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Abstract

In finite state machine (FSM) based testing,
the problem of fault masking in the unique in-
put/output (UIO) sequence may degrade the test
performance of the UIO based methods. This pa-
per investigated this problem and proposed the
use of a new type of unique input/output cir-
cuit (UIOC) sequence for state verification, which
may help to overcome the drawbacks that exist
in the UIO based techniques. When construct-
ing a UIOC, overlap and internal state observation
schema are used to increase the robustness of a test
sequence. Test quality was compared by using the
forward UIO method (F-method), the backward
UIO method (B-method) and the UIOC method
(C-method) separately. Robustness of the UIOCs
constructed by the algorithm given in this paper
was also compared with those constructed by the
algorithm given previously. Experimental results
suggested that the C- method outperforms the F-
and the B- methods and the UIOCs constructed
by the algorithm given in this paper are more ro-
bust than those constructed by other proposed al-
gorithms.

Keywords: FSMs, Conformance Test, F-UIOs,
B-UIOs, UIOCs, Fault Masking, Test Quality.

1 Introduction

Testing is an expensive process. Finding effective
strategies to automate the generation of efficient

test sequences, which can help to reduce develop-
ment costs and to improve the quality of (or at least
confidence in) a system, is extremely important.
An efficient test sequence should cover, as much
as possible, all faults which any implementation
may have and should be relatively short. Many ap-
proaches have been proposed for generating an ef-
ficient test. These methods are mostly based upon
traditional finite automata theory and, in particu-
lar, they model the system as a finite state machine
(FSM) [2, 3, 10, 11, 12, 17, 20, 21, 22, 23, 26].

In FSM–based testing, a standard test strat-
egy consists of two parts, namely, transition test
and tail state verification. The former part aims to
determine whether a transition of an implementa-
tion under test (IUT) produces the expected out-
put while the latter checks that the IUT arrives
at the specified state when a transition test is fin-
ished. Three techniques are proposed for state ver-
ification: Unique Input/Output Sequence (UIO),
Distinguishing Sequence (DS), and Characterizing
Set (CS). Due to its practical characteristics, UIO
based techniques are often used for test sequence
generation [14]. Aho et al. [2] showed how an ef-
ficient test sequence may be produced using UIOs
for state verification. Shen et al. [21] extended
the method by using multiple UIOs for each state
and showed that this leads to a shorter test se-
quence. Yang et al. [26], Miller [17] and Hierons
[10, 11] showed that overlap can be used in conjunc-
tion with (multiple) UIOs to further reduce the test
sequence length. All these works mainly concerned
minimizing the length of a test sequence.

When testing from an FSM M , ideally we use a
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complete test sequence: a test sequence that aims
to determine correctness if the number of states
of the IUT does not exceed some predetermined
bound. However, all approaches to generating a
complete test sequence either rely on the existence
of a distinguishing sequence for M [8, 9, 25], assume
that the IUT has a reliable reset [4], or produce a
test sequence whose size is exponential in terms
of the number of states of M [19]. However, an
FSM need not have a distinguishing sequence and
often the IUT does not have a reliable reset and
there has thus been much interest in alternative
test techniques, often based on UIOs.

Sidhu et al. [20] concluded that the U-, D-,
and W-methods produce identical fault coverage
and ensure the detection of all faults. However,
this conclusion was challenged by Chan et al., ar-
guing that the problems of fault masking in UIOs
may degrade the performance of UIO based meth-
ods. In their paper [3], Chan et al. showed that
U- and D-methods produce identical fault coverage
only when UIOs generated from the specification
FSM can identify the corresponding states in the
IUT as well. A UIO may lose its property of unique-
ness in some faulty implementations, which leads to
the failure of corresponding state verification. To
overcome these problems, Chan et al. proposed the
UIOv method where all UIOs are checked first for
their uniqueness in the IUT before being selected
for test sequence generation. Although this oper-
ation helps to improve the test quality, it might
significantly increase the test cost. Meanwhile, in a
system without reset function, it might also make
the procedure of testing discontinuous. Naik [18]
further studied the problems and pointed out that
a fault in a UIO can be masked either by some er-
roneous outputs or by an incorrect state transfer.
In order to enhance the ability of UIOs to resist
fault masking, he suggested that, when generating
a test sequence those UIOs with maximal strength
should be considered first. He also proposed an
algorithm to construct UIOs with high strength.
This method can effectively reduce the chance that
faults are masked by error outputs, but might lack
the ability to handle the situation that faults are
masked by incorrect state transitions.

Shen et al. [22] showed that using a backward
UIO (B-UIO) in a transition test helps to improve
test quality. By applying a B-UIO, the initial state
of the transition is also verified. All states in B-UIO
method are verified twice. The test quality is there-
fore improved. However, the use of B-UIOs can also
lead to some problems. These are discussed in sec-

tion 3. In [23], Shen et al. extended the work by us-
ing unique input/output circuit sequences (UIOCs)
for state verification. A UIOC was constructed by
using a F-UIO and a B-UIO for a state. If the F-
UIO and the B-UIO do not naturally form a circuit
(the tail state of the F-UIO is not the initial state
of the B-UIO), a transfer sequence will be added to
complete it. This operation may give rise to some
problems. If the gap between the tail state of the
F-UIO and the initial state of the B-UIO is too long
(needs a long transfer sequence), the operation may
reduce the robustness of the UIOC for verification.

