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1 Introduction

Designing appropriate methods to measure mutual fund (more generally, managed portfolio)

performance is an unresolved issue despite the existence of a large body of literature on this

topic (see, e.g., Hendricks et al., 1993, Goetzmann and Ibbotson, 1994, and Brown and Goet-

zmann, 1995), as this requires overcoming a number of di¢ culties. Traditional, unconditional

approaches (see, e.g., Jensen, 1972) have been shown to be unreliable, in the sense that they

are unable to distinguish between common time-varying risk (premia) and performance of

individual portfolios. An alternative approach was suggested by Ferson and Schadt (1996),

who put forward a conditional performance evaluation method. They introduce conditioning

(public) information variables into the model and are able to estimate time-varying condi-

tional betas. Their key point is that if it is possible to replicate a managed portfolio strategy

using publicly available information then such a portfolio cannot be deemed to outperform

the others - in other words, superior information and/or market timing ability cannot be

invoked as an explanation in the presence of time-varying risk (premia) which cannot be

distinguished from average performance. Applying their model to data for 67 mutual funds

over the period 1968-1990, Ferson and Schadt (1996) �nd that the estimated alphas are close

to zero (rather than negative as in the unconditional framework of Jensen, 1968 or Elton et

al., 1992); also, they �nd no evidence of the negative market timing performance reported

by previous studies (such as Treynor and Mazuy, 1966 and Merton and Henriksson, 1981),

which had interpreted it as an indication of poor performance. Overall, a conditional model

leads to the conclusion that funds perform much better than it would be inferred on the ba-

sis of a traditional, unconditional evaluation, which overlooks a possibly non-zero covariance

between the betas and market returns.

The paper by Ferson and Schadt (1996) and most other studies focus on the performance

of mutual funds themselves. By contrast, very little attention has been paid to the useful-
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ness of the Morningstar star-rating system of mutual funds, which is increasingly used by

investors to select mutual funds (and as a predictor of future performance, despite the em-

phasis put by Morningstar on "achievement"). Its importance was documented, for instance,

by a survey reported by Damato (1996) in the Wall Street Journal. A few exceptions are the

papers by Blume (1998), Sharpe (1998), Khorana and Nelling (1998), and �nally Blake and

Morey (2000). The latter is most interesting in that, rather than analysing persistence only,

it examines the predictive ability of Morningstar ratings for mutual fund performance. The

conclusion of this study is that low ratings are indeed associated with poor future perfor-

mance, whilst it is not at all clear that very high ratings produce a better future performance

than slightly lower or average ratings. All in all, Morningstar ratings by themselves appear

to have only a slight advantage over alternative methods to predict future fund performance.

An intriguing idea has more recently been put forward by Del Guercio and Tkac (2008), who

apply an event-study methodology to analyse more than 10,000 Morningstar star-rating

changes - their evidence suggests that it is the change in the star-rating (as opposed to the

rating itself) which a¤ects investment �ows into or out of mutual funds.

The present paper focuses on whether Morningstar ratings themselves enable investors to

select funds that are likely to exhibit superior performance in the future. Instead of relying

on out-of-sample performance measures as in Blake and Money (2000), we conduct a full

unconditional as well as conditional performance evaluation of the Morningstar rating system

using the framework advocated by Ferson and Schadt (1996). More in detail, we proceed as

follows. We create �ve alternative portfolios of funds (funds-of-funds). The �rst portfolio,

named STAR1, consists of all the funds that in each time period, t, are rated one-star by

Morningstar. To be more speci�c, in period t=1 (the �rst period in our sample) we invest

an amount A$ in a portfolio consisting of all the funds (equally weighted) that have been

given one-star by Morningstar in period t=1. In period t=2, the amount (1+R1�1 )�A (R1�1
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being the return of the portfolio between periods 1 and 2) is invested again in a portfolio

consisting solely of funds that in period 2 were rated one-star by Morningstar. We continue

this process until we reach period t=T, i.e. the last period of our sample. In this way, we

obtain a series of returns R1�1 ;R
1�
2 ; :::;R

1�
T generated by investing exclusively in one-star funds.

These are interpreted as being a random vector from the process fR1�t g generating one-star

portfolio returns. We repeat the same procedure for two-, three-, four- and �ve-star funds,

thus obtaining samples from the returns processes fR2�t g ; fR3�t g ; fR4�t g ; fR5�t g ; which are

supposed to generate returns for the two-, three-, four- and �ve-star funds respectively. We

are interested in examining whether the statistical properties of these �ve returns processes

are di¤erent.

To put it di¤erently, we wish to evaluate the following simple investment strategy: if in

each time period we create a portfolio consisting only of �ve-star funds, are the risk-adjusted

returns on this portfolio higher than the corresponding ones on a portfolio consisting solely

of, say, two-star funds? The idea is that if the better performance of �ve-star fund is really

due to superior management skills then these should be re�ected in the returns on a fund

including only �ve-star funds.

Our study does not attempt to evaluate the performance of individual mutual funds.

