
A Meta-analysis Approach to Refactoring and XP

Steve Counsell, Robert M. Hierons,
Department ofInformation Systems and Computing,
Brunel University, Uxbridge, Middlesex. UB8 3PH.

tsteve. counsell, rob. hierons}@brunel. ac. uk

George Loizou,
School ofComputer Science, Birkbeck, University ofLondon,

Malet Street, London, WC]E 7HX
george@dcs. bbk. ac. uk

Abstract

The mechanics of seventy-two different Java
refactorings are describedfully in Fowler's text [13].
In the same text, Fowler describes seven categories
of refactoring, into which each of the seventy-two
refactorings can be placed. A current research
problem in the refactoring and XP community is
assessing the likely time and testing effort for each
refactoring, since any single refactoring may use any

number ofother refactorings as part of its mechanics
and, in turn, can be used by many other refactorings.
In this paper, we draw on a dependency analysis
carried out as part of our research in which we

identify the 'Use' and 'Used By' relationships of
refactorings in all seven categories. We offer reasons

why refactorings in the 'Dealing with
Generalisation' category seem to embrace two
distinct refactoring sub-categories and how
refactorings in the 'Moving Features between
Objects' category also exhibit specific
characteristics. In a wider sense, our meta-analysis
provides a developer with concrete guidelines on

which refactorings, due to their explicit
dependencies, will prove problematic from an effort
and testing perspective.

1. Introduction

As a software engineering discipline, refactoring has
grown in prominence over the past few years [7, 8, 9,
10, 12, 15, 16, 17, 24]. Refactoring can be loosely
defined as any change made to software in order to
improve its structure without necessarily changing
the semantics of the program. In principle, the
consequent improvement in code comprehensibility
makes the software easy to maintain and refactoring
can provide both short-term and long-term benefits
[21]. In fact, Fowler [14] suggests that the process of

refactoring is the reversal of software 'decay' and
any refactoring effort is worthwhile.

An open research problem in the refactoring and XP
community [2] is establishing which of competing
refactorings to undertake, based on the premise that a
developer has only limited time for firstly, the
refactoring activity and secondly, the subsequent
testing required [4, 25, 26]. In this paper, we describe
a dependency analysis in which we identify the
relationships between refactorings in the seven
categories originally specified by Fowler [13]. In
other words, we investigated, for each refactoring X,
which refactorings X 'Uses' as part of its mechanics,
and equally, which refactorings X is 'Used By' as
part of the mechanics of other refactorings. Our
analysis examines the characteristics of these two
relationships and, as a result, offers suggestions as to
why certain categories of refactoring may be more
problematic from a practical perspective.

2. Motivation and related work

A first motivation for our work is to highlight the
features of individual refactorings and their inter-
relationships [23, 27]. In particular, to highlight the
difficulty of deciding on a specific refactoring when
there may be many more hidden activities that only
arise during a refactoring. Secondly, re-testing is a
costly activity and to be undertaken properly requires
an intimate knowledge of program refactoring
mechanics. Those mechanics need to be investigated
thoroughly before they can be used; if not, then those
costs are likely to escalate. In this paper, we try to
understand in more detail the implications of
undertaking any refactoring activity.

The work described in this paper follows on from an
earlier analysis by the same authors where an in-

1-4244-1031-2/07/$25.00©2007 IEEEE6 67

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

depth analysis of the refactoring trends (and of those
fifteen refactorings) in Open-Source Systems (OSS)
was documented [1]. Remarkably and surprisingly,
inheritance and encapsulation-based refactorings
were found to have been applied relatively
infrequently from an empirical perspective, in
keeping with past results relating to this 00 concept
[22]. The work in this paper also builds on other
previous research by the authors where we

investigated the link between refactoring and testing.
In [5], we adapted a testing taxonomy proposed by
Van Deursen & Moonen (VD&M) based on the post-
refactoring repeatability of tests. The VD&M
taxonomy proposed five categories of refactoring. In
our assessment of the taxonomy, we urged the need
for the inter-relatedness of refactorings to be
considered when making refactoring decisions and
we based that inter-relatedness on a refactoring
dependency graph developed as part of the research.
Given our taxonomy extension, we then assessed the
potential for eliminating code smells [13] where
minimum disruption to testing effort is the goal.
Herein, we explore that inter-relatedness in greater
detail.

