between all document similarities and node proximities. We contrast this 

global approach to optimisation with a local approach, whereby only the most salient inter-

document similarities are considered during layout. This is  achieved by considering the 

similarity  matrix  as  a  complete  network.  The  minimum spanning  tree  (MST)  of  this 

network  is  computed  prior  to  document  node  layout.  We hypothesised  that  this  will 

produce more cohesive clustering of aspectually-related documents, as evidence suggests 

their similarities will be relatively high within the distribution of all document similarities 

(Muresan and Harper, 2004). 

The aim of Chapter 3 was to answer research question one, where we sought to determine 

the  extent  to  which  the  structure  of  a  relevant,  but  complex topic  within  a  retrieved 

document  set  can be  modelled using a  standard text  analysis  algorithm.  We began by 

describing the creation of our test bed, which comprises three distinct scenarios derived 

from two topic descriptions (open-ended questions). Scenarios were derived from topics 

and data made available from past TREC Interactive tracks (Over, 1997; Over, 1998). Each 

scenario  comprised  a  single  topic  description,  topic-aspect  definitions  and  associated 

document relevance data, and a set of documents retrieved from the source collection. 
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Topics were both open-ended questions but were selected to be quite different in their 

answer  structure,  with  ‘Extinction’  being  composed  of  relatively  distinct  aspects  and 

‘Chunnel’ of relatively overlapping aspects. The source collection comprised articles from 

the Financial Times newspaper for the years 1991-94. Bespoke document sets for each 

scenario  were  retrieved  from  the  source  collection  using  a  simple  high-recall  queries 

derived from the topic descriptions. Two scenarios were created based on the Chunnel 

topic,  comprising  the top 127 and top 218 documents from the same query and one 

scenario  based  on  the  Extinction  topic,  which  also  comprised  127  documents.  The 

retrieved document set for each scenario was subject to an unsupervised text analysis using 

a typical approach based on the vector space model of document representation (Salton 

and McGill,  1983).  Each of the resulting semantic models comprised a term-document 

matrix and an inter-document similarity matrix. The similarity matrices formed the basis 

for all ensuing analyses. The remainder of this chapter was devoted to answering question 

one where we applied the ACS and NAN tests to the similarity data for each scenario. 

Finally, we demonstrated the problems associated with attempting to convey the observed 

topical structure in the semantic models using a discrete clustering algorithm. 

The aim of Chapter 4 was to begin the resolution of research question two, which sought 

to determine which layout algorithm produced the optimal spatial-semantic structures for 

our interaction model. We focused on two distinct approaches: Multi-dimensional scaling 

(MDS),  where  the  algorithm  seeks  to  find  a  globally  optimal  fit  between  true  inter-

document similarities and inter-node proximities in visual space; and minimum spanning 

tree (MST),  a  local  optimisation approach where only  the most salient  inter-document 

similarities are intentionally preserved. We began by describing how the spatial-semantic 

visualizations  were  created,  followed  by  a  comparative  visual  analysis  of  the  semantic 

structure conveyed by these visualizations  at  various levels  including  topic,  aspect  and 

discrete cluster membership. We then performed a comparative quantitative analysis of the 

topical structure conveyed by the respective visualizations, using the ACS test as developed 

and described in Chapter 2.  

The aim of Chapter 5 was to resolve research question two and to answer the first part of 

question three, which sought to determine the conditions under which the aspect cluster 

growing strategy fails. We reported the results of simulated user trials for the aspect cluster 

growing strategy, conducted using the NAN test developed and described in Chapter 2 and 

previously applied to document similarities in the semantic model in Chapter 3. Potential 
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performance  of  the  strategy,  using  proximity  cues,  within  both  MDS  and  MST 

visualizations of the same semantic models of all scenarios, was measured for all aspects 

represented by two or more relevant documents and all possible cluster growing exemplars 

for those aspects. The effects of visualization scheme, aspect overlap and document set 

size  were  analysed.  We  then  determined  the  extent  to  which  ordinal  level  node 

misplacement, caused by compromises associated with dimension reduction, impacts on 

the efficiency of the cluster growing strategy. In particular, we sought to determine the 

extent to which problematic cluster growing cases could be resolved by substituting spatial-

semantic cues with true document similarity cues. Finally, we identified two key factors that 

distinguish poor aspect exemplars, where neither spatial-semantic nor true similarity cues 

are sufficient to allow acceptable cluster growing performance, from those that provide 

good  or  acceptable  support  for  the  strategy.  We  discussed  the  implications  of  these 

identified factors for the design of interactive strategy support tools.

The aim of Chapter 6 was to resolve the second part of research question three, which 

asked how can we use knowledge of problematic cases to develop useful interactive tools 

to support aspect cluster growing. We introduced a term suggestion approach called Local 

Context Distillation (LCD) which, based on relevance feedback of just one known relevant 

exemplar, aims to identify key terms that describe potential reasons for the user’s interest in 

that document. This is achieved by identifying terms that both occur in the exemplar and 

are highly  exclusive  to the local  context  (nearest  neighbours)  of  this  document.   This 

produces a set of keywords that can be used either as contextual cues or query terms. We 

presented  two tools  that  demonstrate  each  of  these  potential  methods  of  application. 

Concept Signposts augment the existing spatial-semantic visualization by attaching each 

term as a label to the nodes whose associated document forms the best representative of 

that term within the local context. Concept Pulses, on the other hand, provide a form of 

dynamic querying whereby the user can select any combination of one or more of the 

suggested terms of interest and instantly gain an overview of their usage within the context 

of  the  visualization.  Our  demonstrations  showed how these  tools  can  support  aspect 

cluster growing when the exemplar is dislocated from the remaining relevant documents. 

Limitations  of  the  current  implementation  of  LCD were  also  identified  and  possible 

avenues of improvement discussed.

Having reviewed the structure and content of this dissertation, we now review the research 

outcomes for each of the three questions and their associated hypotheses.
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7.3. Research outcomes
This section summarises our conclusions for each research question. Tables 7.1 to 7.3 are 

provided for reference and summarise the specific results, by research question, for the 

specific hypotheses that were tested. 

7.3.1. Question one
Question one asked: To what extent can a standard text analysis procedure model the general semantic  

structure expected by our interaction model and particularly the low-level structure required by the aspect  

cluster growing strategy?

Question and hypotheses Outcome
Question 1: To what extent can a standard 
text analysis procedure model the general 
semantic  structure  expected  by  our 
interaction  model  and  particularly  the 
low-level structure required by the aspect 
cluster growing strategy?

Cluster  separation  was  significant  for  all  scenarios. 
Acceptable  precision was observed for  nearly  70% of 
cases. Aspect overlap resulted in poorer overall cluster 
separation but closer nearest aspect neighbours. Larger 
set size resulted in better cluster separation but had no 
effect on the similarity of nearest aspect neighbours. 

H1: The two level classification structure (topic and  
aspect  cluster  separation)  will  be  evident  for  all  
scenarios  whereby  relevant  documents  will  be,  on 
average, more similar to the sub-set of documents that  
discuss the same aspect(s) than they are to the sub-set  
of  generally  relevant  documents  and,  in  turn,  least  
similar to the retrieval set as a whole.

Supported for all scenarios both for main effects (p<.001) 
and  pair-wise  comparisons  between  parent-child  clusters 
(p<.001).

H2: R2-precision for NAN in similarity space will  
be equal to or exceed 0.2 in most exemplar cases 

Supported. 20% precision at the point of locating the 2nd 

nearest aspect neighbour satisfied in over 68.5% of exemplar 
cases. Median rank of 1st and 2nd nearest aspect neighbour is 
2 and 5.5 respectively.

H3:  In  the  overlapping  aspect  scenario,  topic  and  
aspect level cluster separation and mean R2-precision  
scores will be lower than in the distinct aspect scenario.

Partially supported. Cluster separation is better for distinct 
topic but cluster growing is more efficient in overlapping 
topic.

Aspect  cluster  separation  within  the  set  cluster  is  lower 
within  the  overlapping  scenario.  Topic  cluster  separation 
within the set cluster is lower for the overlapping scenario.

Proportion of cases achieving 20% precision at the point of 
locating the 2nd nearest aspect neighbour is greater for the 
overlapping  scenario  (72.7% vs.  17.6%).  Additionally,  the 
cluster growing is generally more efficient in the overlapping 
scenario (p<.001) both for the 1st nearest (2 vs. 6) and 2nd 

nearest (5 vs. 22) relevant documents.

H4: In the smaller retrieval set scenario, topic and 
aspect level cluster separation and R2-precision scores  
will be greater. 

Rejected. Aspect cluster separation tended to be better for 
the  larger  set.  Topic  cluster  separation  was  significantly 
better for the larger set. No difference in the proportion of 
cases achieving 20% precision at the point of locating the 
second nearest  aspect neighbour (72.7% vs.  71.3%).   No 
general difference between scenarios in strategy efficiency.

Table 7.1: Summary of results relating to research question one
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By general  semantic  structure  we  mean  a  two-level  hierarchical  classification  whereby 

documents  relevant  to  the  general  topic  tend  to  be  more  similar  to  other  relevant 

documents than to non-relevant documents and that in turn tend to be most similar to 

documents  that  are  relevant  to the  same aspect  or  aspects  of  the  topic.  By low-level 

structure we mean the extent to which the nearest neighbours of a document tend to 

discuss the same aspects of the topic. We answered this question using two different tests. 

The ACS test considered the extent to which the hierarchical structure was apparent for 

across the sample of known relevant documents. The NAN test effectively simulated the 

user performing the aspect cluster growing strategy in high-dimensional vector similarity 

space. Hence, it provides a measure of maximum performance for the strategy. This is a 

theoretical maximum, however, as it is generally unlikely that any layout algorithm would 

be able to perfectly preserve the ordinal relationships between all relevant documents and 

their nearest neighbours. 

