
Node Coarsening Calculi for Program Slicing

Mark Harman, Sebastian Danicic,
Rob Hierons John Howroyd,

Brunel University, Mike Laurence
Uxbridge, Middlesex, Goldsmiths College,

University of London,
New Cross,

London SE 14 6NW, UK.
Tel: +44 (0)20 79 19 7856
Fax: +44 (0)20 7919 7853

UB8 3PH, UK.
Tel: +44 (0)1895 274 000
Fax: +44 (0) 1895 25 1 686

Mark.Harman@brunel.ac.uk
Rob.Hierons@brunel.ac.uk

Sebastian@mcs.gold.ac. uk

Keywords: slicing, slice precision, node merging

Abstract

Several approaches to reverse and re-engineering are based
upon program slicing. Unfortunately, for large systems,
such as those which typically form the subject of reverse
engineering activities, the space and time requirements of
slicing can be a barrier to successful application.

Faced with this problem, several authors have found it
helpful to merge Control Flow Graph (CFG) nodes, thereby
improving the space and time requirements of standard
slicing algorithms. The node-merging process essentially
creates a ‘coarser’ version of the original CFG.

This paper introduces a theory for defining Control Flow
Graph node coarsening calculi. The theory formalizes
properties of interest, when coarsening is used as a precur-
sor to program slicing. The theory is illustrated with a case
study of a coarsening calculus, which is proved to have the
desired properties of sharpness and consistency.

1 Introduction

Program slicing [26, 171 is a source code analysis.technique
which extracts parts of the source code associated with cer-
tain computations defined by a ‘slicing criterion’.

Slicing has been used to assist several reverse and re-
engineering activities. For example, Beck and Eichmann
use slicing at both statement and module level to extract
functionality from Ada programs [2]; Canfora at al. [6]
used slicing as a part of the RE2 reverse and re-engineering
project; Cimitile et al. [7] showed how slicing (together
with other techniques) can be used to identify reuse candi-
dates.

Chris Fox
Kings College,

University of London,
Strand,

London, WC2R 2LS, UK.
Tel: +44 (0)20 7848 2694
Fax: +44 (0)20 7848 285 1
foxcj@dcs.kcl.ac.uk

Slicing has also been applied to problem areas, closely
related to reverse engineering, such as program compre-
hension [8], software maintenance [3, I I] and testing
[4, 13, 161. Tip [24] and Binkley and Gallagher [5] pro-
vide detailed surveys of slicing.

Other dependence-based analyses have been applied to
reverse engineering, for example chopping [181, tucking
[20] and the RECAST method [IO]. The theoretical frame-
work presented in the present paper is defined for slic-
ing, but could easily be extended to apply to these related
dependence-based analysis techniques.

When constructing program slices, it is sometimes help-
ful to increase slice-construction speed at the expense of
precision, by merging program nodes. This may be partic-
ularly important where slicing is applied to reverse engi-
neering and re-engineering, where the subject program un-
der analysis may be subject to several ‘change phases’ or
where the systems to be analyzed are prohibitively large.

Recently, several authors have found that the space and
time requirements of slicing large systems make the appli-
cation of standard algorithms problematic [9, 22, 11. This
difficultly can be ameliorated by applying these standard
techniques to an abstracted program. The abstraction is
achieved by merging together nodes of the program’s con-
trol flow graph (CFG), upon which the standard techniques
for slice construction [26, 171 are based. This node merging
introduces imprecision but reduces space and time com-
plexity.

This paper provides a theory to underpin the process of
node coarsening. The theory allows precise statements to
be made concerning the correctness and efficacy of node
coarsening. The theory allows for formal analysis of the
trade off between precision and space and time complexity.’

1095-1350/01 /$10.00 0 2001 IEEE 25

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

mailto:Mark.Harman@brunel.ac.uk
mailto:Rob.Hierons@brunel.ac.uk
mailto:foxcj@dcs.kcl.ac.uk

Two important coarsening calculus properties are for-
mally defined:

Consistency, which captures the safety concern that
slices of coarsened programs are guaranteed to be cor-
rect;

0 Sharpness, which captures the property that a set of
coarsening inference rules is as precise as the abstrac-
tion will allow.

The theory is illustrated with a case study which intro-
duces a coarsening calculus, R-coarsening, for a simple in-
traprocedural language. The theory also allows coarsening
at the interprocedural level, where a procedure makes a nat-
ural choice for converting to a single node. The intraproce-
dural example of R-coarsening presented in Section 3 has
been chosen because it illustrates the issues of consistency,
sharpness and minimality in a comparatively straightfor-
ward manner.

For ease of exposition, only end slicing [I91 will be
considered, but the results presented can be generalized to
cover other forms of slicing. Hereinafter, the terms ‘slice’
and ‘end slice’ will be used interchangeably. In end-slicing,
the slicing criterion is simply a set of variables, V.

