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Correspondence

Estimates for the Range of Binomiality in Codes’ Spectra  In this correspondence we use the linear programming approach for
further extending the range of “binomiality.” It is shown is Section I
llia Krasikov and Simon LitsynMember, IEEE that ford’ growing linearly inn, the binomial upper bound is valid
in the interval of indices of spectrum elements

Abstract—We derive new estimates for the range of binomiality in a (% (1 /o2 5/))’ ’2_‘(1 NP 5/)))_

code’s spectra, where the distance distribution of a code is upperbounded
by the corresponding normalized binomial distribution. The estimates

depend on the code’s dual distance. Notice, that this bound is reminiscent of Tagtiinen’s bound [16] on

the covering radius of codes with known dual distance. In Section Il

Index Terms—Krawtchouk polynomials, spectra of codes. we develop a dual approach yielding binomiality of spectra of even
codes in the range
I. INTRODUCTION 982 5 — P 9s 2)
(2(1 20')%.n = 2(1-28)

It is well-known (see, e.g. [12, p. 287]) that the expected number of
codewords of weight > 0 in a random linear cod€’ of lengthn is  which is better than the previous bound #r> 0.164- - -.
(’;)|C|/2“, i.e., is just the normalized binomial distribution. For the In what follows, H (x:) stands, as usual, for the entropy function
codes with the spectrum (distance distribution) upper-bounded by the N ] ) ,
corresponding binomial distribution, the error probability exponent H(x) = —wloga — (1 —)log(l — )
for the maximum-likelihood decoding coincides with the randorg| |ogarithms are base.
coding exponent, see, e.g., [1], [2]. The accuracy of the binomialThe Krawtchouk polynomials are defined as follows:
approximation to the distance distribution increases with the dual .
distance. Such estimates for the case of the dual distance being close PP (x) = Py(n) = Z(_l)j € n—x
to n/2 (for instance, this is the case for BCH codes) were derived LA R — E—j )
in [5]-[7], [14], [15]. These results are based on estimates for values =0
of Krawtchouk polynomials, and fod’, the dual distance, growing For their properties consult [9]-[12]. In the sequelalways stands
linearly in the code length, only weak bounds exist for severalfor the length of the code, and is omitted in the notation for

spectrum elements in the neighborhoodng®. Krawtchouk polynomials.
In [8] we demonstrated that every even code with relative dual
distances’ = d’'/n has an asymptotically (im) binomial distance II. THE EIRST ESTIMATE

distribution in the interval Let C be a code of lengthn and size |C|. Let B =

<E <1_ 8 >‘2<1+ 8 )) (1) (Bo.Bi,---.By) stand for the distance distribution af, and
2 1—=6") 2 1—¢ B = (B}, Bj,---,B") be the dual distance distributioB, and B’
in the following sense: all the components in this range are upp@&€ related by the MacWilliams transform

bounded by n
|C|Bi = > B;Pi(j) ®
const - ﬁ(z >|C|/2" J=0
. . . whereP; are the corresponding Krawtchouk polynomials. #gtthe
and for every subinterval of size abowtn In n there exists a (gual distance o', be the minimal positive index of the nonzero

cqmponent asymptotically gchieving the upper bound. For even co ?nponent ofB'. Denote|C’| = 2" /|C|. The following lemma is
with even dual codes, the interval can be further extended to apparently due to Delsarte [3].

n & n [ & Lemma 1: Let
- 1 - s 1 D ——— -

alzr) = Zaripi(;v), 0<s<n
=0

Even more can be said about self-dual codes. In particular, we proved
in [8] that if there exist self-dual codes with

then
Sb=d/n>1/2—2/4~0.146- - . "
. e W|Cl+IC| Y aiBi= ) a(j)B;. )
then their spectrum is binomial in the interval el |7::de ; ’
(n(1/2 = V/3/6).n(1/2 + V/3/6)). Proof: Calculating|C|S7—,a; B, we get the claim from (3)
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Lemma 2: For £ < &

Llog Pi(j)=" log <';>
n n
£3
+/ log <1—27’+ \/( ) dz
0
-|-O<l>. (6)
n

Proof: It is known (see, e.g., [12, Lemma 36]) that oK &;

P(j+1) _n- 2t + \/(77 —2t)2 —4j(n—7)
Pi(y) 2(n—j)

(o(3))

Taking the logarithm on both sides, applying this recursively

1-27)2—-42(1-=2)
2(1—=2)

P,(0) = (), and approximating the sum by the integral we get the

claim. (I
We will make use of the following multiplication rule for
Krawtchouk polynomials, see, e.g., [11, p. 17] and [9].
Lemma3:For0 <z <n
min(s,7) )

>

k=max(0,i+j5—n)

P ) = (rminivn

k

i+ j— 2k
Now we are in the position to prove the next
Theorem 1: For n growing and
J/n € (1/2=1/2:/8/(2 = 6),1/2+1/2/86'(2 =)  (7)

we have

G)

1|

n

B, =0

Proof: Let us choose in Lemma h(j) P2(j) where
2t + 1 < d'. The following expansion is due to Lemma 3:

‘(2N (n—2i
AN

Pl =)

=0

)Pg,;(j)

that yields

Now, we get
n
ci(})
Since2t < d’' the sum in the left-hand side vanishes, so
n n nfn
LONORI0,
TETPEG) T 1CT [(nY e
F(J) | | <’;>PLZ(J)
Considerj < r:+, but such that

E=1/2— /(1 =7)—0o(1).