This paper investigated the problem of fault
masking in UIOs and proposed the use of a
new type of unique input/output circuit sequence
(UIOC) for state verification to overcome the prob-
lem. UIOCs themselves are particular types of
UIOs where the ending states are the same as their
initial states. When constructing a UIOC, by fur-
ther checking the tail state and by using overlap or
internal state observation scheme, the fault types of
UIOs discussed in section 3 can be avoided, which
makes the UIO more robust. Based on rural Chi-
nese postman algorithm and UIOCs for state veri-
fication, a new approach is proposed for generating
a more robust test sequence. An approach is also
suggested for the construction of B-UIOs. Test per-
formance among F-UIO, B-UIO and F-UIO, and
UIOC based methods is compared through a set of
experiments. The relative robustness of the UIOCs
constructed by the algorithm given in this paper
and those constructed by the algorithm given in
[23] are also experimentally compared.

The rest of this paper is organised as follows:
section 2 presents the basic definitions and nota-
tions regarding finite state machines; section 3 dis-
cusses the problems associated with F-UIOs and
B-UIOs; section 4 introduces the proposed meth-
ods that aim to overcome these problems; section 5
presents the experimental results. Finally, conclu-
sions are drawn in section 6.

2 Preliminaries

2.1 Finite State Machines

A deterministic FSM M is defined as a quintu-
ple (I,O,S, δ, λ) where I,O, and S are finite and
nonempty sets of input symbols, output symbols,
and states, respectively; δ : S×I −→ S is the state
transition function; and λ : S × I −→ O is the
output function. If the machine receives an input
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a ∈ I when in state s ∈ S, it moves to the state
δ(s, a) and produces output λ(s, a). Functions δ
and λ can be extended to take input sequences in
the usual way.

Two states si and sj are said to be equivalent
if and only if for every input sequence α ∈ I∗

the machine produces the same output sequence,
i.e., λ(si, α) = λ(sj , α). Machines M1 and M2

are equivalent if and only if for every state in M1

there is a corresponding state in M2, and vice
versa. A machine is minimal (reduced) if and only
if no two states are equivalent. It will be assumed
that any FSM being considered is minimal since
any (deterministic) FSM can be converted into an
equivalent (deterministic) minimal FSM [13]. An
FSM is completely specified if and only if for each
state si and input a, there is a specified next state
si+1 = δ(si, a), and a specified output oi = λ(si, a).
Otherwise, the machine is partially specified. An
FSM is strongly connected if, given any ordered pair
of states (si, sj), there is a sequence of transition
that moves the FSM from si to sj .

It will be assumed throughout this article that
an FSM is deterministic, minimal, completely spec-
ified, and strongly connected.

2.2 Conformance Testing

Given a specification FSM M , for which we have
its complete transition diagram, and an implemen-
tation M ′, for which we can only observe its I/O
behaviour (“black box”), we want to test to deter-
mine whether the I/O behaviour of M ′ conforms
to that of M . This is called conformance test-
ing. A test sequence that solves this problem is
called a checking sequence. I/O behavioural dif-
ference between specification and implementation
can be caused by either an incorrect output (an
output fault) or an earlier incorrect state trans-
fer (a state transfer fault). The latter can be de-
tected by adding the final state check after a tran-
sition test. Three techniques are proposed for state
verification: Distinguishing Sequence (DS), Unique
Input/Output (UIO) sequence and Characterizing
Set (CS). Due to its practical characteristics, UIO
is often used for test sequence generation [14]. Two
kinds of UIO sequences can be used for state verifi-
cation. A forward UIO (F-UIO) sequence provides
evidence that the FSM starts from a known state
while a backward UIO (B-UIO) sequence shows
that the FSM arrives at a known state.

Definition 1 A forward UIO (F-UIO) sequence of

state si is an input/output sequence x/y, that may
be observed from si, such that the output sequence
produced by the machine in response to x from any
other state is different from y, i.e. λ(si, x) = y and
λ(si, x) 6= λ(sj , x) for any i 6= j.

Definition 2 A Backward UIO (B-UIO) sequence
of state si is an input/output sequence x/y, that can
be observed only if the ending state of transitions is
si, i.e. ∀sj (sj ∈ S), λ(sj , x) = y =⇒ δ(sj , x) =
si.

When only F-UIOs are considered for test se-
quence generation, the method is called the F-UIO
method, or simply F-method. A standard test
strategy is:

1. Homing: Move M ′ to a transition’s initial state
s;

2. Output Check: Apply an input α and com-
pare the outputs generated by M and M ′ sep-
arately;

3. Tail State Verification: Using state verification
techniques to check the final state. It also pro-
vides evidence that we are then in the correct
state but this is explained below.

The first step is known as homing a machine to a
desired initial state. This can be accomplished by
using a homing sequence.

Definition 3 A homing sequence H is an input se-
quence such that the output sequence on H uniquely
determines the state reached after applying H.