Definition 1.1 (End Slicing)
An end slice of a program p , constructed with respect to
a slicing criterion V, is any program which can be con-
structed from p by deleting nodes of the Control Flow
Graph (CFG) of p in such a way that the effect of p upon
all variables in V is preserved.

An end slice s, of a program p , constructed with respect
to a slicing criterion V , has two properties; one syntactic
and the other semantic. The syntactic property is that s is
constructed from p by removing nodes from the Control
Flow Graph of p . The semantic property is that s has the
same effect a s p on all variables in V. A slice thus preserves
a projection of the original program’s syntax and semantics
[14]. An example program and one of its end slices are
given in the Figures l a and lb.

Slicing algorithms [26, 171 are traditionally insensitive
to changes i n , a program’s arithmetic and boolean expres-
sions which have no effect upon sets of referenced vari-
ables. Therefore, it will be convenient to abstract away
from the precise details of concrete program syntax, to an
abstract syntax in which expressions are denoted by the sets
of variables they reference.

In this paper, this is achieved using program schemas
[27, 211. A program schema has the same syntactic struc-
ture as a program up to expressions. In the schema, expres-
sions are replaced by the application of some uninterpreted
function or predicate symbol to a set of actual parame-
ters. The actual parameters are the referenced variables of
the expression which this abstraction replaces. Thus, in a

schema, all that is ‘known’ about an expression is its set of
referenced variables.

A single schema denotes an equivalence class of many
programs, each of which is equivalent up to referenced
variables of expressions. An interpretation of a schema is a
program obtained from the schema by replacing each func-
tion and predicate symbol with a real (fully interpreted)
function or predicate. For example, the schema corre-
sponding to the program in Figure l a is given in Figure IC
and its slice constructed for {x} (at the schema level) is
given in Figure Id.

In order to coalesce nodes together, a new syntactic con-
struct, the blob, will be added to the language. Syntacti-
cally, a blob will be a form of statement, denoting a sub-
graph which has been collapsed onto a single node, the
blob, which contains sufficient information to approximate
the information denoted by the original subgraph.

The rest of this paper is organised as follows. Section 2
introduces a theory of coarsening, which is illustrated in
section 3 with an instance of a coarsening calculus called
R-coarsening. Section 4 contains a proof that R-coarsening
is both consistent and sharp with respect to the definitions
in Section 2. This illustrates the way in which the theory
introduced in section 2 allows for formal and rigorous cer-
tification of approaches to coarsening. Section 5 describes
the relationship between coarsening and other work on co-
alescing nodes of program graphs. Section 6 concludes.

2 A Theory of Coarsening
A coarsening calculus, BC, is a quintuple,
(r , W , B , N , %) . Each of the elements of a coarsen-
ing calculus are described in more detail below. First,
a notation is introduced to describe the process of
coarsening.

Definition 2.1 (Coarsens to)
Let R be an inference rule, axiom or set of rules and axioms
of a coarsening calculus. s -+R b denotes the fact that the
blob b can be inferred from the statement s using R.

When the inference rule set is clear from the context,
the reflexive, transitive closure of a relation +R, will be
denoted by +.

It will be helpful to label each node with a unique vari-
able, which will be called a ‘node label’. The variable is
a new variable introduced solely to signify the inclusion of
the corresponding node in the slice. Since there is a one-
to-one correspondence between the nodes of the CFG on
the one hand and the union of the set of predicates and
arithmetic expressions on the other, it will be possible to
achieve this node labelling by including an additional refer-
enced variable U , in the expression or predicate associated
with each node n. Provided that each U , is unique and not

26

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

begin
z : = y ;
i f z=3
t hen
begin

c : =y;
x:=25

end ;
i : =i+l
end
1 a: Original program

begin
z : =y;
if z=3
t hen
begin

x : =25
end :

end
1 b: Slice on x

begin

i f bl (z)
t hen
begin

z:=f1 (U) ;

c:=f2(y);
x : = f 3 0

end ;
i : = f d (i)

end
IC: Schematic Version

Figure 1 : End Slicing on variable x

previously used, this variable will become needed in the
slicing criterion precisely when the node it labels becomes
needed.

In a coarsening calculus, BC = (r, W , BIN, B), r is
the programming language to be coarsened and W is a slic-
ing function which maps statements of r to functions on
sets of variables and labels.

The slice of a program can easily be extracted from the
slice function, W , as defined by Definition 2.2 of Slice
Computation below.

Definition 2.2 (Slice Computation)
Let W be a slicing function from programs to mappings on
the set of labels and variables. Let L be the set of node
labels. Given a slicing criterion c, the slice of a program p
computed by W is W b] c n L. The slice of p constructed
with respect to the criterion c shall be denoted Sl[p]c.

In order to facilitate formal investigation of the proper-
ties of a coarsening calculus the slicing function is defined
in a denotational style [23]. For a set of variables c, and
statement s, W[s]c returns a set of variables and node la-
bels c’, such that c‘ contains the node labels in the slice of
s for the slicing criterion c. In addition c’ also contains the
set of variables upon whose initial value the slice depends.

