
FORTEST: Formal Methods and Testing

Jonathan P. Bowen
South Bank University, Centre for Applied Formal Methods

SCISM, Borough Road, London SE1 0AA, UK
Email: bowenjp@sbu.ac.uk URL: www.cafm.sbu.ac.uk

Kirill Bogdanov
The University of Sheffield, UK

Email: k.bogdanov@dcs.shef.ac.uk

John A. Clark
The University of York, UK
Email: jac@cs.york.ac.uk

Mark Harman
Brunel University, UK

Email: mark.harman@brunel.ac.uk

Robert M. Hierons
Brunel University, UK

Email: rob.hierons@brunel.ac.uk

Paul Krause
Philips Research Laboratories &

University of Surrey, Guildford, UK
Email: p.krause@surrey.ac.uk

URL: www.fortest.org.uk �

Abstract

Formal methods have traditionally been used for spec-
ification and development of software. However there are
potential benefits for the testing stage as well. The panel
session associated with this paper explores the usefulness
or otherwise of formal methods in various contexts for im-
proving software testing. A number of different possibili-
ties for the use of formal methods are explored and ques-
tions raised. The contributors are all members of the UK
FORTEST Network on formal methods and testing. Al-
though the authors generally believe that formal methods
are useful in aiding the testing process, this paper is in-
tended to provoke discussion. Dissenters are encouraged to
put their views to the panel or individually to the authors.

1. Introduction

Formal methods and testing are sometimes seen as ad-
versaries. It has been said that formal methods could elimi-
nate testing. In practice, however, formal methods and test-
ing will always be two complementary techniques for the
reduction of errors in computer-based systems since neither

�The FORTEST Network on formal methods and testing, of which all
the authors are members, is funded by the UK Engineering and Physi-
cal Sciences Research Council (EPSRC) under grant number GR/R43150.
Full contact details for all the authors can be found on the website.

technique is perfect in practice for realistic systems. When
formal methods are used in development, it is still very im-
portant to undertake testing, even if the amount of testing
can be reduced [9]. It could be considered unethical not to
apply both techniques in systems involving the highest lev-
els of criticality where human lives may be at risk [8]. How-
ever, the potential symbiosis of formal method and testing
is still be in its infancy. This paper presents some ideas
of future directions in the interplay of formal methods and
testing.

The panel session associated with this paper presents
the views of a number of participants on the UK EP-
SRC FORTEST Network concerning the interplay of for-
mal methods and software testing. It is contested that the
presence of a formal specification is beneficial in the deter-
mination of test cases for software-based products. In this
context, the topics to be covered to promote discussion in-
clude aspects of the following (in no particular order):

� Blackbox testing

� Fault-based and conformance-based testing

� Theory versus practice

� Design and refinement for testing

� Testing in support of specification

� Testability transformation

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

� Using system properties

� Automated generation of test cases

FORTEST partners include leading academic and in-
dustrial sites in the UK with an interest in the applica-
tion of formal methods to software testing. The Network,
led by Brunel University, is running from November 2001
for three years. The academic partners consist of Brunel
University, University of Kent at Canterbury, The Univer-
sity of Liverpool, University of Oxford, The University of
Sheffield, South Bank University, University of Surrey and
The University of York. The industrial partners are Daim-
lerChrysler, Philips Research Laboratories, Praxis Critical
Systems Ltd, QinetiQ and Telelogic.

1.1. Background to the Network

With the growing significance of computer systems
within industry and wider society, techniques that assist in
the production of reliable software are becoming increas-
ingly important. The complexity of many computer systems
requires the application of a battery of such techniques. Two
of the most promising approaches are formal methods and
software testing. FORTEST is a cross-community network
that brings together expertise from each of these two fields.

Traditionally formal methods and software testing have
been seen as rivals. Thus, they largely failed to inform one
another and there was very little interaction between the two
communities. In recent years, however, a new consensus
has developed. Under this consensus, these approaches are
seen as complementary [29]. This opens up the prospect
of collaboration between individuals and groups in these
fields.

While there has already been some work on generat-
ing tests from formal specifications and models (e.g., see
[27, 31, 49, 50] in the context of the Z notation). FORTEST
is considering a much wider range of ways in which these
fields might interact. In particular, it is considering rela-
tionships between static testing (verification that does not
involve the execution of the implementation) and dynamic
testing (executing the implementation).

FORTEST has formed a new community that is explor-
ing ways in which formal methods and software testing
complement each other. It is intended that this will allow
these fields to inform one another in a systematic and effec-
tive manner and thus facilitate the development of new ap-
proaches and techniques that assist the production of high
quality software.

The rest of this paper presents the views of a number
of FORTEST Network members on various ways in which
formal methods could be helpful for software testing.

2. Three Challenges in Blackbox Testing

Kirill Bogdanov, The University of Sheffield

2.1. Fault-based and conformance-based testing

Functional testing (rather than stress testing, usability,
etc.) has been traditionally viewed as an approach to find
faults by exercising a system, using systematic but qualita-
tive techniques, aimed at coverage of a specification. The
most often used approach is input-space partitioning and
boundary-testing [17, 41]. While the way decisions are
made in construction of partitions can be based on business
risk, the essential conclusion is “we tried but did not find
much.”

Mutation testing and analysis makes it possible to try to
check if a test suite finds specific classes of failures [40];
mutations could apply to both a specification and an im-
plementation. One could either generate a test suite manu-
ally to ‘kill’ all mutants or use a technique (such as model-
checking) to identify differences between an original and a
mutated model [1, 21]. At the same time, one could derive
test suites from a model in order to demonstrate behavioural
equivalence of an implementation to this model by testing,
for instance, using well-known automata-theoretic results
[14, 46, 47] and their extensions to X-machines (EFSM)
[30, 32] and Statecharts [5, 6]. Testing using relations from
algebras [20, 45] can also be considered to be of this type
of testing. Is testing using fault-based methods ‘better’
than conformance-based testing? Fault-based approaches
are based on the generation of all possible faults of a given
kind (perhaps an infinite amount) and finding tests to expose
them. Conformance-based testing is based on building ‘rel-
evant’ models and attempts to generate tests to expose all
deviations from them. In the former, one could be specific
about faults, but it could be more difficult to derive tests for
them; in the latter, the types of faults testing looks for are
not so easily tailored to particular business goals.