The second step checks whether M ′ produces the
desired output sequence. The last step checks
whether M ′ is in the expected state s′ = δ(s, α).
When both F-UIOs and B-UIOs are considered, the
method is called the B-UIO method, or simply B-
method. The test strategy is then:

1. Homing: Move M ′ to the initial state of the
B-UIO;

2. Initial State Verification: Apply the B-UIO se-
quence to move M ′ to the initial state of a
transition;

3. Output Check: Apply an input α and com-
pare the outputs generated by M and M ′ sep-
arately;

4. Tail State Verification: Apply F-UIO to check
the final state.
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The F-UIO is used to provide confidence that the
tested transition arrives at a correct state while the
B-UIO is used to increase the confidence that an
assigned transition has been tested.

2.3 Construction of UIOs

The problem of computing UIOs (F-) is NP-hard
[14]. Lee et al. [14] noted that F-UIOs can be con-
structed from some state splitting trees (SSTs). A
state splitting tree is a rooted tree that is used to
construct adaptive distinguishing sequences or F-
UIOs from an FSM. Each node is associated with
a set of states. Each node in the tree has a pre-
decessor (parent) and successors (children). A tree
starts from a root node and terminates at discrete
partitions: sets that contain one state only. The
predecessor of the root node, which contains the
set of all states, is null. The nodes corresponding to
a single state have empty successors. These nodes
are also known as terminals. A child node is con-
nected to its parent node through an edge labelled
with characters. The edge implies that the set of
states in the child node is partitioned from that in
the parent node upon receiving the labelled charac-
ters. The splitting tree is complete if the partition
is a discrete partition. Once a discrete partition is
established, input/output sequence labelled on the
path from the discrete partition node to the root
node constitutes a F-UIO for the state related to
this node. Figure 1 illustrates an example of SST
where partitions are generated when each state of
an FSM responds to an input sequence aba respec-
tively.

Figure 1: A state splitting tree from an FSM

However, finding data to construct SSTs is also
NP hard. Using metaheurisitic optimisation tech-
niques (MOTs) such as genetic algorithms (GAs)
and simulated annealing (SA) for the construction

of UIOs (F-) is therefore suggested in ref. [6] and
[7].

3 Problems of F- and B-
Methods

3.1 Problems of F-Method

Figure 2: An FSM and its faulty implementation
copied from [3]

UIOs uniquely identify states in the specifica-
tion FSM. The F-method is based on the assump-
tion that UIOs generated from a specification FSM
can uniquely identify the corresponding states in
the IUT as well. This assumption is however not
always true. A faulty example is copied from [3]
shown in Figure 2. In the specification FSM, se-
quence (b/1)(a/1) is a UIO for s3. However, in the
faulty implementation, s1 and s3 produce the same
output (11) when responding to ba. The UIO loses
its property of uniqueness in the IUT and fails to
identify s3. The problem is called fault masking in
UIOs. The capability of a UIO to resist this prob-
lem is called its strength [18]. In UIO based test
methods, the use of UIOs with low strength may
lead to a test sequence that is not robust.

3.2 Problems of B-Method

A B-UIO provides evidence that an FSM is cur-
rently in a known state, but does not show from
which state it initially comes. A B-UIO may have
several valid initial states that satisfy the defini-
tion of this B-UIO. An example is shown in Figure
3 where the FSM (Table 1) is defined in section
5. Sequence dccd is a B-UIO for s0. It can be
seen that the B-UIO sequence has 4 initial states
(s1, s4, s6, s9) that satisfy the definition. If a B-
UIO has more than one valid initial state and is
chosen for a transition test, it is possible that a
fault that occurred in the previous transition test
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Figure 3: ”dccd/yyyy”: BUIO of s0 in the FSM
defined in table 1

is masked by this B-UIO. An example is illustrated

Figure 4: Problem of B-UIOs

in Figure 4 where the test segment for transition
si → sj is formed by concatenating the input part
of the B-UIO for si with input of this transition
and the input part of the F-UIO for sj . Suppose
the B-UIO sequence chosen for si has more than
one valid initial state while sm and s

′

m are both
valid ones and, according to the specification FSM,
the previous transition test should end up with sm.
If, in a faulty implementation, the tail state of the
previous transition test happens to be in s

′

m, the
selected B-UIO for si will automatically mask this
fault. This makes the test sequence less likely to
detect this faulty implementation.

It can be noted that the fault masking problems
described in the F-method may happen in the B-
method as well since in the B-method, a transition
test consists of a part that uses the F-UIO for the
tail state verification. However, since the B-method
not only verifies the tail state of a transition, but
also checks the initial state, the robustness of a test
sequence can be enhanced.

4 Improving Fault Coverage
Using UIOCs

Lombardi et al. [16] formalises the faulty imple-
mentations of UIOs into two basic types. In this
section, we proposed solutions to overcome the as-
sociated problems.

4.1 Basic Fault Types

Two basic fault types are formalised in Figure 5.
In type 1, the tail state of the UIO in the imple-
mentation is different from that in the specification
while in type 2 the UIO and its faulty implementa-
tion have an identical ending state. The following
explains how the faults are masked.

Figure 5: Types of faulty UIO

Suppose i1i2i3i4 is the input sequence from a
UIO for si. When the FSM is in si and receives
i1i2i3i4, it produces o1o2o3o4, visiting sj , sk, sm

and sn correspondingly. In type 1, a fault is caused
by an erroneous state transfer si− > s

′

j that has
the same I/O as si− > sj . Instead of being in sj ,
the FSM arrives at s

′

j . If the following outputs are
o2o3o4, these outputs are then masking the state
transfer fault. Suppose the following transition test
is for a transition T : sn− > sx. If there exists an-
other transition T

′
: s

′

n− > sx that has the same
I/O behaviour as T , and, rather than T , the tran-
sition T

′
is tested, the test sequence will therefore

be unable to detect the fault in T .