For example

That is, when W is applied to z : = g (y , z) , it produces
a function which is capable of computing slices for the pro-
gram fragment i : = g (y , z) . Let F denote the function
W [z := g(y, z)]. F can be used to compute end slices by
applying it to a set of variables. In this case there are only
two possibilities. That is, for any set B which contains z ,
F (B) = (9, y, z } U B because the final value of the vari-
ables in B depend upon the line labelled by the node label
g and the initial values of the variables y, z and the other
(unaffected) variables in B. For any variable name other

begin

i f bl (z)
t hen
begin

z:=f1 (Y) ;

x : = f 3 0
end :

end
Id: Schema slice on x

than z , F behaves like the identity function, because the
final values of all other variables simply depend upon their
initial value.

In a coarsening calculus, BC = (r, W , B, NI B), B is a
set of inference rules, written &, denoting inferences of
the form “if a holds, then the statement b of program p can
be coarsened to give the statement c”.

A program p might thus be transformed to p’ , using the
inference rule to replace b in p by c in p’. By representing
approaches to coarsening as inference systems, a separa-
tion is created between two concerns, namely: what con-
stitutes a valid coarsening and how much coarsening will
be required to achieve an acceptable improvement in speed
of slice construction. This separation of concerns is neces-
sary because the former concern has a more general logical
flavor, while the later concern will be dependent upon the
particular slicing application and system under considera-
tion.

In a coarsening calculus, BC = (I?, W , B, NI %), the
syntactic class 23 is the class of blob statements added to
the language to facilitate coarsening.

Finally, in a coarsening calculus, BC =
(~ , W , B , N , %) , JV is a node function, which takes
a statement and returns the set of node labels contained
in the statement. For blobs, this will be the set of state-
ments which have been coalesced to form the blob. For
un-coarsened primitive statements, n/ will return the node
label of the statement.

It is a requirement of a coarsening calculus that

b’s E I?, b E ‘23.s b + = A@]

This requirement means that the exploitation of redundancy
is prohibited from the coarsening process. It is required be-
cause coarsening is about coalescing nodes, and not about
removing redundancy. Redundant code removal is a sepa-
rate issue which should be addressed in a different (prefer-
ably earlier) analysis phase. Without this separation of con-
cerns, the theory becomes far more intricate than necessary.

27

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

It will be helpful to define a semantic ordering, C on
slicing functions. f1 E f2 if slices produced by f1 are
always subsets of slices produced by f2.

Definition 2.3 (Semantic Ordering)
Let f1 and f2 be two functions on sets of variables and node
labels. f1 precedes fi, written fi f2, iff Vc.f i (c)
f 2 (4

It will also be useful to speak of strict semantic ordering,
E, which is defined in the obvious way:

f i C f2 i f f f i E f2 A ~ (f 2 E f i)

Definition 2.4 (Consistency)
Let BC = (I’, W , B,N, ‘13) be a coarsening calculus. BC is
consistent iff Vp E r , p ‘ E ’13.p ~ r) p’ + Wl[plI E W W] .

In a consistent coarsening calculus it is impossible for a
slice of a coarsened program to be smaller than the slice of
the original program. This is important, because coarsen-
ing clearly cannot cause slices to get smaller. Were it to do
so, the coarsening rules may not be safe and could not be
considered consistent with the definition of slicing captured
by W .

Consistency merely guarantees that all slices constructed
from a coarsened version of a program will be valid. How-
ever, a coarsening calculus could satisfy this requirement
by being excessively conservative. In the most conservative
case, the algorithm would simply return the entire program
as the slice, regardless of the slicing criterion. Such overly
conservative approaches will render the calculus safe but
useless.

To address this issue of the ‘level of conservativeness’
of approximati,on in coarsening, two other properties of a
coarsening calculus are defined: minimality and sharpness.

Definition 2.5 (Minimality)
Let P S be the powerset of a set S. Let BC =
(I’, W , B, n/, %) be a coarsening calculus. BC is minimal
iff VS E I?, b E !€IS .US b + VC E P(v U L).Wl[s]c -
n/nsn = wpjC - NIs].

If a coarsening calculus is minimal then the slices con-
structed from blobs will be equivalent to those which would
have been constructed by computing the slice, s of the orig-
inal program, p and then adding to s all nodes which are in
the blobs that contain nodes from s.

Minimality is a highly desirable property of a coarsen-
ing calculus, because it ensures that the only imprecision
introduced by coarsening is embodied by the blobs them-
selves, and that the act of combining several nodes has no
impact upon the data and control flow passing through the
coarsened region of the CFG.