2.2. Design for test – a guide for software engineer-
ing?

It is typically said that semiconductors are built to in-
clude mechanisms to facilitate testing, and that software is
often not. From that, one can elaborate as to how to build
software so as to make it easier to integrate it with test har-
nesses (like separating a graphical interface from underly-
ing engine). Curiously, built-in self-testing for chips is gen-
erally geared to identifying manufacturing defects, not de-
sign ones while for software all defects are design defects1.

1[3] claims that usage of state-based testing was rather more effective
in terms of state and transition coverage of an actual device per test than
using standard ‘engineering’ test suites.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

There has been quite a bit of work done in the direction of
making software more testable, still leaving many questions
unanswered.

Is more testable software likely to fail more often [4]? If
some of the testing code is left in, it can be invoked (acci-
dentally or maliciously). If defects easily manifest them-
selves, they are easier to detect during development but
could be annoying to users.

Structuring software according to testability. In general,
metrics, such as McCabe cyclomatic complexity [19] can
be used to make a suggestion how much a particular module
would cost to build and perhaps how difficult it will be to
test. One of the quotes emphasizing testability is “if you
cannot test it – you cannot build it.” It is possible to suggest
testability as a criterion to help structuring a system, for
instance,

� A particular part of a system is a unit if one can visit
every internal state of it and attempt any transition
from that state without having to access that part’s in-
ternal data. This means we are suggesting against re-
lying on helper modules with privileged access to in-
ternal data [38].

� In Statechart-based testing, one has to consider test-
ing for presence and absence of all possible transitions
from every state of a system. One could partition the
system such that transitions from some parts of it can-
not be erroneously used in other parts, reducing the
size of a test suite by many orders of magnitude [5].

Testability could also guide a style of a specification (see
section 3.4).

2.3. ‘The devil is in the detail’ – is testing from an
abstract specification useful?

Do we need model-based testing if we can directly gen-
erate code from models and claim it correct by construc-
tion? There are in fact three separate issues here.

While usage of a certified compiler could be enough not
to require certification of an object code, one has still to
certify a model from which that code is generated. Such a
model is often extensively simulated (for instance, by us-
ing testing [35]) and critical properties (such as freedom
from deadlocks) are formally proven or demonstrated by
model-checking [11]. Indeed, checking of models for spe-
cific properties is akin to fault-based testing mentioned in
section 2.1. Here it is implicitly assumed that develop-
ers of a model know ‘everything’ while [37] demonstrated
that a significant proportion of errors was in the software-
hardware interfaces, resulting from lack of communication
between the two teams of developers.

Testing is still needed as one clearly cannot model every-
thing. For instance, if a memory chip is capable of storing
all possible values indefinitely except for one value (such as
due to noise on power lines), this cannot be found from a
gate-level model. It is thus interesting to compare model-
based testing methods in terms of their ability to find prob-
lems which cannot not be described by models from which
tests are generated.

Testing from a high-level specification could be consid-
ered ineffective, because of a wide gap in abstraction be-
tween a specification and design. In a sense, this is handled
by ‘inconclusive’ test results [20]; [6] reports that testing
only covered a part of an implementation. Thus the ques-
tion is what to do with the implemented behaviour which
was not specified (one can argue that a failure of the Ariane
5 space rocket was related to an extra piece of code running
which should have been disabled).

3. Formal Methods and Testing: What Hap-
pens and What Should

John A. Clark, University of York

Effective and efficient development requires
wide-ranging integration of formal and non-
formal techniques. there is much work done al-
ready but there is considerable potential for fur-
ther growth.

To support this statement I shall now provide a partial
categorisation of current work concerning formal methods
and testing and indicate some issues arising in each.

3.1. Formal methods as testing

Some things are just better done formally. An obvi-
ous example would be testing whether security protocols
can be attacked by a malicious party with access to the
medium. The errors uncovered by current model checking
approaches would most likely never be found by other test-
ing means. For example, seventeen years after publication
and after countless citations, a very well-known protocol
was shown (by model checking) to contain an error [36]!
More generally, various ‘negative’ properties are obvious
candidates for using a fully formal approach. Some things
that can be proved, should be. Dynamic testing sometimes
has little to offer. Conversely, can we agree where formal
approaches are lacking? More generally, a more detailed
and explicit understanding is needed of what works best,
where, and why.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

3.2. Formal methods in support of testing

There is a considerable amount of work here, most usu-
ally termed “testing from specifications.” A typical ap-
proach would be partition extraction on a model-based spec-
ification, solution of the constraints that arise, and refin-
ing the results to program test cases. Also the test (gen-
erate) and check paradigm would seem significantly under-
rated and under-used. One often cited problem concerning
such techniques based is a marked reluctance of engineers
to write formal descriptions. Approaches that map automat-
ically from a “safe subset” of engineering-friendly graphical
notations (e.g., Statecharts) to provide a formal and process-
able intermediate description (e.g., using the Z notation) are
a promising avenue to follow [13, 12]. The principal chal-
lenge, and one we cannot ignore, would appear to be scala-
bility.