In terms of broader related work, Najjar et al., have
shown that an investigation of refactoring can deliver
both quantitative and qualitative benefits [21] - the
refactoring 'replacing constructors with factory
methods' of Kerievsky [16] was used as a basis.
Results showed quantitative benefits in terms of
reduced lines of code due to the removal of
duplicated assignments in the constructors as well as

potential qualitative benefits in terms of improved
class comprehension. Developing heuristics for
deciding on different refactorings, based on system
change data, was earlier investigated by Demeyer et
al. [8]. A study of the trends in changes, categorised
according to refactorings was also undertaken in [7]
and a full survey of relevant refactoring work can be
found in [18].

3. The seven refactoring categories

Table 1 shows the seven categories of refactoring as

defined by Fowler (with input from Beck) [13]. For
simplicity, we have labelled these categories A-G.
The 'Composing Methods' category (A) contains
refactorings that package code up properly and place
it where it fits most appropriately. For example, the
'Extract Method' refactoring takes one method
whose purpose is not obvious and converts that
method into two methods. The purpose of the
'Moving Features Between Objects' category (B) is
to ensure, for example, that class coupling is
minimized (e.g., by moving a method or field from
one class to another). As its name suggests, the
purpose of the refactorings in the 'Organising Data'
category (C) is to ensure that data is declared, stored
or manipulated in the most appropriate way. For
example, the 'Encapsulate Field' refactoring changes
the declaration of a field from public to private. The
refactorings in the 'Simplifying Conditional
Expressions' category (D) modify programmed
conditions so that they are more understandable. The
'Decompose Conditional' refactoring for example,
simplifies a conditional so that the 'condition' and
'else' components each have their own methods. The
refactorings in the 'Making Method Calls Simpler'
category (E) attempt to make the program interface
easy to understand and straightforward in nature. The
'Rename Method' refactoring in this category, for
example, renames a method so that its name

expresses more clearly what the method does.
Category F, 'Dealing with Generalisation' comprises
refactorings related to manipulation of the
inheritance hierarchy. Finally, the 'Big Refactorings'
(Category G) are distinct from the other categories
because as Fowler and Beck state, these refactorings
take a long time to complete and '...require a degree
of agreement among the entire programming team
that isn't needed with smaller refactorings'.

Table 1. The seven categories and the refactorings they contain

68

Category Refactorings
A: Composing Extract Method, Inline Method, Inline Temp, Replace Temp with Query, Introduce Explaining
Methods (9) Variable, Split Temporary Variable, Remove Assignments to Parameters, Replace Method with

Method Object, Substitute Algorithm.

B: Moving Move Method, Move Field, Extract Class, Inline Class, Hide Delegate, Remove Middle Man,
Features Between Introduce Foreign Method, Introduce Local Extension.
Objects (8)
C: Organising Self Encapsulate Field, Replace Data Value with Object, Change Value to Reference, Change

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

Data (16)

D: Simplifying
Conditional
Expressions (8)

Reference to Value, Replace Array with Object, Duplicate Observed Data, Change Unidirectional
Association to Bidirectional, Change Bidirectional Association to Unidirectional, Replace Magic
Number With Symbolic Constant, Encapsulate Field, Encapsulate Collection, Replace Record with
Data Class, Replace Type Code with Class, Replace Type Code with Subclasses, Replace Type Code
with State/Strategy, Replace Subclass with Fields.
Decompose Conditional, Consolidate Conditional Expression, Consolidate Duplicate Conditional
Fragments, Remove Control Flag, Replace nested Conditional with Guard Clauses, Replace
Conditional with Polymorphism, Introduce Null Object, Introduce Assertion.

E: Making Method Rename Method, Add Parameter, Remove Parameter, Separate Query from Modifier, Parameterize
Calls Simpler (15) Method, Replace Parameter with Explicit Methods, Preserve Whole Object, Replace Parameter with

Method, Introduce Parameter Object, Remove Setting Method, Hide Method, Replace Constructor
with Factory Method, Encapsulate Downcast, Replace Error Code with Exception, Replace
Exception with Test.