Using a non-minimal coarsening calculus the act of
coarsening several nodes into a single blob may cause the

data and control information of the coarsened region to be
less precise than that of the original un-coarsened version.
This may impact upon the slice computation of the entire
program, as this imprecise information flows from the blob
to the surrounding context. For such a non-minimal coars-
ening calculus, the effect of ‘zooming in’ to analyze a blob
in more detail may result in a refinement of the slice of the
surrounding code. By contrast a minimal calculus will pro-
vide the guarantee that zooming in on some chosen blob
will only affect the slice of the blob, leaving the context in
which the blob is located unchanged.

Desirable though minimality is, it remains a rather strong
requirement upon a coarsening calculus, because it seems
inevitable that, for many coarsening calculi, some of the
available precision will be lost when nodes are combined
to form a blob.

A related concept, sharpness, is therefore introduced. In-
tuitively, sharpness captures the property that a coarsening
rule is ‘as minimal as it can be’ at the level of abstraction
imposed by the syntax and semantics of the coarsening con-
struct. If a coarsening calculus is not sharp then it is, in ef-
fect, needlessly imprecise, throwing away data and control
information that could have been represented.

To illustrate sharpness, suppose two statements s1 and
s2 appear in a sequence SI; s2, and that the sequence is to
be merged to a single node n with defined and referenced
variables which attempt to capture the information in the
un-coarsened sequence. At first sight it may seem reason-
able that the referenced variables of the blob should be the
union of the referenced variables of its two constituents.
This would yield a safe blob, but not a sharp one. For ex-
ample, variables which are defined but not referenced in s1
need not be referenced in the blob of SI; s2. To include
them is safe, but it leads to unnecessary loss of precision.

Definition 2.6 (Sharpness)
Let BC = (r, W , B,N, ‘13) be a coarsening calculus. B is
sharp iff Vs E r,b E 23.s +-+ b + 13’ E B.Wl[s] 5
~ i b q E wpi.

Sharpness demands that no better blob can be found
which would allow the coarsening calculus to be consis-
tent. Thus the coarsening rule produces the best blob avail-
able within the constraints imposed by the structure of ’23
and the slicing function W .

For a coarsening calculus to be useful it should be con-
sistent and sharp. Minimality is also a desirable property.
However, minimal coarsening calculi may require a large
computational overhead to compute the blob and its asso-
ciated data and control information. As the whole idea of
coarsening is to compute blobs quickly, allowing precision
to be traded for speed, it is unlikely that minimal coarsen-
ing calculi, though of theoretical interest, will be of practi-
cal use unless their blobs can be computed speedily.

28

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

3 Case Study: R-Coarsening

In this section a particular example of coarsening, called
R-coarsening, is introduced in order to illustrate the ap-
plication of the coarsening theory introduced in the previ-
ous section. Although introduced primarily for exposition
purposes, the R-coarsening calculus is consistent and sharp
and thus may form the basis for a practical and useful ap-
proach to coarsening.

R-coarsening will be defined for a simple intraprocedu-
ral language r, for which the syntax and slicing function,
W are defined in Figure 2. The definition of the slicing
function W for primitive statements (skip and assignment)
is straightforward. For sequencing, the slicing functions
of the two component statements are composed. For con-
ditionals the slicing function is the union of the functions
for the two branches composed with the function for the
controlling predicate. For loops, the slicing function is the
least solution to a recursion equation in f , which composes
f with the function for the body and predicate of the loop.
The slicing function, W , uses two auxiliary functions pred
and C. The pred function captures the control dependence
information imposed by predicates, while C computes the
top level node labels of a statement (those which label the
outermost expressions).

R-coarsening augments the language r with a single
construct, the R-blobs, written Rb(1, D, d, R). An R-blob
is a quadruple, containing sufficient information to com-
pute reasonably precise slices, while keeping the cost of
computing blobs to a minimum.

In an R-blob, a distinction is introduced between the set
of 'definitely defined' variables, denoted D, and the set of
'possibly defined' variables, denoted d. This distinction
arises because several paths may be coalesced to form R-
blob. Variables defined in all such paths are definitely de-
fined by the R-blob. Those defined on at least one path (but
not all paths) are 'possibly defined'.

Informally, the four components of an R-blob are as fol-
lows:

0 I is the set of labels of the nodes which have been
combined.

D is the set of variables which are definitely assigned
a value when control passes through the blob.

d is the set of variables which may be assigned a value
when control passes through the blob. (Clearly, in all
R-blobs, D d.)

0 R is the set of referenced variables of the blob.

Syntactic Extensions

r::=Rb(P(LU V) , P (V) , P (V) , P (L U V))

Semantic Extensions

CI[Rb(I, D, d , R)] = I

WI[Rb(I , D, d, R)] =

(in - D) U R U l if inn (d U I) # 0
Xin. in otherwise {

Figure 3: Augmentation of Figure 2 for R-coarsening

I

Figure 5: The node function, N for R-coarsening

3.1 Defining R-Coarsening using the Coars-
ening Theory

The theoretical framework from Section 2 is now used to
define R-coarsening more formally.