In type 2, an erroneous transition si− > s
′

j that
has the same I/O as si− > sj occurs. This fault is
masked first by an output o2 and then by another
erroneous transition s

′

k− > sm that has the same
I/O behaviour as sk− > sm.

It can also be noted that the faulty implementa-
tions described in F-UIOs can be extended to that
in B-UIOs by considering the tail states as initial
states.
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Figure 6: Construction of a UIOC sequence

4.2 Overcoming Type 1

In type 1, the ending state of a faulty UIO is dif-
ferent from that of its specification, and so one way
to detect this error is to further verify it. This is
illustrated in Figure 6. Suppose, according to its
specification, an FSM should be in sm after apply-
ing a UIO sequence Usi for si. To check whether
the FSM is in sm, a UIO sequence Usm

for sm is
then applied, moving the FSM to sq. If the in-
put/output behaviour is identical to that described
in the specification, it then provides evidence that
the ending state of Usi (sm) is correct. A ques-
tion then arises: how can we be sure that the FSM
is in sq? A UIO sequence for sq can be used to
further check it. The procedure of repeating the
verification for the ending state of a UIO gives ev-
idence that all previous UIO sequences make the
FSM arrive at correct ending states. However, the
procedure of verifying the ending states of UIO se-
quences should terminate. UIOs should construct
a unique input/output circuit (UIOC) to terminate
the verification. The following will give a detailed
explanation of the control scheme (Figure 6).

Suppose Usi
is a F-UIO for si and its ending

state is sm. By applying a F-UIO Usm
for sm, ev-

idence is given, indicating that the FSM is previ-
ously in sm. Continuing to apply F-UIO Usp for sp,
the I/O behaviour therefore provides evidence that
the FSM arrives at sq. Suppose that there exist a
F-UIO Usq

for sq with tail state si, the application
of Usq

provides evidence for the correct arrival of
sq. The structure of the UIOC shows that, if the in-
put sequence is executed more than one times, the
I/O behaviour of Usi

will repeat, which provides

evidence for the correct arrival of si. Thus, by con-
structing UIOC, each UIO provides evidence of the
correct arrival of its previous UIO’s tail state.

The control scheme shown in Figure 6 is an
ideal situation. In some applications, the complete
UIOC may not be constructed. For example, in-
stead of terminating at si, the last UIO sequence
in the UIOC may make the FSM arrive at sc, form-
ing a gap between the tail state and si. When deal-
ing with this situation, a shortest transfer sequence
can be considered since the extended sequence of a
UIO for a state is still a UIO. Meanwhile, when con-
structing UIOC, UIOs that result in a minimal gap
between the tail state of the last UIO and si need
to be considered. For instance, if there are two sets
of UIOs where the first set moves the FSM to sc

while the other moves the FSM to sb, the first set
of UIOs is better than the other if the gap between
sc and si is shorter than that between sb and si.

The UIOC can be constructed by using B-UIOs
as well. Suppose, in Figure 6, Usi , Usm and Usq are
B-UIOs for sm, sq and si correspondingly, then Usq

provides evidence that the FSM is in si (Usi
starts

from si), Usm
provides evidence that the FSM is

in sq (Usq starts from sq) and Usi provides evi-
dence that the FSM is in sm (Usm starts from sm).
Therefore, in a UIOC constructed by B-UIOs, each
B-UIO provides evidence for the next B-UIO’s ini-
tial state.

The advantages of using B-UIOs are that: 1. In
a deterministic FSM, each state has at least one B-
UIO; 2. A minimal FSM with n states has a homing
sequence of length O(n2) that can be constructed
in time O(n3)[13], and B-UIOs can be derived from
homing sequences by concatenating the input part
of the homing sequence with a transfer sequence
that moves the FSM from the tail state of a homing
sequence to the target state.

Proposition 1 Given a deterministic, reduced
and strongly connected finite state machine M ,
there exists at least one B-UIO sequence for each
state of M .

Proof: In a minimal deterministic FSM, there ex-
ists at least one homing sequence H [13]. Suppose,
when responding to H in some state s, the FSM
ends up at state si and produces H(o), H/H(o) is a
B-UIO for si. Given a state sj , si 6= sj , there exists
an I/O sequence L/L(o) that moves the FSM from
si to sj since the FSM is strongly connected. I/O
sequence HL/H(o)L(o) is a B-UIO for sj . �
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Proposition 2 In a deterministic finite state ma-
chine, if an I/O sequence Li/Lo is a F-UIO for si

such that sj = δ(si, Li) and Lo = λ(si, Li), then
Li/Lo is also a B-UIO for sj with one valid initial
state.

Proof: Suppose Li/Lo is a F-UIO for si and, when
responding to Li, the FSM arrives at sj . Since the
FSM is deterministic, sj is the only state reachable
by Li/Lo from si. Since Li/Lo is the F-UIO for si,
Li/Lo is a B-UIO for sj with one valid initial state.
�

However, the UIOCs constructed by a complete
set of B-UIOs may not be UIOs (F-). Therefore,
before choosing the UIOCs for state verification,
the uniqueness of the I/O sequences need to be
checked. Only input/output sequences that form
F-UIOs are used.