3.3. Evolutionary testing in support of formal meth-
ods

If you want to prove something, it helps if it is actually
true! Directed testing (e.g., via evolutionary approaches
[53]) can act as a means of targeted counter-example gen-
eration. Thus, claims about exception-freeness and other
specific safety properties might first be verified via guided
dynamic search [42] and only then subject to proof. This
may well save (doomed) proof effort which can be applied
elsewhere.

3.4. Specification/design/refinement and testing

The overall aim is to achieve risk reduction cost effec-
tively. This requires an integrated approach to design and
verification. You may well write a specification in a par-
ticular style. Similarly, you may write a specification in a
style you know a particular proof tool handles well. How
should you specify for automatic test case generation? How
should low-level testability issues affect specification and
refinement style [16]?

3.5. Testing in support of specification

Specifications may be synthesised from test data by hy-
pothesising a great number of possible assertions about the
program state at various points and seeing which are in-
validated by test data [18]. What remains is a ‘specifica-
tion.’ Standard black-box and structural testing together
with targeted counter-example generation [51] can support
the creation of better formal approximations as specifica-
tions. This notion extends further. Various non-standard
systems (e.g., neural networks) can now ‘explain’ their be-
haviour to the user. This is just another description we

might like to find a counter-example to. Should we be
more flexible in what we consider to be a specification?
Are we making unhelpful and over-restrictive assumptions
about what constitutes a ‘system’?

3.6. Mathematical methods and testing

Do we distinguish too heavily between ‘formal meth-
ods’ (things done by the “formal methods community”)
and the mathematics used by mathematicians and engineers
more generally? Can/should the current FORTEST group
embrace more statistical concepts and links with numeri-
cal analysis, control theory and information theory? Much
mathematics works! I think we should embrace it.

And finally, let us look ahead. The future may be nano-
technology! What are we doing to address the rigorous
specification of nano-system properties, their rigorous re-
finement and the ‘testing’ of the various system descriptions
that arise?

4. Testability Transformation

Mark Harman, Brunel University

Testing is increasingly recognised as a crucial part of the
software development process and one which is important
for almost all forms of software. Unfortunately, testing is
also a hard problem, not least because of the difficulty in
automating the identification of high quality test data.

In this section we describe, in overview, a new approach
to transformation, in which programs which are hard to test
are transformed into programs which are easier to test. This
is a simple idea, but it involves a radical new approach to
transformation. The transformations used need not pre-
serve the traditional (functional equivalence) meaning of
programs. Neither do we propose to keep the transformed
program’s; we only need them to help us generate test data.

Because testability transformation alters the program,
we may also need to co-transform the test adequacy crite-
rion against which we are testing. This allows us to shift
the problem of testing an original program with an original
criterion to the transformed problem of testing the trans-
formed program with respect to the transformed criterion.
Therefore, Testability Transformation is an example of an
approach in which a hard problem is reformulated to a new
problem which, though easier to solve, retains the proper-
ties of interest pertinent to the original, harder problem.

In the rest of this section, we shall look at problems for
branch coverage, but the ideas presented here can be applied
far more widely than this. Branch coverage criteria require
that a test set contains, for each feasible branch of the pro-
gram under test, at least one test case which causes exe-
cution to traverse the branch. Unfortunately, automatically

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

generating test data which have this property is not gener-
ally computable, and so research and development have fo-
cused upon techniques which aim to optimise test data with
respect to such a criterion.

4.1. The problem

Generating branch coverage adequate test data is often
impeded by the structure of the program under test. This
section illustrates this by considering problems for evolu-
tionary testing [34, 44, 52, 56], but the problem also applies
in other approaches to white box test data generation.

Evolutionary Testing uses metaheuristic search based
techniques2 to find good quality test data. Test data qual-
ity is defined by a test adequacy criterion, which underpins
the fitness function which drives the search implemented by
the genetic algorithm.

To achieve branch coverage, a fitness function is typi-
cally defined in terms of the program’s predicates. It deter-
mines the fitness of candidate test data, which in turn, deter-
mines the direction taken by the search. The fitness function
essentially measures how close a candidate test input drives
execution to traversing the desired (target) path.

Generating test data using evolutionary test data genera-
tion has been shown to be successful, but its effectiveness is
significantly reduced in the presence of programming styles
which make the definition of an effective fitness function
problematic. For example:

� The presence of side effects in predicates reduces the
ability to exploit the inherent parallelism in a predi-
cate’s syntactic structure.

� The use of flag variables (and enumeration types in
general) creates a coarse fitness landscape, thereby
dramatically reducing the effectiveness of the search.

� Unstructured control flow (in which loops have many
entry and exit points) affects the ability to determine
how alike are the traversed and target paths.

The presence of these features make a program less
‘testable.’

4.2. The solution

When presented with problems of programming style, a
natural solution is to seek to transform the program to re-
move the problem. However, there is an apparent paradox:

2Typically genetic algorithms and simulated annealing have been used,
but we require only that the technique used is characterised by some fitness
(or cost) function, for which the search seeks to find an optimal or near-
optimal solution.

Structural testing is based upon structurally de-
fined test adequacy criteria. The automated gen-
eration of test data to satisfy these criteria can be
impeded by properties of the software (for exam-
ple, flags, side effects, and unstructured control
flow). Testability transformation seeks to remove
the problem by transforming the program so that
it becomes easier to generate adequate test data.
However, transformation alters the structure of
the program. Since the program’s structure is al-
tered and the adequacy criteria is structurally de-
fined, it would appear that the original test ade-
quacy criterion may no longer apply.

Testability transformation therefore requires co-
transformation of the adequacy criterion; this avoids the
apparent paradox. An (informal) definition of a testability
transformation is given below:

Definition 1 Testability Transformation
A testability transformation maps a program, p and its as-
sociated test adequacy criterion, c to a new program p0 and
new adequacy criterion, c0, such that any set of test data
which is adequate for p0 with respect to c0 is also adequate
for p with respect to c.