In order to formally define a coarsening calculus accord-
ing to the coarsening theory presented in section 2, each of
the five elements r, W , .U, N and 93 must be defined. For
R-coarsening, W , is constructed by augmenting the rules
for W given in Figure 2. The additional syntactic and se-
mantic clauses are given in Figure 3. The inference rules
and axioms of the R-coarsening calculus are given in Fig-
ure 4. The syntactic set 23 consists of all syntactic con-
structs in the class Rb(I , D , d , R) which can be reached
from a program schema by the application of one or more
of the inference rules, and the node labelling function N is
defined in Figure 5.

In the the next section, the theory developed in section 2
is used to prove that R-coarsening is sound and sharp but
that it is not minimal. This illustrates the way in which the
calculus can be used to formalize properties of interest in a
for graphs which contain coalesced nodes.

29

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

V : Variables L : Labels
pred : L x P (V) x P (L) + (L U V) + (L U V)

W : r + P(V U L) -+ P(V U L)
C : r + P (L)

r::=L : skip ' 1 x := L(P(V)) I begin rl; . . . ; rn end I i fL(P(V/)) then rl else r2 I while L(P(V)) do I?

W[while p (R) do s]

= Xx.x
= wnsln 0 w1s2n

= B 0 (w[sln U w[S2n)

(in - {x}) U R U {f} if x E an { in otherwise = Xin.

where B = pred(p, R, C(s1) U C(s2))

where B = pred(p, R,C(s))
= fiXXf.B 0 ((W[s] 0 f) U id)

i n u R U { p } i f i n n C f 0 { in otherwise = Xin.

= {f)
= {f}

= {PI
= {PI

= cisli U cis2]

Figure 2: Syntax, r and Semantics, W of a Simple Illustrative Language

Axiom 3.1 (Skip) f : skip * R b ({ f } , 8,8,8)

Axiom 3.2 (Assignment) w := f(R) * R b ({ f } , {U}, {w}, R)

Rule 3.1 (Sequence)

b i = R b (I i , D i , d i , R i) b2 = R b (I 2 , D 2 , 4 , &) { b i , b 2 } G 23
b l ; b 2 4 R b (l i U I 2 , D i U 0 2 , d i U d 2 , R i U (R 2 - D i))

Rule 3.2 (Conditional)

Rule 3.3 (Loop)

b = Rb(1, D, d, R) b E 23
Rb({p} U I , 0, d, R U R') while p(R') do b

Figure 4: A Calculus for R-Coarsening

30

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

4 Theoretical Properties of R-
coarsening

This section uses the theory of coarsening to investigate and
establish the theoretical properties of R-coarsening. It will
be shown that R-coarsening is both consistent and sharp,
but that it is not minimal.

Lemma 4.1 Vs E F.Wl[s](A U B) = W [s] A U W[s]B

Proof: By simple induction on the structure of r.
Lemma 4.2 (Inclusion)

Two lemmata will be useful’in what follows.

V c , I , D,d,R.WI[Rb(I,D,d,R)]c 5 (C - D) U RUI

Proof: Trivial.

4.1 R-Coarsening is Consistent
In this section the consistency of R-coarsening is estab-
lished by proving that each inference rule is consistent.

The cases of skip and assignment are both trivial. There
are three other cases, corresponding to the r constructs for
sequences, conditionals and loops. Once each of the rules
has been proved to be consistent then the combination of
these rules must also, by transitivity, be consistent.
Case 1: Sequences

Let T = Rb(l1 U 1 2 , D1 U D2, dl U dz, R1 U (R2 - 0 1))

Let7-i =Rb(Ii ,Di ,di ,Ri) (fori E {1,2})

Case 3: Loops

Let q = Rb({p} U I , 0 , d, R U R‘).
Let X , = ifp(R’) then r else g : skip.
Let Xi+l = ifp(R’) then r ; X i else g : skip.
Let t = Rb({p} U I , D , d, R U R’).
Let e = Rb({g}, 0,0,0).
Observe that V’i.WIXi+l] WIXi]l .
Also notice 3n >_ O.W[while p(R’) do r] = W [X n] .
Clearly W [[X o] g Wuq].
Now assume W[Xi] g W[q];
Then W[[Xi+,] = W[[ifp(R’) rhen r ; X i else g : skip]
5 W[ifp(R’) then Rb(I, D , d , R); q else g : skip1
g W[ifp(R’) then t else g : skip]
E W[[ifp(R’) rhen t else e]
& W[q] (Using if rule)
So Wuwhile p(R’) do T]

Let r = Rb(I , D , d, R).

c wuqn.

4.2 R-Coarsening is Sharp
In this section it is proved that the R-coarsening calculus
is sharp. The base cases of skip and assignment are triv-
ial because R-coarsening rules for these two constructs are
clearly minimal and are therefore sharp. The rest of the
section considers the three constructs: sequencing, condi-
tionals and loops. The following Lemma will be useful in
the proofs that follow.