A UIOC can be constructed by using both F-
UIOs and B-UIOs. It can be seen that the sequence
formed by concatenating a F-UIO (head state is sF )
with a B-UIO (tail state is sB) is a F-UIO for sF

and a B-UIO for sB . In [23] a UIOC was also used
for state verification. A UIOC was constructed by
using a F-UIO and B-UIO for a state. If the F-UIO
and B-UIO do not naturally form a circuit (the tail
state of the F-UIO is not the initial state of the B-
UIO), a short transfer sequence is applied to com-
plete it. It can be noted that, if the F-UIO and
B-UIO form a circuit, the UIOC in [23] is identical
to that in this work. The construction of UIOCs
in [23] can be viewed as a special case of this work.
However, if there exists a gap between the tail state
of the F-UIO and the initial state of the B-UIO, a
short transfer sequence has to be applied to com-
plete the circuit. This may degrade the robustness
of the UIOC.

This paper proposes a new method for generat-
ing UIOCs where the F-UIO and the B-UIO do not
form a circuit. In section 5, we report the result
of an experiment devised to compare the relative
robustness of UIOCs that were constructed by the
methods given in this paper and in [23]. The exper-
imental results show that the UIOCs constructed
according to the algorithm given in this paper are
more robust than those constructed by the algo-
rithm given in [23].

The use of UIOCs for state verification will in-
crease the length of a test sequence. When con-
structing a UIOC, if there exists more than one set
of F-UIOs or B-UIOs that can form UIOCs, the set
with the least number of elements should be used to
get a UIOC with the minimal length. Meanwhile,

overlap among UIOs needs to be considered as well
to further reduce the length.

4.3 Overcoming Type 2

4.3.1 Overlap Scheme

In type 2, a transfer fault may be masked by an-
other transfer error. When constructing a UIOC,
the consideration of overlaps among UIOs for in-
ternal states can help to overcome this problem.
For example, in Figure 6, Usi

, Usm
and Usp

form
a UIOC for si. If there exists Usj

in the circuit
that is a UIO for sj , the chance that the UIOC
fails to find type 2 fault can be reduced. If F-UIOs
for all internal state’s UIOs, say sj , sk and sm, are
included in the UIOC, then the chance to fail to
detect type 2 will be reduced.

4.3.2 Internal State Sampling Scheme

Figure 7: Sample an internal state

When constructing a UIOC for a state, inter-
nal states may not be verified. An alternative way
to overcome type 2 is then to check internal states
by adding additional observers that are self-loops.
Figure 7 shows the scheme where sj is checked. In
a faulty implementation, an observer may either
make the FSM produce an erroneous output or ar-
rive at an erroneous state that may be detected by
the following verification. This helps to increase
confidence that UIOCs constructed from specifica-
tion FSM remains UIO (F-) in the IUT. Ideally, the
observers are F-UIOs that are naturally loops. But
if the F-UIO is too long, a shortest loop could be
substituted for the function.
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Definition 4 A loop sequence LSi/LSo for si is
an I/O sequence such that si = δ(si, LSi) and
LSo = λ(si, LSi).

It would make the verification more robust if
all internal states are checked by their observers.
However, this will make the test sequence very long.
Thus, instead of checking all, one state is selected
for verification by the scheme shown in Figure 8.
Suppose input sequence Usi

is a F-UIO for state
si. When responding to Usi

, the FSM produces an
output sequence Osi

and gives a trace of sj , sk, sl,
s

′

i. Putting Usi
to all other states, we get output

sequences and traces correspondingly. Suppose, by
comparing the output sequences, a common I/O
area is found shown between two dotted lines. The
area is said to be a highly dangerous area. State
transfer error is likely to be masked in such an area.
For example, si → sj might be replaced by si → sp.
This mistake might be masked later by sx → s

′

i or
by sq → sl. A state between sj and sl needs to be
further checked by its observer. The middle state,
namely sk, is considered.

Figure 8: Rule on selection of an internal state

4.4 Construction of B-UIOs

B-UIOs might be considered for the construction of
UIOCs. However, the reviewed literatures do not
give a complete algorithm to construct B-UIOs. Al-
though homing sequences can be applied as bases
for the construction, the B-UIOs obtained might be
long, which will increase the cost in the forthcom-
ing test. Based on the studies of SST, we propose
State Merging Tree (SMT) for the construction of
B-UIOs.