F: Dealing with Pull Up Field, Pull Up Method, Pull Up Constructor Body, Push Down Method, Push Down Field,
Generalisation Extract Subclass, Extract Superclass, Extract Interface, Collapse Hierarchy, Form Template Method,
(12) Replace Inheritance with Delegation, Replace Delegation with Inheritance.
G: Big Tease Apart Inheritance, Convert Procedural Design to Objects, Separate Domain from Presentation,
Refactorings (4) Extract Hierarchy.

3.1. The dependency analysis

The purpose of our research is to investigate the
implications in terms of required refactorings when
deciding amongst n competing refactorings. To
inform that analysis, a dependency list was
developed providing, firstly, for each refactoring X,
the list of the other n refactorings (where n>=O) that
X 'Uses'. Secondly, the relationship between
refactorings from the flip side; the 'Used By'
relationship denotes, for each X, the n refactorings
that use X as part of their mechanics. The
dependency list was compiled by manually parsing
all seventy-two refactorings in Fowler's text. For
example, the 'Change Bidirectional Association to
Unidirectional (CBAtoU)' refactoring 'Uses' two
other refactorings as part of its mechanics. The
purpose of the CBAtoU refactoring is to eliminate
the two-way association between one class and
another when one class no longer needs features of
the other; a one-way association is created. The two
refactorings used by CBAtoU are the 'Self
Encapsulate Field' refactoring and the 'Substitute
Algorithm' refactoring. Similarly, the 'Add
Parameter' refactoring is 'Used By' only one
refactoring, namely, the Introduce Parameter Object'
refactoring. Equally, the 'Change Unidirectional
Association to Bidirectional does not use any other
refactorings as part of its mechanics.

For many of the seventy-two refactorings described
in [13] the refactoring mechanics prescribe that a
particular refactoring must use or may use refactoring
X in order to be a successful refactoring itself. For

example, the 'Introduce Parameter Object'
refactoring, applicable when a group of parameters
are lumped to form an object, requires the use of the
Add Parameter refactoring in a 'must use'
relationship in order that the new data clump can be
formed. Equally, the 'Replace Data Value with
Object' refactoring 'may use' the Change Value to
Reference (CVtR) refactoring; we use this
information in Section 4.

4. Data analysis

In the subsequent analysis, we first analyse the
'Uses' relationships amongst the seven categories
(and then explore the 'Used By' relationship). We
base our subsequent analysis on the premise that,
other things remaining equal, the more refactorings
that a refactoring 'Uses' as part of its mechanics, the
greater the effort required by the developer to
undertake the refactoring and the higher the testing
burden as a result. Equally, refactorings with a high
'Used By' value (i.e., they are used by relatively high
number of refactorings) suggests that those
refactorings are 'core' refactorings, common to the
mechanics (and the testing process) of many
refactorings.

4.1 Summary data

Table 2 shows summary data for the dependencies
amongst the seventy-two refactorings for both 'Uses'
and 'Used By' relationships. It shows the maximum
values in each case, together with the mean values
for each. For example, in the 'Composing Methods'

69

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

category (A), the maximum number of 'Uses' by any
one refactoring was 4, that pertaining to the 'Extract
Method' refactoring; the maximum 'Used By' value

in this category was 10, for the same refactoring. The
mean value of 'Uses' dependencies was 0.78 and the
mean of 'Used By' dependencies 2.44.

Table 2. Summary data for 'Uses' and 'Used By' refactorings

Category Max Max Mean Mean
'Uses' 'Used 'Uses' 'Used

By' By'
A: Composing Methods 4 10 0.78 2.44
B: Moving Features Between 3 12 1.13 2.75
Objects
C: Organising Data 3 7 1.38 1.06

D: Simplifying Conditional 4 3 1.25 0.75
Expressions
E: Making Method Calls 3 9 0.73 1.4
Simpler
F: Dealing with Generalisation 7 5 2.25 1.5

G: Big Refactorings 6 0 4.25 0

Two features of Table 2 are particularly noteworthy.
Firstly, the relatively high 'Uses' mean value for
Category F and G (2.25 and 4.25, respectively) and
the relatively high 'Used By' mean values for
Categories A and B (2.44 and 2.75, respectively). In
the subsequent discussion, we elaborate at length on
why some of these features are of relevance to the
overall discussion.