Observe that, while traditional transformations are
meaning preserving functions on programs, testability
transformations are ‘test set preserving’ functions on pairs
containing both a program and its associated adequacy cri-
terion.

4.3. Heresy?

Testability transformation is novel, both in its applica-
tion of transformation to the problem of automated test data
generation and in the way in which it becomes necessary
to change the traditional view of transformation in order to
achieve this:

� Disposable Transformation
Program transformation has previously been regarded
as an end in itself, rather than merely as a means to
an end. Hitherto, the goal of transformation research
has been to transform poor programs into better ones.
Thus research has tended to assume that the original
program will be discarded once the transformed pro-
gram has been constructed.

By contrast, with the Testability Transformation ap-
proach, it is the transformed program which is dis-
carded and the original which is retained. Testabil-
ity transformation requires the transformed program
solely for the purpose of test data generation. Defi-
nition 1 guarantees that such test data will be adequate

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

for the original. Once the test data is generated, the
transformed program is no longer required.

� Non Meaning-Preserving Transformation
Program transformation has traditionally been con-
cerned with the preservation of functional equiva-
lence. However, using the Testability Transforma-
tion approach, the transformed program must provide
a wholly different guarantee; that test data generated
from it is adequate for the original program. This
means that the transformations applied need not pre-
serve any notion of traditional equivalence, opening
the possibility of a novel set of program transforma-
tion rules and algorithms.

4.4. Future Work

There are many ways in which we might pursue a re-
search agenda which exploits the idea of transformation to
improve testability. These could be characterised as fol-
lows:

� Theoretical Foundations
The concept of transformations which preserve only
program behaviour with respect to testing concerns
will require a reformulation of the semantic relations
to be preserved by transformation. Such a semantics
could be captured using abstract interpretation [15].

� Algorithmic Development
Existing work transformation to remove side effects
[26] and to restructure programs [2, 48] may be reused
or adapted for testability transformation. However,
Testability Transformation will require new and radi-
cally different transformation algorithms. These new
transformations need not preserve the meaning of a
program, in the traditional sense. For instance, exist-
ing transformation algorithms would never transform
the program if(E) S1 else S2 into if(E) S2
else S1.

Such a transformation would clearly not be mean-
ing preserving. Nonetheless, this transformation does
preserve branch coverage and so is a valid testability
transformation for branch coverage preservation.

� Evaluation
Clearly any new approach requires evaluation before
wider adoption. Initial work on flag removal transfor-
mations for evolutionary testing [25] has provided a
proof of concept, demonstrating the improvement in
test generation time and test data quality for branch
coverage after flag removal. However, given the scope
and size of the problem addressed by Testability Trans-
formation, these results represent only the initial con-
firmation that the idea is sound.

� Extensions
This section has considered the way in which transfor-
mation might benefit testing and evolutionary testing
in particular. However, the idea may also be applicable
for other forms of testing, for example mutation based
testing and constraint based test data generation. The
idea of a transformation which preserves only a prop-
erty of interest, rather than the traditional semantics of
the program may also find other applications. Tradi-
tionally, such a view has guided analysis (through ab-
stract interpretation). It is hoped that testability trans-
formation will be one in a sequence of many applica-
tions in which abstract interpretation can be used to
guide transformation as well as analysis.

5. The Utilization of System Properties in Test-
ing

Robert Hierons, Brunel University

While many test techniques are eminently sensible and
extremely useful, often they have no real theoretical basis.
It is thus difficult to say what we have learnt if a piece of
software passes our test. This has encouraged the view that
software testing is an imprecise process that is more of an
art than a science. Here we will argue that test hypotheses
and fault models may be used to overcome these problems
and that there are a number of interesting open questions
relating to this area.

5.1. Test hypotheses, fault models, and test that de-
termine correctness

In order to introduce more formality into testing, the no-
tions of fault models and test hypotheses have been intro-
duced. A fault model [33] is a set � of behaviours with the
property that the tester believes that the implementation un-
der test (IUT) behaves like some unknown element of �. It
may be possible to produce a test T that is guaranteed to
determine correctness under this assumption: T will lead to
a failure for every faulty elements of �. A similar notion is
a test hypothesis [22]: a property that the tester believes that
the IUT has. Given test hypothesis H it may be possible to
find a test that determines correctness under the assumption
that H holds.

Naturally, test hypotheses and fault models are related
properties. Given test hypothesis H , there is a correspond-
ing fault model: the set of behaviours that satisfy H . Given
fault model� there is an associated test hypothesis: that the
IUT behaves like some unknown element of �.

Fault models are largely met within the areas of protocol
conformance testing and hardware testing. Here the speci-
fication M is typically a finite state machine (FSM) and a

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

fault model is some set of FSMs with the same input and
output sets as M . One such fault model is the set of FSMs
with the same input and output sets as M and no more than
m states, for some predefined m. Since this fault model is
finite and equivalence of FSMs is decidable, correctness is
decidable, through black-box testing, under this fault model
[39].

While the work on test hypotheses originated in the field
of testing from algebraic specifications (see, for example,
[7, 22]), it may be argued that test hypotheses lie behind
many software test techniques. The classic example is the
uniformity hypothesis used in partition analysis (see, for ex-
ample, [23]). Here it is assumed that the behaviour of the
IUT is uniform on some region of the input domain and thus
that it is sufficient to take a small number of values from this
region. Typically such tests are augmented by tests around
the boundaries – an admission that the tester is not confident
that the uniformity hypothesis holds.

5.2. Comparing test techniques

Currently most theoretical results, regarding the relative
strengths of test criteria, relate to the subsumes relation.
Here test criterionC1 subsumes test criterionC2 if and only
if every test set that satisfies C1 also satisfies C2. While
many test criteria are comparable under subsumes [43], the
subsumes relation says nothing about the ability of test sets
and criteria to determine whether the IUT contains faults.
Given criteria C1 and C2, such that C1 subsumes C2, there
is no guarantee that if some test that satisfies C2 finds a fail-
ure then every test that satisfies C1 finds a failure (see [24]
for a critique of the subsumes relation).