The results of the ACS test showed that the expected hierarchical classification was evident 

for  all  three  scenarios,  with  a  highly  significant  linear  effect  on  mean inter-document 

similarity as the comparison sub-set became more specifically related to a given relevant 

document. The NAN tests revealed that aspect cluster growing showed the potential to be 

an effective strategy in the majority of potential cases, with two same aspect documents 

being retrieved by the 10th nearest node in 68.5% of cases (n=270). 

Looking more closely at the differences between scenarios, as expected, both aspect and 

topic cluster separation (within the set as a whole) was stronger for the more distinct topic. 

Unexpectedly, our comparison of the smaller and larger retrieval sets showed that both 

aspect and topic cluster separation was stronger within the semantic model for the larger 

document  set.  Our  comparison  of  scenarios  in  terms  of  potential  cluster  growing 

performance produced results that were somewhat inconsistent with those of the ACS test. 

Cluster growing was more efficient in the overlapping scenario. Only a small minority of 

exemplar cases meeting the 20% precision criterion within the distinct aspect scenario and 

the differences in the rank positions of both the 1st and 2nd nearest neighbours differed 

significantly  between  the  two  topics.  The  effect  of  set  size  was  unexpected,  but  less 

controversial,  with  no  significant  difference  in  potential  cluster  growing  performance 

between the larger and smaller versions of the same topic.  Combined with the results of 

the  ACS test  comparison these  results  are  very  encouraging  and suggest  that  there  is 

potential for our interaction model to work for even larger retrieval sets.
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The conflicting effects of aspect overlap emphasise the key differences in the methods and 

objectives of the two tests. The ACS test is a high-level test that aims to provide a high-

level measure of structural fidelity, whilst the NAN test focuses more on local structure. 

Also, the former test considers the model at the quantitative level, whilst the latter test 

considers the ordinal relationships between documents within the structure.  The observed 

differences can be partly explained by the fact the aspects in the overlapping scenario tend 

to be much broader in scope and thus typically have a much higher number of same aspect 

relations. It seems that although, generally, same-aspect documents cluster less cohesively 

in the semantic model of the overlapping scenario, the most similar relatives seem to be 

relatively more similar than those of the distinct aspect scenario. It seems possible that the 

impact of  these stronger similarities  is  outweighed by a  relatively  larger  proportion  of 

weaker similarities. In chapter 3, we suggested that if the ACS test is to be used to compare 

scenarios that  differ  grossly  in  this  way that  the median average may provide  a  fairer 

assessment of general document clustering than the arithmetic mean.

Finally, we examined the fidelity of aspect clustering in discrete clustering solutions. This 

analysis was included for completeness, to both verify whether the aspect fragmentation 

problems observed in previous efforts to cluster complex topics (e.g., Wu et al.,  2001; 

Muresan and Harper, 2004) were also a feature of our semantic models and to provide a 

benchmark that more clearly demonstrates the superiority of spatial-semantic visualization 

for the purpose of our interaction model. In line with previous work (e.g., Wu et al., 2001), 

we found that whilst k-means clustering was reasonably successful in partitioning relevant 

from non-relevant documents within the set, despite being relatively more similar, specific 

aspect sub-sets tended to fragment across multiple clusters.

7.3.2. Question two
Question two asked: Given an adequate semantic model, which approach to spatial-semantic layout best  

preserves the general and, in particular, the low-level structure expected by our interaction model?

We began Chapter 4 with a visual analysis of some of the more interesting features of the 

spatial-semantic visualizations that were created for our analysis. Initially encouraging was 

the coherence of topic clustering, particularly within the MDS visualizations. MST tended 

to  fragment  the  main  topic  cluster  into  multiple  sub-clusters,  particularly  for  the 

overlapping  scenarios.  Also  encouraging  was  that  both  layout  schemes  were  able  to 
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duplicate  and  build  upon  the  cluster  structure  produced  by  the  k-means  algorithm, 

whereby relevance rich clusters tended to gather and overlap. 

Question and hypotheses Outcome
Question 2: Given an adequate semantic 
model,  which  approach  to  spatial-
semantic layout best preserves the general 
and, in particular, the low-level structure 
expected by our interaction model?

On balance, MST provided superior cluster separation 
for aspects, and equal or superior support for the aspect 
cluster  growing  strategy.  However,  MST  created  a 
small  proportion  of  extremely  poor  aspect  cluster 
growing cases.  Also of  note,  MDS provided superior 
separation of the topic within the visualization. 

H5: The  two  level  classification  will  be  effectively  
conveyed  by  spatial  relations  in  (i)  MDS and (ii)  
MST

Supported for all scenarios and both visualization schemes.

H6: Aspect level cluster separation will be greater for  
MST visualizations than for the MDS visualizations

Supported for aspect separation both within set and topic 
clusters. However, MDS tended to organise the general topic 
more cohesively within the visualization.

H7:  Aspect  cluster  growing  will  be  more  efficient 
when using the MST visualizations compared to the  
MDS visualizations

Supported. Of all cases studied the simulated user found 
the first two relevant documents faster in over 60% of cases 
when using the MST visualization. 20% precision criterion 
achieved in almost twice the number of cases compared to 
MDS.

H8: Aspect level cluster separation will be lower in  
the overlapping aspect scenario than the distinct aspect  
scenario. 

Supported. Both topic and aspect cluster separation within 
the set cluster was greater within the distinct scenario for 
both  layout  schemes.  Aspect  separation  within  the  topic 
cluster was greater for MST but not for MDS.

H9: Aspect cluster growing will be less efficient in the  
overlapping aspect  scenario  compared  to  the  distinct  
aspect scenario.

Rejected. Significantly  better  performance  within  the 
overlapping scenario for both MST and MDS.

H10:  The  expected  differences  between  MST and  
MDS will be greatest for the distinct aspect scenario. 

Partially supported. Aspect cluster separation was better in 
MST  for  the  distinct  aspect  scenario  but  not  for  the 
overlapping  scenario.  No  significant  general  difference 
between  schemes  in  rank  analysis  of  nearest  aspect 
neighbours for either scenario. MST was better or equal for 
53% of Extinction cases and 56.4% of Chunnel cases. This 
was despite the observed ratio (MST to MDS) of good cases 
being higher for the distinct scenario (8.17) compared to the 
overlapping  scenario  (1.44).  Seems  that  MST  produced 
extremes, with a larger proportion of good cases than MDS, 
but a small proportion of very bad cases.

H11: Aspect level cluster separation will be lower in  
visualizations of the larger retrieval set.

Rejected. No effect of set size for MDS. Topic and aspect 
cluster separation within the set was significantly better in 
the larger set for MST.

H12: Aspect cluster growing will be less efficient when  
using the larger retrieval set.

Partially supported. Supported for MDS but not for MST 
where there was no difference. 

H13: The  expected  differences  between  MST and  
MDS will be greatest for the larger retrieval set. 

Supported. Significant  general  differences  in  aspect 
separation  and  cluster  growing  support  between  layout 
schemes for the larger set, but not the smaller set.

Table 7.2: Summary of results relating to research question two
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We also found that  MST,  with  its  local  bias,  produced  better  clustering  of  the  most 

cohesive aspects in all scenarios. In contrast, of the aspects that fragmented badly in the 

discrete cluster solution, sometimes MST did a better job, but in other cases MDS was 

superior.  A notable tendency of MST was to organise problematic aspects into two or 

more tight clumps, whereas MDS would either produce a single cluster or simply scatter 

the individual nodes. 

Our quantitative analysis of the spatial-semantic solutions began with a repeat of the ACS 

tests.  The procedure was almost identical  to before (for question one),  except that the 

measure used was inter-document spatial proximity rather than similarity. Overall, we saw 

that  cluster  separation  was consistently  complete  to a  significant  level  for both layout 

schemes  in  all  scenarios.  Comparison  between  the  two  layout  schemes  revealed,  as 

predicted, that MST was superior at clustering same-aspect documents both within the set 

cluster and the topic cluster. However, MDS was more effective at clustering the general 

topic within the set cluster, which is likely to be the effect of the global bias, which causes 

more major themes to be conveyed most effectively. 

The NAN tests were also repeated in a similar fashion and revealed that upper bound 

aspect cluster growing efficiency was significantly better when using the MST visualization, 

with equal or better performance in over 60% of all cases considered. Furthermore, the 

20% precision criterion for the second nearest relevant neighbour was met nearly twice as 

frequently for MST (37% vs. 63%).  

However,  the more detailed analysis  that  compared visualization performance between 

scenarios revealed a more complicated picture. As predicted, aspect cluster separation was 

better for the distinct aspect scenario.  However, against our predictions but consistent 

with the results of our analysis with the underlying semantic model, aspect cluster growing 

was  more  efficient  for  the  overlapping  scenario.  As  expected,  the  local  optimisation 

afforded by MST meant that the biggest differences between the two schemes, in terms of 

cluster  separation,  occurred  for  the  distinct  aspect  scenario.  However,  there  was  no 

significant  general  difference  between  the  two  schemes  for  either  the  distinct  aspect 

scenario or the equivalent sized overlapping scenario, although MST did tend to be equal 

or better in slightly more cases than MDS (53% and 56%). The observation that MST was 

not significantly better than MDS, at least for the distinct aspect scenario, was a curious 

one, especially given that the proportion of cases meeting the 20% criterion for aspect 
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cluster growing was over eight times higher for the MST visualization. The reason for the 

lack  of  an  observed  general  difference  was  attributed  to  the  fact  that  although  MST 

provided the best cluster growing situations it also provided the worst cases where the 

exemplar was particularly isolated from the main aspect cluster. 

The effect of document set size was also interesting. We expected that increasing the size 

of  the  document  set  would  produce  generally  poorer  visualizations,  given  the 

corresponding  increase  in  the  dimensionality  of  the  semantic  model.  Contrary  to  our 

expectations, aspect cluster separation was unaffected in MDS and actually improved for 

MST. Increasing the set size resulted in poorer aspect cluster growing performance in 

MDS, as predicted, but not for MST. As predicted, the local optimisation bias meant that 

MST was more resilient to the increasing complexity of larger semantic models. Whilst 

there  was  no general  difference  in  upper  bound cluster  growing  performance for  the 

smaller scenario, there was a highly significant difference between the two schemes for the 

larger  scenario.  To reinforce  our  conclusions  made with  respect  to question  one,  the 

implications  of  this  are  that  our  interaction  model  might  be  feasible,  for  much larger 

document sets, if MST is used as the layout scheme. 