Lemma 4.1 (Sharpness Sufficiency Criterion)
Let bi = Rb(Ii, Di, di, Ri) fo r i E {1,2}).

Thus W[[rl; 7-21 _C Wir]. D1 - R1 C 0 2 - R2 A dl 2 d2 A R1 2 R2 *
Case 2: Conditionals wubln 2 wub21

Letr i =Rb(l i ,Di ,di ,Ri)’(for i E {1,2})
Let q = Rb(11 U I2 U { p } , D1 n D2, dl U d2 , R U R1 U R2).
Let r = ifp(R) then 7-1 else 7-2.

Proof: By straightforward case analysis.
Lemma 4.1 provides a sufficiency criterion for demon-

strating that one blob is no worse than another and thus

31

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

,

serves to provide a means of proving the sharpness of each
rule in the R-coarsening calculus by contradiction. The
proofs for the inductive cases, sequence, conditionals and
loops are all proofs by contradiction. That is, for each of

If z E E - 3 then z $ W[b’]{z) 2 _W[X]{z}.
H0weverVz.z E W [X] { z } , so D - R = 0.
Thus W[b] F W[b‘] by Lemma 4.1.

the three cases in which a rule allows the inference s y.) b,
it will be assumed that there does exists some ‘better blob’, 4.3 R-Coarsening is not Minimal
b’ which has the property W[s]
to a contradiction.

Case 1: Sequences

L e t s = s l ; s2. ,

Let b = Rb(Il U 12, D1 n D2, dl U d2, R1 U (R2 - D l)) .
Assume W[s] W[b’] c W[b].

W[b’] c W[b], leading

Lets i =Rb(I , ,D, ,d , ,R,) fori E {1,2}.

Let b‘ Rb(I1 U 1 2 , Dbf, dbf , Rbt).

If 2 E d2 then W [s] { z } 2 12, SO db t 2 d2.
If z E d l - d2 then W [s] { x } 2 I1 , SO dbi 2 d l - d2.
Therefore dbt 2 d l U d2.

If z E I2 then W [s] { z } 2 R2 - D1.
I f z E Il thenW[s]{z} 2 R1.
Therefore Rbl 2 R1 U (R2 - 0 1) .

S O X E D1 n D 2 - (RURi UR2).
If z E Dbi - then z $ w[b’]{x} 2 w[S]{z}

Therefore Dbt - Rb, C D1 n 0 2 - (R U RI U R2).
Thus W[b] C W[b’] by Lemma 4.1.

Case 2: Conditionals

Let s = ifp(R) then bl else 132.

L e t I = I l u I 2 ~ { p } .
LetZ = R U RI U Rz.
Let b’ = Rb(?, D‘, d’, R’).
Let b = Rb(7, D1 n D 2 , d l U d2 , R) .
Assume W[s] c W[b‘] c W[b].
w~s j 5. wpq A w p j ~ E wpq? + RI 2 3.
I f z E dl thenp E W [s] { z } C W[b’]{x},
sox E d’, andsod’ 2 d l .
By a similar argument d’ 2 d2 so d 2 dl U d2.

If z E D’ - R’ then W[s]{z} C W[b’]{x} = 7 U R’.
However, z $ R’ U 7,
SO z E D~ n~~ - R, SO D‘ - R’ c D~ n D~ - R .
Thus W[b] W([b’] by Lemma 4.1.

Let s, = Rb(l,, D,, d,, R,) fo r i E {1,2}.

Case 3: Loops

Let X = ifp(R’) then bo else skip.
Let w = whilep(R’) do bo; hence W [w] 7 W [X] .
Let b = Rb({p} U I , 0, d , R U R’).
Let b’ = Rb({p} U I , o,& B).
Assume W[b] ZI W[b’] 7 W [X] .
I f ~ ~ d t h e n { p } u I u R u R ‘ ~ W [X] { z } CW[b’]{x}
+ x ~ & s o d c d .
Clearly W[b]I = W [X] I + a = R U R’
(because I must be non-empty).

Let bo = Rb(I , D, d , R).

R-coarsening is not minimal. This arises because the infer-
ence rule 3.2 from Figure 4 is not minimal. Consider, for
example, the program schema:

s = ifp(z) then z := f 2 (a) else y := f3(c)

for which it is possible, using rule 3.2 from Figure 4, to
infer the R-blob:

R-coarsening is not minimal because W [s] x =

It is sufficient to demonstrate that a single rule is non-
minimal in order to establish the non-minimality of the en-
tire calculus. However, in this case, it turns out that the
sequence rule is also non-minimal (consider s = z :=
f l () ; y := f 2 () for instance).