It has been observed that often the following comparison
would be more useful [24]: test criterion C1 is at least as
strong as test criterion C2 if whenever some test set that
satisfies C2 determines that the IUT is faulty, every test set
that satisfies C1 determines that the IUT is faulty. This is
writtenC2 � C1. However, since test criteria do not usually
exclude any test input, given faulty IUT I , every practical
test criterion is able to determine that I is faulty. Further, in
general no practical test criterion will produce tests that are
guaranteed to determine that I is faulty. Thus, practical test
criteria are not comparable under � [24].

In addition to the above limitations, the only relation be-
tween test sets is set inclusion: test set T1 is at least as strong
as a test set T2 if and only if T2 � T1.

It thus seems that there is no way of producing strong,
general comparisons between test criteria and test sets.
However, in testing, the tester is not interested in general
comparisons: they are interested in using a ‘good’ test set
or criterion for the system they are currently testing. Thus,
methods for comparing test sets and criteria might utilise
system properties, possibly represented as either test hy-

potheses or fault models. Given a fault model or test hy-
pothesis, there may be relationships between the effective-
ness of particular test sets or criteria that do not generally
hold.

Suppose, for example, that the input domain D of the
IUT I has been partitioned into a set P of sub-domains.
Suppose, further, that the uniformity hypothesis is made for
each sub-domain D0 2 P . Under this test hypothesis, a
test set T1 is at least as strong as a test set T2 if and only
if for all D0 2 P , if T2 contains an element from D0 then
T1 also contains an element from D0. Assuming the test
hypothesis holds, we know that if T2 finds a failure then T1
is guaranteed to find a failure. Test set T1 being at least as
strong as test set T2 under hypothesis H might be written
T2 �H T1.

Observe that in general, T2 �H T1 does not imply that
T2 � T1 but that T2 � T1 does imply that T2 �H T1. Thus
�H is a weaker comparator than �.

This type of comparison may also be used to drive test
generation: it is only worth extending a test set T by a test
case t if T [ftg 6�H T : the test set T [ftg is capable of
identifying faulty implementations that T cannot.

This type of relation might be extended to test criteria:
test criterion C1 is at least as strong as criterion C2 under
hypothesis H if for every test set T1 satisfying C1 and test
set T2 satisfying C2, T2 �H T1.

Where a test criterion C corresponds to testing to deter-
mine correctness under the test hypothesisH used, it is im-
mediate that for every test criterion C 0, C 0 �H C. Further,
in one extreme case, where the hypothesisHcorr is that the
implementation is correct, all criteria are comparable under
�Hcorr

. An open question is: are there other types of test
criteria that are comparable under some test hypothesisH?

5.3. Issues

While test hypotheses and fault models allow the tester
to reason about test effectiveness, the tester is left with the
problem of deciding which assumptions to make. If the as-
sumptions made are too strong and the IUT does not satisfy
these, the results based on the assumptions may not hold. If
the assumptions made are weaker than necessary then the
tester may not be able to utilise properties that are of value.

Based on the above, it may thus be argued that one of
testing research’s major challenges is to find system prop-
erties, in the form of fault models or test hypotheses, such
that:

� the system properties are likely to hold;

� the system properties are relatively simple to formally
verify;

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

� the system properties assist the tester, either in produc-
ing a test that determines correctness or in reasoning
about test effectiveness.

Naturally such test hypotheses and fault models are
likely to be domain specific. An interesting question is: are
there problem domains with common sets of system prop-
erties that satisfy the above conditions?

6. Test Automation

Paul Krause, University of Surrey & Philips Digital
Systems Laboratory

Where do we stand with test automation? Let us take
a positive view to begin with. What are the fundamental
problems with software testing, and do we seem to be near
a solution?

What are the problems? Well, for any complex software
product testing is time consuming and resource hungry. In
addition, it is error prone. Errors may be both faults of com-
mission (the test plan or test cases may contain an incorrect
assumption about the behaviour of the intended product)
and faults of omission (the test plan may fail to adequately
test certain aspects of the behaviour of the intended prod-
uct). Test automation, both in terms of generation of tests,
and their execution, seems to offer a panacea. So, where are
we now?

For many classes of application, automated execution of
test cases is becoming a routine activity. Indeed for some
projects, it is essential in order to obtain the required de-
gree of coverage within a limited budget. Most commercial
test execution tools are designed for graphical user inter-
face based testing. However, tools for non-intrusive testing
of embedded software are now entering the market place.
In this case we are interested in stimulating the software
through simulating user actions, and then checking the re-
sponse of the software by capturing the feedback to the user
(usually via some character or image verification of an LCD
or other video display). This is looking good. There is
promise here to remove the tedium and expense of manual
execution of test cases in favour of machine execution.

What about generating the test cases? There have been
many advances in generating test cases from specifications.
Test generation from formal specifications, such as Z or
VDM, is now well covered [27, 31, 49, 50]. But the (ap-
parently) less formal, although perhaps more widely used,
specification techniques such as UML Sequence Charts,
Statecharts and Cause-Effect Graphing also have sound and
automatable test case generation techniques associated with
them [28]. With the availability of techniques for automated
generation of test cases from specifications, and automated
execution of test cases, it may seem we are close to realising

a dream of “one-button testing” of software products. How-
ever, there are a number of problems that still need to be
resolved. Let us take a simple Use Case from an embedded
application by way of illustration. This is a hypothetical
Use Case for software embedded in a television, and elic-
its some of the functional requirements needed to support
manual installation. The details of the behaviour will not
correspond to any specific product – they are purely for il-
lustration of the principles, although based on a currently
available product.

