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Correspondence

Estimates for the Range of Binomiality in Codes’ Spectra

Ilia Krasikov and Simon Litsyn,Member, IEEE

Abstract—We derive new estimates for the range of binomiality in a
code’s spectra, where the distance distribution of a code is upperbounded
by the corresponding normalized binomial distribution. The estimates
depend on the code’s dual distance.

Index Terms—Krawtchouk polynomials, spectra of codes.

I. INTRODUCTION

It is well-known (see, e.g. [12, p. 287]) that the expected number of
codewords of weighti> 0 in a random linear codeC of lengthn is
n

i
jCj=2n, i.e., is just the normalized binomial distribution. For the

codes with the spectrum (distance distribution) upper-bounded by the
corresponding binomial distribution, the error probability exponent
for the maximum-likelihood decoding coincides with the random
coding exponent, see, e.g., [1], [2]. The accuracy of the binomial
approximation to the distance distribution increases with the dual
distance. Such estimates for the case of the dual distance being close
to n=2 (for instance, this is the case for BCH codes) were derived
in [5]–[7], [14], [15]. These results are based on estimates for values
of Krawtchouk polynomials, and ford0, the dual distance, growing
linearly in the code lengthn, only weak bounds exist for several
spectrum elements in the neighborhood ofn=2:

In [8] we demonstrated that every even code with relative dual
distance�0 = d0=n has an asymptotically (inn) binomial distance
distribution in the interval

n

2
1� �0

1� �0
;
n

2
1 +

�0

1� �0
(1)

in the following sense: all the components in this range are upper-
bounded by

const � pn
n

i
jCj=2n

and for every subinterval of size about
p
n ln n there exists a

component asymptotically achieving the upper bound. For even codes
with even dual codes, the interval can be further extended to

n

2
1� �0

1� �0
;
n

2
1 +

�0

1� �0
: (2)

Even more can be said about self-dual codes. In particular, we proved
in [8] that if there exist self-dual codes with

� = d=n � 1=2�
p
2=4 � 0:146 � � �

then their spectrum is binomial in the interval

(n(1=2�
p
3=6); n(1=2 +

p
3=6)):
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In this correspondence we use the linear programming approach for
further extending the range of “binomiality.” It is shown is Section II
that for d0 growing linearly inn, the binomial upper bound is valid
in the interval of indices of spectrum elements

n

2
1� �0(2� �0) ;

n

2
(1� �0(2� �0)) :

Notice, that this bound is reminiscent of Tiet¨aväinen’s bound [16] on
the covering radius of codes with known dual distance. In Section III
we develop a dual approach yielding binomiality of spectra of even
codes in the range

n

2
(1� 2�

0

)
2
; n� n

2
(1� 2�

0

)
2

which is better than the previous bound for�0 � 0:164 � � � :
In what follows,H(x) stands, as usual, for the entropy function

H(x) = �x log x� (1� x) log(1� x)

all logarithms are basee.
The Krawtchouk polynomials are defined as follows:

P
n
k (x) = Pk(x) =

k

j=0

(�1)j x

j

n� x

k � j
:

For their properties consult [9]–[12]. In the sequel,n always stands
for the length of the code, and is omitted in the notation for
Krawtchouk polynomials.

II. THE FIRST ESTIMATE

Let C be a code of lengthn and size jCj: Let BBB =

(B0; B1; � � � ; Bn) stand for the distance distribution ofC, and
BBB0 = (B0

0
; B0

1
; � � � ; B0

n) be the dual distance distribution.BBB andBBB0

are related by the MacWilliams transform

jCjB0

i =

n

j=0

BjPi(j) (3)

wherePi are the corresponding Krawtchouk polynomials. Letd0, the
dual distance ofC, be the minimal positive index of the nonzero
component ofBBB0: DenotejC 0j = 2n=jCj: The following lemma is
apparently due to Delsarte [3].