Figure 9: A state merging tree

Similar to a state splitting tree, a SMT is a
rooted tree. Each node in a SMT contains a set
of states where the root node contains the com-
plete set of states and the discrete nodes (termi-
nals) contain one state. A node is connected to
its parent by an edge labelled with characters, in-
dicating the situation of state merging. However,
differences exist between SST and SMT where at
each single input stage, the SST only cares about
the initial state from which the current state came
while the SMT takes not only the initial state, but
also the current state into account. To give a fur-
ther explanation, an example is shown in Figure 9
where the FSM has 6 states, the input set is {a, b},
and the output set is {x, y}. Suppose, when re-
sponding to a, {s1, s3, s5} produce x and arrives at
{s2, s2, s3} 1, while {s2, s4, s6} produce y and ar-
rive at {s3, s3, s1}. a is said to merge s1 and s3 at
s2 by producing x and to merge s2 and s4 at s3

by producing y. Two nodes are generated from the
root node indicated by N(1, 1) and N(1, 2). Con-
tinuing to input the FSM with b, if states reached
from {s1, s3, s5} by a arrive at {s3, s3, s3} produc-
ing x or arrive at {s4, s4, s4} producing y, ab is
said to merge {s1, s3, s5} at s3 by producing xx
or {s1, s3, s5} at s4 by producing xy. Two nodes
rooted from N(1, 1) are then generated indicated
by N(2, 1) and N(2, 2). Once a discrete node such
as N(2, 1) occurs, the path from the root node to
N(2, 1) forms a B-UIO for the corresponding state
(in this case, s3). By the nature of the tree, s3 is the
only state that can be reached by this input/output
sequence. If all of the terminal nodes are discrete
nodes and all the input sequences defined by paths
from the root node to terminal nodes are the same
input sequence x then x is a homing sequence.

It can be seen that one SMT may not contain
B-UIOs for the complete set of states. It may be
necessary to generate several SMTs to provide the

1Both s1 and s3 arrives at s2. The set of ending states is
actually {s2, s3}. However, to make the explanation clearer,
all final states remain listed
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B-UIOs for every state. Models proposed in [6,
7] for the construction of F-UIOs can be extended
for the construction of B-UIOs by examining the
patterns of SMTs.

4.5 Construction of UIOCs

The construction of UIOCs in this paper followed
three schema: 1. A complete set of F-UIOs was
used; 2. A mixed set of F-UIOs and B-UIOs was
used. 3. A complete set of B-UIOs was used. When
constructing a UIOC, the first scheme is considered.
If a UIOC cannot be constructed by a complete set
of F-UIOs, the second scheme will be considered.
Only when the first and the second schema fail to
construct a UIOC, will the third scheme be consid-
ered. All three schema should take the overlap or
the internal state observation scheme into account.
When the internal state observation scheme is used,
a self-loop F-UIO (if the observed state has one) is
first considered. However, if the F-UIO is too long,
a loop sequence is substituted for the function. In
this paper, if the length of a self-loop F-UIO of a
state is greater than 4, a shorter loop sequence is
then used for the observation of this state.

When the B-UIOs are used for the construc-
tion of a UIOC, those B-UIOs with fewer number
of valid initial states should be used to avoid the
fault masking problem caused by B-UIOs. When a
UIOC is constructed by a complete set of B-UIOs,
the UIOC may not be a UIO (F-). Therefore, be-
fore the UIOC is selected for the state verification,
its uniqueness needs to be checked to make sure
that it is a F-UIO.

5 Simulation

A set of experiments was devised to compare the
test performance among F-, B-, and C-Method. In
all our experiments, we are intended to use FSMs
where the size of the state set and the input set
are much higher than that of the output set. The
structure of the FSMs could make the test harder.
We believe that, in these kinds of FSMs, the UIOs
for each state tend to be long and the problems of
fault masking are likely to happen.

A randomly generated FSM is first defined in
2table 1. The system has 25 states while the input

2Contents in the first row are inputs. si: sj/y means
that, when the FSM is in si and receives an input shown in
the first row, it moves to sj and produces y

a b c d
s0 s3/y s12/y s10/x s24/x
s1 s4/x s11/x s23/y s15/y
s2 s17/x s9/x s14/y s0/y
s3 s5/x s0/y s13/x s23/y
s4 s20/x s18/x s15/y s16/y
s5 s3/y s1/x s12/x s20/y
s6 s1/y s7/x s19/x s16/y
s7 s21/x s24/y s9/y s6/x
s8 s14/y s12/y s18/x s5/x
s9 s15/x s2/y s6/y s22/x
s10 s11/x s19/y s23/y s8/x
s11 s17/x s12/x s0/y s6/y
s12 s9/x s13/y s20/x s1/y
s13 s7/x s4/y s10/x s22/y
s14 s8/x s3/y s19/y s11/x
s15 s6/x s17/x s21/y s2/y
s16 s7/y s20/y s24/x s4/x
s17 s15/y s13/x s2/x s8/y
s18 s16/x s5/y s20/x s10/y
s19 s23/x s11/y s9/y s18/x
s20 s14/y s21/x s17/y s7/x
s21 s4/x s16/x s22/y s1/y
s22 s10/x s2/x s24/y s0/y
s23 s18/y s21/x s13/x s3/y
s24 s14/y s5/y s22/x s8/x

Table 1: Specification FSM

set is {a, b, c, d} and the output set is {x, y}. The
FSM is reduced, deterministic and completely spec-
ified. There are 4×25 = 100 transitions. A mutant
(faulty implementation) is generated by modifying
a transition. The selected transition is changed ei-
ther on its output or the ending state. There are
100 × 24 + 100 = 2, 500 mutants. Test sequences
are generated with the F-, the B- and the (new) C-
method separately and then used to check all these
mutants. To make the explanation clear, the test
sequences generated with the F-, the B- and the
C-method are called F-, B- and C- sequence cor-
respondingly. By the end of experiment, we found
that 199 mutants passed the F-sequence, 3 passed
the B-sequence and none of them passed the C-
sequence. This result suggests that the B-method
is better than the F-method, which is consistent
with the work of [22].