Rather it aims to assess �an evaluation procedure�, namely that of Morningstar. In other

words, if we create a portfolio consisting only of those funds that in each time period have

received a �ve-star (or four-, three-, two-, one-) score by Morningstar, and then evaluate

the risk-adjusted performance of this portfolio by more traditional portfolio evaluation pro-

cedures, what would the result be? Will these traditional evaluation procedures detect any

di¤erences in the risk-adjusted performance of the one-, two-, three-, four- and �ve-star

portfolios?

The remainder of the paper is organised as follows. Section 2 describes the data and
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analyses the statistical properties of the returns on the �ve funds-of-funds we construct.

Section 3 outlines the standard and conditional CAPM models we adopt to address the issue

of whether the better performance of higher-rated funds is in fact attributable to superior

management skills. Section 4 discusses the empirical results from both unconditional and

conditional portfolio performance evaluation. Section 5 summarises the main �ndings and

o¤ers some concluding remarks.

2 Statistical Properties of the Five Funds-of-Funds Re-

turns

The data used in our study were taken from Morningstar Direct, which provides historical

monthly returns of selected mutual funds and their star- based ranking calculated by Morn-

ingstar. We focus on the subset represented by equity mutual funds, that is funds that invest

at least 90% of their Non-cash Adjusted Total Assets in equity securities. To avoid dealing

with currency risk exposure we only consider funds quoted in US Dollars. At present, the

Morningstar Direct database contains 21322 equity funds in US Dollars. In order to perform

our evaluation we need su¢ ciently long series, and therefore we have restricted our sample

to funds that have been star-rated for at least 10 years. This reduces the sample to 1511

equity funds. For these funds, historical returns and their Morningstar ranking are available

since 01/1998.

We begin our analysis of the returns of the �ve funds-of-funds, STAR1, STAR2, STAR3,

STAR4 and STAR5 de�ned in the previous section by examining the univariate properties

of fR1�t g ; fR2�t g ; fR3�t g ; fR4�t g ; and fR5�t g : Table 1A reports descriptive statistics for each

of them, together with their �rst-order autocorrelation. Table 1B presents estimates of the
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correlation matrix. The results can be summarised as follows:

(i) The sample mean of returns is an increasing function of the number of stars. The

average monthly returns of STAR1 and STAR5 are 0.31% and 0.51% respectively.

(ii) The pattern is less clear for sample standard deviations: the smallest is exhibited by

STAR3, followed by STAR4 and STAR2. The standard deviation of STAR5 is the second

highest, after that of STAR1.

(iii) The distributions of all the �ve returns exhibit negative skewness, this being highest

for STAR2 and lowest for STAR5.

(iv) All the �ve returns series are serially uncorrelated, i.e. their degree of persistence is

zero.

(v) The estimated correlation coe¢ cients are very large. They range from 0.87 (the coef-

�cient between STAR1 and STAR5) and 0.98 (the coe¢ cient between STAR1 and STAR2,

STAR2 and STAR3 and also STAR3 and STAR4). With correlation coe¢ cients so close

to unity, it is rather unlikely that any di¤erences in the risk-adjusted performance of these

funds-of-funds will be detected whatever the de�nition of �risk�.

The greatest di¤erence in mean returns is between STAR5 and STAR1, for which the

smallest correlation coe¢ cient (0.87) is also obtained. To examine whether the mean return

of STAR5 is statistically di¤erent from the mean return of the other four portfolios, we

generate the return-di¤erential series, �R5i�t = R5�t � Ri�t ; i = 1; 2; 3; 4; and test, by means

of a t-test, whether the means, �i; of �R
5i�
t are di¤erent from zero. This can be done by

running a regression of �R5i�t on a constant term, ci, that is �R5i�t = c+ �it and testing the

signi�cance of the coe¢ cient ci; i = 1; 2; 3; 4: The results are reported in Table 1C, together

with a series of misspeci�cation tests, in order to provide some information on the time

series properties of the four return-di¤erential series, and establish whether the conditions

are met for the employed t-test to have good properties. Speci�cally, in addition to the
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usual tests of serial correlation in �it, we also report the results from testing for the presence

of non-linear temporal dependence in �it, i.e. the �rst-order autocorrelation of the squared

residuals �2it along with the Ljung-Box Q(l)-statistic for testing the hypothesis that the �rst

l autocorrelations are equal to zero. Moreover, we report the well-known BDS test proposed

by Brock, Dechert, Scheinkman and LeBaron (1996), which is designed to test the stronger

assumption that the noise series, �it; is independent and identically distributed (i.i.d.). The

results can be summarised as follows:

(i) The null hypothesis that the mean of return-di¤erentials is equal to zero is not rejected

for any of the four series. Nevertheless, it might be worth noting that the point estimates of

the mean as well as the value of the t-statistic increase with the �star-di¤erence�(that is,

they are bigger for �R51�t followed by �R52�t ; �R53�t ;�R54�t ):

(ii) The noise series �it; and hence the series �R5i�t ; are not serially correlated but they

exhibit strong second-order temporal dependence. In particular, the BDS test strongly

rejects the null hypothesis that the series �R5i�t are i.i.d.

