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The Boundary Integral Equation (BIE) method (boundary element method,
elastic potential method) has been intensively developed over recent decades
both in theory and in engineering applications. Its popularity was due to re-
ducing a Boundary Value Problem (BVP) for a partial differential equation
in a domain to an integral equation on the domain boundary, that is, to di-
minishing the problem dimensionality by one. The main ingredient necessary
for the reduction of a BVP to a BIE is a fundamental solution to the original
partial differential equation. Employing the fundamental solution in the cor-
responding Green formula, one can reduce the problem to a boundary integral
equation. After an appropriate discretization, this leads to a relatively small
system of linear algebraic equations, which can be solved using small computer
resources.

In spite of these evident advantages, the popularity of BIE method does
not look high nowadays. Although BIEs have their established niche in prob-
lems for infinite or semi-infinite domains with constant coefficients, appearing,
e.g., in geomechanics, acoustics, fluid mechanics and some other engineering
applications, the computational mechanics market is dominated by the Finite
Element Method (FEM), at least in solid mechanics. Several reasons for this
are listed below.

First, the matrix of the linear algebraic equation system obtained after BIE
discretization, is dense, while for FEM it is sparse and moreover, the number
of non-zero entries in each of the FEM equations is determined by the element
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type and is practically independent of the mesh refinement. This outweighs
the bigger FEM matrix size for 3D problems.

Second, to be useful for BIE numerical applications, the fundamental so-
lution should be available in an analytical form and/or cheaply calculated.
However, such a fundamental solution is generally not available if the coef-
ficients of the original BVP are not constant. One can use, in this case, a
parametrix (Levi function), which is usually available, instead of the funda-
mental solution in the Green formulae. A parametrix is particularly given
by the fundamental solution of the corresponding ”frozen-coefficient” problem
and is much wider available. This allows a reduction of the problem not to
boundary but to Boundary-Domain Integral or Integro-Differential Equation,
BDI(D)E. For numerical solving the BDI(D)E, one should then discretize not
only the domain boundary but also the domain itself, which leads after dis-
cretization to a system of linear algebraic equations of about the same size as
in the FEM, without any dimension diminution. Unfortunately, the system
matrix, unlike FEM, is dense, which prevents application of the economical
methods developed for sparse systems. The same problem occurs in the BDIEs
of non-linear problems.

Third, the generation of a discrete matrix for BIE or BDI(D)E is rather
expensive computationally in comparison with the FEM matrix, unless the
fundamental solution is very simple, like, e.g., for the Laplace or homogeneous
linear elasticity equations.

Sometimes the higher theoretical complexity of the BIE methods is per-
ceived as another reason prohibiting their wide spread. This may indeed in-
fluence the code developers but should be compensated by the code efficiency
if it is gained. However, the application of a general commercial package by a
designer is not supposed to require a special mathematical qualification any-
way. On the other hand, the rigorous mathematical backgrounds of the FEM
are not much simpler than those of the BIE method.

Nevertheless, the first three challenges sound pretty serious and it is hard
to expect that BIE method will remain a widely used numerical application
tool unless they are addressed. That is, some method developments should be
aimed at making the BIE matrix sparse; at extending the method effectively to
a wider range of PDEs, particularly to the variable-coefficient and non-linear
problems; and at decreasing complexity of the matrix generation.

The articles of this special issue deal with some of these challenges.
The paper by Chudinovich, Constanda & Dolberg derives a fundamental so-

lution for linear dynamic coupled thermoelastic equations of shear deformable
plates. The paper by Purbolaksono & Aliabadi is devoted to solution of equa-
tions of non-linear elastic shear deformable plates by reducing them to nonlin-
ear boundary-domain integral equations solved then iteratively. The paper by
Hiptmair & Ostrowski describes formulation, analysis, discretization and nu-
merical implementation of direct boundary integral equations of a steady-state
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electromagnetic transmission problem. All the three papers address the second
challenge, extending the integral equation methods to complicated problems.

The papers by Sladek, Sladek & Zhang; by Mikhailov & Nakhova; and by
Mikhailov develop the Localized Boundary-Domain Integral Equation Method
emerged recently, which addresses the first, second and (to some extent) the
third challenge of the LBDI(D)Es making them competitive with the FEM
for variable-coefficient and nonlinear problems. The method employs localized
parametrices to reduce linear and non-linear BVPs with variable coefficients
to Localized Boundary-Domain Integral or Integro-Differential Equations. Af-
ter a locally-supported mesh-based or mesh-less discretization this ends up
in sparse systems of algebraic equations solved numerically. The parametrices
and their localization can be specially chosen to simplify the integral evaluation
in the system matrix generation.

The articles presented in this issue do not constitute a survival kit for
the boundary(-domain) integral equation method but hopefully provide some
elements for reaching that goal.

3