4.2 'Uses' relationships

A key question which arises when a developer is
deciding on a refactoring is the likely effort required
for both the refactoring and the subsequent testing
effort. To facilitate our analysis, we chose the set of
fifteen refactorings with the highest 'Uses' values
required as part of their mechanics. Figure 1 shows
the frequency of 'Uses' relationships, ranging from 7
down to 3. We note that choosing the top ranked
fifteen refactorings ensured that all refactorings with
at least three 'Uses' dependencies were included in
the analysis. (N.b., eleven refactorings had two
'Uses' dependencies, eighteen refactorings had a
single 'Uses' dependency and the remaining twenty-
eight refactorings had zero 'Uses' dependencies. In
other words, none of those twenty-eight refactorings
used any other refactorings.)

Figure 1. The fifteen refactorings with the highest
number of 'use' dependencies'

The complete fifteen refactorings enumerated from
Figure 1 in descending order of 'Uses' values are: 1.
Extract Subclass (7), 2. Extract Superclass (6), 3.
Extract Hierarchy (6), 4. Tease Apart Inheritance (5),
5. Collapse Hierarchy (4), 6. Extract Method (4) 7.
Form Template Method (4), 8. Replace Conditional
with Polymorphism (4), 9. Separate Domain From
Presentation (4), 10. Change Value to Reference (3),
11. Encapsulate Collection (3), 12. Inline Class (3),
13. Introduce Parameter Object (3), 14. Replace
Temp with Query (3), 15. Replace Type Code with
Subclasses (3).

70

8

7
al)
.5 6-

C,

a)

15)2 2 341 5 6* 111 2 13 14 15
D 2el

1 l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Refactori ng

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

Table 3 shows the effect of placing each of these
fifteen refactorings into their respective categories. It
is interesting that a refactoring from each of the
seven categories appears in Table 3. Most remarkable
from the same table is the high proportion of
refactorings taken from Categories C, F and G (3, 4
and 3, respectively); ten of the fifteen refactorings are

taken from these three categories. More remarkable is
the fact that, four of the top five refactorings from
Figure 1 are drawn entirely from Category F
(Dealing with Generalisation). Moreover, inspection
of refactorings in Categories C and G reveal three
more refactorings (i.e., Replace Type Code with

Subclasses, Tease Apart Inheritance and Extract
Hierarchy) to be directly related to manipulation of
the inheritance hierarchy. This result suggests that
any refactoring drawn from category F in Table 3 is
likely to require the completion of a relatively large
set of other refactorings through the 'Uses'
relationship. Taking just categories F and G from
Table 3, a question that arises is whether, for these
seven inheritance-related refactorings, there is a

strong intra-relationship? In other words, do those
refactorings mainly 'Use' each other as part of their
mechanics?

Table 3. The fifteen refactorings and their categories

Table 4 shows the seven refactorings and, as part of
their mechanics, the refactorings they in turn 'Use'.
We have also included, for each refactoring, whether
it is a 'may' or 'must' use relationship (as described
in Section 3.1). To indicate a 'may' use relationship

we have appended each relevant refactoring with an

'A' and to indicate a 'must' use relationship,
appended each relevant refactoring with a 'U'. The
bolded refactorings are those taken exclusively from
'Dealing with Generalisation' (Category F).

Table 4. The seven inheritance-related refactorings and their inter-relationships

71

Category Refactorings

A: Composing Methods Extract Method, Replace Temp with Query.
B: Moving Features between Inline Class.
Objects
C: Organising Data Change Value to Reference, Encapsulate Collection, Replace Type

Code with Subclasses.

D: Simplifying Conditional Replace Conditional with Polymorphism.
Expressions
E: Making Method Calls Introduce Parameter Object.
Simpler
F: Dealing with Extract Subclass, Extract Superclass, Collapse Hierarchy, Form
Generalisation Template Method.

G: Big Refactorings Tease Apart Inheritance, Separate Domain from Presentation, Extract
Hierarchy.