On the basis of the above results, we examine whether the inability to reject the null

hypothesis of zero return-di¤erentials by the t-tests might be due to the presence of non-

linear dependence in �it, which has not been taken into account. Speci�cally, we re-estimate

the models �R5i�t = c+ �it, assuming that the errors �it follow GARCH(1,1) processes, that

is �it = hit"it; h2it = di + aih
2
it�1 + bi"

2
it�1. The results, reported in Table 1C(ii), suggest the

following:

(iii) When second-order dependence is taken into account, the statistical inference on

the existence of di¤erentials in the average returns among the star-rated funds changes

drastically. The null hypothesis that the mean return-di¤erential is zero is rejected for�R51�t ;

�R52�t ; and �R53�t at the 5% level, and even for �R54�t at the 10% level. This means that

the star-rating system of Morningstar does produce a classi�cation of funds which exhibit
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some signi�cant di¤erences in terms of their average monthly returns.

(iv) The results reported above seem to be trustworthy since the hypothesis that the

standardised noise series, "it = �it=hit are i.i.d. is not rejected by the BDS test. Moreover,

additional tests (not reported) for the presence of structural breaks within the sample seem

to support the hypothesis that the standardised error process f"itg is identically distributed.

3 Risk-Adjusted Returns: The Models

In this section we investigate whether the higher average returns of the �ve-star funds are

the reward for the additional risk that the managers of these funds bear relative to the risk

incurred by the managers of, say, three-star funds or re�ect instead superior management

skills of the managers of the �ve-star funds.

For this purpose, we consider an asset pricing model that describes the relationship be-

tween the expected return and risk of the various portfolios under consideration. Speci�cally,

we adopt the conditional CAPM model of Ferson and Schadt (1996) and Shanken (1990) in

which the level of the systematic portfolio risk is a function of the observed variables (see

also, Lettau and Ludvingson 2001). This in turn implies that the relationship between the

excess returns of the portfolio j and the excess returns of the market factor is given by the

following relationships:

rj;t+1 = bj(Zt)rm;t+1 + "j;t+1 (1)

E("j;t+1 j Zt) = 0 (2)

E("j;t+1rm;t+1 j Zt) = 0 (3)

where rjt = R
j�
t � Rft; i = 1; 2; :::; 5, Rft is the return of a one-month Treasury bill, Zt =
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[Z1;t; Z2;t; : : : ; Zn;t] is an n-vector of state variables observable by the managers at time t,

and rmt = Rmt �Rft with Rmt stands for the returns of the market factor. This speci�cation

implies that the systematic risk of the portfolio j, as measured by bj(Zt), changes with time.

The time-varying nature of beta is due to the fact that the portfolio manager receives at

time t an �information signal�, contained in the state variables Zt, on the basis of which

he changes the beta of his portfolio. If the signal is �correct� and the manager succeeds

in �receiving� it, then the changes in the beta of the portfolio at time t will be consistent

with the realized returns rm;t+1 at time t+1. To put it di¤erently, if rm;t+1 > 0 then the

correct interpretation of the signal implies that the manager will shift the portfolio towards

including stocks with high betas. The preceding discussion implies that the ability of the

fund manager to �time�the market depends on the extent to which he/she can translate the

information content of Zt into predictions on the future behavior of rm;t+1: This does not

necessarily mean that �everybody�in the market can �read�the information contained in

Zt. In other words, although the variables Zt are indeed publicly available, the information

content of Zt might be available only to a �skilful�fund manager.

The next question concerns the speci�cation of the function bj(Zt): Since the true func-

tional form is unknown, we shall approximate it by using a �rst or second-order Taylor series

expansion. We begin by applying a �rst order approximation of �j, in which case equation

(1) becomes

rj;t+1 = �j;0 +

nX
i=1

�j;iZi;trm;t+1 + "j;t+1 (4)

It is quite natural to assume that the dependent variable, rj;t+1; in (4) and rm;t+1 are I(0)

variables. However, the stationarity of Z1;t; Z2;t; : : : ; Zn;t cannot be assumed a priori. In the

absence of stationarity of those variables, we may face the problem that (4) is an �unbal-

anced�regression. As a result, before we proceed any further we must analyse in detail the

alternative models (all based on (4)) that arise depending on the statistical properties of the
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variables Z1;t; Z2;t; : : : ; Zn;t: Speci�cally, we need to distinguish three cases:

(i) All the variables Z1;t; Z2;t; : : : ; Zn;t are I(0). In this case, the new variables Zi;trm;t+1

will also be I(0) (given that the market returns variable rm;t+1 is quite naturally I(0)), and

equation (4) is legitimate since rj;t+1 is also quite naturally I(0).

(ii) Some (or all) of the variables Z1;t; Z2;t; : : : ; Zn0;t; n0 � n are I(1) and not cointegrated.

In this case, the product variables Zi;trm;t+1; i = 1; 2; :::; n0 will have an asymptotically

unbounded unconditional variance and will not be I(0). In such a case, we have the problem

of an �unbalanced regression�since the dependent variable, rj;t+1 is I(0).

(iii) Some (or all) of the variables Z1;t; Z2;t; : : : ; Zn0;t; n0 � n are I(1) and cointegrated.