Use Case: Manual Installation

1. This Use Case begins when the user selects the Manual
Installation Sub-Menu

2. The Current Program Number is set to 1

3. The User first selects the System from UK, Europe or
??

4. The User may now set the Tuner to search for an Off-
air Channel

5. The User may not interrupt the search operation until
the Tuner has identified a stable signal

6. When the Tuner has identified a stable signal, the fre-
quency of that signal shall be displayed

7. The User may accept the current value of the Program
Number, or increase it if they wish to skip one or more
Program Numbers

8. The User may now store the Tuner Frequency to be
indexed by their chosen Current Program Number

9. Following a time-out of 3 seconds, the Current Pro-
gram Number shall be incremented and control will
return to Step 4

10. Other than while the Tuner is searching (Step 5) the
User may exit this Use Case at any point

A number of options are available to progress develop-
ment of an analysis model at this point. Rather than begin
to refine this into a more detailed specification, we will just
consider three approaches that could be used almost straight
away as an aid to generating test cases. A more detailed and
precise description of the behaviour of the product could be
obtained by expressing this Use Case as a Sequence Chart, a
Statechart or a Cause-Effect Graph. There are well-defined
techniques for generating test cases from each of these.

This sounds quite promising now. We can re-express this
Use Case in one of a number of languages each with a well-
defined syntax. From any of these, we can generate test
cases in an executable script. Seemingly we are there. Pass

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

the scripts to a test execution environment and then sit back
and wait for the results? Unfortunately, there are a number
of issues that still need to be resolved.

The first thing to notice is that the Use Case is written
with a deliberate abstraction away from the details of the
user interface. For example, although we state that the “Use
Case begins when the user selects the Manual Installation
Sub-Menu,” we do not state at this point whether this Sub-
Menu is selected using the local key-board, a remote control
or (perhaps) a voice command. Neither do we express the
precise sequence of commands needed to get to this point
from some preferred starting point. This is a deliberate and
often used policy. In the above example, the functionality
described has stayed essentially unchanged across several
generations of products. However, the details of the user
interactions can stay quite volatile even up to the late stages
of product development, so a recommended practice is to
keep the user interactions separate from the logical events.
This means that if we are to be able to automatically exe-
cute these tests non-intrusively against embedded software,
then we need some way of automatically mapping the logi-
cal events (e.g., “select the Manual Installation Sub-Menu”)
onto a physical sequence of user interactions (send a Menu
command, send three Cursor Down commands, send Cur-
sor Right to select the Installation Sub-Menu...).

A second problem is controlling the number of test cases
that are generated even for this relatively minor aspect of
the product’s behaviour. A television set for the European
market may have as many as 125 potential channel num-
bers. Taking into account the scope for skipping channels
or not, this implies a massive combinatorial explosion if we
are to consider all possible scenarios (paths through the Use
Case). How do we identify an automatable policy for se-
lecting out a sufficient sub-set of all these scenarios that is
executable in a finite time? The problem becomes fantas-
tically complex if we consider combinations of test cases
(e.g., how does channel change perform when we have pre-
viously installed two channels, three channels. . . 125 chan-
nels? And should we perform each of these combination
tests for all possible pairwise channel changes?).

A third test generation problem is that we are at the mo-
ment only considering testing functionality. With complex
consumer products a significant percentage of the field call
rate is due to non-functional/performance issues. In the
above example, we might have tested tuning speed against
some benchmarks. But does tuning speed degrade as more
channels are installed? Does it degrade upon repeated exit-
ing and restarting of the Manual Installation Use Case? Is
it possible to identify techniques or heuristics for identifica-
tion of non-functional stress and performance tests?

These problems can be summarised as follows:

1. The number of test cases generated increases exponen-
tially with the complexity of a product. For most soft-

ware systems, executing a complete set of automati-
cally generated test cases at the system level is not fea-
sible. How do we select a finite subset of test cases
without significantly impacting on the quality guaran-
tees for the product?

2. For many product families, a clear separation of con-
cerns is maintained between specification of function-
ality, and specification of the User Interface. How
do we specify the mapping between logical events in
the functional specification and physical events in the
user interface specification so that the complete test de-
scriptions can be generated for non-intrusive testing of
embedded software?

3. Tools for automated execution of test cases are primar-
ily sold as aids for testing functionality. Yet many
of the issues that are raised in field calls are non-
functional. What is industry’s experience with auto-
mated testing of non-functional requirements?

My position is that these issues need to be soundly re-
solved before the full potential of automated testing can be
realised. Indeed, the problem is even worse than this. I
have omitted at least two functions in the above Use Case.
On many televisions, once a stable signal has been identi-
fied by the Tuner, Automatic Frequency Control (AFC) is
enabled for that Channel to follow the signal in case of any
frequency drift. Alternatively, the User can disable AFC
and manually fine tune to obtain an optimum signal. Never
mind about the details. The important issue is that I failed
to identify, or at least articulate, all that was relevant to this
Use Case. So even if we can solve the above three problems
satisfactorily, the confidence we can gain from automated
generation and execution of tests will still be bounded by
the confidence we have that all the relevant requirements
have been identified – and indeed by the confidence that
those we have identified are correct. Perhaps we need to
learn that uncertainty is inherent in software?

7. Conclusion

The authors of this paper believe that there are benefits
of applying formal methods to the software testing process
in a number of ways. This paper has explored some of the
possibilities, although not in an exhaustive manner. For ex-
ample, formal methods could also be useful in the formal-
ization of existing testing criteria [54] to help eliminate mis-
understanding and in the precise formulation of new testing
criteria [55].