+|C|iQLB;=

i=d’

> P()B;. ®

9)

By virtue of (5), this choice is possible (that is, the appropriate

t<d'/2 does exist) if

EE(1/2=1/2/8(2=08).1/24+1/2,/5'(2 = &)).
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To prove the theorem we will show that for suttand j

an T
() _,
R=————4—=0(n).
(4) e

Notice, that the integral in Lemma 2 can be expressed explicitly
[4], namely,

o

=log(l—=z2)+ %log(l—QZ—' c? — 4z 4 4z22)
s+ Ve? — 4z + 422
—|—zlog<p+ ¢ it

2—-2z )

— %log(Z — % =2z — /@ — 4z 1 422)

(10)

1-27+4/(1-27)2—4z(1-z)
21— 2)

) dz

to

wherec = 1 — 27. ForT = 1/2 — /€(1 — &) we have

3
I= /D log < ) dz
= 3 loa(1 - 26) +2/(T— ) log(1 - 2¢)
+log(1l — &) — {log(1 =€)
+ Elog€ — 20/(1 — €)€log(1 — 20/(1 = €)¢€).
Taking into account that

log <Z

%log]?:]0g2+H(T)—H(Et)—Q(H(T)+I)
Liog =002 (1)

2n n2 +0 <;
Plugging in the value of, after direct calculations we get (10).
Moreover, observing thal?(;), the coefficient ofB; in (8), is equal
to P?(n — j), the coefficient ofB,,—;, we conclude that (9) is valid
also for B,,_;. Therefore, the claim of the theorem holds also for
Jj>n/2. |
Notice, that the above proof actually shows that, althodty)
tends to zero whilg tends tor,, the right-hand side of (6) faf — &,
is

1-2r+/(1-27)2—4z(1-2)
2(1—2)

n

k 1
) = lLH(;) + §log —k(n

s +0(1)

we get

_l_

1/2(log2 + H(1) — H(&)) # 0.

This surprizing phenomenon can be interpreted as follows. Consider
the functionf (j) = P.(j)/(r.—j). Clearly, (6) is still valid forf(j).
However,f(r;) is (asymptotically) greater than the absolute value of
the first local extremum off,(;) (i.e., the extremum between the
first and the second roots &% (j)). This extremum is obviously far
from being zero. This is actually the reason why we are allowed to
substitute the limit valug¢ = 1/2 — /7(1 — 7) in the proof of the
above theorem.

Here we will employ polynomials which are, roughly speaking,
dual to P? (z). The following lemma is complementary to Lemma 1.

THE DUAL ESTIMATE
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Lemma 4: Let Proof: Clearly, 3:+1 is positive. Fori = ¢,t <n/2, 3, is also
s positive since
Blx) = ZﬁiR(l’)vO< 5 < n. 2(n =2t +2)(n =2t +1) (ot + n— 4tn + 412
=0 2(n —2t+ 1) 2
Then 200 94 _ <
) ‘ :n—i—t(n2 2t 2)>0.
I, ~ ) X
on p(0) + Z p)B; | = Z/jfo' . Now, by Lemma 6 it is left to show that under our assumptions
i=d’ 71=0
] 2(n=2i+2)(n—2i+1)
Notice, that if we choosej(x) such that3(i) < 0 for such S(i) = 2t—i+)(n—t—i+1)
i > d, 3(0)>0, and all 3; > 0, then indeed ‘ 2
. o n — 4tn + 4t
on g + <21(n —2i)+ f)
€12 5 (11) % 1) e t -
' M Clt ‘,_Jr‘)l”_ L)) (14)
Choosing the polynomiab(x) as in [13] (see also [12, ch. 17, ) !
Theorem 35]) we get the following lemma (see also [10] for othdpr i <t.
estimates). Put, for somec > 1,
Lemma 5: For a codeC' of length» with the given dual distance ’ 2% (n — t)? /3
d’ = én andn tending to infinity = F<m)
“log|C| > 1— H(1/2— /&' (1—8)). O then we calculate
n

21+ i) (1—i+n—t)(1—i+t)S(i)
=2c—1)(1+4c+ ) (n—20)13(n — t)22n 1073
+ 0.

We will give the estimate for even codes, i.e., when the dual
spectrum is symmetric with respect#g'2. We choose in Lemma 4

Blx)= (2 —n/2+ Jt(n —t))(x —n/2 — /t(n —t))P}(x)

Notice, that the coefficient o (:) in the left-hand side is positive.