In this case, we proceed as follows: First, we rewrite (4) as

rj;t+1 = �j;0 + rm;t+1

nX
i=1

�j;iZi;t + uj;t+1: (5)

Equation (5) shows that under the assumption that the returns processes frj;tgt�1 and

frm;tgt�1 are I(0); the only case where some of the Zi;t can be I(1) is when the corresponding

coe¢ cients are such that only multiples of the cointegration relations between those Zi;ts that

are cointegrated are left on the right-hand side of (5).

To see the di¤erence between cases (ii) and (iii) more clearly, let us examine the following

example:

rj;t+1 = �j;0 +
�
�j;1Z1;t + �j;2Z2;t

�
rm;t+1 + uj;t+1 (6)

If Z1;t and Z2;t are not cointegrated and �j;1�j;2 6= 0, the unconditional variance of the

right-hand side will grow to in�nity as t ! 1, violating our initial assumption that the

unconditional variance of rj;t+1 is bounded. Therefore the estimated values of �j;1 and �j;2

will be very close to 0 when the sample is large. If, on the other hand, Z1;t and Z2;t are
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cointegrated and satisfy

Z1;t = a0 + a1Z2;t + wt

where fwtgt�1 is I(0), the only way for the unconditional variance of �j;1Z1;t + �j;2Z2;t to

remain asymptotically bounded, with nonzero �j;1 and �j;2, is the case where

�j;1Z1;t + �j;2Z2;t = � (Z1;t � a1Z2;t) = � (a0 + wt) , � 2 R.

The last equation implies that

�j;1 = �

and

�j;2 = �a1�j;1 .

If we identify the cointegrating relationship between Z1;t and Z2;t, then we can rewrite (6)

as

rj;t+1 = �j;0 + �j;1q1;trm;t+1 + uj;t+1 (7)

where q1;t = Z1;t � a1Z2;t = a0 + wt.

The previous example demonstrates that it is necessary for the sum
nP
i=1

�j;iZi;t in (5) to be

I(0) in order for (5) to be a legitimate regression. It also suggests how to treat the initial set

of candidate state variables, in order to obtain in (5) a well-balanced regression. Speci�cally,

the following steps must be taken:

First, we identify all those state variables (elements of Zt) that are I(1). Assume that

the number of such I(1) variables is n0. If n0 > 0, without loss of generality, reordering

the variables if necessary, we can make sure that, for i � n0, fZi;tgt�1 are I(1) and, for

n0 < i � n, fZi;tgt�1 are I(0). Second, we identify any cointegrating relationships between

the processes fZi;tgt�1, 1 � i � n0. Let k < n0 be the rank of the cointegrating system.
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This means that we can �nd a (k � n0) matrix A of order k, such that

A

266666664

Z1;t

Z2;t
...

Zn0;t

377777775
= Ut, (8)

where fUtgt�0 is I(0) with nontrivial coordinates Ui;t, 1 � i � k. Again, without any loss of

generality, we can reorder the variables Zi;t, 1 � i � n0 in (5), so that the �rst k columns of

A are linearly independent. Therefore, we can write A = [A1; A2] ; where the k � k matrix

A1 is invertible. Then, left multiplication of (8) by A�11 yields

�
Ik; A

�1
1 A2

�
Zt = A

�1
1 Ut ,

which in turn gives 266666664

Z1;t

Z2;t
...

Zk;t

377777775
= �A�11 A2

266666664

Zk+1;t

Zk+2;t
...

Zn0;t

377777775
+ A�11 Ut. (9)

The last equation is the �rst part of Phillips�s (1991) triangular system. The second part of

this system is 266666664

�Zk+1;t

�Zk+2;t
...

�Zn0;t

377777775
= Vt , (10)

where Vt is also I(0). Equations (8) and (10) provide us with n0 I(0) processes that can
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be considered as state variables in a new regression, replacing the Zi;t, 1 � i � n0. Third,

having de�ned the appropriate set, Wt; of I(0) state variables,

Wt = (Wi;t)1�i�n = [U1;t; U2;t; : : : ; Uk;t;�Zk+1;t; : : : ;�Zn0;t; Zn0+1;t; : : : ; Zn;t]
0

we can de�ne the following regression

rj;t+1 = �
�
j;0 +

kX
i=1

��j;iUi;trm;t+1 +

n0X
i=k+1

��j;i�Zi;trm;t+1 +
nX

i=n0+1

��j;iZi;trm;t+1 + uj;t+1. (11)

This regression can be rewritten in a more compact form in terms of Wt as

rj;t+1 = �
�
j;0 +

nX
i=1

��j;iWi;trm;t+1 + uj;t+1, (12)

or simply

rj;t = �
�
j;0 +

dX
i=1

��j;iXi;t + �j;t, (13)

where Xi;t = Wi;t�1rm;t for 1 � i � n. The regression de�ned in (12) can be considered a

�rst order approximation of the general model given by

rj;t+1 = �
�
j;0 + �

�
j(Wt)rm;t+1 + "

�
i;t+1, (14)

which involves only I(0) processes.