However, there are still 3 mutants that passed
the B-sequence but were found by the C-sequence.
Six examples of faulty implementations where 3
passed the F-sequence and 3 passed B-sequence
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Methods Specification Mutants
s4 − (a/x) → s20 s4 − (a/x) → s7

F- s5 − (a/y) → s3 s5 − (a/y) → s23

s24 − (d/x) → s8 s24 − (d/x) → s0

s18 − (c/x) → s20 s18 − (c/x) → s8

B- s18 − (c/x) → s20 s18 − (c/x) → s24

s23 − (d/y) → s3 s23 − (d/y) → s23

Table 2: Examples of faulty implementations that
F- and B-methods fail to detect

are shown in Table 2. This result suggests that
the test sequence generated with the C-method is
more robust than that with the B-method. We also
compared the lengths of the test sequences. They
are 506 (F-sequence), 915 (B-sequence) and 1015
(C-sequence). Comparing to the F-method, the B-
method increases the length roughly by 45% while
the C-sequence is approximately 10% longer than
the B-sequence. We then increased the length of F-
sequence and B-sequence to 1015 by adding input
characters that were randomly selected from the
input set. The experiment was repeated 10 times
and the best result was selected. The final result
showed that 89 mutants passed the extended F-
sequence, and both the extend F- and B- sequences
failed to find the three mutants that passed the test
in the previous experiment. This experiment sug-
gested that, although extending the F-sequence to
a certain length may help to improve its ability to
find more errors, it is still less robust than the B-
sequence and the C-sequence.

FSM F-Num C-Num
s18 − (c/x)− > s20/s8 3 0
s18 − (c/x)− > s20/s24 3 0
s24 − (d/x)− > s8/s0 5 0
s5 − (a/y)− > s3/s23 5 0
s5 − (c/x)− > s12/s18 5 0

Table 3: Numbers of F-UIOs and UIOCs that lost
the property of uniqueness in the faulty implemen-
tations

The numbers of F-UIOs and UIOCs that lost
the property of UIOs in the faulty implementations
was also studied. Five mutants were chosen for
the experiment. Test results are shown in Table 3
where s18 − (c/x)− > s20/s8 indicates that a mu-
tant was generated by changing the ending state s20

to s8 while F-Num and C-Num show the numbers
of F-UIOs and UIOCs that are no longer UIOs in

the faulty implementations. From the table it can
be seen that no UIOCs lost the property of UIOs
but some F-UIOs did. The experiment suggested
that the UIOCs provided by the algorithm given in
this paper are more robust than F-UIOs.

An experiment was designed to compare the
UIOC (constructed by the algorithm in this paper)
with the F-UIO that are constructed by two short-
est F-UIOs where one is used to verify the state
under the test while the other to verify the tail
state of the previous F-UIO. Experimental result
showed that 47 mutants passed the sequence gen-
erated with the latter scheme. Comparing to the
F-sequence and the randomly extended F-sequence,
the test sequence generated by using two F-UIOs
finds more faults, but is still less robust than the
test sequence generated with C-method.

Next, the robustness of UIOCs that were con-
structed with different schema was compared. Four
sets of UIOCs were used. One set was constructed
by F-UIOs or B-UIOs, taking the overlap scheme or
the internal state observation scheme into account.
When only B-UIOs were used to construct a UIOC,
the uniqueness of the UIOC was checked to make
sure that it is a UIO (F-); one set was constructed
by a complete set of F-UIOs, without using the
overlap or the internal state observation scheme;
one set was constructed by using F-UIOs and B-
UIOs that can naturally form circuits; the last was
constructed by using F-UIOs and B-UIOs that can-
not form circuits. A set of transfer sequences was
added to complete the circuits. The experimen-
tal showed that 4 mutants passed the UIOC se-
quence generated using F-UIOs, B-UIOs and trans-
fer sequences; 1 passed the UIOC sequences gener-
ated using a complete set of F-UIOs without using
overlap or internal observation scheme; 1 passed
the UIOC using F-UIOs and B-UIOs without us-
ing overlap or internal state observation scheme.
The latter two sequences failed to find the same
mutant. It can be seen that test sequence gener-
ated using F-UIOs, B-UIOs and a set of transfer se-
quences showed even worse test performance than
those generated with B-method. The result sug-
gested that UIOCs constructed by the algorithm
given in [23] (using transfer sequences to complete
the circuits) are less robust than those that were
constructed by the algorithm given in this paper.
Comparing to the test results of corresponding test
sequences, it can be suggested that the use of the
overlap or the internal state observation scheme is
likely to make the UIOCs more robust.

We also investigated the test performance of
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the F-UIO, B-UIO and UIOC methods when ap-
plied to FSMs with different numbers of states.
All FSMs are randomly generated. They are com-
pletely specified, deterministic and strongly con-
nected. The input set and the output set for all
FSMs are {a, b, c, d} and {x, y}. All UIOCs con-
structed by a complete set of B-UIOs are verified
to be F-UIOs. The experiment result is shown in
Table 4. The table shows no significant relation-
ship between the number of states and the number
of mutants that passed the test, which indicates
that the quality of testing is not only determined
by the test method, but also determined by the
structure of systems. But it can still be seen that,
for all FSMs tested, test sequences generated with
the C-method is better than or equal to others. In
the experiments, there are 20× 4 + 20 = 100, 400,
900, 1600, 2500, 3600, 4900 and 6400 mutants in
the FSMs with 5, 10, 15, 20, 25, 30, 35 and 40
states respectively. Therefore, the total number of
mutants in the experiments is 30390. Three mu-
tants passed the C-sequences, which implies that
C-method achieves 99.99% fault coverage in the ex-
periments.