Lemma 1: Let

�(x) =

s

i=0

�iPi(x); 0 � s � n

then

�0jCj+ jCj
s

i=d

�iB
0

i =

n

j=0

�(j)Bj: (4)

Proof: CalculatingjCj�r
i=0�iB

0

i; we get the claim from (3).
We will also need a bound onrt, the smallest root ofPt(j): For

t growing linearly inn and t = �n (see, e.g., [12])

�t =
rt

n
=

1

2
� �(1� �) + o(1): (5)

Denote� = j=n: The next observation is due to Kalai and Linial
[4].
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Lemma 2: For � < �t

1

n
logPt(j)=

1

n
log

n

t

+
�

0

log 1�2�+
(1�2�)2�4z(1�z)

2(1�z) dz

+O
1

n
: (6)

Proof: It is known (see, e.g., [12, Lemma 36]) that for� < �t

Pt(j + 1)

Pt(j)
=
n� 2t+ (n� 2t)2 � 4j(n� j)

2(n� j)

� 1 +O
1

n
:

Taking the logarithm on both sides, applying this recursively to
Pt(0) =

n

t
, and approximating the sum by the integral we get the

claim.
We will make use of the following multiplication rule for

Krawtchouk polynomials, see, e.g., [11, p. 17] and [9].
Lemma 3: For 0 � x � n

Pi(x)Pj(x) =

min(i;j)

k=max(0;i+j�n)

n� i� j + 2k

k

� i+ j � 2k

j � k
Pi+j�2k:

Now we are in the position to prove the next
Theorem 1: For n growing and

j=n 2 (1=2� 1=2 �0(2� �0); 1=2 + 1=2 �0(2� �0)) (7)

we have

Bj = O n

n

j

jC 0j :

Proof: Let us choose in Lemma 1�(j) = P 2

t (j) where
2t+ 1 � d0: The following expansion is due to Lemma 3:

P
2

t (j) =

t

i=0

2i

i

n� 2i

t� i
P2i(j)

that yields

�0 =
n

t
:

Now, we get

jCj n

t
+ jCj

n

i=d

�iB
0

i =

n

j=0

P
2

t (j)Bj: (8)

Since2t< d0 the sum in the left-hand side vanishes, so

Bj �
jCj n

t

P 2

t (j)
=

n

j

jC 0j
2n

n

t

n

j
P 2

t (j)

: (9)

Considerj < rt, but such that

� = 1=2� �(1� �)� o(1):

By virtue of (5), this choice is possible (that is, the appropriate
t< d0=2 does exist) if

� 2 (1=2� 1=2 �0(2� �0); 1=2 + 1=2 �0(2� �0)):

To prove the theorem we will show that for sucht and j

R =

2n
n

t

n

j
P 2

t (j)

= O(n): (10)

Notice, that the integral in Lemma 2 can be expressed explicitly
[4], namely,

log
1� 2� + (1� 2�)2 � 4z(1� z)

2(1� z)
dz

= log(1� z) +
c

2
log(1� 2z �

p
c2 � 4z + 4z2)

+ z log
c+

p
c2 � 4z + 4z2

2� 2z

� 1

2
log(2� c

2 � 2z � c
p
c2 � 4z + 4z2)

wherec = 1 � 2�: For � = 1=2� �(1� �) we have

I =
�

0

log
1� 2� + (1� 2�)2 � 4z(1� z)

2(1� z)
dz

=
1

2
log(1� 2�) + 2 (1� �) log(1� 2�)

+ log(1� �)� � log(1� �)

+ � log � � 2 (1� �)� log(1� 2 (1� �)�):

Taking into account that

log
n

k
= nH

k

n
+

1

2
log

n

k(n� k)
+O(1)

we get

1

n
logR = log 2 +H(�)�H(�t)� 2(H(�) + I)

+
1

2n
log

jt(n� t)(n� j)

n2
+O

1

n
:

Plugging in the value ofI, after direct calculations we get (10).
Moreover, observing thatP 2

t (j), the coefficient ofBj in (8), is equal
to P 2

t (n� j), the coefficient ofBn�j , we conclude that (9) is valid
also forBn�j : Therefore, the claim of the theorem holds also for
j >n=2:

Notice, that the above proof actually shows that, althoughPt(j)

tends to zero whilej tends tort, the right-hand side of (6) for� ! �t
is

1=2(log2 +H(�)�H(�t)) 6= 0:

This surprizing phenomenon can be interpreted as follows. Consider
the functionf(j) = Pt(j)=(rt�j): Clearly, (6) is still valid forf(j):
However,f(rt) is (asymptotically) greater than the absolute value of
the first local extremum ofPt(j) (i.e., the extremum between the
first and the second roots ofPt(j)). This extremum is obviously far
from being zero. This is actually the reason why we are allowed to
substitute the limit value� = 1=2� �(1� �) in the proof of the
above theorem.

III. T HE DUAL ESTIMATE

Here we will employ polynomials which are, roughly speaking,
dual toP 2

t (x): The following lemma is complementary to Lemma 1.
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Lemma 4: Let

�(x) =

s

i=0

�iPi(x); 0<s<n:

Then

jCj

2n
�(0) +

n

i=d

�(i)B0

i =

s

j=0

�jBj :

Notice, that if we choose�(x) such that�(i) � 0 for such
i � d0; �(0)> 0; and all�j � 0; then indeed

jCj �
2n�0
�(0)

: (11)

Choosing the polynomial�(x) as in [13] (see also [12, ch. 17,
Theorem 35]) we get the following lemma (see also [10] for other
estimates).

Lemma 5: For a codeC of lengthn with the given dual distance
d0 = �n and n tending to infinity

1

n
log jCj � 1�H(1=2� �0(1� �0)):

We will give the estimate for even codes, i.e., when the dual
spectrum is symmetric with respect ton=2: We choose in Lemma 4

�(x) = (x� n=2 + t(n� t))(x� n=2� t(n� t))P 2

t (x)

(12)

where rt � d0: Then

jCj

2n
�(0) �

s

j=0

�jBj

is valid if

� = t=n 2 (1=2� �0(1� �0); 1=2 + �0(1� �0)): (13)

Lemma 6:

�(x) = 1=2(�1 +�2 +�3)

where

�1 =

t+1

i=1

i2(n� 2i+ 2)(n� 2i+ 1)

2(t� i+ 1)(n� t� i+ 1)

2i
i

n� 2i
t� i

P2i(x)

�2 =

t

i=0

2i(n� 2i) +
n� 4tn+ 4t2

2

2i
i

n� 2i
t� i

P2i(x)

�3 =

t�1

i=0

(2i+ 1)(t� i)(n� t� i)

i+ 1

2i
i

n� 2i
t� i

P2i(x):

Proof: Observing that

(x� n=2 + t(n� t))(x+ n=2� t(n� t))

=
1

2
P2(x) +

n� 4tn+ 4t2

4

and applying Lemma 3 after straightforward calculations we get the
claim.

Lemma 7: For n sufficiently large, t linear in n; t=n �
const< 1=2

i>
2t2(n� t)2

(n� 2t)2

1=3

= O(n2=3)

�2i are positive.