The preceding discussion is based on approximating the unknown function bj(Zt), or

equivalently ��j(Wt), by using a �rst-order Taylor series expansion. Alternatively, we can
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approximate ��j(Wt) by using a second-order Taylor expansion. In such a case we have

rj;t+1 = �
�
j;0 +

nX
i=1

��j;iWi;trm;t+1 +
X

1�i�k�n

��j;i;kWi;tWk;trm;t+1 + �j;t+1. (15)

The last equation involves n +

0B@ n

2

1CA = n(n+1)
2

, d explanatory variables of the form

Wi;trm;t+1 or Wi;tWk;trm;t+1, 1 � i � k � n, which can be denoted as Xl;t+1, 1 � l � d.

We can rewrite (15) as:

rj;t = bj;0 +
dX
i=1

bj;iXi;t + �j;t (16)

where bj;0 = �
�
j;0, bj;i = �

�
j;i and Xi;t = Wi;t�1rm;t for 1 � i � n, bj;i = ��j;g;h and Xi;t is of the

form Wg;t�1Wh;t�1rm;t, when n+ 1 � i � d, for some 1 � g; h � n.

The use of polynomial approximations of (14) may simplify its treatment, but if the

order of approximation is underspeci�ed, the estimation residuals are likely to be a¤ected

by the missing part of ��j . This is true even in the simple case where �
�
j is a second-order

polynomial. For example, let the true model be:

rj;t+1 = �
�
j;0 + �

�
j;1W1;trm;t+1 + �

�
j;2W2;trm;t+1 + �

�
1;2;kW1;tW2;trm;t+1 + �j;t+1

and assume that a �rst-order approximation is used:

rj;t+1 = �
�
j;0 + �

�
j;1W1;trm;t+1 + �

�
j;2W2;trm;t+1 + uj;t+1.

One can see that any estimation of ��j;0, �
�
j;1, and �

�
j;2 using the �rst-order approximation

will have to compensate for the missing expected value of ��1;2;kW1;tW2;trm;t+1. A non-zero

expectation of W1;tW2;trm;t+1 will result in biased estimates of some or all of �
�
j;0, �

�
j;1, and
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��j;2. Another implication concerns the second-order properties of uj;t+1: it is clear that the

behavior of the estimated u0j;t+1s will be related to the missing term �
�
1;2;kW1;tW2;trm;t+1; and

therefore these will exhibit conditional heteroscedasticity.

Finally, note that all the above models can be augmented by the market timing term,


jr
2
m;t+1; proposed by Traynor and Mazui (1966). A positive (negative) timing coe¢ cient


j is interpreted as evidence suggesting superior (inferior) market timing abilities of the

corresponding fund manager.

3.1 Empirical Results

3.1.1 Unconditional Portfolio Performance Evaluation

We begin our empirical analysis by considering the so-called unconditional evaluation of

the star-rated funds-of-funds under consideration, which is based on the standard version of

CAPM. The latter assumes that bj(Zt) = bj 8t: Under this hypothesis, the fund managers

do not attempt to �time� the market, so they do not actively change the betas of their

portfolios. Moreover this assumption also implies that the betas of the assets forming the

portfolios do not change over time, or if they change the changes in the beta of one asset are

exactly o¤set by those in the beta of another asset. Table 2A reports the results from the

OLS estimation of equation

rj;t = bjrm;t + 
jr
2
m;t + "j;t+1 (17)

Given that the error terms in all the �ve regressions exhibit conditional heteroscedasticity,

we report the results based on heteroscedasticity-consistent (HC) standard errors in Table

2B, and those from explicitly assuming that the errors are GARCH(1,1) processes in Table

2C. The results can be summarised as follows:
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(i) The OLS and HC estimates are quite similar, suggesting that the unconditional esti-

mates of a for all the portfolios except STAR1 are positive and signi�cantly di¤erent from

zero. Interestingly, the highest a is achieved by STAR5. On the contrary, the estimates

of the market timing coe¢ cient 
 appears to be insigni�cantly di¤erent from zero for all

portfolios.

(ii) When conditional heteroscedasticity is taken into account, the results change sig-

ni�cantly. In particular, the stock selection coe¢ cient, a; now appears to be signi�cantly

positive only for STAR3, STAR4 and STAR5. Moreover, the GARCH-based estimates of

a for all �ve portfolios appear to be smaller than the corresponding OLS-based estimates.

For example, the OLS and GARCH estimates of a for STAR5 are 0.52 and 0.31, respec-

tively. The GARCH estimates of 
 (similarly to the corresponding OLS estimates) are

insigni�cantly di¤erent from zero. The overall picture emerging from the GARCH estimates

suggests that the �ve portfolios under consideration can be classi�ed into two groups. The

�rst one consists of STAR1 and STAR2, and is characterised by neither stock selection nor

market timing abilities. The second one includes STAR3, STAR4 and STAR5, and exhibits

some stock selection ability (which is almost identical among the three portfolios belonging

to this group) but no market timing ability.