States F-method B-method C-method
5 0 0 0
10 1 1 1
15 1 1 0
20 17 8 0
25 199 3 0
30 0 0 0
35 156 8 1
40 9 2 1

Table 4: Mutants that pass the tests

The mutants that passed the C-sequences from
different systems were also checked with their spec-
ification FSMs and found that they were not equiv-
alent to the specification FSMs. The mutant that
passed the C-sequence in the FSM with 10 states
was studied. In the implementation, transition
tr14=s3−(c/y)− > s4 is mutated by changing s4 to
s3. All UIOC sequences generated from the speci-
fication FSM were then checked for the uniqueness
in the IUT. When applying the input part of the
UIOC sequence for s4, we found bother s3 and s4

produced the same output. Thus, UIOC sequence
for s4 loses the uniqueness in the IUT and fails
to identify s4. Figure 10 shows the sequences of
transitions traversed by this UIOC sequence in the
specification FSM and the faulty implementation

Figure 10: UIOC sequence for s4 in the FSM with
10 states and the faulty implementation that causes
the fault masking in the UIOC sequence

respectively. By examining the structures of all
UIOC sequences, we found that none of the UIOC
sequence traverses transition tr14. This determines
that the faulty implementation of tr14 is less likely
to be detected in the stages of internal state veri-
fication, which reduces the chance on finding this
error. From figure 10 it can also be noted that
faulty implementation of tr14 ends up at the state
that is exactly the first state, s3, that the UIOC
sequence traverses when it is applied to verify s4.
If the faulty implementation of tr14 ends up at
another internal state of the UIOC sequence, the
fault may be detected by the internal state verifi-
cation. However, the fault occurs before the process
of internal state verification starts. Since the tr14

holds the same I/O behaviour as that of transition
s4 − (c/y)− > s3, the fault is likely to be masked
in the C-sequence. This work did not provide so-
lutions to overcome the problem. Future work will
address it.

States F-method B-method C-method
5 88 160 98
10 198 338 351
15 290 484 502
20 398 687 670
25 506 915 1015
30 684 1137 1123
35 740 1315 1339
40 857 1521 1568

Table 5: Lengths of the test sequences

The lengths of test sequences generated with
F-, B- and C-methods were also compared. Table
5 shows the lengths of test sequences for different
systems. It can be seen that the sequences gen-
erated with the F-method are always shorter than
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that with the B- and the C-method. However, test
sequences generated with the C-method are not al-
ways longer than that with the B-method. In the
majority of studies, the C-sequences were slightly
longer than the B-sequence while in some cases
such as the FSM with 20 states the C-sequence was
shorter than the B-sequence.

6 Conclusion

This paper investigated the problem of fault mask-
ing in UIOs. Based on the work of [16], two ba-
sic types of fault masking involving UIOs were for-
malised. A new type of UIOC was proposed to
overcome the two fault types. When constructing
a UIOC sequence, by further checking the tail state
of a UIO, type 1 in the faulty implementation may
be avoided while by introducing the overlap scheme
and internal state observation scheme, type 2 may
be avoided. The procedure of verifying the ending
states of UIOs was terminated by the construction
of circuits where every UIO provides evidence for
the correctness of the previous UIO’s tail state.

A set of experiments was designed to study
the test performance. Experimental results showed
that many more faulty implementations passed the
F-sequence than the B-sequence. This suggested
that the B-method was more robust than the F-
method, which is consistent with the work in [22];
meanwhile, in the experiment, no faulty implemen-
tation passed the C-sequence, which suggested that
the C-method is more robust than the F-method
and the B-method.

Performance of UIOCs constructed by the algo-
rithm given in this paper and in [23] was also com-
pared. Experimental results showed that UIOCs
constructed by the algorithm given in [23](using
transfer sequence to complete a circuit) were less
robust than those constructed by the algorithm
given in this paper. Experimental results also sug-
gested that the use of the overlap or internal state
observation scheme is likely to make the UIOCs
more robust. In this work, internal state observa-
tion scheme considered the sampling of one inter-
nal state of a UIO sequence. If a UIO sequence
is comparatively long, in order to increase the test
confidence, more than one state might be consid-
ered for observation. In future work, more studies
will be proceeded to investigate the effectiveness of
internal sampling scheme.

A set of FSMs was devised to compare the test
performance among different methods. Experimen-

tal results showed that the (new) C-method was
consistently better than or equal to the F-method
and the B-method. In the devised experiments, the
(new) C-method achieved more than 99.99% fault
coverage. It also showed that the C-sequences were
not always longer than the B-sequences. In the
majority of studies, the C-sequences were slightly
longer than the B-sequence while in some cases, the
C-sequences were shorter than the B-sequences.

However, it has also be noted that a few of
faulty implementations passed the C-sequences in
the experiments. More work needs to be carried
on to study the facts that cause the failure of C-
sequences.
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