Refactoring X Refactorings that X 'Uses'

Extract Subclass (7) Move Method (A), Push Down Field (U), Push Down Method (U),
Rename Method (A), Replace Conditional with Polymorphism (A),
Replace Constructor with Factory Method (A), Self Encapsulate Field
(A).

Extract Superclass (6) Form Template Method (A), Pull Up Constructor Body (U), Pull Up
Field (U), Pull Up Method (AU), Rename Method (A), Substitute
Algorithm (A).

Collapse Hierarchy (4) Pull Up Field (U), Pull Up Method (U), Push Down Field (U), Push
Down Method (U).

Form Template Method (4) Extract Method (U), Move Method (U), Pull Up Method (U), Rename
Method (U).

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

Table 4 exhibits a number of interesting properties.
Firstly, there is a high dependence on the use of the
Pull Up Method/Field and Push Down Method/Field
refactorings. The motivation for the Pull Up Method
refactoring is when two methods are doing the same

thing and thus constitute duplication. Similarly for
the Pull Up Field refactoring, (when two subclasses
have the same field). In such a case, the field is
simply moved to the superclass. The 'Collapse
Hierarchy' refactoring uses these four refactorings
exclusively and these four refactorings alone
comprise thirteen of the thirty-six 'Uses'
relationships. Only the 'Extract Hierarchy'
refactoring fails to use any of these four refactorings.
Secondly, there seems to be a high dependence on

the use of 'Move Method' and 'Move Field'
refactorings and, to a limited extent, the Extract
Class/Method, Rename Method and Self Encapsulate
Field refactorings. Fowler states [13] that the Move
Method refactoring is the 'bread and butter of
refactoring'. Similarly, 'moving state and behavior
between classes is the very essence of refactoring'.
Equally, 'Extract Method' is 'one of the most
common refactorings I do'. It comes as no surprise
therefore to find these refactorings in Table 4.

In terms of the type of relationship (i.e., whether 'A'
or 'U'), a clear pattern of 'U' relationships is evident
for the Pull Up Method/Field and Push Down
Field/Method refactorings. For the Extract Superclass
refactoring, Pull Up Method engages in both an 'A'
and a 'U' relationship. We interpret this feature to
mean that the Extract Superclass must use the Pull
Up Method refactoring as part of its mechanics, and
in addition, there might be circumstances where there
is a requirement for subsequent application of the
same refactoring. Only for the 'Tease Apart
Inheritance' refactoring is there any evidence of 'A'
relationships for these four refactorings and there is a

simple explanation to account for why the
relationships are 'A' in type. The 'Tease Apart
Inheritance' refactoring arises when the inheritance
hierarchy is becoming 'spaghetti like' due to frequent

addition of subclasses (and the creation of 'tangled
inheritance'). In the words of Fowler: 'You have an

inheritance hierarchy that is doing two jobs at once.

Create two hierarchies and use delegation to invoke
one from the other.' The 'may' use relationship of
Pull Up Field and Pull Up Method refactorings only
arises after the main refactoring has been undertaken.
According to Fowler 'Look at the new hierarchy for
possiblefurther refactorings such as Pull Up Method
or Pull Up Field.' The results suggest a strong intra-
relationship between the refactorings in Category F.

4.3 'Used By' relationships

Figure 2 shows the converse set of values to that
shown in Figure 1, ranging from 12 down to 3. In
other words, it shows the highest ranked set of
thirteen refactorings in terms of the 'Used By'
dependency. We note that choosing the thirteen
refactorings with the highest 'Used By' values
ensured that all refactorings with at least three 'Used
By' dependencies were included in Figure 2. (N.b.,
six refactorings had two 'Used By' dependencies,
nineteen refactorings had just a single 'Used By'
dependency and the remaining thirty-four
refactorings had no 'Used By' dependencies; in other
words, the latter were not used by any other
refactoring).

72

Replace Type Code with Push Down Field (U), Push Down Method (U), Self Encapsulate
Subclasses (4) Field (U).

Tease Apart Inheritance (5) Extract Class (U), Move Field (U), Move Method (U), Pull Up Field
(A), Pull Up Method (A).