(12) The main term in the right-hand side is of order at leastand is
wherer; < d'. Then also positive, completing the proof. O
- ‘ Theorem 2: For even codesy growing, and
. e o2
5 H(0) < Z,J]B] 2 /m € <(1 26) 1 (126" ) (15)
=0 2 2
is valid if we have
n
r=t/n€(1/2—/8(1-6),1/24+/6'(1=46)). (13) o <2j> + Otoem)
og D2 = log ogn).
Lemma 6: ' 1€
; Proof: Denote
B(x) = 1/2(S1 + o + Ts)
L (2=t 18
where T\ (n—2t)2 :
t+1 .o o o ) .
=3 i*(n ~2i+ 2)(n — 2i+1) <2’7,) <77‘ —2i )p%(x) Fort linear inn, a = O(n?/*). Chooses(x) as given by (12). Then
2t —i+1)(n—t—i+ 1)\ t—i ‘ by Lemmas 4 and 7 we have
1 ‘ a
, Lo —dtn 447N (24 -2 ) C
¥, = ;<21(n—21)—|—f)(;)(nf/_;)f’y(.c) /32]'ng<|2—”|3(0)+§|6¢|3; =1+ . (16)
. — — i+ 1)(t—d)(n—t—14) 20\ {n—2i jo Assumej < n/4 (for j >n/4 the proof is similar, see the end
8= Z i+ 1 i t—1i 2i (). of the proof of Theorem 1). Givel we choose to be the nearest
=0 integer ton/2 — \/n(n — 45)/2, that is,j ~ t — t*/n. Of course,
Proof: Observing that for sufficiently largen we may just putj = ¢t — t*/n. For such the
choice we have
(z —n/2+Vtin —t)(z+n/2 — /t(n — 1)) (n — 272 5
; _dtn 42 3 :n— n
_ le(.’I')-l- n — 4tn + 4¢ 5(0) 1 s
2 4 4
and applying Lemma 3 after straightforward calculations we get the 7 |C] C) (n — 21)?
claim. O —l = - — -
Lemma 7: For n sufficiently large, ¢t linear in n, t/n < Bai yn <217><"’ _2;7) 45(j)
const <1/2 J b= ,
n n
21‘,2(71 - t)Q 1/3 B 23 <2]) <t ) (n — 2t)2
>(Gtar) =oe

i —
(&g <2j)<n—2j><n> 45(j)
B2; are positive. j r— i Moy
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Fig. 1. Bounds for the range of binomiality.

where S(j) is defined by (14). Now, we show that Hence
2
y . Log (22} < Lrog (22} + o 152),
1 log t (n — 2t) 0 <10g n) n B2; n (2, n
n <2]> <n - 2]) <n> 45(5) n Thus
J t—j 2j

a7) n
Indeed, denotingr = t/n.§ = j/n, we have for the last +O<106n>

— log B;; <log

expression |C | n
2H(7) — 2€log2 — (1 — 2§)H<1T _;g) H(2¢) + O(log ") Now, from (13)
ituti 2 i i €2 (3-8
Substituting = = — -, after straightforward calculations we get Z 13

(ll7_)ét us estimate/,. Using trivial which completes the proof. t

> g Comparison of the bounds in Theorems 1 and 2 shows that the

By < <"') first bound is better fo’ < 0.164---. Fig. 1 presents graphs for
2i dependence of the left-end point of the binomiality interval as a

we get function ofé’ (recall that the right-end point is symmetric with respect

1 2 _ 9 logn to 1/2). Here (1), (2), and (15) are valid for even codes, and (7)
—logl> < max log <<27>< )( ‘—i )) + O< ~ ) requires the dual code to be even as well.

Fort linear inn the maximum is achieved at= «/2, and it yields
) IV. CONCLUSION

% log I, < H(r) + O <1°f "

In this correspondence we have derived new upper bounds for
spectral components. This approach provides a better estimate for

Now, calculations give the interval of binomiality in the spectra of codes. Notice that similar

1 log </I2 ) <H(r) = 26log2 — (1 — 2¢) results can be optained for the caselbtlose ton /2, using a more
n Ba; ' accurate analysis. On the other hand, the proposed approach does
N ¢ 0 logn not seem (at least to the authors) to give an easy way to establish
1-—2¢ + n lower bounds for spectral components. In contrast, in our previous

sense, the binomial upper bound is tight. Such estimates can be of
) o ) importance in analysis of self-dual codes. For instance, if one could
By Lemma 5, (13), and sinc# () is increasing or0, 0.5) establish an existence of components achieving (asymptotically) the
1 ; binomial upper bound in the interval guaranteed by Theorem 2, it
T - — -0 ;
H(r)> H<2 (1= )> would imply that for the self-dual codes

>1- <1—H<% —/8'(1 —5/))) 5 < (1—26)?

2

log "> paper [8], such estimates were derived, showing that, in a certain

= H(26) - H(7) + o(

1
21— Jlog|C. giving § < (3 — v/5)/4<0.191.
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