To conclude, MST provides better or equal aspect separation and cluster growing support 

in  all  scenarios.  Hence,  we  can  provide  an  answer  to  question  two  with  reasonable 

confidence. The benefits for this scheme are particularly notable for the larger retrieval set. 

However, the use of MST seems to come with drawbacks. Although the algorithm ensures 

that highly similar documents cluster well,  it  can make some gross compromises when 

aspectual relations are less strongly encoded within the semantic model, causing extreme 

outliers that are likely to cause problems for cluster growing, particularly when such an 

outlier is the first discovered instance of an aspect. This leads us neatly on to our answer to 

question three.

7.3.3. Question three
Question three asked: Under what conditions does the aspect cluster growing strategy tend to fail and 

how can we use this knowledge to guide development of interactive support tools?

We began to answer this question in section 5.3 and concluded at the end of chapter 6. In 

answering this question, we focused on the MST visualization on the basis of our earlier 
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findings, which suggested that it  provided the optimal spatial-semantic cues for cluster 

growing in most situations.  

We first compared the efficiency of a simulated user following either MST proximity cues 

or pure similarity cues. We found that similarity cues generally lead to better performance, 

although not in the Extinction scenario. In fact mean and median performance scores for 

the 2nd nearest neighbour were better, but not significantly so, when following proximity 

cues.  In the  Chunnel  scenarios  similarity  was  generally  a  more  reliable  cue.  However, 

despite these general differences, along with modest increases (9%) in the proportion of all 

cases  meeting  the  20%  criterion,  we  found  that  many  of  the  worst  exemplar  cases 

remained problematic even when similarity cues were applied. 

Question and hypotheses Outcome
Question 3: Under what conditions does 
the aspect cluster  growing strategy tend 
to fail and how can we use this knowledge 
to  guide  development  of  interactive 
support tools?

Found that a significant proportion of cases were due 
to fundamental limitations of the document similarity 
matrix  within  the  semantic  model,  rather  than  node 
misplacements  alone.  Problematic  cases  were 
associated with smaller aspect sub-set size and lower 
aspect salience. Developed the LCD approach to term 
suggestion, which attempts to elucidate minor related 
themes.  Demonstrated  the  utility  of  LCD  terms  to 
support problematic cases by means of two visual tools: 
Concept Signposts and Concept Pulses. 

H14:  The  majority  of  problematic  cluster  growing  
cases are due to node misplacements and can thus be  
resolved by augmenting the visualization with relative  
similarity cues

Partially  supported. Whilst  following similarity  cues was 
generally more efficient than using MST proximity cues, the 
majority  of  problematic  cases  were  not  just  due  to  node 
misplacement but due to fundamental failure of the semantic 
model. 33% and 37% of all cases failed the 20% precision 
criterion in MST for 1st and 2nd NAN respectively. For each 
NAN, only 30% of these cases failed the criterion due to 
misplacement  alone.  Remainder  of  cases  still  failed  the 
criterion even when proximity was substituted for similarity. 
This left 23% of cases still failing on 1st NAN and 26 failing 
on the 2nd NAN. 

Explored  potential  correlates  of  poor  exemplar 
performance,  by  comparing  universally  problematic  cases 
(p<0.2 for MST and SIM) with remaining cases:

Aspect size Significant  difference,  where  problematic  cases  tended  to 
occur when the aspect of interest was smaller

Aspect salience Significant difference, whereby problematic cases tended to 
occur when the exemplar discussed more than one aspect 
and the sub-set of the aspect of interest was in the minority 
to all aspectually related documents.

Table 7.3: Summary of results relating to research question three
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The next stage of our analysis split our data into two independent groups: problematic 

cases that failed the 20% precision criterion when spatial-semantic cues were followed; and 

good cases that met or passed this criterion. We found that only a small proportion of 

problematic cases were due to misplacements alone. In fact 70% of all exemplar cases that 

failed the precision criterion when using MST proximity also failed when pure similarity 

was substituted. Hence, many aspect cluster growing problems seemed to occur due to a 

fundamental failure of similarities computed from the semantic model, rather than or in 

addition to compromises in the node layout process. 

To explore this further, we created two new groups from the data: cases that failed the 

20% criterion for both cues and those that met or passed on at least one of the cues.  We 

examined a number of variables that describe a potential exemplar’s topical content and its 

relationship  to  the  aspect  of  interest.  Predictably,  mean  similarity  to  aspect  relations 

differed significantly between the good and the bad cases. However, we also found that the 

variables of aspect size and aspect salience also reliably discriminated good from bad aspect 

cluster growing exemplars.  We found that problem cases occurred when the aspect of 

interest was relatively small. We also found a difference in aspect salience. This measured 

the proportion of current aspect relations to all aspect relatives of the exemplar. In other 

words, aspect salience is a measure of the relative importance of the aspect of interest 

within  the  document  space  in  comparison  to  other  closely  related,  but  non-relevant 

documents. We found that aspect salience was significantly lower for problematic cases. 

Together, these results indicated that aspect cluster growing is problematic when the aspect 

of interest is relatively small and competing with many other, probably more closely related 

documents, for proximity to the exemplar. 

On this basis, we suggested a new strategy whereby the user nominates a single known 

relevant document as an exemplar and in return the system suggests a range of possible 

reasons  for  relevance  that  link  that  document  to  its  nearest  neighbours  within  the 

document space. Given the known correlates of poor performance, greater emphasis is 

placed on terms that describe relatively minor relating themes. Three distinct tools enable 

this strategy: local context distillation, concept signposts and concept pulses. Local context 

distillation (LCD) is a term suggestion tool that is loosely based on the pseudo relevance 

feedback approach. LCD examines the exemplar and a user-specified local context sample 

(top  k most similar documents). Terms that are exclusive to the exemplar and its local 

context are most likely to be suggested. The rationale is that potential query terms are those 
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that exclusively occur in documents discussing the aspect of interest. Given that relevant 

items may be quite distal from the exemplar, the user can increase the size of the local 

context until good query terms are selected. 

Suggested terms can be used in one of two ways. Concept Signposts take the selected 

terms and attaches each one to the node of the best document representative, within the 

local context. Related terms tend to be attached to the same or proximal document nodes 

thus forming clearer  conceptual  definitions.  The user’s  attention is  drawn towards the 

region of  the visualization  containing  the  most promising  terms.  Concepts  Pulses  is  a 

dynamic querying tool that allows users to rapidly test out different queries using both 

single and multiple LCD terms. The query matches are shown using animation, whereby 

nodes expand to a size proportional to their match before slowly deflating. This creates a 

compelling visual array that clearly indicates documents and clusters that are most relevant 

to the query. 

We  provided  examples  of  how  each  of  the  two  visual  tools  can  support  various 

problematic cluster growing situations. However, it is noted that LCD is not always able to 

produce  good  discriminating  terms,  particularly  when  aspect  definitions  are  either 

conceptually broad or closely related to other aspects. For these situations, it is suggested 

that short (e.g., two term) phrases or passages would be more appropriate term units. We 

demonstrated how allowing the user to jump the rails of the LCD algorithm, by selecting 

passages or phrases directly from the exemplar for Concept Pulsing, could partially resolve 

the problem but suggested that development of LCD to support phrase suggestion is a 

logical next step in its development.  

In  conclusion  to  question  three,  our  analysis  has  identified  the  characteristics  of 

problematic aspect cluster growing exemplars. This knowledge has been applied to inform 

the development of interactive tools that used in combination can demonstrably resolve 

problematic cluster growing cases. 

7.4. Contributions
Based on our thesis and the research outcomes summarised in the preceding discussions, 

the general and specific contributions of this dissertation can be summarised as follows:

1. A novel  interaction model  to support  open-ended search tasks: We have 

proposed a novel interaction model that aims to simplify the process of exploring a 
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complex and unfamiliar  topic (e.g.,  answering an open-ended question).  This is 

achieved by organising documents retrieved using a tentative (high-recall)  query 

using  a  technique known as  spatial-semantic  visualization.  We view the  search 

process  as  one  where  the  user  begins  with  only  a  vague  conception  of  their 

information need and so their query evolves as novel and interesting information is 

discovered, with the focus shifting between multiple and sometimes diverse, yet 

related  aspects  of  the  problem  (Bates,  1989;  O’Day  and  Jeffries,  1993).  This 

requires an interface that simultaneously supports both expansive and narrowing 

search  needs  (Newby,  1998),  emphasises  browsing  strategies  rather  than query 

specification, and allows the user to maintain an overview of their search progress. 

In our model the user begins by retrieving a topically broad base of documents, 

using  a  simple,  high-recall  query (e.g.,  one or two key  words or phrases).  The 

system then presents  these  items to the  user  as  an interactive  spatial-semantic 

visualization.  The  associative  structure  of  the  spatial-semantic  model,  where 

documents (represented as nodes) are organised spatially according to their relative 

similarity, allows the user to browse the retrieved documents in a non-linear order 

and immediately follow-up an interesting discovery (discover similar documents) 

simply by examining neighbouring nodes in the visualization (the cluster growing 

strategy); no query reformulation is required and the global structural view of the 

retrieved document set and the user’s search progress is persistent and stable. Our 

model is similar to that of Leuski (2001),  but has been significantly  adapted to 

support  complex,  evolving  queries  (Bates,  1989;  O’Day  and  Jeffries,  1993)  as 

opposed to conceptually simple, well defined and static queries. 