Extract Hierarchy (6) Extract Class (A), Extract Method (A), Replace Conditional with
Polymorphism (A), Replace Constructor with Factory Method (U),
Replace Type Code with State/Strategy (A), Replace Type Code with
Subclasses (A).

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

Figure 2. Thirteen refactorings with the highest
'Used By' dependencies

The thirteen refactorings shown in Figure 2 are 1.
Move Method (12) 2. Extract Method (10), 3.
Rename Method (9), 4. Self Encapsulate Field (7), 5.
Pull Up Method (5), 6. Replace Constructor with
Factory Method (5), 7. Move Field (4), 8. Pull Up
Field (4), 9. Substitute Algorithm (4), 10. Push Down
Field (3), 11. Push Down Method (3), 12. Extract
Class (3), 13. Replace Conditional with
Polymorphism (3).

Table 5 shows the effect of placing each of the
fifteen refactorings from Figure 2 into their
respective categories. The two categories that
featured prominently in Table 4 (i.e., Dealing with
Generalisation and Moving Features Between
Objects) again feature heavily. Category G does not
figure at all in this Table, in contrast to Table 3 and a

simple explanation accounts for this trend: while the
four refactorings in this category may 'Use' a

number of refactorings, none of them are actually
'Used By' any other refactorings. This would make
sense since they are 'big refactorings' which are

more likely to 'Use' than be used by - the values in
Table 2 reflect this bias. Inspection of the relevant

data revealed the Tease Apart Inheritance refactoring
to use five refactorings as part of its mechanics,
Convert Procedural Design to Objects to use two
refactorings, Separate Domain from Presentation to
use four refactorings and Extract Hierarchy to use

six.

In common with Table 3, Category F has the highest
number associated 'Used By' refactorings (5) and
surprisingly, these five refactorings are completely
disjoint from the set of refactorings for the same

category in Table 3. The evidence so far suggests that
within Category F, there are two distinct types of
refactoring. Firstly those that 'Use' many other
refactorings as part of their mechanics and secondly,
those that are 'Used by' many other refactorings. We
can also observe an incestuous relationship between
the 'Uses' set of refactorings and the 'Used By'
refactorings within the same Category F (as
evidenced in Table 4). This leads us to suggest the
idea of a client-server relationship between the two
disjoint sets of refactorings in this category - one set
of refactorings is used frequently by the other set in a

primarily servicing role. This was a surprising, yet
interesting result to emerge from our analysis.

Table 5. The thirteen refactorings and their categories

The other category that features prominently in Table
5 and which also featured heavily in Table 4 is
Category B refactorings. In common with the
refactorings from Category F, the three refactorings
are completely disjoint from those in the same

category in Table 3, suggesting that these three
refactorings are again engaged in some form of
client-server relationship with other refactorings in
the same category. However, there is a distinct
difference between Category B and Category F
refactorings. The refactorings from Category F in
Table 5 only tend to be used by other Category F

refactorings. On the other hand, the refactorings from
Category B (Table 5) are used more widely by
refactorings in other Categories (this can be inferred
from their relatively high rankings in Figure 2). As
further evidence of this feature, Table 6 lists the
seven refactorings from Category B and F that appear

in Table 5 and the refactorings they are 'Used By'.
We annotate each set of refactoring with the category
'profile' reflecting the ordered list of categories from
which those refactorings are taken. For example, the
'Move Field' refactoring is used by 4 refactorings,
taken from categories B, B, G and G, respectively.

73

Category Refactorings

A: Composing Methods Extract Method, Substitute Algorithm.
B: Moving Features Between Objects Move Method, Move Field, Extract Class.

C: Organising Data Self Encapsulate Field.
D: Simplifying Conditional Expressions Replace Conditional with Polymorphism.

E: Making Method Calls Simpler Rename Method, Replace Constructor with Factory Method.

F: Dealing with Generalisation Pull Up Method, Pull Up Field, Push Down Field, Push Down
Method.