Proof: Clearly,�t+1 is positive. Fori = t; t<n=2; �t is also
positive since

t2(n� 2t+ 2)(n� 2t+ 1)

2(n� 2t+ 1)
+ 2t(n� 2t) +

n� 4tn+ 4t2

2

=
n+ t2(n� 2t� 2)

2
> 0:

Now, by Lemma 6 it is left to show that under our assumptions

S(i) =
i2(n� 2i+ 2)(n� 2i+ 1)

2(t� i+ 1)(n� t� i+ 1)

+ 2i(n� 2i) +
n� 4tn+ 4t2

2

+
(2i+ 1)(t� i)(n� t� i)

i+ 1
> 0 (14)

for i < t:

Put, for somec> 1,

i = c
2t2(n� t)2

(n� 2t)2

1=3

then we calculate

2(1 + i)(1� i+ n� t)(1� i+ t)S(i)

= 2(c� 1)(1 + c+ c
2)(n� 2t)10=3(n� t)2t2n�10=3

+O(n11=3):

Notice, that the coefficient ofS(i) in the left-hand side is positive.
The main term in the right-hand side is of order at leastn4 and is
also positive, completing the proof.

Theorem 2: For even codes,n growing, and

2j=n 2
(1� 2�0)2

2
; 1�

(1� 2�0)2

2
(15)

we have

logB2j = log

n

2j

jC 0j
+O(logn):

Proof: Denote

a =
2t2(n� t)2

(n� 2t)2

1=3

:

For t linear inn; a = O(n2=3): Choose�(x) as given by (12). Then
by Lemmas 4 and 7 we have

�2jB2j <
jCj

2n
�(0) +

a

i=0

j�ijBi = I1 + I2: (16)

Assumej � n=4 (for j >n=4 the proof is similar, see the end
of the proof of Theorem 1). Givenj we chooset to be the nearest
integer ton=2 � n(n� 4j)=2, that is,j � t � t2=n: Of course,
for sufficiently largen we may just putj = t � t2=n: For such the
choice we have

�(0) =
(n� 2t)2

4

n

t

2

I1

�2j
=

jCj
n

t

2

2n
2j
j

n� 2j
t� j

(n� 2t)2

4S(j)

=

n

2j

jC 0j

n

t

2

2j
j

n� 2j
t� j

n

2j

(n� 2t)2

4S(j)
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Fig. 1. Bounds for the range of binomiality.

whereS(j) is defined by (14). Now, we show that

1

n
log

n

t

2

2j

j

n� 2j

t� j

n

2j

(n� 2t)2

4S(j)
= O

logn

n
:

(17)
Indeed, denoting� = t=n; � = j=n; we have for the last

expression

2H(�)� 2� log 2� (1� 2�)H
� � �

1� 2�
�H(2�) +O

logn

n
:

Substituting� = � � �2, after straightforward calculations we get
(17).

Let us estimateI2: Using trivial

B2i<
n

2i

we get

1

n
log I2< max

0�2i�a
log

n

2i

2i

i

n� 2i

t� i
+O

logn

n
:

For t linear inn the maximum is achieved ati = a=2, and it yields

1

n
log I2<H(�) +O

logn

n
:

Now, calculations give

1

n
log

I2

�2j
<H(�)� 2� log 2� (1� 2�)

�H
� � �

1� 2�
+O

logn

n

=H(2�)�H(�) +O
logn

n
:

By Lemma 5, (13), and sinceH(x) is increasing on[0; 0:5)

H(�) �H
1

2
� �0(1� �0)

� 1� 1�H
1

2
� �0(1� �0)

� 1�
1

n
log jCj:

Hence

1

n
log

I2

�2j
�

1

n
log

I1

�2j
+O

logn

n
:

Thus

1

n
logB2j � log

n

j

jC 0j
+O

logn

n
:

Now, from (13)

� � ( 1
2
� �

0
)
2

which completes the proof.
Comparison of the bounds in Theorems 1 and 2 shows that the

first bound is better for�0< 0:164 � � � : Fig. 1 presents graphs for
dependence of the left-end point of the binomiality interval as a
function of�0 (recall that the right-end point is symmetric with respect
to 1=2). Here (1), (2), and (15) are valid for even codes, and (7)
requires the dual code to be even as well.