2. Empirical data that supports the feasibility of our interaction model: We 

have  demonstrated  that  an  inter-document  similarity  matrix  (of  retrieved 

documents) can classify a complex topic at both the general-topic and aspect levels 

of relevance and that this structure can be preserved and usefully conveyed within 

a  spatial-semantic  visualization.  Previous  work  (Rorvig  and  Fitzpatrick,  1998; 

Leuski, 2001; Allan et al., 2001) had demonstrated that relevant documents tend to 

form  a  coherent  cluster  within  a  spatial-semantic  visualization  of  an  ad  hoc 

document set.  Given this tendency, Leuski (2001) was able to demonstrate the 

utility of the cluster growing strategy for isolating relevant documents. However, 

most  of  these  topics  were  simple  in  structure;  there  was  only  one  aspect  of 

relevance and so all relevant documents were highly similar. Until now, no study 
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has formally evaluated the potential of applying this strategy to a more complex, 

relevant  topic  represented  within  much  larger,  more  diffuse  (i.e.,  high-recall) 

retrieval  set.  Our interaction  model fundamentally  requires  that  inter-document 

similarity increase as the semantic distance between documents decreases and that 

this  structure can be reliably  conveyed by the structure of  the spatial-semantic 

visualization.  Muresan  and  Harper  (2004)  provided  evidence  that  documents 

relevant to a complex topic also tend to be relatively dissimilar to non-relevant 

documents and that relevant documents that discuss different aspects of a topic 

tend to be less similar than those that discuss the same aspect. We have extended 

their results to provide evidence that this trend also occurs within the context of a 

high-recall  retrieval  set  where  there  is  only  one  topic  of  interest.  We  have 

demonstrated that even simple measures of inter-document lexical similarity can be 

used to classify such a document set into this two-level  hierarchy of relevance. 

Moreover,  the  feasibility  of  preserving this  two-level  structure within  a  spatial-

semantic visualization had not been studied before this dissertation, highlighting a 

further contribution of our work. We then demonstrated that this classification 

remains  when the  high-dimensional  model  is  projected  on to two-dimensional 

space as a spatial-semantic visualization. Finally, we have also shown that, using an 

appropriate layout scheme, spatial-semantic cues are sufficient to support efficient 

aspect  cluster  growing  from a  large  proportion  of  all  possible  starting  points 

(relevant exemplar cases).

3. Formal evaluation of spatial-semantic document visualizations without the 
need for feedback from human subjects: We have demonstrated an objective 

evaluation  approach  that  measures  the  presence  of  a  complex  relevance 

classification within a semantic or spatial-semantic model and the efficiency of the 

aspect cluster growing search strategy using an existing benchmark test collection. 

We have performed our analyses by means of pre-defined topics and relevance 

judgements, rather than direct feedback from human subjects. This both reduced 

the time and cost of testing and allowed better control over random error. This 

objective approach was made possible by the availability of TREC interactive test-

collections, which provide realistic search scenarios and two level (topic and aspect) 

document relevance data that provide a benchmarks for performance evaluation. 

The use of TREC data is not a new approach to evaluating either visual or non-

visual IR interfaces; For example, Leuski (2001) evaluated his form of the cluster 
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growing strategy using data from the “ad hoc” task. However, the contribution of 

this  dissertation  is  the  first  reported  example  of  TREC interactive  data,  being 

applied  in  this  way,  to  (i)  objectively  evaluate spatial-semantic  visualizations  of 

complex  topics  represented  within  query-retrieved  document  sets,  and  to  (ii) 

concurrently evaluate both general structural fidelity of a visualization and potential 

search strategy performance. 

4. The  development  and  evaluation  of  two  new  tests  of  the  IR  cluster 
hypothesis: Our evaluation of classification and strategy performance has been 

achieved using two new tests,  which we believe  will  be of  future value to the 

research community. These tests were bespoke adaptations of existing tests of the 

IR cluster hypothesis (van Rijsbergen, 1979; Voorhees, 1985; Muresan and Harper, 

2004) that provide methodologies for evaluating both the presence of a complex, 

hierarchical  relevance  classification  structure  and  the  efficiency  of  a  cluster-

dependent search strategy. The aspect cluster separation (ACS) test measures the 

relative  mean size  of  clusters  surrounding  known relevant  documents  at  three 

levels of semantic distance: same aspect, same topic and all retrieved documents. 

This approach provides a simple, statistically testable measure of the integrity of 

the  expected  two-level  classification  of  the  relevant  documents.  Treating  each 

relevant  document  as  a  single  data  case  allows  straightforward  statistical 

comparison of hierarchical classification between scenarios (e.g., using class ratio 

transformations). The nearest aspect neighbours (NAN) test effectively simulates a 

user growing an aspect cluster from a known relevant exemplar using a simple cue 

driven strategy. This is based on Voorhees (1985) test and is similar to Leuski's 

(2001) strategy based evaluation method. However, this test is specifically designed 

to accommodate complex topics, where documents may discuss more than one 

aspect of the topic, where aspect sub-sets are likely to vary considerably in set size 

and each relevant document is seen as a potential cluster growing exemplar for all 

the aspects that it discusses. A further contribution of this dissertation was our 

demonstration of how the results of the NAN test can allow for the identification 

of factors that discriminate between good and bad cluster growing exemplars and 

how their observed effects can be used to inform the development of the tools and 

strategies (see contribution five) that can improve cluster growing performance.
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5. The proposal and demonstration of novel interactive tools to support  ad 
hoc, focused searches within spatial-semantic document visualizations: This 

dissertation has reported the development of novel  interactive tools to support 

focused  aspect  searches  within  spatial-semantic  document  visualizations.  These 

tools provide useful and transferable alternatives to designers of both graphical and 

non-graphical IR interfaces. The design concepts and specifications of these tools 

were motivated by known limitations of spatial-semantic cues identified during the 

NAN  test  analysis.  Local  context  distillation  (LCD),  which  is  based  on  the 

principle of local  feedback (Attar and Fraenkal,  1977), analyses the relationship 

between a single known relevant document and its local and global contexts to 

suggest terms that allow the user to recognise (rather than think up) terms that 

specify their current query. Concept Signposts augment the local context of the 

exemplar, as represented within the visualization, using contextually located LCD 

term labels. These help the user to understand how different topics relevant to a 

selected exemplar are organised within the visualization. Concept Pulses provide a 

form  of  dynamic  querying  that  combines  user  selectable  LCD  terms  with 

animation  within  the  visualization  to  help  the  user  to  rapidly  experiment  with 

different queries and understand how matches for these queries are distributed 

across the visualization. We have demonstrated the utility of these tools to support 

aspect  cluster  growing  strategy  episodes  that  proved  problematic  using  either 

similarity or spatial-semantic cues. We also believe that the application of the LCD 

term suggestion concept is not limited to our interaction model but can also be 

easily and usefully transferred to classical, non-graphical IR interface contexts (see 

section 7.6)

6. An  objective  comparison  of  two  diametrically  opposed  approaches  to 
spatial-semantic layout optimisation within the context of a specific search 
task: We have demonstrated that both global and local optimisation approaches 

can effectively preserve the modelled two-level relevance hierarchy that is required 

by our interaction model for an open-ended search task. However, we have also 

found that there are key differences in their emphasis. Global optimisation (classic 

MDS),  where  the  layout  algorithm  attempts  to  preserve  all  inter-document 

similarities, seems to better preserve the top-level relevance structure, suggesting it 

may be a better scheme to use for simple topic-cluster growing tasks. The local 

approach, on the other hand, where only the MST graph of the similarity matrix is 
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used as input to the layout algorithm, seems more appropriate for supporting an 

open-ended search characterised by a complex, evolving query. Our data show that 

MST  separates  distinct  aspects  and  clusters  same-aspect  documents  more 

coherently  than  MDS.  Furthermore,  our  evidence  indicates  that  MST  is 

considerably more scaleable than MDS, allowing larger, more diverse retrieval sets 

to be visualized and searched within a single interaction episode.

7. A demonstration of methods and the importance of cross-verification of the 
cluster  hypothesis  testing  at  both  high-dimensional  and  visual  levels  of 
representation: We  have  argued  that  researchers  engaged  in  document 

visualization  experiments  should  understand  the  underlying  structure  of  the 

semantic model before interpreting the results of clustering or scaling procedures. 

This argument has been vindicated by our observations, which show the extent to 

which key structures are preserved, particularly same-aspect (low-level) relations, 

varies  considerably  from  one  technique  to  another.  ACS  and  NAN  tests  are 

directly transferable and comparable between high-dimensional similarity space and 

low-dimensional  spatial-semantic  space.  Results  from  analyses  at  the  level  of 

similarity space provide a benchmark that can avoid false rejection of the cluster 

hypothesis for a given scenario should initial visualization/clustering trials fail. This 

approach  also  provides  a  means  of  estimating  key  structural  information  loss 

during dimension reduction, as opposed to general information loss as would be 

measured by traditional correlation or stress measures of match between input and 

output proximities.

7.5. Limitations
This work was deliberately limited to a single test collection, containing only one type of 

document,  newspaper  articles,  from a  single  source  publication.  These  documents  are 

therefore relatively homogeneous in writing style and quality. Using such a collection was 

desirable as it  minimised potentially confounding influences on the semantic modelling 

process such as vocabulary mismatch, misspelling or variation in spelling and so forth. To 

accommodate  such  variation  properly  would  have  required,  amongst  other  measures, 

consideration of different approaches to text analysis, which as stated in Chapter 1, was not 

an objective  of  this  thesis.  However,  it  is  advisable  to  consider  this  limitation  before 

generalising the reported findings to other document types and collections.
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The lack of a formal user study to confirm the success of our objective analyses could also 

be  perceived  as  a  limitation.  However,  brief  user  studies,  particularly  when  novel 

metaphors or interaction styles are involved, are known to be confounded by the effects of 

individual differences such as cognitive ability, experience with interactive graphics, that 

can mask out the effects of independent variables under study (e.g., see Swan and Allan, 

1998).   We argue that the analysis reported here allowed us to verify fundamental and 

objectively testable assumptions and inform key design decisions prior to the introduction 

of any complex and also costly and time consuming user studies. The results of our analysis 

provide a benchmark against which to interpret user success or failure when using the 

prototype interface for real.  For instance, given a result  that showed equally poor user 

performance of the cluster growing strategy when searching from both known good and 

problematic  exemplars,  the  experimenter  could  immediately  rule  out  spatial-semantic 

structural failure as a possible causal explanation. 