(iii) It is worth noting that, despite the constant beta assumption in this unconditional

fund performance evaluation, the estimates of a are generally positive. This is in contrast

with the early results of Jensen (1968) and the subsequent results of Elton et. al (1992)

(among others) who report negative estimates of a, which may be caused by (unaccounted)

time variation in the betas. This in turn implies that, despite the bias in the estimates of a,

caused by the possible time variation of the betas, a positive stock selection ability can be

inferred for STAR3, STAR4 and STAR5.

(iv) Related to (iii): Diagnostic tests (not reported) for parameter stability of equation
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(17) estimated by OLS indicate the presence of signi�cant time variation in the parameters of

this model. However, this instability may be the result of omitted conditional heteroscedas-

ticity (i.e. it may come from time variation of the standard error of the regression). When

the GARCH e¤ects are taken into account the observed instability is reduced, though not

entirely eliminated. The possible time variation of beta, in particular, which may come from

a response of the fund manager to changing economic conditions, is the focus of the next

subsection.

3.1.2 Conditional Portfolio Performance Evaluation

The next issue is the selection of the variables in Zt: Ferson and Schadt (1996) suggest

including the one-month Treasury bill yield, z1t; the term spread, z2t; de�ned as the di¤erence

between the constant-maturity 10-year Treasury bond yield and the 3-month Treasury bill,

and the quality spread, z3t; in the corporate bond market de�ned as the Moody�s BAA-rated

corporate bond yield minus the AAA-rated corporate bond yield. In addition, we include

variables that are usually considered important indicators by the �nancial community such

as the weighted average of the foreign exchange value of the US dollar against a subset of the

broad index currencies, z4t; the Consumer Sentiment Index of the University of Michigan,

z5t; the price of oil, z6t; and the Chicago Board Options Exchange volatility index (VIX),

z7t:

As explained in the previous section, the choice of the appropriate model for conditional

portfolio evaluation depends on the statistical properties of the state variables z1t; z2t; :::;

z7t: The results from a variety of unit root tests, reported in Table 3A, unambiguously

indicate that the �rst six series are I(1) while the last one is I(0). However, the tests

on the cointegration properties of z1t; z2t; :::; z6t, reported in Table 3B, lead to less clear-

cut conclusions. In particular, when the lag-length, l; of the Vector Autoregressive model,

17



VAR(l), on which the two tests are based, is relatively large, both test statistics suggest

a cointegration rank, k; of at least one, and occasionally two. On the contrary, when l is

relatively small, both tests are unable to reject the null hypothesis of no cointegration. As a

result, we run three alternative conditional regressions assuming k = 0; k = 1 and k = 2; with

the results (assuming GARCH(1,1) errors and including the market timing term 
jr
2
m;t+1)

being reported in Table 4A, 4B and 4C, respectively. The results can be summarised as

follows:

(i) The results are very robust across the three alternative cointegration rank assumptions.

Indeed, the information criteria for k = 0 are very close to those for k = 1 or k = 2 for all

�ve portfolios under consideration.

(ii) Despite the signi�cance of (some of) the state variables, the results on stock selection

(a) and market timing (
) abilities from the conditional evaluation are similar to those

obtained from the unconditional evaluation. In particular, for k = 0 the stock selection

coe¢ cient, a; appears to be signi�cantly positive for STAR2, STAR3, STAR4 and STAR5,

whereas for k = 1 and k = 2 it appears to be signi�cantly positive for STAR3, STAR4

and STAR5. Concerning the latter portfolio, the highest estimate of (conditional) a is 0.36,

obtained for k = 2, whereas the lowest is equal to 0.30, obtained for k = 1: Concerning market

timing ability, no portfolio for any value of k produces a signi�cantly positive estimate of 
j.

On the contrary the estimates of 
j are negative and in many cases signi�cantly so.

(iii) The results in (ii) suggest that the positive excess returns produced by STAR3,

STAR4 and STAR5 should be thought of as the result of superior stock selection rather than

market timing abilities.
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4 Conclusions

This paper adds to the rather limited number of studies which to date have attempted to

evaluate the Morningstar star-based system for ranking mutual funds (see, e.g., Blake and

Morey, 2000). Its aim is to provide evidence on whether portfolios assembled using higher-

rated mutual funds consistently outperform those made up of funds with lower Morningstar

star-ratings. In particular, we are interested in examining whether a higher rating re�ects

superior management skills of the managers of those funds, and therefore a simple investment

strategy could be adopted which would systematically result in higher average returns if the

Morningstar ranking system is indeed informative about fund performance, this strategy

consisting of always selecting the highest-rated funds when creating a portfolio. For this

purpose, �rst we examine the statistical properties of the �ve funds-of-funds return series,

i.e. the returns on the portfolios including respectively �ve-, four-, three-, two- and one-star

funds only (STAR5 to STAR1). We show that, provided second-order dependence is taken

into account, statistically signi�cant return di¤erentials can indeed be found, the higher

Morningstar rating being associated with higher returns. In order to establish whether this

is in fact due to superior management skills, we estimate appropriate asset pricing models for

risk-adjusted returns. Speci�cally, we consider both a standard version of the CAPM model

for unconditional portfolio performance evaluation, and a conditional CAPM (see Ferson and

