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Let o be a primitive element id". For everyG(xz) € G, ande € F,
we define a vector inF';

(G, e) =(Tr(G(0))+ e, Tr(G(1)) + e,
On the Distance Distribution of Duals of BCH Codes Tr(G(a) +e -+, Tr(G(a?™?)) +e).

lia Krasikov and Simon LitsynMember, IEEE When G(z) runs overG;, the set of vectorg(G, <) constitute the
code dual to the extended BCH codes of lengmd with minimum
distance2t + 2, see, e.g., [1], [10], and [15]. Let(¢(G, €)) stand
Abstract—We derive upper bounds on the components of the distance for the number of nonzero coordinatesd{G, ¢). Fori € [0, q]
distribution of duals of BCH codes.

T TN . _
Index Terms—BCH codes, distance distribution. Bi = [{G(z) € Gr, ¢ € Fa: w(e(G, ) = i}|-

It is easy to check thaBy = 1 and>.7_ B; = 2|G/| = 2¢'. By

|. INTRODUCTION the MacWilliams identity
Let C' be the code dual to the extendeerror correcting Bose- a %', i=0
Chaudhuri-Hocquenghem (BCH) code of length= 2™, and let ZBjPi(j) = {0 ’ 1 i<t (1)
B = (B, ---, B,) stand for the distance distribution 6f. Our aim j=0 ’ = .

is to deriveupper boundsn B;'s. The following theorems summarize
our present knowledge.

The first one shows that outside a certain interigals vanish.
This is a refinement of the celebrated result by Weil [18] an

Here P;(j) are Krawtchouk polynomials (orthogonal on the interval
[0, ¢] with weight (3)) defined by the following recurrence (for their
aroperties see, e.g., [5], and [8]-[10]):
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Expansion in the Basis of Krawtchouk PolynomiaBor a poly-

nomial a(x) = S27_, a; Pi(x)
@i =271 " Pi(i)alj). €)
J=0
The Christoffel-Darboux Formula:
t
q Pi(z)P(y) _ t+1
<t>§ 0] - )(Pf-H(r)Pf(U) Pi(z) Pt (y)).

Letting y — 2 and taking the limit, we get

(s

i=0 i

t+1

(Pl+l(l)Pt (x) — Pl(l’)Pt/Jrl(T))-

The following lemma is crucial in our considerations, and is a version

of a result implicitly appearing in the thesis by Delsarte [4].

Lemma 1: Let

r

alz) = ZcuPi(w), 0<r<2t+2
=0
then
q
2¢'a0 =Y alj)B;. (4)
=0

Proof: Calculating2¢” >"7_
a; = 0 for i > r, we get the claim from (1). O

To obtain a bound o, choose in the previous lemma aéx)
a nonnegative polynomial of degree less than- 2. It yields

B < 2qL (fz;) (5

The following lemma gives a polynomial minimizing the right-han

side of this inequality under an extra conditiaiz) = B(«)? for
some polynomiald(z).

Lemma 2: For & given, an optimal polynomial is

S )

:1““71)2 P (k)Py(x) — Pi(k) Py () (6)
()(k)u()( )Fiz (@)
yielding
4

Br < (t+ 1) (Prgr (k) P{ (k) = Pu(k) Py (k)

Proof: Let3(x) = >"_, 3, P;(x) anda(x) = 3%(x). Then
oy = = i Y (i)
T i

1 <& (g ! . ’
=202 <f> <ZO /3;’13,1'(1))

1%1312( ) )P@
] £=0

by orthogonality of Krawtchouk polynomials

=5 Zum,/<>

7, €=0

=3

Mﬁ

, @ B}, and taking into account that
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Thus for & given

max M = max
3 s ]Zi:() 32 (%)
(5645w B))

= max
B

by Cauchy—Schwartz inequality

Z P%k)
by the Christoffel- Darboux formula
_t+1
(g1 (k) PL(K) = Po(k) Py (R)).