{ p , z , f 2 , ai, whereas wpnz = {P, f2 , f3, z, a ,

5 Related Work

The work presented here is similar to the graph reduction
transformations T1 and T2, studied by Ullman, Hecht, Gra-
ham and Wegman [15, 25, 121, in which the graph transfor-
mations T1 and T2 are repeatedly applied to a (possibly
unstructured) CFG to produce either a single node (in the
case of well-behaved, but possibly unstructured CFGs) or
an irreducible CFG (for highly unstructured programs).

The general form of the rules is depicted in Figure 6.
The T1 transformation allows for a self targeting edge to
be removed from a flow graph, while the T2 transformation
allows one node (p in the figure) to ‘consume’ another (n in
the figure). In the case of T2, the effect of this consumption
upon the data and control flow information must also be
recorded so that the coalesced node, (p , n) , can be tagged
with appropriate information.

The goal of CFG graph transformation was to find effi-
cient ways of computing genkill information used in live-
variable and reaching definition analysis. The transforma-
tions are applied as rules of a term rewriting system, in
which terms are subgraphs. Ultimately, if the graph to
be transformed is well-behaved’ then the sequence of re-
writing transformations leads to the construction of a sin-
gle node which contains all the genkill information of the
program.

‘All structured programs and many unstructured ones have well-
behaved graphs.

32

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

By contrast, the goal of the application to slicing consid-
ered in the present paper is not to reduce a program to a
single node, rather it is to find some suitable compromise
in which the graph retains sufficient detail to return use-
ful slices, while affording a reasonable increase in speed of
slice construction. In the genkill case, no information is
lost in the ‘coarsening process’ using T1 and T2. However,
for the slicing application some information will typically
be lost.

Another difference lies in the convenience of schemas
(rather than graphs). For example, consider the case of coa-
lescing a structured conditional statement using the T1 and
T2 transformations. Clearly, the only way that this can be
achieved is for the predicate to consume first one branch
and then the ottier, using two successive applications of the
T2 rule. However, in applying T1 and T2 to slicing, the T2
transformation will introduce unnecessary imprecision, be-
cause the choice of definitely defined variables is forced to
be imprecise (resulting in an empty set for D). The schema
rule for R-coarsening the same conditional may have a non-
empty set for D.

This leads to imprecise slices, for instance, the R-
coarsening of

i f p (z) then 2 := f ~ (a) else 2 := f s (c)

using T2 transformations will be

whereas it could have been

G2 = W { P , f 2 , f 3 1 , (51, (21, { z , a , cl>
The R-blob G2 correctly includes 2 as a definitely de-

fined variable, whereas G1 does not. Failure to recognize 3:

as definitely defined does not lead to inconsistency. How-
ever, the definition of the slice function W ensures that
adding members to the ‘definitely defined’ set reduces slice
size in some cases (and never increases it). More formally,
in terms of the theory, W([G2JJ c W([GlIJ, making the latter
blob clearly preferable.

6 Conclusion
This paper has introduced a theory of coarsening. Coarsen-
ing is expressed as a calculus. This has two advantages:

0 It allows for many different implementations of coars-
ening, each of which respects the rules of the calculus,
but differs in the way in which it trades precision for
speed.

0 It allows for the definition of generic semantic proper-
ties of all coarsening calculi.

TI T2

Figure 6: Graph Coalescing Transformations

The paper focussed on the second of these two advan-
tages, formally defining the concepts of consistency, sharp-
ness and minimality of a coarsening calculus. A consistent
calculus produces correct slices. A sharp calculus is one
which produces the most precise slices possible at the level
of abstraction embodied in the coarsening construction. A
minimal calculus is one which produces no additional im-
precision over-and-above the grouping together of nodes
produced by coarsening. Of these properties, a calculus
must possess the first two to be of practical use.

The theory was illustrated by a case study which defined
R-coarsening. R-coarsening is a sharp and consistent cal-
culus, but it is not a minimal one.

References
[I] ATKINSON, D. c . , A N D GRISWOLD, w. G . Imple-

mentation techniques for efficient data-flow analysis
of large programs. Tech. Rep. UCSD TR CS2001-
0665, Feb. 2001.

[2] BECK, J., A N D EICHMANN, D. Program and inter-
face slicing for reverse engineering. In IEEE/ACM
Isth Conference on Sofrware Engineering (ICSE’93)
(1993), IEEE Computer Society Press, Los Alamitos,
California, USA, pp. 509-5 18.

[3] BENNETT, K., AND MORTIMER, R. Maintenance
and abstraction of program data using formal transfor-
mations. In IEEE International Conference on Soft-
ware Maintenance (1996), IEEE Computer Society
Press, Los Alamitos, California, USA.

[4] BINKLEY, D. W. The application of program slic-
ing to regression testing. In Information and Soft-
ware Technology Special Issue on Program Slicing,
M. Harman and K. Gallagher, Eds., vol. 40. Elsevier,
1998, pp. 583-594.

33

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

[SI BINKLEt, D. W., AND GALLAGHER, K. B. Pro-
gram slicing. In Advances of Computing, Volume 43,
M. Zelkowitz, Ed. Academic Press, 1996, pp. 1-50.