7.6. Future work
The results of our analyses have provided encouraging support for some key assumptions 

of our interaction model. We have demonstrated that it is possible, even with a relatively 

simple text  analysis  procedure,  to model the required semantic  structure and that  this 

structure  can  be  adequately  preserved  despite  dimension  reduction  and  presented  in 

spatial-semantic  form.  We have also shown that  the simple strategy of  aspect  cluster 

growing is also feasible in a large proportion of potential cases. However, despite these 

achievements, we have only begun to evaluate and develop this interaction model. Many 

questions  remain,  several  of  which  have  emerged  as  a  direct  result  of  the  analysis 

conducted in this work. 

Further  research  should  focus  on  the  problem  of  optimising  the  semantic  modelling 

method.  Whilst  a  simple  word term vector  comparison approach has  been shown to 

produce  somewhat  acceptable  inter-document  similarity  matrices,  there  are  clear 

limitations. First, a document can discuss several aspects of the relevant topic along with 

other non-relevant topics and the concept of interest may represent only a small part of the 

whole  document.  For  this  reason,  the  document  as  the  unit  of  similarity  analysis  is 

probably too coarse for the purpose of modelling complex, topical structure. Leuski (2001) 

has also stressed this issue when considering the potential problems associated with ‘multi-

topic’ documents. Breaking documents into passage units, however, has big implications 

for the size of similarity matrix and, in turn, introduces the difficult question of whether 
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the spatial-semantic visualization should represent each passage as a distinct node, which 

would clearly present significant problems with respect to visualization legibility. Several 

potential solution paths can be envisaged. For instance rather than splitting documents into 

passages based on rigid criteria (e.g., paragraphs or every 100 words), a pattern analysis 

technique, for instance, along the lines of burst detection (Kleinburg, 2002) or TextTiling 

(Hearst, 1997) where sudden changes in feature occurrence can be used to detect the start 

of  new  topics,  might  provide  more  effective,  and  potentially  economical,  criteria  for 

document  partitioning.  With  respect  to  the  presentation  problem,  the  inter-document 

similarity matrix could remain as the input to visualization, with each pair-wise similarity 

being represented as, for instance, the closest matching passages occurring between the 

two  documents.  The  implications  of  this  approach  for  general  high-dimensional  and 

spatial-semantic  classification  and  aspect  level  clustering  would  need  to  be  carefully 

evaluated using the same, or a similar approach to that used in this dissertation.

A second problem that likely affected our results, particularly within the Chunnel scenario 

where aspect definitions were relatively broad and overlapping, is vocabulary mismatch. 

Vocabulary mismatch refers to the tendency for different people  to describe the same 

concepts using different terms, and is a well-recognised problem with the field of IR (see 

Furnas  et  al.,  1987).  Extant  approaches  to  dealing  with  mismatch  include  concept 

decomposition, where terms are replaced by higher-order derived concepts (e.g., Latent 

Semantic Indexing: Deerwester et al., 1990; Concept Indexing: Karypis and Han, 2000).   

Vocabulary mismatch is a problem for LCD, our term suggestion tool. The facility for the 

user to identify aspect matches by referring explicitly to terms that occur in the exemplar, 

but  not  within  other  relevant  documents  could  be  highly  effective  i.e.,  whereby  the 

suggested  term  is  substituted  with  the  relevant  underlying  concept  feature  when,  for 

instance, the concept pulse routine is executed. Also, with respect to LCD, we discussed 

the utility of suggesting phrases instead of, or in addition to single word terms. Particularly 

when the aspect definition is broad or abstract in its subject, short phrases would be more 

meaningful and potentially easier to identify as exclusive to the local context. We gave one 

example,  for  instance,  in  the  Chunnel  scenario  where  the  phrase  “rail  link”  was 

considerably more meaningful and salient than the single words considered independently. 

We suggest  that one interesting  approach to phrase identification might be suffix tree 

clustering (Zamir and Etzioni, 1998) which has been proven to be an efficient means of 

identifying phrases of varying length that are common to two or more documents.

221



Chapter 7: Conclusions

Future  work  should  extend our  work by  examining  further,  alternative  approaches  to 

spatial-semantic visualization.  In this dissertation,  we have considered two diametrically 

opposed approaches to spatial-semantic layout. As predicted, treating the similarity matrix 

as a graph and radically pruning less salient inter-document similarities by computing the 

minimum spanning tree (MST) prior to spatial node placement lead to a layout that better 

conveyed aspect level relations in a good majority of cases, compared to a standard global 

optimisation approach (MDS). MST is only one method of graph edge pruning, however, 

and other techniques like Pathfinder network scaling (Schvaneveldt et al., 1989) are worthy 

of investigation. Chen and Morris (2003), for instance, give an interesting comparison of 

MST and Pathfinder networks for different spatial-semantic visualization application - co-

citation analysis.  Also, Leuski (2001) found that identifying the optimal inter-document 

similarity threshold, to ensure optimal topic clustering, was an important consideration in 

the development of Lighthouse (see Leuski, 2001). However, Leuski does not give details 

of the effects  of  varying thresholds either within or between topical  scenarios,  and of 

course the focus was on the clustering of well-represented topics,  rather than complex 

aspect level structure. A study that examined the effect of manipulating this threshold, 

across multiple topical scenarios, would be worthwhile and interesting, particularly if this 

lead to heuristic  functions  that  could be  used to optimise  topical  clustering  based on 

statistical properties of the semantic model that are observable prior to any significant level 

of relevance feedback. 

We have already noted that there are alternative, potentially useful applications of the LCD 

approach. It would be worthwhile,  for example to test the implementation of this tool 

within more traditional (i.e., non-graphical) search interfaces. One interesting avenue is the 

use  of  this  term suggestion  approach to support  the  ‘more  like  this’  function  already 

available in many Web search systems. 

Finally, whilst many of the outstanding issues can be dealt with, at least initially, using an 

objective  experimental  approach  like  the  one  followed  in  this  work,  user  studies  are 

ultimately required to fully confirm the validity of the interaction model as a means of 

support for open-ended question answering. In particular, the utility of the proposed, and 

future interactive support tools can only be fully evaluated and developed through analysis 

of user’s subjective responses within controlled and realistic search task situations.
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Appendices

APPENDIX A: TOPICAL SCENARIO 
DESCRIPTIONS

1. Distinct aspect topic: Extinction 
Description: The spotted owl episode in America highlighted U.S. efforts to prevent the 

extinction of wildlife species.  What is not well known is the effort of other countries to 

prevent the demise of species native to their countries.  What other countries have begun 

efforts to prevent such declines? A relevant item will  specify the country, the involved 

species, and steps taken to save the species.

High recall query: “extinction OR endangered species”

Topical scenarios: Extinction

Aspect Number Associated  retrieved 
documents  (numbered 
by  rank  similarity  to 
the original query)

Aspect definition

1 22 Finland - saima ringed seal
2 11, 16 Brazil - golden lion tamarin
3 73, 36 Japan - Atlantic bluefish tuna, 

elephants
4 73 Int'l  Commission  for 

Conservation of Atlantic Tuna 
- Atl. blue tuna

5 112, 66 Kenya - elephants
6 90 Columbia - Andean condor
7 75, 99, 66, 14 South  Africa  -  quagga,  white 

rhino
8 78 Belize  -  jaguar,  black  howler 

monkey
9 31, 116, 96 Zimbabwe - rhino, elephants
10 8, 113, 70, 37 UK - capercaillie, tern, polecat, 

birds
11 16 Oman - Arabian oryx
12 None retrieved EC - harp and ring seals
13 48 Spain - white-headed duck
14 None retrieved Greece - elephants
15 123, 36, 14 Worldwide Fund for Nature - 

sea birds (long-tailed guillenot, 
shag,  fulmar,  little  auk,  Gr. 
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North.  Diver),  elephants, 
panda,  rhino,  Bengal  tiger, 
Barasingha deer.

16 34 Paraguay - teyu guazu iguana, 
cayman, boa constrictor

17 87 Poland - bison
18 16, 28 Indonesia  -  wild  monkeys, 

chimps, Sumatra tiger
19 59, 3, 14 Cites - elephants
20 34 New Zealand - birds
21 87 Peru - vicuna
22 None retrieved Canada - cod
23 13 India - tigers
24 18, 50 China - rhino, tiger
25 None retrieved Romania - European mink
26 12 Zambia - elephant, black rhino
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2. Overlapping aspect topic: Chunnel
Description: Impacts of the Chunnel - anticipated or actual - on the British economy 

and/or  the  life  style  of  the  British.  Find  as  many  DIFFERENT impacts  of  the  sort 

described above as you can.

High recall query: “chunnel OR channel tunnel” 

Topical  scenarios:  Chunnel  127 (retrieved documents 1-127),  Chunnel  218 (retrieved 

documents 1-218).