Schadt, 1996, and Shanken, 1990) in which portfolio risk is a function of observed variables

in order to carry out a conditional evaluation as well. The results based on the former

speci�cation (when allowing for conditional heteroscedasticity) indicate that only the three

highest-rated categories of funds are characterised by some stock selection ability, whilst

none of the �ve categories exhibit market timing ability. Similar results are obtained for the

conditional portfolio evaluation, the evidence suggesting that the better performance of the

STAR3, STAR4 and STAR5 categories re�ects superior stock selection rather than market
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timing abilities. Overall, the implication for the Morningstar ranking system is that this is

most e¤ective in identifying the worst-performing funds (those to which one or two stars are

assigned) rather than the best-performing ones: it can be used as a guide to avoid one- and

two-star rated funds, but it is not really able to discriminate between three-, four- and �ve-

star funds (although this does not rule out that mutual fund investors are more sensitive to

changes in the ratings compared with the ratings themselves, as highlighted by Del Guercio

and Tkac, 2008).
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TABLES

Table 1
Time Series Properties of Monthly Returns of Star-Rated Funds-of-Funds

A. Univariate Characteristics
Fund-of-Funds mean s.d. skewn. kurt. J-B* min. max. b�1 Q(12)*

STAR1 0.31 5.35 -0.90 5.24 0.00 -23.26 12.60 0.053 0.93
STAR2 0.39 4.70 -0.97 4.92 0.00 -19.90 8.96 0.091 0.97
STAR3 0.42 4.32 -0.95 4.47 0.00 -17.01 7.42 0.095 0.99
STAR4 0.45 4.35 -0.87 4.06 0.00 -16.15 8.71 0.094 0.95
STAR5 0.51 4.87 -0.70 4.08 0.00 -16.58 12.98 0.082 0.78

*:p-val

B. Correlation Matrix
STAR1 STAR2 STAR3 STAR4 STAR5

STAR1 1 0.98 0.95 0.93 0.87
STAR2 0.98 1 0.98 0.97 0.90
STAR3 0.95 0.98 1 0.98 0.92
STAR4 0.93 0.97 0.98 1 0.96
STAR5 0.87 0.90 0.92 0.96 1

C. Testing for Zero Mean in Return-Di¤erentials

(i) OLS: �R5i�t = ci + �it:
H0 : ci = 0

Serial Correlation Non-Linear Dependence
Return-Di¤erential bci s:e:(bci) t-stat. b�1(�it) Q(12)* b�1(�2it) Q(12)* BDS*

STAR5-1 0.19 0.23 0.82 0.051 0.38 0.47 0.00 0.00
STAR5-2 0.11 0.18 0.61 0.069 0.09 0.55 0.00 0.00
STAR5-3 0.09 0.16 0.53 0.029 0.08 0.45 0.00 0.00
STAR5-4 0.05 0.11 0.42 -0.009 0.11 0.52 0.00 0.00

*:p-val

(ii) GARCH(1,1): �R5i�t = ci + �it; �it = hit"it; h
2
it = di + aih

2
it�1 + bi"

2
it�1

H0 : ci = 0

i.i.d. for standard. residuals
Return-Di¤erential bci s:e:(bci) t-stat. BDS

STAR5-1 0.27 0.09 2.91 0.43
STAR5-2 0.14 0.06 2.13 0.70
STAR5-3 0.11 0.05 2.08 0.12
STAR5-4 0.05 0.03 1.80 0.52
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Table 2
Unconditional Evaluation of Star-Rated Funds-of-Funds

A. OLS
Fund-of-Funds a t(a) b t(b) 
 t(
) R

2

STAR1 0.42 1.63 1.05 18.20 -0.01 -1.84 0.79
STAR2 0.40 2.28 0.98 25.07 -0.01 -1.78 0.87
STAR3 0.37 3.20 0.95 36.47 -0.01 -1.91 0.93
STAR4 0.39 3.31 0.96 35.85 -0.00 -1.58 0.93
STAR5 0.52 2.47 0.99 20.86 -0.01 -1.56 083

Serial Cor. Non-Lin. Depend.
AIC SIC Q(12) Q(12) BDS

STAR1 4.653 4.720 0.59 0.00 0.00
STAR2 3.884 3.951 0.12 0.00 0.00
STAR3 3.049 3.116 0.15 0.02 0.04
STAR4 3.107 3.173 0.11 0.00 0.01
STAR5 4.268 4.334 0.13 0.00 0.00

B. Heteroscedasticity-Consistent s.e.�s
Fund-of-Funds a t(a) b t(b) 
 t(
)

STAR1 0.42 1.52 1.05 18.94 -0.01 -1.32
STAR2 0.40 2.10 0.98 25.52 -0.01 -1.13
STAR3 0.37 3.02 0.95 37.09 -0.01 -1.36
STAR4 0.39 3.19 0.96 35.03 -0.00 -1.31
STAR5 0.52 2.55 0.99 18.14 -0.01 -1.47