[6] CANFORA, G., CIMITILE, A., AND MUNRO, M.
RE2 : Reverse engineering and reuse re-engineering .
Journal of Software Maintenance : Research and
Practice 6, 2 (1994), 53-72.

[7] CIMITILE, A., DE LUCIA, A., AND MUNRO, M.
Qualifying reusable functions using symbolic execu-
tion. In Proceedings of the 2nd working conference on
reverse engineering (Toronto, Canada, 1995), IEEE
Computer Society Press, Los Alamitos, California,
USA, pp. 178-187.

[SI DE LUCIA, A., FASOLINO, A. R., A N D MUNRO, M.
Understanding function behaviours through program
slicing. In 4th IEEE Workshop on Program Compre-
hension (Berlin, Germany, Mar. 1996), IEEE Com-
puter Society Press, Los Alamitos, California, USA,
pp. 9-18.

[9] DENG, Y., KOTHARI, s., A N D NAMARA, Y. Pro-
gram slice browser. In gth IEEE International
Workshop on Program Comprehesion (IWPC'OI)
(Toronto, Canada, May 2001), IEEE Computer Soci-
ety Press, Los Alamitos, California, USA. To appear.

[lo] EDWARDS, H., A N D M.MUNRO. RECAST : Reverse
Engineering from COBOL to SSADM Specification.
In International Conference on Software Engineering
(1993), IEEE Computer Society Press, Los Alamitos,
California, USA.

[l l] GALLAGHER, K. B., AND LYLE, J. R. Using pro-
gram slicing in software maintenance. IEEE Trans-
actions on Sofiware Engineering 17, 8 (Aug. 1991),
75 1-76 1.

[12] GRAHAM, S. L., A N D WEGMAN, M. Afastandusu-
ally linear algorithm for global flow analysis. Journal
of the ACM 23, 1 (Jan. 1976), 172-202.

[13] HARMAN, M., AND DANICIC, S. Using program
slicing to simplify testing. Software Testing, Verijica-
tion and Reliability 5, 3 (Sept. 1995), 143-162.

[14] HARMAN, M., SIMPSON, D., A N D DANICIC, s.
Slicing programs in the presence of errors. Formal
Aspects of Computing 8 , 4 (1996), 490-497.

[15] HECHT, M. S . , AND ULLMAN, J. D. Flow graph
reducibility. In Conference Record, Fourth Annual
ACM Symposium on Theory of Computing (Denver,
Colorado, 1-3 May 1972), pp. 238-250.

[16] HIERONS, R. M., HARMAN, M., AND DANICIC,
S. Using program slicing to assist in the detection
of equivalent mutants. Software Testing, Verification
and Reliability 9 , 4 (1999), 233-262.

[17] HORWITZ, s., REPS, T., AND BINKLEY, D. Inter-
procedural slicing using dependence graphs. ACM
Transactions on Programming Languages and Sys-
tems 12, 1 (1990), 26-61.

[18] JACKSON, D., AND ROLLINS, E. J. A new model
of program dependences for reverse engineering. In
Proceedings of the ACM SIGSOFT '94 Symposium
on the Foundations of Software Engineering (Dec.
1994), pp. 2-10.

[I91 LAKHOTIA, A. Rule-based approach to computing
module cohesion. In Proceedings of the 15th Con-
ference on Software Engineering (ICSE-15) (1993),
pp. 3 4 4 4 .

[20] LAKHOTIA, A., AND DEPREZ, J.-C. Restructuring
programs by tucking statements into functions. In In-
formation and Software Technology Special Issue on
Program Slicing, M. Harman and K. Gallagher, Eds.,
vol. 40. Elsevier, 1998, pp. 677-689.

[21] LUCKHAM, D. C., PARK, D. M. R., AND PATER-
SON, M. S . On formalised computer programs. J.
of Computer and System Sciences 4, 3 (June 1970),
220-249.

[22] RILLING, J., A.SEFFAH, A N D J.LUKAS. MOOSE -
a software comprehension framework. In 5th World
Multi-Conference on systemics, cybernetics and in-
formatics (SCI 2001). to appear.

[23] STOY, J. E. Denotational semantics: The Scott-
Strachey approach to programming language theory.
MIT Press, 1985. Third edition.

[24] TIP, F. A survey of program slicing techniques. Jour-
nal of Programming Languages 3, 3 (Sept. 1995),
121-189.

[25] ULLMAN, J. D. Fast algorithms for the elimination
of common subexpressions. Acta Informatica 2, 3
(1973), 191-213.

[26] WEISER, M. Program slicing. IEEE Transactions on
Software Engineering 10,4 (1984), 352-357.

[27] WEYUKER, E. J. The applicability of program
schema results to programs. International Journal of
Computer and Information Sciences 8,5 (Oct. 1979),
387-403.

34

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:56 from IEEE Xplore. Restrictions apply.