Aspect Number Associated  retrieved 
documents  (numbered 
by  rank  similarity  to 
the original query)

Aspect definition

1 143,  39,  26,  116,  197, 
138,  144,  160,  23,  165, 
129

environmental impact

2 143, 9, 24, 64, 82, 75, 72, 
36, 5, 19, 43

financing  of  high-speed  rail 
line

3 133 cost  of  additional  safety 
standards

4 67, 115, 106, 163, 1 merger  (rationalization)  of 
ferry companies

5 94, 203, 93, 98, 75, 86, 3, 
19

location/relocation  of 
industries because of Chunnel

6 203 loss  of  Japanese  investors  to 
Europe

7 203, 44, 2, 70, 197, 160, 
97, 3, 6

changes in real estate market

8 186, 47, 85 increased quick visits to France
9 63 competition  among  railway 

companies
10 27, 184, 2, 16, 92, 38, 15, 

29, 42, 48, 1, 12, 3, 56, 6
increased/improved  rail 
freight/parcel/passenger 
service with Europe    

11 89,  99,  30,  8,  39,  34,  2, 
197, 25, 15, 183, 33, 86, 
96, 3, 6, 90, 60

improved/harmed  local 
economies because of rail lines

12 187, 30, 8, 93, 9, 198, 40, 
26, 29

improved  rail  service  (freight 
or passenger) within the UK

13 93, 131, 213, 75, 40, 147, 
97, 183, 81, 165, 86, 96, 
3, 6

changes  in  Keny 
economy/employment

14 131, 183, 96 increase chance for EC grants
15 10,  9,  24,  64,  82,  5,  37, 

159, 101, 43
Chunnel  impact  on 
privitization of railroads
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16 16, 163, 42, 12, 22 improvements  in  ferry/air 
services

17 31, 47 diseases entering UK
18 31, 47, 150, 57, 45 increased terrorism in UK
19 150 more drugs in UK
20 68, 163, 100, 97, 1, 22 changes  in  prices  to  cross 

Channel
21 21, 48 creation  of  British  tunnel 

exports
22 87, 7 Brits driving on the Continent 

(esp. own cars)
23 85, 49, 7, 48, 81, 3 strengthen British links to EU 

and single market
24 85, 49, 45, 48, 11 improved  British-French 

relationship
25 25 increased tourism anywhere on 

British island
26 45, 11 armed police in Britain
27 29 increased  use  of  international 

shipments
28 3 removes  psychological  barrier 

of Channel
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APPENDIX B: DOT LANGUAGE 
DEFINITION OF A MINIMUM 

SPANNING TREE

3. Example section of MST definition for the Extinction scenario 
graph G {
19 -- 21 [weight=.933];
45 -- 66 [weight=.917];
15 -- 52 [weight=.854];
56 -- 65 [weight=.819];
27 -- 65 [weight=.812];
31 -- 112 [weight=.781];
41 -- 59 [weight=.755];
15 -- 56 [weight=.748];
33 -- 91 [weight=.735];
56 -- 107 [weight=.728];
10 -- 73 [weight=.728];
30 -- 65 [weight=.721];
21 -- 31 [weight=.721];
18 -- 50 [weight=.707];
50 -- 116 [weight=.693];
31 -- 59 [weight=.693];
49 -- 51 [weight=.686];
55 -- 88 [weight=.678];
1 -- 6 [weight=.678];
10 -- 26 [weight=.678];
:
:
64 -- 66 [weight=.436];
30 -- 35 [weight=.436];
24 -- 49 [weight=.436];
92 -- 126 [weight=.424];
90 -- 113 [weight=.424];
57 -- 110 [weight=.424];
23 -- 47 [weight=.424];
9 -- 115 [weight=.424];
1 -- 78 [weight=.412];
17 -- 40 [weight=.412];
1 -- 63 [weight=.412];
101 -- 126 [weight=.4];
92 -- 100 [weight=.4];
83 -- 97 [weight=.4];
62 -- 66 [weight=.4];
114 -- 122 [weight=.387];
95 -- 126 [weight=.387];
37 -- 70 [weight=.387];
46 -- 101 [weight=.374];
67 -- 95 [weight=.361];
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}
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APPENDIX C: DOCUMENT 
EXEMPLARS USED TO 