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

Table 6. The seven refactorings taken from Categories B and F and their profiles

A number of points of interest can be drawn from

Table 6. Firstly, eleven of the fifteen refactorings
associated with the profile for refactorings 4, 5, 6 and
7 are drawn from category F. This is in contrast with
just six out of a total of nineteen for Category B
refactorings. There is a strong influence from
Category G refactorings: five of the seven

refactorings contain at least one Category G
refactoring. Finally, it is interesting to note that the
Push Down Field and Push Down Method
refactorings are 'Used By' an identical set of three
refactorings.

5. Conclusions and future work

In this paper, we have investigated the characteristics
of the seventy-two refactorings and the categories
into which each of those refactorings was placed.
Results demonstrate some key traits in at least two of
the categories described in [13]. To inform our

analysis, we drew on a dependency analysis in which
we identified the 'Use' and 'Used By' relationships
amongst the seven categories of refactoring.
Refactorings in the 'Dealing with Generalisation'
category had two distinct refactoring types and
refactorings in the 'Moving Features between
Objects' showed specific characteristics. Our
analysis provides a developer with information on

which refactorings, due to their inherent
dependencies, may prove to be more of a testing and
maintenance burden than others. Consequently, our

analysis can be used to inform difficult refactoring
decisions that may ultimately be costly. In terms of
future work, we intend to formally identify the
relationships identified in this paper; we would also
like to carry out more theoretical and empirical
analyses to support or refute the arguments put
forward in this paper in keeping with similar work in
[3, 14, 20].

6. References

[1] D. Advani, Y. Hassoun and S. Counsell.
Extracting Refactoring Trends from Open-source
Software and a Possible Solution to the 'Related
Refactoring' Conundrum. Proc. of ACM Symp. on

Applied Computing, Dijon, France, April 2006.
[2] K. Beck, Extreme Programming Explained:
Embrace Change, Addison Wesley, 1999.
[3] L. Briand, C. Bunse and J. Daly. A controlled
experiment for evaluating quality guidelines on the
maintainability of object-oriented designs. IEEE
Trans. on Software Engineering, 27(6), 2001, pages

513 530.

74

Refactoring X Set of refactorings that 'Uses' X

1. Move Method Convert Procedural Design to Objects, Encapsulate Collection, Encapsulate Field,
Extract Class, Extract Subclass, Form Template Method, Inline Class, Introduce
Local Extension, Introduce Parameter Object, Replace Conditional with
Polymorphism, Separate Domain From Presentation, Tease Apart Inheritance.
Profile: G, C, C, B, F, F, B, B, E, D, G, G.

2. Move Field Extract Class, Inline Class, Separate Domain From Presentation, Tease Apart
Inheritance. Profile: B, B, G, G.

3. Extract Class Extract Hierarchy, Hide Delegate, Tease Apart Inheritance.
Profile: G, B, G.

4. Pull Up Collapse Hierarchy, Extract Superclass, Form Template Method, Pull Up
Method Constructor Body, Tease Apart Inheritance.

Profile: F, F, F, F, G.
5. Pull Up Field Collapse Hierarchy, Extract Superclass, Pull Up Method, Tease Apart Inheritance.

Profile: F, F, F, G.