C. GARCH(1,1)
Fund-of-Funds a t(a) b t(b) 
 t(
) AIC SIC

STAR1 -0.05 -0.36 1.05 24.39 0.00 0.07 4185 4.319
STAR2 0.15 1.22 0.99 32.82 0.00 0.25 3.547 3.681
STAR3 0.29 2.47 0.95 39.22 -0.00 -0.62 3.044 3.177
STAR4 0.31 2.88 0.96 38.21 -0.00 -0.86 3.068 3.202
STAR5 0.31 2.66 0.99 38.76 -0.00 -0.81 3.625 3.759
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Table 3
Statistical Properties of the State Variables

A. Unit Root Tests
Variable ADF PP DF-GLS MZa MZt
z1t -1.05 -1.25 -1.22 -4.71 -1.42
z2t -1.54 -2.06 -1.16 -2.66 -1.14
z3t -0.91 -0.65 -0.63 -3.59 -0.79
z4t -0.89 -0.60 -0.88 -2.32 -0.87
z5t -1.97 -1.75 -1.96 -6.35 -1.76
z6t 0.76 1.40 1.47 2.89 1.50
z7t -3.67 -3.38 -2.21 -12.15 -2.12

5% c.v.�s -2.87 -2.87 -1.94 -8.10 -1.98

B. Testing for Cointegration Among z1t; z2t; :::; z6t
l = 1 l = 6 5% c.v.�s

��max TR ��max TR ��max TR
k = 0 38.14 89.49 43.11 116.27 40.07 95.75
k = 1 26.81 51.35 32.49 73.15 33.87 69.81
k = 2 10.87 24.53 17.23 40.66 27.58 47.85
k = 3 9.21 13.65 14.14 23.42 21.13 29.79
k = 4 3.35 4.44 5.37 9.28 14.26 15.49
k = 5 1.08 1.08 3.91 3.91 3.84 3.84

Notes:
1) z1t =one-month treasury bill yield, z2t =constant-maturity 10-year Treasury bond

yield minus 3-month Treasury bill, z3t = Moody�s BAA-rated corporate bond yield minus
AAA-rated corporate bond yield, z4t =the exchange rate of the dollar, z5t =the consumer
con�dence index, z6t =the price of oil, z7t =the CBOE�s VIX volatility index:
2) ADF and PP refer to the standard Augmented Dickey-Fuller (1979) and Phillips-

Perron (1988) tests respectively for the null hypothesis of a unit root. The lag-length and the
bandwidth parameter in ADF and PP respectively, were selected by the Schwarz information
criterion and the Newey and West (1994) procedure respectively. DF-GLS refers to the unit
root test proposed by Elliot, Rothenberg and Stock (1996) based on GLS detrended series.
MZa and MZt are two of the four tests proposed by Ng and Perron (2001).
3) l denotes the lag length of the unrestricted Vector Autoregressive Model (VAR) based

on which the Johansen (1991) maximum eigenvalue (��max) and trace (TR) statistics were
calculated.
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Table 4
Conditional Evaluation of Star-Rated Funds-of-Funds

(GARCH(1,1) Error Speci�cation)

A: Cointegration Rank among z1t; z2t; ..., z6t is Equal to Zero.
�z1t; �z2t; ..., �z6t and z7t are Employed as State Variables.

Signi�cant State
Fund-of-Funds a t(a) 
 t(
) Variables AIC SIC

STAR1 -0.01 -0.02 -0.008 -1.12 �z4t; �z6t 4.175 4.353
STAR2 0.26 2.32 -0.008 -1.92 �z1t; �z2t; �z4t; �z6t 3.505 3.728
STAR3 0.33 3.42 -0.007 -2.71 �z4t; �z6t 3.004 3.183
STAR4 0.26 2.58 -0.005 -1.98 �z6t; z7t 3.016 3.194
STAR5 0.34 2.73 -0.010 -3.36 �z3t; �z6t; z7t 3.505 3.706

B: Cointegration Rank among z1t; z2t; ..., z6t is Equal to One.
Cointegration Relation, u1t, Together with z7t are Employed as State Variables.

Fund-of-Funds a t(a) 
 t(
) AIC SIC
STAR1 -0.07 -0.50 -0.001 -0.23 4.179 4.357
STAR2 0.14 1.24 0.001 0.04 3.545 3.723
STAR3 0.23 2.23 -0.003 -0.85 3.043 3.222
STAR4 0.28 2.66 -0.004 -1.17 3.024 3.202
STAR5 0.30 2.47 -0.005 -1.57 3.531 3.709

C: Cointegration Rank among z1t; z2t; ..., z6t is Equal to Two.
Cointegration Relations, u1t, and u2t Together with z7t are Employed as State

Variables.
Fund-of-Funds a t(a) 
 t(
) AIC SIC

STAR1 -0.09 -0.61 -0.002 -0.326 4.193 4.394
STAR2 0.14 1.16 0.000 0.051 3.562 3.762
STAR3 0.23 2.07 -0.003 -0.961 3.056 3.256
STAR4 0.29 2.68 -0.003 -0.949 3.033 3.233
STAR5 0.36 3.10 -0.010 -3.01 3.544 3.745
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