DEMONSTRATE LCD TERM 
APPLICATIONS

4. Document #3 (Extinction): Trade bans may save the whale, but not the 
elephant

BIO-DIVERSITY is the environmental lobby's latest buzz-word. Translated, it means the more species, the merrier. But this diversity 
appears to be under threat, at least according to statistics compiled by the World Conservation Monitoring Centre, which purport to show 
that species extinctions have risen rapidly over the past century. Humans cannot be blamed for the demise of all species, the extinction of 
the dinosaur being one obvious example. Let us accept, however, both that bio-diversity is worth preserving and that it is human beings 
who are responsible for the rise in extinctions in recent decades. What can be done to reverse the trend? The standard response, enshrined 
in numerous international conventions, is to ban economic exploitation of endangered species. Such a ban is the mechanism that the 
International Whaling Commission has used for over 40 years in its efforts to reverse the collapse in the number of blue and hump-back 
whales. A fortnight ago, at its 45th annual meeting, the IWC decided not to lift its ban on commercial whaling. The Convention on 
International Trade in Endangered Species (CITES) hopes that by banning ivory trade it can reverse the demise of the African elephant,  
whose numbers halved between 1979 and 1989, implying a loss of over 700,000 elephants. The ban was imposed in 1989 and reconfirmed 
a year ago, despite opposition from southern African governments. Do such trade bans work? Not always, argues Mr Timothy Swanson 
in the latest issue of Economic Policy. A ban on commercial fishing may be an effective way of protecting threatened oceanic species  
from excess farming, he argues, but halting trade in elephant products is not. Whales are threatened with extinction for three reasons: they 
breed slowly; they are cheap to catch relative to the market price for whale products; and access is available to anyone with a boat and the 
necessary expertise. If access to whale farming were controlled by quotas, their numbers could theoretically be stabilised. In practice, a ban 
on commercial whaling is a more effective way of reducing the economic return for fishermen and thus discouraging their capture. But 
the success of this policy for preserving the whales depends on the assumption that, left to their own devices, whales would breed freely 
and flourish. The same argument does not apply to elephants, which do not have the luxury of living in huge oceans. The survival of land 
species, especially such large and potentially destructive animals as elephants, depends on the willingness of humans to preserve their 
habitat. This depends on their economic return, compared to other land uses. It is because investing in elephants has not been sufficiently 
profitable, at least in the poorest African states, that elephants are threatened. While the proximate cause for the decline in the number of 
African elephants in recent years seems to be the availability of high-power weapons and the relatively lucrative ivory trade, elephants were 
killed in large numbers because government did not find it profitable to stop the poachers. In the 1980s, four countries alone - Tanzania, 
Zambia, Zaire and Sudan - lost 750,000 elephants. All spent less than Dollars 20 a year per square kilometre on park management. 
Zimbabwe,  by contrast,  spent  Dollars 194 and saw its  elephant stock rise  by over 20,000.  Little  wonder that the higher spending 
governments of southern Africa are arguing for the ban on the ivory trade to be lifted. Banning trade reduces the incentive for African 
countries to keep poachers out of the parks or to preserve elephant-friendly habitats. If African elephants are to be saved, the economic 
return on elephant farming must be increased, rather than lowered, perhaps by granting export quotas to countries willing to invest in 
keeping the poachers  out.  Free trade in ivory may not be environmentally  friendly,  but  neither is  a trade ban.  Timothy Swanson, 
'Regulating  endangered  species',  Economic  Policy  16,  April  1993.  Cambridge  University  Press. 
-----------------------------------------------------------------------            INTERNATIONAL ECONOMIC INDICATORS: BALANCE OF 
PAYMENTS  ----------------------------------------------------------------------- Trade figures are given in billions of European currency units 
(Ecu). The Ecu exchange rate shows the number of national currency units per Ecu. The nominal effective exchange rate is an index with  
1985=100.   -----------------------------------------------------------------------                                 UNITED  STATES 
-----------------------------------------------------------------------                              Visible    Current      Ecu      Effective                               trade 
account     exchange     exchange                    Exports     balance     balance       rate         rate  
----------------------------------------------------------------------- 1985               279.8     -174.2     -159.7     0.7623       100.0 1986               230.9  
-140.6     -150.0     0.9836        80.2 1987               220.2     -131.8     -141.6     1.1541        70.3 1988               272.5     -100.2     -107.0  
1.1833        66.0 1989               330.2      -99.3      -91.8     1.1017        69.4 1990               309.0      -79.3      -70.9     1.2745        65.1 1991  
340.5      -53.5       -3.0     1.2391        64.5 1992               345.8      -64.1      -48.2     1.2957        62.9 2nd qtr. 1992        86.8      -16.9  
-14.4     1.2717        63.6 3rd qtr. 1992        80.6      -17.7      -11.4     1.3831        60.1 4th qtr. 1992        91.5      -17.4      -17.4     1.2658  
64.2 1st qtr. 1993        95.8      -21.8                1.1841        66.4 May 1992            28.4       -6.0        na    1.2676        63.8 June                29.2  
-5.2        na    1.3039        62.3 July                27.3       -5.5        na    1.3693        60.5 August              25.9       -6.2        na    1.4014        59.8  
September           27.3       -6.0        na    1.3786        60.2 October             29.4       -5.5        na    1.3210        62.1 November            30.5  
-6.3        na    1.2372        65.1 December            31.6       -5.6        na    1.2391        65.3 January 1993        31.3       -6.4        na    1.1968  
66.4 February            31.4       -6.7        na    1.1767        66.7 March               33.1       -8.7        na    1.1789        66.2 April  
na     1.2214        64.3  -----------------------------------------------------------------------                                   JAPAN  
-----------------------------------------------------------------------                                Visible     Current     Ecu      Effective 
trade      account    exchange     exchange                    Exports      balance     balance      rate         rate  
----------------------------------------------------------------------- 1985               230.8       76.0       64.5      180.50      100.0 1986               211.1 
96.2       86.9      165.11      124.4 1987               197.3       86.1       75.5      166.58      133.2 1988               219.8       80.7       66.6      151.51  
147.3 1989               245.3       70.5       52.4      151.87      141.9 1990               220.0       50.1       28.3      183.94      126.0 1991 
247.4       83.1       62.9      166.44      137.0 1992               254.8      101.8       89.8      164.05      142.9 2nd qtr. 1992        63.9       26.1  
23.1      165.60      139.9 3rd qtr. 1992        61.5       23.7       20.1      172.79      139.6 4th qtr. 1992        65.2       26.9       24.8      155.57  
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149.7 1st qtr. 1993        72.8       29.9       30.6      143.41      158.5 May 1992            21.1        9.6        8.8      165.57      139.7 June  
21.3        8.3        6.3      165.32      141.7 July                20.5        8.1        6.9      172.22      139.2 August              19.9        7.4        5.9 
177.11      137.0 September           21.1        8.2        7.2      169.05      142.5 October             21.3        8.9        7.7      159.93      148.2  
November            22.1        9.1        9.3      153.22      150.3 December            21.7        8.8        7.8      153.57      150.7 January 1993  
23.3        8.9        7.4      149.62      151.3 February            24.0       10.4        9.3      142.00      159.2 March               25.5       10.6       13.8  
138.61      164.4 April                                               137.17      167.8  -----------------------------------------------------------------------  
GERMANY  -----------------------------------------------------------------------                               Visible    Current     Ecu      Effective  
trade      account    exchange     exchange                     Exports     balance     balance      rate          rate  
----------------------------------------------------------------------- 1985                242.8      33.4       21.7      2.2260      100.0 1986                248.6  
53.4       40.3      2.1279      108.8 1987                254.3      56.8       39.8      2.0710      115.3 1988                272.6      61.6       42.9      2.0739  
114.6 1989                310.2      65.3       52.3      2.0681      113.5 1990                323.9      51.8       37.2      2.0537      119.1 1991 
327.4      11.2      -16.2      2.0480      117.7 1992                330.3      16.4      -19.9      2.0187      121.2 2nd qtr. 1992         81.1       3.6  
-5.2      2.0511      118.7 3rd qtr. 1992         83.9       6.4       -6.4      2.0221      122.1 4th qtr. 1992         82.1       3.4       -4.1      1.9593 
125.0 1st qtr. 1993                                        1.9348      125.6 May 1992             26.5       0.6       -2.1      2.0551      118.4 June                 25.1  
0.6       -2.1      2.0498      119.1 July                 28.3       1.0       -3.8      2.0410      120.7 August               27.7       3.1       -0.7      2.0326  
122.0 September            27.8       2.3       -1.8      1.9927      123.6 October              28.6       2.4       -1.3      1.9564      125.7 November 
26.8       0.9       -0.3      1.9634      124.0 December             26.7       0.0       -2.5      1.9581      125.3 January 1993         25.8                 -2.7  
1.9327      125.3 February                                  -2.7      1.9318      125.8 March                                               1.9399      125.7 April  
1.9483       125.5   -----------------------------------------------------------------------                                    FRANCE  
-----------------------------------------------------------------------                                Visible     Current     Ecu      Effective 
trade      account    exchange     exchange                      Exports    balance     balance      rate         rate  
----------------------------------------------------------------------- 1985                 133.4     -3.6       -0.2      6.7942       100.0 1986                 127.1  
0.0        3.0      6.7946       102.8 1987                 128.3     -4.6       -3.6      6.9265       103.0 1988                 141.9     -3.9       -3.4      7.0354  
100.8 1989                 162.9     -6.3       -3.6      7.0169        99.8 1990                 170.1     -7.2       -7.2      6.9202       104.8 1991  
175.4     -4.2       -4.7      6.9643       102.7 1992                 182.4      4.3        2.1      6.8420       106.0 2nd qtr. 1992          46.2      1.5        0.9  
6.9122       104.4 3rd qtr. 1992          45.2      0.9        0.0      6.8536       106.6 4th qtr. 1992          45.5      1.0        2.3      6.6529       109.3 1st 
qtr. 1993                                        6.5633       110.0 May 1992              15.0     0.59       1.38      6.9090       104.5 June                  15.4  
-0.16      -0.54      6.9001       104.9 July                  15.5     0.87      -0.16      6.8872       106.0 August                14.2    -0.45       0.25  
6.8944       106.3 September             15.6     0.49      -0.04      6.7792       107.6 October               15.1     0.11       0.99      6.6368       110.0  
November              15.1     0.05       0.13      6.6426       109.0 December              15.3     0.85       1.14      6.6793       108.9 January 1993 
13.7     0.48       0.69      6.5539       109.7 February                                            6.5442       110.3 March                                               6.5919  
109.9 April                                               6.5875       110.5  ----------------------------------------------------------------------- 
ITALY  -----------------------------------------------------------------------                               Visible    Current      Ecu     Effective  
trade      account    exchange     exchange                     Exports     balance     balance      rate        rate 
----------------------------------------------------------------------- 1985                103.7     -16.0       -5.4      1443.0      100.0 1986                 99.4 
-2.5       -1.4      1461.6      101.4 1987                100.7      -7.5       -2.1      1494.3      101.2 1988                108.3      -8.9       -8.0      1536.8  
97.8 1989                127.8     -11.3      -17.0      1509.2       98.6 1990                133.6      -9.3      -18.0      1523.2      100.6 1991  
137.0     -10.5      -28.9      1531.3       98.9 1992                137.9      -8.0      -11.0      1591.5       95.7 2nd qtr. 1992         35.8      -3.6       -2.9  
1546.3       98.5 3rd qtr. 1992         32.9       0.5       -5.5      1564.6       98.2 4th qtr. 1992         34.9       0.0        0.0      1719.4       87.1 1st  
qtr. 1993                              -4.9      1827.9       80.5 May 1992             11.5      -1.9       -0.9      1546.6       98.5 June                 12.7      -0.5  
-1.0      1550.3       98.5 July                 13.9       0.8       -1.9      1546.2       99.5 August                7.7       1.1       -1.5      1543.4      100.1 
September            11.3      -1.4       -2.0      1604.1       95.0 October              12.4       0.1        1.5      1723.8       87.3 November             10.8 
-1.2       -0.9      1687.0       88.7 December             11.6       1.1       -0.6      1747.5       85.6 January 1993          9.7       0.4       -3.1      1784.9 
82.5 February              0.6                           1822.3       80.8 March                -2.4                           1876.4       78.5 April  
1871.4       79.0  -----------------------------------------------------------------------                                UNITED KINGDOM  
-----------------------------------------------------------------------                                Visible     Current     Ecu      Effective 
trade      account    exchange     exchange                      Exports    balance     balance      rate         rate  
----------------------------------------------------------------------- 1985                 132.4     -5.7        4.7      0.5890      100.0 1986                 108.3    -
14.2        0.1      0.6708       91.6 1987                 112.3    -16.4       -6.4      0.7047       90.1 1988                 120.9    -32.3      -24.3      0.6643  
95.5 1989                 137.0    -36.7      -32.3      0.6728       92.6 1990                 142.3    -26.3      -23.8      0.7150       91.3 1991  
147.7    -14.7       -9.0      0.7002       91.7 1992                 145.1    -18.7      -16.1      0.7359       88.4 2nd qtr. 1992          38.0     -4.5       -4.4  
0.7034       92.3 3rd qtr. 1992          36.4     -4.5       -3.0      0.7261       90.9 4th qtr. 1992          34.3     -5.4       -4.6      0.8015       79.8 1st  
qtr. 1993                                        0.8017       78.5 May 1992              13.0     -1.2      -1.17      0.7000       92.8 June                  12.5     -1.3  
-1.30      0.7027       92.9 July                  12.3     -1.6      -1.06      0.7137       92.5 August                12.3     -1.6      -1.09      0.7219       92.0  
September             11.8     -1.3      -0.85      0.7428       88.2 October               11.5     -1.4      -1.19      0.7969       80.8 November  
11.4     -1.7      -1.50      0.8100       78.3 December              11.5     -2.2      -1.93      0.7976       80.0 January 1993  
0.7809       80.6 February                                            0.8179       76.8 March                                               0.8061       78.2 April  
0.7894       80.5  ----------------------------------------------------------------------- All trade figures are seasonally adjusted, except for the Italian 
series and the German current account. Imports can be derived by subtracting the visible trade balance from exports. Export and import  
data are calculated on the FOB (free on board) basis, except for German and Italian imports which use the CIF method (including 
carriage, insurance and freight charges). German data up to and including June 1990, shown in italics, refer to the former West Germany. 
The nominal effective exchange rates are period averages of Bank of England trade-weighted indices. Data supplied by Datastream and 
WEFA from national government and central bank sources.
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5. Document #31 (Extinction): Elephants in their sights: The arguments for 
lifting the ivory trade ban

A Zimbabwean villager had a blunt riposte to the world's 'elefriends' gathering in Kyoto this weekend, intent on maintaining a ban on 

ivory trade: 'Elephants eat people's food, and people are dying of hunger.' The question of whether to lift the ban will be among the most 

controversial issues this week at the triennial meeting of the Convention on International Trade in Endangered Species (Cites). As a test  

case for the effectiveness of trade measures in achieving environmental ends, it will provide important signals for action in defence of  

endangered animal  and plant  species.  Although elephant  populations  have recovered in some areas,  such as Zimbabwe,  since  the 

imposition of a ban on ivory trade in 1989, the species remains in danger. There is a heated debate over the extent to which the ban on 

trade has been responsible for the slim, localised recovery and whether extending the life of ban will sustain or undermine the future of 

the elephant. The danger facing the elephant is not in dispute. Africa's elephant population slumped from 1.2m to 600,000 between 1980 

and 1988. Total trade in unworked ivory rose from about 200 tonnes a year in 1950 to about 1,000 tonnes a year in 1980, and remained at 

this level throughout the 1980s. The total of ivory exported between 1979 and 1988 accounted for more than 700,000 elephants. Since the 

imposition of the trade ban at the last Cites meeting in 1989, there has been progress. Demand in Europe and the US for ivory has 

virtually disappeared, according to customs statistics. Poaching has not been eradicated, but in certain countries (notably in southern 

Africa) success has been such that elephant herds now need to be culled. But can the trade ban be credited for these successes? And can 

they be maintained? Evidence derived from the ivory trade debate suggests that the ban is valuable as a source of publicity and has helped 

to reduce consumer demand for ivory products. As long as legal ivory cannot be distinguished from illegal ivory, a total ban also simplifies 

the international policing effort. But there are also concerns among conservation groups that success is only partly due to the ban and that 

illegal trade channels may expand and reverse the progress which has been achieved. Even the Worldwide Fund for Nature, a committed 

campaigner for maintaining the ban, concedes in a report published this month: 'These dramatic drops (in poaching) were brought about 

through increased law enforcement efforts.' African governments which are calling for a lifting of the ban base their case on the need to 

strike a balance between their rural communities and the local elephant population. The concern underpinning Zimbabwe's call for a 

resumption in trade is that the rising number of elephants, with their voracious appetites, are threatening the livelihood of the agricultural 

community. While they have no economic value, there is no incentive for villagers to tolerate them. The Zimbabwean government insists,  

therefore, that a controlled resumption of trading in ivory would provide villagers with an incentive to tolerate and protect local elephant 

populations.  An  alternative  strategy  is  to  promote  Safari  tourism.  According  to  research  by  Dr  Edward  Barbier  at  the  London 