6. Push Down Collapse Hierarchy, Extract Subclass, Replace Type Code with Subclasses. Profile:
Field F, F, C.

7. Push Down Collapse Hierarchy, Extract Subclass, Replace Type Code with Subclasses. Profile:
Method F, F, C.

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

[4] M. Bruntink and A. van Deursen. An empirical
study into class testability. Journal of Systems and
Software, 2006 (to appear).
[5] S. Counsell, R. M. Hierons, R. Najjar, G. Loizou
and Y. Hassoun. The Effectiveness of Refactoring
Based on a Compatibility Testing Taxonomy and a
Dependency Graph. Proceedings of: Academic and
Industrial Conference (TAIC PART), Windsor, UK,
August 2006, pages 181-190. IEEE Computer
Society Press.
[6] S. Counsell, P. Newson and E. Mendes,
Architectural Level Hypothesis Testing through
Reverse Engineering of Object-Oriented Software,
Proc. of IEEE Int. Workshop on Program
Comprehension, Limerick, Ireland, 2000.
[7] S. Counsell, Y. Hassoun, R. Johnson, K.
Mannock and E. Mendes. Trends in Java code
changes: the key identification of refactorings, ACM
2nd International Conference on the Principles and
Practice of Programming in Java, Kilkenny, Ireland,
June 2003.
[8] S. Demeyer, S. Ducasse and 0. Nierstrasz,
Finding refactorings via change metrics, ACM
Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA),
Minneapolis, USA. pages 166-177, 2000.
[9] A. Van Deursen and L. Moonen. The Video Store
Revisited - Thoughts on Refactoring and Testing.
Proceedings of the third International Conference on
eXtreme Programming and Flexible Processes in
Software Engineering XP 2002, Sardinia, Italy.
[10] A. van Deursen, L. Moonen, A. van den Bergh
and G. Kok. Refactoring Test Code. In G. Succi, M.
Marchesi, D. Wells, and L. Williams (eds.), Extreme
Programming Perspectives. Addison Wesley, 2002,
pages 141-152.
[11] T. Dinh-Trong and J. Bieman. Open Source
Software Development: A Case Study of FreeBSD.
Proceedings of 10th IEEE Intl. Symposium on
Software Metrics, Chicago, USA, 2004, pp. 96-105.
[12] B. Foote and W. Opdyke, Life Cycle and
Refactoring Patterns that Support Evolution and
Reuse. Pattern Languages of Programs (James 0.
Coplien and Douglas C. Schmidt, editors), Addison
Wesley, May, 1995.
[13] M. Fowler. Refactoring (Improving the Design
of Existing Code). Addison Wesley, 1999.
[14] R. Harrison, S. Counsell and R. Nithi.
Experimental assessment of the effect of inheritance
on the maintainability of object-oriented systems,
Journal of Systems and Software, 52, 2000, pages
173 179.

[15] R. Johnson and B. Foote. Designing Reusable
Classes, Journal of Object-Oriented Programming
1(2), pages 22-35. June/July 1988.
[16] J. Kerievsky, Refactoring to Patterns, Addison
Wesley, 2004.
[17] T. Mens and A. van Deursen. Refactoring:
Emerging Trends and Open Problems. Proceedings
First International Workshop on REFactoring:
Achievements, Challenges, Effects (REFACE).
University of Waterloo, 2003.
[18] T. Mens and T. Tourwe, A Survey of Software
Refactoring, IEEE Transactions
on Software Engineering 30(2): 126--139 (2004).
[19] A. Mockus, T. Fielding and D. Herbsleb. Two
case studies of open source software development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, Vol. 11, No. 3, pages
309-346. 2002.
[20] S. Mouchawrab, L. C. Briand and Y. Labiche, A
Measurement Framework for Object-Oriented
Software Testability, Journal of Information and
Software Technology, vol. 47, no. 15, pages 979-
997, 2005.
[21] R. Najjar, S. Counsell, G. Loizou and K.
Mannock. The role of constructors in the context of
refactoring object-oriented software. Seventh
European Conference on Software Maintenance and
Reengineering (CSMR '03). Benevento, Italy, March
26-28, 2003. pages 111 - 120.
[22] R. Najjar, S. Counsell and G. Loizou.
Encapsulation and the vagaries of a simple
refactoring: an empirical study. Proceedings Int.
Conference on Software Systems Engineering and its
Applications, Paris, France, Dec. 2005.
[23] M. O'Cinneide and P. Nixon. Composite
Refactorings for Java Programs. Proceedings of the
Workshop on Formal Techniques for Java Programs.
ECOOP Workshops 1998.
[24] W. Opdyke. Refactoring object-oriented
frameworks, Ph.D. Thesis, Univ. of Illinois. 1992.

[25] M. Roper, Software Testing, McGraw-Hill,
1994.

[26] D. Saff, S. Artzi, J. Perkins and D. Ernst.
Automatic test factoring for Java. Proceedings 21st
Annual Int. Conference on Automated Software
Engineering, Long Beach, USA, Nov. 9-11, 2005,
pp. 114-123.
[27] T. Tourwe and T. Mens. Identifying Refactoring
Opportunities Using Logic Meta Programming, Proc.
7th European Conference on Software Maintenance
and Re-Engineering, Benevento, Italy, 2003, pages
91-100.

75

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