The paper is intended to provoke discussion. We wel-
come both positive and constructive negative feedback on
the ideas presented in this paper. The contact details of all

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

the authors and further information on the FORTEST Net-
work can be found on-line under:

www.fortest.org.uk

References

[1] P. Ammann, P. E. Black, and W. Majurski. Using model
checking to generate tests from specifications. In Proc.
2nd IEEE International Conference on Formal Engineering
Methods (ICFEM ’98), pages 46–54, Brisbane, Australia,
Dec. 1998.

[2] E. A. Ashcroft and Z. Manna. The translation of goto pro-
grams into while programs. In C. V. Freiman, J. E. Grif-
fith, and J. L. Rosenfeld, editors, Proc. IFIP Congress 71,
volume 1, pages 250–255. North-Holland, 1972.

[3] M. Benjamin, D. Geist, A. Hartman, G. Mas, R. Smeets, and
Y. Wolfsthal. A feasibility study in formal coverage driven
test generation. In Proc. 36th Design Automation Confer-
ence (DAC’99), June 1999.

[4] A. Bertolino and L. Strigini. On the use of testability mea-
sures for dependability assessment. IEEE Transactions on
Software Engineering, 22(2):97–108, Feb. 1996.

[5] K. Bogdanov. Automated Testing of Harel’s Statecharts.
PhD thesis, The University of Sheffield, UK, Jan. 2000.

[6] K. Bogdanov and M. Holcombe. Statechart testing method
for aircraft control systems. Software Testing, Verification
and Reliability, 11:39–54, 2001.

[7] L. Bouge, N. Choquet, L. Fibourg, and M.-C. Gaudel. Test
sets generation from algebraic specifications using logic pro-
gramming. Journal of Systems and Software, 6(4):343–360,
1986.

[8] J. P. Bowen. The ethics of safety-critical systems. Commu-
nications of the ACM, 43(4):91–97, April 2000.

[9] J. P. Bowen and M. G. Hinchey. Ten commandments of for-
mal methods. IEEE Computer, 28(4):56–63, April 1995.
Also in High-Integrity System Specification and Design,
Springer-Verlag, FACIT series, pages 217-230, 1999.

[10] J. P. Bowen and M. G. Hinchey, editors. ZUM’95: The
Z Formal Specification Notation, 9th International Confer-
ence of Z Users, Limerick, Ireland, September 7–9, 1995,
Proceedings, volume 967 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1995.

[11] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking: 10

20 states and
beyond. Information and Computation, 98:142–170, 1992.

[12] S. Burton, J. Clark, A. Galloway, and J. McDermid. Au-
tomated V&V for high integrity systems: A targeted for-
mal methods approach. In Proc. 5th NASA Langley Formal
Methods Workshop, June 2000.

[13] S. Burton, J. Clark, and J. McDermid. Testing, proof and au-
tomation: An integrated approach. In Proc. 1st International
Workshop of Automated Program Analysis, Testing and Ver-
ification, June 2000.

[14] T. Chow. Testing software design modeled by finite-state
machines. IEEE Transactions on Software Engineering, SE-
4(3):178–187, 1978.

[15] P. Cousot and R. Cousot. Abstract interpretation frame-
works. Journal of Logic and Computation, 2(4):511–547,
Aug. 1992.

[16] J. Derrick and E. Boiten. Testing refinements of state-based
formal specifications. Software Testing, Verification and Re-
liability, 9:27–50, July 1999.

[17] J. Dick and A. Faivre. Automating the generation and se-
quencing of test cases from model based specifications. In
J. C. P. Woodcock and P. G. Larsen, editors, FME ’93:
Industrial Strength Formal Methods, volume 670 of Lec-
ture Notes in Computer Science, pages 268–284. Springer-
Verlag, April 1993.

[18] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. In International Conference on Soft-
ware Engineering, pages 213–224, 1999.

[19] N. E. Fenton. Software Metrics: A Rigorous Approach.
Chapman & Hall, London, 1991.

[20] J.-C. Fernandez, C. Jard, T. Jeron, and G. Viho. Using
on-the-fly verification techniques for the generation of test
suites. In R. Alur and T. Henzinger, editors, Computer Aided
Verification, 8th International Conference, CAV ’96, volume
1102 of Lecture Notes in Computer Science, pages 348–359.
Springer-Verlag, 1996.

[21] A. Gargantini and C. Heitmeyer. Using model checking to
generate tests from requirements specifications. In Proc.
ESEC/FSE 99: Joint 7th European Software Engineering
Conference (ESEC) and 7th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering
(FSE-7), Toulouse, France, 6–10 September 1999.

[22] M.-C. Gaudel. Testing can be formal too. In P. D.
Moses, M. Nielson, and M. I. Schaertzbach, editors, TAP-
SOFT’95: Theory and Practice of Software Development,
volume 915 of Lecture Notes in Computer Science, pages
82–96. Springer-Verlag, March 1995.

[23] J. B. Goodenough and S. L. Gerhart. Towards a theory of test
data selection. IEEE Transactions on Software Engineering,
1(2):156–173, 1975.

[24] R. Hamlet. Theoretical comparison of testing methods. In
Proc. ACM SIGSOFT’89, pages 28–37, 1989.

[25] M. Harman, L. R. M. Hierons, A. Baresel, and H. Sthamer.
Improving evolutionary testing by flag removal. In Genetic
and Evolutionary Computation Conference (GECCO 2002),
New York, USA, July 2002. AAAI. To appear.

[26] M. Harman, Lin Hu, Xingyuan Zhang, and M. Munro. Side-
effect removal transformation. In Proc. 9th IEEE Interna-
tional Workshop on Program Comprehension (IWPC’01),
pages 310–319, Toronto, Canada, May 2001. IEEE Com-
puter Society Press, Los Alamitos, California, USA.

[27] R. M. Hierons. Testing from a Z specification. Software
Testing, Verification and Reliability, 7(1):19–33, 1997.