T2
This bound is clearly achieved fg¥; = (
optimal choice for a giverk is

, L Pk Py )
afx) = (Z (q)>

j=0 J

= UFD  p (kP -

4(1% (k — )2

Then the second claim follows from (5). O

Pi(k)/(%), that is, the

Pi(k)Pryi ().

IIl. ESTIMATES OF By

d To use the bound of Lemma 2 one needs a lower estimate

for the Christoffel-Darboux kerneP i (k) Pe(x) — Pe(k)Piga(x).
Assume thay is sufficiently large and is fixed. In this situation, a
classical connection (see, e.g., [17, eq. (2.82.7)]) between Krawtchouk
and Hermite polynomials can be employed. However, we need
somehow more involved estimates for the accuracy of approximation
of Krawtchouk polynomials by Hermite polynomials.

The Hermite polynomialsH(x) are defined by the recurrence
relation

Hyqi(z) =2xHp(v) — 2kHip—1 () )
Ho(z) =1 Hi(z) = 2a.

Let ; stand for the largest root dff;(x).

Lemma 3:
P <q — \2/_y> L'Qlk/’ ( M2HC(y) + 4q(k_2)/2> <§> Hy »(y)
+2 <i> Hi—a(y) + ¢V Riy) ®)
where Ro(y) = Ri(y) = 0, and
Ris1(y) =2yRi(y) — Qk(qq——i_l) Ri—1(y)

+8(k—1) (i) (3Hk—3(y) + 2yHe—4a(y)). 9)

In particular, for fixedk andy

q—+/2qy q*? 1
P< 5 ) ATIE He(y)+ O )

(10)
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Proof: Relations (8) and (9) are verified just by substitution into Lemma 5: Let

(2) and using (7). O

Wily) = (Hi(y))* — He(y)H{' (y).

In what follows we use the prime sign to denote the derivative in Then

Corollary 1: For k andy fixed andz = (¢ — /2qy)/2

d _ q(lr,—])/2 , 1

Using these approximations we get the following.

Lemma 4: For fixedy andr = (¢ — +/2qy)/2

Pt+1 (T) i Pt(m)—Pt(;r) i Pt+1(.’l?)
da dx
= MT),)Q (H{t1 () =Hepr () H () +0(¢" ).
(11)

Proof: With accuracy up t@>(1/¢) we have from Lemma 3

d

P () o

Pi(x) — Pi(x) % Piyqi(x)

= M!(fi_i_l)!(ﬂt(y)lﬂﬂ(y) - Hip(y)Hi(y))

and usingH/,(z) = 2(t + 1) H,(z) (see, e.g., [17, p. 106]) we get

the claim. O

Now we are in a position to translate the derived estimates to

bounds forB;..
Theorem 3: For fixedy andk = (¢ — v/2qy)/2

¢'(t+1)2'+? < ><1))
L - EawELw\ T\ ) 32
O

B

for ¢ even

t
(1)
4¢ <(tt__1)1/2> t!, otherwise

M W (0),
V2t
M W.(0).
V2t
Proof: We start with calculating?;(0). It is known that
t!

Hi(0) = { (-1 (t/:Z)!’

0, otherwise.

Wi(0) =

and

Wily) > e’

ly] < V2t

Wiy) <e””

for t even

From the differential equation for Hermite polynomials
H{'(y) =2yH|(y) — 2tH:(y)

and
Hi(y) =2tH,1(y) (14)

we get for¢ even

W:(0) = 2t(H:(0))> = 2¢ (tt )f,!.
For ¢t odd

W;(0) = 4t>(H,—1(0))* = 4t <(tt__1>1/2>t!.

Notice thatWW,(y) is strictly positive. Indeed, leg; stand for theith

To use this expression we need estimates for Hermite polynomighgt of H,(y). Then

wheny < 2t.