Environmental Economics Centre, the annual value of ivory exports from Africa amounted to between Dollars 50m and Dollars 60m in 

the 1980s: 'Other values of the elephant, such as its importance to tourism earnings, may be considerably more significant,' he says. In a 

recent study of the economic value of elephants, colleagues at the Centre pointed out that in Kenya, earnings from viewing elephants 

came to about Dollars 25m a year - about 10 times the estimated value of poached ivory exports from Kenya. But despite the array of 

arguments mustered in favour of lifting the ban, such a policy poses clear dangers.  Resumed trading would provide an avenue for 

poachers in countries where elephants remain under threat to 'launder' illegal ivory by mixing it with ivory from legal culls. Tests can now 

identify the DNA characteristics of individual pieces of ivory. It is therefore technically possible to identify poached ivory. Just how simply 

or effectively such tests could be administered is another matter. It is clear that no retail purchaser of ivory could tell the difference on a  

shop shelf, so oversight would need to be effective at source. Environmentalist groups, such as the Environmental Investigation Agency 

also emphasise the practical difficulties of monitoring the ivory at its source. They argue that corruption in large parts of Africa, and 

military conflict in Mozambique and elsewhere, as reasons for doubting whether DNA testing could be effective in preventing poached 

ivory from reaching world markets. Thousands of miles from the arguments in Kyoto, the elephant is unable to rest easily. Its security will 

not be guaranteed until demand in end-user countries has been staunched; until village communities in Africa can see some economic 

benefit from preserving this immensely disruptive pachyderm; and until the corruption and conflict on which poaching thrives have been 

brought under control.
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6. Document #197 (Chunnel): Fury over French connection: The response to 
the Channel rail link route

You have to travel at least 50 miles north-west from Folkestone along the route of the planned high-speed rail link from the Channel 

tunnel to London before you meet people who are enthusiastic about the project. At Stratford, in east London - not far from the link's 
final destination at St Pancras station - a young woman at a jobs agency is thrilled that the trains will stop just minutes from 
where she works. 'There will be a new shopping centre, new street furniture and green spaces  -I think it will be the best thing 
that has happened to Stratford for a long time,' she says. In contrast to this flash of enthusiasm a trail of anger, confusion and tragedy 

on small scale runs through the Kent countryside. For six years residents have been in limbo, not knowing when the link will be built,  

where it will be built and whether they will qualify for compensation. If anyone knows the meaning of planning blight it is Stuart Smith. 

Two-and-a-half years after moving from a house in Lenham Heath which was threatened by the original route of the link, he now faces 

the prospect of a second move. Revised proposals for the rail route, unveiled earlier this week by John MacGregor, the transport secretary, 

could bring trains within yards of The Mount, a Pounds 300,000 oak timber-framed farmhouse in the hamlet of Ram Lane near Ashford 

to which Mr Smith and his family moved in 1991. 'We got a sensible price from British Rail for our last house but there was no allowance  

made for the upset it caused,' he says. 'We had lived in that house for 22 years and you can't compensate for that.' Mr Smith is just one of 

thousands of home-owners who live near the 68-mile railway line, which is intended to speed sleek express trains at up to 140mph 

through the Garden of England. If the government can persuade private companies to invest at least half the Pounds 2.6bn cost of the 

project, Eurostar trains should be slicing through the Kent countryside by 2002. But before work starts on the line, Union Railways, the 

British Rail subsidiary working on the early stages of the project, hopes to have resolved the problems caused by years of planning blight.  

If the scale of resident's protests is maintained, Union Railways' negotiators are in for a tough time. While David and Ivy Hilliger, at 

Westnell Lane, are relieved that the new route will no longer run 30 yards from their back garden, they are not celebrating. 'I don't think 

Union Railway realises just how much it is affecting people's lives mentally. People in the village want to retire, but don't know whether  

they will qualify for compensation.' Mr MacGregor claimed that only 40 homes would be in the direct line of the route. But this small 

number is only arrived at because of the narrowness of the corridor which the government intends to 'safeguard' - that is, formally declare 

as the line of the route, a move which triggers the right to statutory compensation. A final decision on the corridor has yet to be taken by 

the government, but Union Railways says it is unlikely to be much wider than the 36 metres between the fences required to protect a twin  

railway track. This is in marked contrast to the 240-metre wide corridor declared by BR on its first route, abandoned in 1991, which would  

have run through south London into Waterloo. BR spent Pounds 140m buying homes along this corridor, acquiring practically the whole 

of the village of South Darenth and large swathes of Peckham. It has since been selling these properties off at a large loss. Union Railways 

says it has chosen a narrower corridor to keep costs down and reduce the area of blight. 'BR got its fingers burned last time but now 

Union Railways is being far too cautious,' says a Kent County Council official. In a recent study of the rail link project, the council called 

for a more generous compensation scheme for home-owners outside the 36-metre corridor. One problem facing residents is that there is 

no agreement on standards which should be applied to the disturbance that would be created by a fast railway line. The government and 

the local authorities involved are still discussing noise and vibration criteria. Kent County Council complains the present limits under 

which compensation is awarded are based on surveys of road noise carried out 20 years ago. Motorways create a background hum but fast 

trains cause a sudden rush of sound, it says. But such technical details are of little concern to Pat and David Henderson. Their three-

bedroom semi-detached home on an estate at Pepper Hill near Gravesend will be just 24 feet above a planned tunnel. Pepper Hill and 

Ashford are the only two parts of the route which may be changed. The Hendersons were hoping to sell up, buy a smaller house and put 

some money in the bank. But they have seen their home plummet in value from nearly Pounds 100,000 to Pounds 60,000 in a few years. 

'Estate agents say they won't even put us on their books,' says Mrs Henderson. Despite the uncertainties surrounding compensation, 

Union Railways says it is prepared to be more flexible than the law provides for. In theory, it cannot purchase properties compulsorily  

before the passage of the rail link bill through parliament, expected to take at least two years. But it says it will offer compensation as soon 

as an order safeguarding the route is published in the next few weeks. Compensation legislation allows it to offer market value plus up to 

10 per cent. Home-owners in the direct line of the route will automatically be eligible for compensation but people living near but not on 

the line will have to apply to Union Railways. Estate agents will be asked to value properties. Only those 'very close' to the rail are likely to 

be bought while double glazing may be available for those living further away. Double glazing would not assuage the fears of Arthur 

Reeves, who runs a used car business next door to the Garden of England Mobile Home Park outside Harrietsham. Its pretty setting - old 

army ambulances and rusty Rolls Royces stand between the trees surrounding the house - is ruined by the drone of the M20 motorway 

which runs in front of the house. The Channel link, according to the latest plans, will run on his side of the motorway, compounding an  

already serious noise problem. 'They say that when the link is complete, there will be trains running every 10 minutes.' says Mr Reeves. 
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Union Railways insists that local residents' fears are exaggerated and that modern railways are built to such high standards that they will 

not create the noise and vibration many expect. But even if this turns out to be the case, the insecurity is causing unhappiness in Kent. 

'There has been a lot of illness, and a lot of mental strain,' says Mrs Margaret Bottle, of Harrietsham, pointing out houses purchased by BR 

and now standing empty. 'It has been hanging over us for so long, and we can't get any sense out of Union Railway. They will not give us  

any straight answers. We won't know what any of this means to us, until the first train makes its first trip.
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7. Document #75 (Chunnel): Blue Circle plans Pounds 500m Channel rail link 
station

BLUE CIRCLE Industries proposes to build a privately financed international railway station for the planned Channel tunnel link near 

Dartford in north-west Kent. The station, which could cost up to Pounds 500m, would occupy about 250 acres of chalk quarries and 

waste ground, part of a 2,500-acre site owned by Blue Circle, Britain's biggest cement producer. The land is on the route of the Pounds 
2.5bn rail link, to be financed jointly by the private and public sectors, which was announced by the government earlier this 
week. Blue Circle's plans include hotels, a conference centre, offices and shops as well as international and domestic passenger terminals. 

The station could include an interchange with British Rail lines eastward to the Medway towns and westward through south-east London 

to the centre of the capital. The proposals are to be submitted shortly to ministers and Union Railways, the BR subsidiary responsible for 

developing the high-speed link, according to Mr Mark Pennington, Kent development manager for Blue Circle Properties. He will also 

seek meetings with banks and potential investment partners. Blue Circle said the cost of the station would be met out of proceeds from 

the commercial development. The company would provide the land as its contribution to the investment. It believes the project could be  

completed without any public finance. Blue Circle said it would begin local consultation shortly.  The proposals were supported by 

Dartford District Council and by Mr Bob Dunn, MP for Dartford and chairman of the Conservative backbench transport committee, it 

said. Mr Pennington said the construction of a station providing a direct link to continental Europe could act as a catalyst for a much 

bigger development of the entire 2,500 acres owned by Blue Circle. This includes the Eastern Quarry which currently supplies the group's 

Northfleet cement works. Plans could eventually involve the construction of a new town with up to 12,500 homes, offices, shops, a 

conference centre, business and industrial parks, recreational and social amenities, creating some 34,000 jobs. The site is just east of the 

Dartford bridge and tunnel which carry the M25 across the River Thames. The development would be in line with plans to stimulate 

investment along the Thames. Mr Michael Howard, the environment secretary, this week established a 'task force' of civil servants to 

consider plans for redeveloping the corridor. He has not so far offered any contribution from the public sector.
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