IV. CONCLUSION

In this correspondence we have derived new upper bounds for
spectral components. This approach provides a better estimate for
the interval of binomiality in the spectra of codes. Notice that similar
results can be obtained for the case ofd0 close ton=2, using a more
accurate analysis. On the other hand, the proposed approach does
not seem (at least to the authors) to give an easy way to establish
lower bounds for spectral components. In contrast, in our previous
paper [8], such estimates were derived, showing that, in a certain
sense, the binomial upper bound is tight. Such estimates can be of
importance in analysis of self-dual codes. For instance, if one could
establish an existence of components achieving (asymptotically) the
binomial upper bound in the interval guaranteed by Theorem 2, it
would imply that for the self-dual codes

� �
(1� 2�)2

2

giving � � (3 �
p
5)=4< 0:191:
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Lengthening and the Gilbert–Varshamov Bound

Yves Edel and J¨urgen Bierbrauer

Abstract— We use lengthening and an enhanced version of the
Gilbert–Varshamov lower bound for linear codes to construct a large
number of record-breaking codes. Our main theorem may be seen as
a closure operation on databases.

Index Terms—Gilbert–Varshamov bound, lengthening, linear codes.

I. INTRODUCTION

Let q be a prime power, which will be fixed throughout the
discussion. Denote by q the field of q elements and byV (n; i)
the number of vectors of weight at mosti in n

q : It is clear that

V (n; i) =

i

j=0

n

j
(q � 1)j : (1)

Let C be aq-ary code with parameters[n; k�1; d]: As C hasqk�1

elements it follows that ifqk�1V (n; d � 1)<qn; there is a vector
v 2 n

q , that has distance� d from every codeword2 C: This leads
to the Gilbert–Varshamov bound:

Theorem 1 (Gilbert–Varshamov Bound):If

V (n; d� 1)<q
n�k+1

then aq-ary linear code with parameters[n; k; d] exists.
Using orthogonal arrays the following can be proved.
Theorem 2: If V (n � 1; d � 2)<qn�k, then aq-ary linear code

with parameters[n; k; d] exists. Moreover, every code[n�1; k�1; d]
can be embedded in a code[n; k; d]:

This can be found in MacWilliams and Sloane [3, p. 34]. For the
sake of completeness we shall give a proof in the final section. It is
easy to see that this is always stronger than the Gilbert–Varshamov
bound. Combining Theorem 2 with the method of lengthening yields
new codes:

Theorem 3:AssumeV (n�1; d�2)<qn�k: If codes[n�i; k�i; d+�]
and [e; i; �] exist, then a code[n + e; k; d+ �] can be constructed.

A proof of Theorem 3 will be given in the following section. It
should be noted that Theorem 3 uses only the code parameters. No
information on subcodes is needed. We like to think of it as of a
closure operation on databases. In order to illustrate its use we give
a binary example: a codeD with parameters[126; 36; 34] is known
to exist. It can be derived from a[128; 36; 36] constructed in [4]. As
V (126;26)< 290 it follows from Theorem 2 thatD can be embedded
in a codeC with parameters[127; 37; 28]. Applying construction X
to the pairC � D with [6; 1; 6] as auxiliary code yields the new
code [133; 37; 34].

In Table I we list additional applications of Theorem 3. In all
casesi = 1, so that the auxiliary code is the repetition code
[e; i; �] = [�; 1; �]: The following parameters are given:

• q 2 f2; 3; 4g;
• the parameters[n � 1; k � 1; d+ �] of the known codeD;

• �;

• the parameters[n; k; d + �] of the resulting codeE :

Manuscript received June 23, 1995; revised July 25, 1996.
Y. Edel is with the Mathematisches Institut der Universität, 69120 Heidel-

berg, Germany.
J. Bierbrauer is with the Department of Mathematical Sciences, Michigan

Technological University, Houghton, MI 49931 USA.
Publisher Item Identifier S 0018-9448(97)02317-1.

0018–9448/97$10.00 1997 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 04:36 from IEEE Xplore.  Restrictions apply.