The denominator of (12) can be easily computed: ifloes not
belong to the interval where the roots Bf(::) are located (or, which

is asymptotically the samdy| > =;). Indeed, by (2),Pi(x) is a
polynomial of degree in ¢, and

gm((;;))? _ (R((g))g <1 N OG))

7 t

In this case, we have

Pix)  d'Hi(y) _ (Hi(y))
(9 2t(t)2 () 21!
. o g—2k q ) (t—1)
Theorem 4: Let y = “72=. For [£ — k| > o

e (00

Proof: Follows from the estimate on the largest root#f(y)
due to Laguerre, see [17, p. 120]

By

IN

g1 < M (13)
Vit+2
andy = O(t) by Theorem 1. O

t
Hi(y)=2"]](y —v0)
i=1
and differentiating it we get
t

' 1
Hi(y) =Hi(1)Y = o
=1 " ke
1 1
H'(y) =H{(y) > T Hi(y)) W=
i=1 ¢ i=1 '
' 1 2 t 1
= Hy( N p———
() (;y—yz> ;(y—yi)2

Thus
A7 = ? t :
Wi(y) = (Hi(y)) ;m > 0.

Without loss of generality we assumeis nonnegative. Using (14)
we obtain

Wily) =2t(Hi(y))* = 2y Hi(y) Hi(y) + (Hi(y))*

Wiy) =4ty(Hi(y)* — 2(1 + 29 Hi (y) Hily) + 2y(H{(y))”.
Denotingt = p*/2, we get

. . 3 . — 9 5,,2 . _ 1y, 2
To apply this estimate one needs asymptotics for Hermite polyno- W, (y) + 1=2uy+2y Wiy) = (uH:(y) = Hily))

mials. For the interval under consideration it is well known and can
be found, e.g., in [17, p. 200]. Whenbelongs to the interval where

the roots ofH,(y) exist, another approach should be employed.

H—y =y
1+ 2uy + 242 H Hi(y))?
Wiy — Lt ﬂy{r Y Wi(y) = — (nHi(y) + Hi(y)”
ty Hty
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From the first equality, fob < y < u, and taking into account that

Wi(y) > 0, we conclude

(3]
(4]

Wi(y) 1 - 2uy + 2y
> — =,
Wily) — m=y 1)
On the other hand, from the second equality [6]
Wily) _ 1+ 2uy + 2y°
< .
Wiy) — pty 10 m
Integrating (15), we obtain
. . [8l
Y Wi(z) Wily) o o =y
——dz=1 > 1 :
W) ¢ n W.(0) = Yy +1n

El
[10]

thus proving the lower bound o, (y). Similarly, integrating (16),
we get the claimed upper bound. O

Notice, that the estimates of the lemma are quite accurate fad]
y < v/2t. Indeed, the maximum of the function

[12]

02 V2t = |y

pu? Vet — 1YL
\/ﬂ [13]

is achieved at
t+/t—1 1
|y|:\f+7vm/2—_7>€t

V2 e [14]
i.e., almost at the end of the intervial| < +/2t. Even at this point 5]
15

the ratio between the upper and lower bound is less &aand all
the roots of H,(y) are within this interval.

Numerical evidence suggests that (11) still gives an accurate
approximation in a much wider interval ¢fandy. It is tempting to [17]
conjecture that actually the Christoffel-Darboux kernel can be well
approximated by Hermite polynomials for all= o(./q).

Now we can give an upper bound @h, for the interval containing
zeroes ofH,(y).

Theorem 5: Let

ﬁ‘ < /(t+1)q, then

ﬁqt ot+4

Bk S
VEFI2y/q(t+ 1) — g+ 26, 1] )

.o ((a=2k)?/89) <1 +0 <1)> for t odd
q
By < Vay'2™
VIRVt 1) — g+ 2K ()
. e~ (@a=2K)?/8q) <1 +0 <1)) for t even
q

4.2mqq"
Vat+1) — g+ Qk‘

o (a—20%/9) <1 40 G))
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