[28] R. M. Hierons, S. Sadeghipour, and H. Singh. Testing a
system specified using statecharts and z. Information and
Software Technology, 43(2):137–149, 2001.

[29] C. A. R. Hoare. How did software get so reliable without
proof? In M.-C. Gaudel and J. C. P. Woodcock, editors,
FME’96: Industrial Benefit and Advances in Formal Meth-
ods, volume 1051 of Lecture Notes in Computer Science,
pages 1–17. Springer-Verlag, 1996.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

[30] M. Holcombe and F. Ipate. Correct Systems: Building a
Business Process Solution. Springer-Verlag, Sept. 1998.

[31] H.-M. Hörcher. Improving software tests using Z specifica-
tions. In Bowen and Hinchey [10], pages 152–166.

[32] F. Ipate and M. Holcombe. An integration testing method
that is proved to find all faults. International Journal on
Computer Mathematics, 63:159–178, 1997.

[33] ITU-T. Z.500 Framework on Formal Methods in Confor-
mance Testing. International Telecommunications Union,
1997.

[34] B. F. Jones, H.-H. Sthamer, and D. E. Eyres. Automatic
structural testing using genetic algorithms. Software Engi-
neering Journal, 11(5):299–306, 1996.

[35] S. Liu. Verifying consistency and validity of formal specifi-
cations by testing. In J. Wing, J. Woodcock, and J. Davies,
editors, FM ’99: Formal Methods, Volume I, volume 1708
of Lecture Notes in Computer Science, pages 896–914.
Springer-Verlag, September 1999.

[36] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In T. Margaria and B. Stef-
fen, editors, Tools and Algorithms for Construction and
Analysis of Systems, volume 1055 of Lecture Notes in Com-
puter Science, pages 147–166. Springer-Verlag, 1996. Also
in Software Concepts and Tools, 17:93–102, 1996.

[37] R. R. Lutz. Analyzing software requirements errors in
safety-critical, embedded systems. In IEEE International
Symposium on Requirements Engineering, pages 126–133,
San Diego, CA, 1993. IEEE Computer Society Press.

[38] J. D. McGregor and T. D. Korson. Integrated object-oriented
testing and development processes. Communications of the
ACM, 37(9):59–77, Sept. 1994.

[39] E. P. Moore. Gedanken-Experiments. In C. Shannon and
J. McCarthy, editors, Automata Studies. Princeton Univer-
sity Press, 1956.

[40] L. J. Morell. A theory of fault-based testing. IEEE Transac-
tions on Software Engineering, 16(8):844–857, Aug. 1990.

[41] G. Myers. The Art of Software Testing. John Wiley and Sons,
1979.

[42] K. M. N. Tracey, J. Clark and J. McDermid. Automated test-
data generation for exception conditions. Software – Prac-
tice and Experience, 30(1):61–79, 2000.

[43] S. C. Ntafos. A comparison of some structural testing
strategies. IEEE Transactions on Software Engineering,
14(6):868–874, 1988.

[44] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data genera-
tion using genetic algorithms. Software Testing, Verification
and Reliability, 9(4):263–282, 1999.

[45] J. Peleska and M. Siegel. Test automation of safety-critical
reactive systems. South African Computer Journal, 19:53–
77, 1997.

[46] A. Petrenko, N. Yevtushenko, and G. v. Bochmann. Testing
deterministic implementations from nondeterministic FSM
specifications. In Proc. 9th International Workshop on Test-
ing of Communicating Systems (IWTCS’96), pages 125–140,
1996.

[47] T. Ramalingam, A. Das, and K. Thulasiraman. On test-
ing and diagnosis of communication protocols based on the
FSM model. Computer communications, 18(5):329–337,
May 1995.

[48] L. Ramshaw. Eliminating goto’s while preserving program
structure. Journal of the ACM, 35(4):893–920, 1988.

[49] S. Stepney. Testing as abstraction. In Bowen and Hinchey
[10], pages 137–151.

[50] P. A. Stocks and D. A. Carrington. A framework for
specification-based testing. IEEE Transactions on Software
Engineering, 22(11):777–793, November 1996.

[51] N. Tracey, J. Clark, and K. Mander. Automated program
flaw finding using simulated annealing. In Software Engi-
neering Notes, Proc. International Symposium on Software
Testing and Analysis, pages 73–81. ACM/SIGSOFT, March
1998.

[52] N. Tracey, J. Clark, and K. Mander. The way forward for
unifying dynamic test-case generation: The optimisation-
based approach. In Proc. International Workshop on De-
pendable Computing and Its Applications (DCIA), pages
169–180. IFIP, January 1998.

[53] N. Tracey, J. Clark, J. McDermid, and K. Mander. A search-
based automated test data generation framework for safety-
critical systems. In Systems Engineering for Business Pro-
cess Change, chapter 12, pages 174–213. Springer-Verlag,
2002.

[54] S. A. Vilkomir and J. P. Bowen. Formalization of software
testing criteria using the Z notation. In 25th Annual Inter-
national Computer Software and Applications Conference
(COMPSAC 2001), Chicago, Illinois, pages 351–356. IEEE
Computer Society, October 2001.

[55] S. A. Vilkomir and J. P. Bowen. Reinforced condi-
tion/decision coverage (RC/DC): A new criterion for soft-
ware testing. In D. Bert, J. P. Bowen, M. Henson, and
K. Robinson, editors, ZB 2002: Formal Specification and
Development in Z and B, volume 2272 of Lecture Notes
in Computer Science, pages 295–313. Springer-Verlag, Jan-
uary 2002.

[56] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test
environment for automatic structural testing. Information
and Software Technology, 43(14):841–854, 2001. Special
issue on Software Engineering using Metaheuristic Innova-
tive Algorithms.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

