
Testing From a Finite State Machine�

Extending Invertibility to Sequences

Robert M� Hierons� Goldsmiths College�

University of London

Abstract

When testing a system modelled as a �nite state machine it is de�
sirable to minimize the e�ort required� Yang and Ural ������ demon�
strate that it is possible to utilize test sequence overlap in order to

reduce the test e�ort and Hierons ����	� represents this overlap by us�
ing invertible transitions� In this paper invertibility will be extended

to sequences in order to further reduce the test e�ort and encapsulate
a more general type of test sequence overlap� It will also be shown that

certain properties of invertible sequences can be used in the generation
of state identi�cation sequences�

� Introduction

A �nite state machine �FSM� can be used to model a software system� In
particular� an FSM can be used to model the control section of a communi�
cations protocol �Huang and Hsu ����	
�� If some FSM model F exists and
an implementation I� that is intended to implement F � has been produced
it is important to verify I relative to F � In order to do this it is necessary
to test I� When testing I against F it is normal to assume that I can be
modelled as an FSM and the testing problem then becomes an instance of
the FSM equivalence problem�

A number of speci�cation languages� such as SDL and ESTELLE� are
extensions to the FSM formalism� Many speci�cations in such languages can
be converted into FSMs from which tests can be generated �Luo and Chen
�����
� Luo et al� ����	b
� Petrenko et al� ����	a
��

�

lbsrjpm
Cross-Out



An alternative approach� to modelling a communications protocol� is to
use a process algebra such as LOTOS� There has been much work on generat�
ing conformance relations and canonical testers from process algebra descrip�
tions �Brinksma �����
� Wezeman �����
�� It has also been noted that equiv�
alent conformance relations can be de�ned for speci�cation languages such
as SDL and ESTELLE and thus� potentially� for FSM �Phalippou �����
��
When the speci�cation is �nite� it can be modelled as an FSM and FSM
based testing techniques can then be applied �Fujiwara and v� Bochmann
����

��

A number of techniques have been developed for testing from an FSM�
These are based on several di�erent test criteria� including simply executing
every transition �Sidhu and Leung �����
�� testing every transition �Sidhu
and Leung �����
� Aho et al� �����
� Yang and Ural �����
� Hierons �����
�
and producing a checking sequence� a test that will distinguish between the
FSM model and any non�equivalent FSM that has no more states �Rezaki
and Ural �����
� Ural et al� �����
�� Given a test criterion� it is desirable to
produce the shortest test that satis�es this criterion� Here the problem of
�nding the shortest test sequence� that includes a test for every transition�
will be considered�

While� ideally� a checking sequence should be produced� in some cases this
may not be practical and weaker criteria are used� The relative e�ectiveness
of the related methods� at �nding faults� is still an open question� The
experience of Motteler et al� ����	
 and Sidhu and Leung �����
 suggests
that test sequences that test every transition are usually e�ective at locating
faults�

The test generation problem is further complicated if the system under
test is embedded in some environment and all communications go through
this environment� If there is a model of the environment� this model must
be considered when deriving tests �Petrenko et al� �����
��

Hierons �����
 discusses the application of invertible transitions to test
sequence generation� In Section 
 invertibility will be extended to sequences
and a number of properties will be derived� The relationship between invert�
ibility and state identi�cation techniques will also be investigate and it will
be demonstrated that this can be used in the generation of state identi�cation
sequences� An algorithm for �nding invertible sequences and UIOs is given
in Section 
�	� In Section � an algorithm is introduced that both extends the
applicability of the algorithm given in Hierons �����
 and applies invertible
sequences to reduce the length of the test sequence produced� This algorithm






is then applied to a small example� in order to illustrate the method� and
compared to alternative algorithms� Finally� conclusions are drawn�

� Invertible Sequences

��� Some de�nitions

A Finite State Machine F with input alphabet � and output alphabet � can
be represented by a tuple �S� T� s��� S is the �nite set of states� T is the
�nite set of transitions between these states� and s� is the initial state� Each
transition is in the form �s� s�� x�y� where s is the initial state� s� is the �nal
state� x � � is the input involved in this transition� and y � � is the output
generated by this transition�

An FSM is said to be completely speci�ed if for each input value x � �
and state si � S there is a transition from si with input x� An FSM is
deterministic if for every state si and input x there is at most one transition
from si with input x� If an FSM is deterministic it is possible to represent the
transitions by �possibly partial� functions � and �� the next state and output
functions respectively� Thus� if a transition with input x is executed from
state si output ��si� x� is produced and the FSM moves to state ��si� x��
These functions can be extended in a natural way to functions �� and ��

that give the �nal state and output respectively when executing a sequence
of input values from a state� As is usual� it will be assumed that any FSM
considered is deterministic and completely speci�ed�

Two states si and sj are said to be equivalent if for every input sequence
X� ���si�X� � ���sj�X�� An FSM is minimal if no two states are equivalent
and two FSM are equivalent if their initial states are equivalent� It will be
assumed that any FSM being considered is minimal as any �deterministic�
FSM can be converted to an equivalent �deterministic� minimal FSM �Moore
�����
�� See e�g� Kohavi �����
 for more information on FSM�

When testing a transitions it is necessary to check its �nal state� In order
to do this one of the following approaches can be applied�

�� A distinguishing sequence �DS�


� Unique input�output sequences �UIO�

�� A characterizing set

�



A distinguishing sequence is a sequence that produces a di�erent output
for each state� A UIO u for a state s has the property that for each s� ��
s� ���s� u� �� ���s�� u�� and thus u is capable of verifying state s� but not
necessarily any other state� Kohavi and Kohavi �����
 note that� when a
preset test sequence is not required� an adaptive distinguishing sequence can
be used� Adaptive distinguishing sequences have the advantage that there
is a polynomial upper bound for their length� when they exist �Lee and
Yannakakis ����	
��

Some FSM do not have either a DS or a UIO for every state� It is then
necessary to use a characterizing set W � a set of input sequences with the
property that for every pair of states s �� s� there is some wi � W such that
���s�wi� �� ���s�� wi�� Thus� the output sequences produced by executing
each wi � W from s veri�es s�

A directed graph �digraph� G is de�ned by an ordered pair �V�E�� where
V is a set of vertices and E is a set of edges between vertices� An edge can
have a label and thus each edge is represented by a tuple �vi� vj� l� where
vi is the initial vertex� vj is the �nal vertex� and l is the label� Given a
vertex v in a digraph �V�E� the number of edges entering v is denoted by
indegreeE�v� and the number of edges leaving v is denoted by outdegreeE�v��
Clearly an FSM can be represented by a digraph and throughout this paper
the two formalisms will be considered to be equivalent and so the two sets of
terminology will be used interchangeably�

A network is a digraph in which every edge is given a non�negative integer
capacity and there are two special vertices� the source and the sink� A �ow
for a network is the assignment of an integer �ow to each edge such that
the �ow at an edge does not exceed the capacity of the edge and the �ow is
conserved at every vertex except for the source and the sink� The net �ow
through the network is the net �ow leaving the source� which is equal to the
net �ow entering the sink� If each edge is given a cost� the cost of the �ow
is the sum� over the edges� of the cost of the edge multiplied by the �ow
through the edge� See e�g� Gibbons �����
 for more information on graphs�
digraphs and networks�

Hierons �����
 say that a transition �s� s�� x�y� is an invertible transition
�IT� if it is the only transition entering state s� that involves input x and
output y� A consequence of a transition being invertible is that if a transition
involving input x and output y has been executed and this results in the FSM
being in state s� it is known that the FSM was previously in state s�

A sequence of transitions t � t� � � � tm� with ti � �si� si��� xi�yi�� is said

	



to be an invertible sequence �IS� if it is the only sequence involving input
sequence x� � � � xm and output sequence y� � � � ym that ends at sm��� Clearly
an invertible transition is an invertible sequence of length ��

An IS will be called prime if it is not in the form of one non�empty IS
followed by another non�empty IS� Prime invertible sequences will be used to
reduce the test generation e�ort� It should be noted that if an IS is not prime�
it can be represented as a sequence of prime ISs and this decomposition is
unique �Hierons �����
�� An IS is said to be a minimal �si�sj� IS if it is a
shortest length IS from state si to state sj� Such an IS need not be prime�

An input x is an invertible input �II� if every transition involving it is
invertible� A sequence of inputs is an invertible input sequence �IIS� if every
sequence of transitions with this input sequence is an invertible sequence�

Given F � �S� T� s�� the set of ITs in T is denoted by TI� TR � T n TI�
and FI is the machine �S� TI� s��� TII is the set of transitions from T that
involve invertible input and FII � �S� TII� s���

��� Some properties of invertible sequences

The following demonstrates that the notion of an invertible sequence is an
extension of the notion of an invertible transition�

Lemma � An IS can contain transitions that are not ITs�

Proof
To demonstrate this� it is su�cient to look at the FSM� taken from Aho et al�
�����
� shown in Figure �� In this FSM the sequence �v�� v�� b�x��v�� v�� a�x�
is an IS while the transition �v�� v�� a�x� is not invertible� �

The following results will be used in the generation of invertible sequences
and in the test sequence generation algorithm�

Lemma � If t � rs is and IS �r and s are sequences� then so is r�

Proof
A proof by contradiction will be produced� Suppose t � rs is an IS and r is
not an IS� Then there must be some r� with a di�erent initial state than r
that has the same input� output� and �nal state as r� But then r�s has the
same input� output� and �nal state as rs but a di�erent initial state� which
contradicts rs being an IS� Thus r must be an IS if rs is an IS� �

�



Lemma � If r and s are ISs with the �nal state of r being the initial state
of s then rs is an IS

Proof
As s is an IS� from its �nal state� input and output its initial state can be
identi�ed� Thus the �nal state of r is known if rs is executed and the �nal
state of rs is known� As r is an IS� from this and the input and output of r
the initial state of r is known� which is the initial state of rs� Thus rs is an
IS� �

The following will be used in the generation of prime invertible sequences�

Lemma � Any non�empty prime IS starts with an IT and any prime IS of
length greater than � ends with a transition from TR�

Proof
Suppose that t is a non�empty IS� Then t � rs for some transition r� and
from Lemma 
 as rs is an IS r is also an IS� Thus� as r is an IS of length ��
r is an IT� Therefore any non�empty IS must start with an IT�

If t has length greater than � then t � r�s� for some non�empty r� and
some transition s�� By Lemma 
� r� is an IS as t is an IS� As t is a prime IS
and r� is an IS� s� is not an IS� Thus s� is not an IT and so s� is a transition
from TR� �

Lemma � The following prove that ISs do not have certain intuitively ap�
pealing properties�

�� There need not be an upper bound on the length of prime ISs

�� The number of transitions from TR in prime ISs is not bounded above

	� The existence of a prime IS of length m�� does not imply the existence
of a prime IS of length m�


� A prime IS can be in the form rs where r is an IS that is not prime�

Proof
��
To show that there need not be an upper bound on the length of prime ISs
it is su�cient to prove that� in the FSM given in Figure 
� all sequences of
the form ��x�
�a��b�m��y are prime ISs� It is clear that these sequences are

�



ISs so it is su�cient to prove that they are prime� A proof by contradiction
will be produced�

Suppose that some IS t � ��x�
�a��b�m��y is not prime� so t � rs for
some non�empty ISs r and s� Then s is either ��y or of the form �
�a��b�m��y
or of the form ��b�
�a��b�m��y� But it is clear that the input� output�
and �nal state of ��y allows two possible initial states� s� and s�� It is
also clear that any sequence involving the input� output� and �nal state of
�
�a��b�m��y could have started at either s� or s�� and that any sequence
involving the input� output� and �nal state of ��b�
�a��b�m��y could have
started at either s� or s�� Thus if t � rs� r non�empty� then s is not a non�
empty IS� and so every sequence in the form ��x�
�a��b�m��y is a prime IS�
�


�
In order to demonstrate that the number of transitions from TR in prime ISs
is not bounded above� it is su�cient to alter the above example in order to
make the transition from s� to s� non�invertible� In order to do this it is
su�cient to change the transition from s� with input 
 to give output a and
go to state s� Thus given any m � 
 there is a prime IS ��x�
�a� ��b�m��y
with m elements from TR� �

��
The FSM given in Figure 
 is again considered� Any prime IS of length
greater than one must end in an element of TR� the only such elements being
the transitions associates with ��y� Sequences of the form �
�a��b�m��y or of
the form ��b�
�a��b�m��y are not ISs� Thus the only prime ISs in the FSM
in Figure 
 of length greater than one are those of the form ��x�
�a��b�m��y
or of the form 
�z�
�a��b�m��y� Thus the prime ISs are either of length one
or are of even length� and thus for each m � � there is a prime IS of length

m but no prime IS of length 
m� �� �

	�
In the FSM shown in Figure 
 each sequence t of the form ��x�
�a��b�m��y
or 
�z�
�a��b�m��y is a prime IS� For any non�empty r� s with t � rs and
jrj � �� r is a non�prime IS as it has length at least 
 and all of its elements
are ITs� �

These results show that it is not� in general� possible to �nd all prime ISs
and even if there is a �nite number of prime ISs it is di�cult to know when
to stop searching� Clearly there are bounds on the size of minimal �si� sj�
ISs but these may be large�

�



��� Invertible sequences related to UIOs

This section contains results that show how invertible sequences can be used
in the generation of UIOs and DSs� and in solving certain decision problems�

Lemma � Every UIO is an IS�

Proof
This is follows from the de�nition of UIOs� as from the input and output of
the sequence the initial state is identi�ed� �

It should be noted that while every UIO is an IS� not every IS is a UIO�

Corollary � Every UIO starts with an IT�

Proof
This follows from Lemma � and Lemma 	 which state that every UIO is a
non�empty IS and every non�empty IS starts with an IT�

�

The following result shows that it is possible to use ISs to extend the set
of UIOs�

Lemma � If t� is an IS and t� is a UIO starting at the �nal state of t� then
t�t� is a UIO for the initial state of t��

Proof
Let s� and s� denote the initial states of t� and t� respectively� If t� is
executed from s� the state s� is identi�ed� as t� is a UIO� Thus� if t�t� is
executed from s� the intermediate state s� is identi�ed� But� as t� is an IS�
and its �nal state s� is known as well as its input and output� its initial state
s� is known� Thus� executing t�t� identi�es its initial state s� and so t�t� is
a UIO� �

Lemma � Let r be a minimal length distinguishing sequence for some FSM
F � and let the �rst element of r be x� Then x is an II and there are states
si and sj such that ��si� x� �� ��sj� x��

Proof
As a DS is a UIO for every state� x must be an IT from each state� Therefore
x is an II�

For the second part there are two cases�

�



Case �� There is a pair of states �si�sj� such that ��si� x� � ��sj� x�� In this
case ��si� x� �� ��sj� x� as x is an II�
Case 
� The input x does not map any states together� In this case it
must permute the states� If x produces the same output from all states and
r � xr� then r� must distinguish these states and thus must itself be a DS�
This contradicts the minimality of r� Thus x cannot produce the same output
value for every state� �

The above results provide necessary� but not su�cient� conditions for an
FSM to have a DS and for a state to have a UIO� It is thus possible to
eliminate some FSM�states immediately� The results also reduce the options
for the �rst input and so reduce the size of the search space required when
looking for a DS or UIOs�

Lemma � FI being strongly connected does not imply that each state of F
has a UIO�

Proof
This can be seen by looking at the FSM in Figure � which is clearly minimal�
In this FSM the only ITs are those involving input x� While these strongly
connect the states they simply permute the states giving constant output�

As any UIO must start with an IT� UIOs must be in the form xm �m � ��
followed by y or z and some sequence� But the application of y or z collapses
pairs of states� as y sends S� and S� to the same state with output 
 and
sends S� and S� to the same state with output �� while z sends S� and S�

to the same state with output � and sends S� and S� to the same state with
output 
�

Thus� as the application of xm simply permutes the states with constant
output� a sequence of the form xm followed by either y or z cannot be an IS
and thus the only ISs are of the form xm� Therefore� as every UIO is an IS
and sequences of the form xm cannot be UIOs� the FSM cannot have a UIO
for any state� �

Lemma �	 If FI is strongly connected and some state of F has a UIO then
every state of F has a UIO�

Proof
Give a UIO u for state s of F � in order to generate a UIO for state s� �� s it is
su�cient to take a path p from s� to s in FI and follow it by u� Such a path
p must exist� as FI is strongly connected� and is an IS� Thus� by Lemma ��
pu is a UIO as required� �

�



Corollary � If FI is strongly connected then either every state of F has a
UIO or no state of F has a UIO�

Proof
This follows directly from Lemma ��� �

Lemma �� If FII is minimal then F has a DS of length at most jSj��

Proof
Take some pair of states s� and s�� As FII is minimal there is some sequence
r�� jr�j � jSj� of inputs from FII that distinguishes between s� and s�� The
sequence r� induces an equivalence relation �r� on S that is de�ned by�
si �r� sj if and only if ���si� r�� � ���sj� r��� Clearly� as the values in r� are
from FII� if si �r� sj then ���si� r�� �� ���sj� r���

If there is some pair of states �si�sj� such that si �r� sj then there is
some sequence r�� jr�j � jSj� from FII that distinguishes between ���si� r��
and ���sj � r��� Then r�r� induces an equivalence relation on S and this has
at least one more equivalence class than �r��

This process can be repeated until there is some sequence r � r�r� � � � rk
with jSj equivalence classes� Then clearly k � jSj and jrij � jSj� for � � i �
k� and thus jrj � jSj�� As �r has jSj equivalence classes it is a DS� Thus F
has a DS of length at most jSj�� �

It should be noted that the above proof suggests an algorithm for gener�
ating DSs of length at most jSj� when FII is minimal� This upper bound is
useful� as there is no polynomial upper bound on the length of DSs or UIOs
�Lee and Yannakakis ����	
�� although it has been suggested that DSs and
UIOs are typically short �Hennie ����	
� Shen et al� �����
��

��� Finding invertible sequences and UIOs

Given an FSM F � �S� T� s�� there are two approaches to �nding ISs� either
searching forward starting with invertible transitions or searching backwards
from non�invertible transitions� as a prime IS of length greater than one
starts with a transition from TI and ends in a transition from TR� If the set
of non�invertible transitions� TR� is much smaller than the set of invertible
transitions� TI � it can be advantageous to search backwards in order to �nd
the shorter ISs� as there will be far fewer starting transitions for the search� In
general� however� it is better to search forward starting with elements of TI� as

��



when searching forward any non�invertible sequence can be eliminated from
the search� This is because� by Lemma 
� a sequence t being non�invertible
implies that for any sequence r� tr is also non�invertible� In contrast� when
searching backwards non�invertible sequences cannot be eliminated from the
search as it is possible that they can be extended backwards to produce
invertible sequences�

The forward search for ISs can be performed using� at the �m � ��th
step� a set of ISs of length m and for each of these ISs the set of other �nal
states that can be reached with the same input and output sequence� The
set of ISs of length m will be denoted Im and for each t � t� � � � tm in Im�
ti � �s��i�� s��i���� xi�yi�� for some function � � f�� � � � �mg� � f�� � � � � ng�

St � f���s�� x� � � � xm� j s� � S � s���� � ���s�� x� � � � xm� � y� � � � ymg
This is the set of other �nal states that can be reached with this input and
output�
Then I� � TI and for each t � �si� sj� x�y� in TI �

St � fs �� sj j �s
� � �s�� s� x�y� � Tg

Both Im�� and the St can be de�ned inductively by�

Im�� � ft� � � � tm��� ti � �s��i�� s��i���� xi�yi� j t� � � � tm � Im�
��s� s��m���� xn���yn��� � T 	 s �� St����tm�g

St����tm�� � fs j �s� � St������tm � �s
�� s� xm���ym��� � Tg

It should be noted that if St � fg then t is a UIO and so this method
can be used to �nd UIOs� The searching of the set of ISs when looking for
UIOs has the advantage over the direct approach� as described in Sabnani
and Dahbura �����
� that it limits the size of the search� Thus� as a sequence
that is not an IS cannot be extended to form an IS� any extensions of a
sequence that is not an IS can be eliminated from the search�

As is noted in Sabnani and Dahbura �����
� for testing it is only necessary
to look for UIOs of length at most 
jSj�� This is because every FSM has a
characterizing set and it is possible to test with e�ort at most 
jSj� using
a characterizing set� As ISs will be used to avoid using UIOs� only ISs of
length at most 
jSj� need be generated�

��



� Testing from an FSM

��� Introduction

In order to test against an FSM model it is necessary to check the transi�
tions� Testing a transition involves moving to its initial state� executing the
transition� and then checking the �nal state� In this paper it will be assumed
that any FSM used has a UIO for each state and that the problem is to
�nd the shortest sequence that contains a test for every transition� See e�g�
Chow �����
� Fujiwara et al� �����
� Petrenko et al� ����	b
 for information
on testing from an FSM model that does not have a UIO for each state�

It has been noted that the conditions placed on the FSM can be weakened�
The problem of testing from a nondeterministic FSM has been considered
�Fujiwara et al� �����
� Fujiwara and v� Bochmann ����

� Evtushenko et
al� �����
�� Petrenko et al� ����	b
 further weaken the conditions assumed
by introducing a test technique that uses a characterizing set and does not
require the FSM model to be either deterministic or completely speci�ed�
Tripathy and Naik ����

 extended the idea of a UIO to a non�deterministic
FSM by using an adaptive identi�cation process�

When producing a test sequence that tests the individual transitions by
using UIOs� each transition t is tested by a sequence of the form tu� where u is
a UIO for the �nal state of t� Such sequences will be called test subsequences�
If a sequence v contains a test subsequence for each transition� v is said to
be a test sequence� The problem is to �nd the shortest test sequence�

Aho et al� �����
 express the problem of �nding a test sequence as that
of minimally connecting the test subsequences� They represent the FSM by
a digraph and for each test subsequence tu they add an edge from the initial
state of t to the �nal state of u� They look for the shortest sequence� in the
digraph� that contains every test subsequence� This problem corresponds to
the Rural Chinese Postman Problem �RCPP�� While the RCPP is known to
be NP�complete �Lenstra and Rinnooy Kan �����
�� Aho et al� �����
 apply
a low order polynomial algorithm that solves the problem if either the FSM
has reset capacity �there is an input that takes every state to the initial state�
or has loops �transitions with equal initial and �nal states� for each state�

Shen et al� �����
 note that a state may have more than one UIO and
that shorter test sequences can be produced by an appropriate choice of UIO�

Yang and Ural �����
 utilize overlap between test subsequences� They
look for pairs of test subsequences t� and t� with the property that t� can

�




be extended to be of the form of a single transition followed by t�� More
formally� there exists a transition t	 and a �possibly empty� sequence t��
such that t�t�� � t	t�� Thus when t�t

�

� is executed the �rst two transitions
are tested using only one UIO� They build sequences from overlapping test
subsequences and connect these sequences� While this can reduce the length
of the test sequence� it need not be optimal as it does not include a method
for �nding the choice of sequences that leads to the shortest test�

Hierons �����
 proves that this form of overlap is fully represented by
the invertibility of transitions� as this overlap exists if and only if the �rst
transition of t� is an IT� Invertible transitions can also be used to extend the
set of UIOs as� by Lemma �� if t is an invertible transition and u is a UIO
for the �nal state of t then tu is a UIO�

A more general form of overlap is where there are two test subsequences
t� and t� such that t� ends with some initial section of t�� More formally�
there exist sequences t�� and t�� �t

�

� is non�empty� such that t�t�� � t��t� and
jt��j � jt�j� If the sequence t�t�� is executed the �rst transition of t� and the
�rst transition of t� are both tested� The following results demonstrate that
this form of overlap exists if and only if t��t� is in the form of a transition
followed by an IS followed by a UIO� and thus that if a transition is followed
by an IS and then a UIO both the initial transition and the last transition of
the IS are tested� This shows that ISs fully represent this more general form
of overlap�

Theorem � If there exist test subsequences t� and t� such that there are
�possibly empty� sequences t�� and t

�

� and transitions t and t
� with t�t�� � tt��t��

t� � tu�� t� � t�u�� and jt�j � jtt��j then t��t
� is an IS�

Proof
As tt��t

� is contained in the beginning of the test subsequence t�� t��t
� is con�

tained in the beginning of the UIO u�� By Lemma � u� is an IS� Also� by
Lemma 
� if rs is an IS then r is an IS and thus� as t��t

� is contained in the
beginning of the IS u�� t��t

� must be an IS� �

Theorem � If there exists a test subsequence t�� sequence t�� and transitions
t and t� such that the �nal state of t is the initial state of t�� t� � t�u� and
t�t

� is an IS then tt�t� is a test subsequence for t that overlaps with the test
subsequence t��

��



Proof
As t� is a test subsequence� u is a UIO� The sequence t�t�u � t�t� is therefore
in the form of an IS followed by a UIO and so� by Lemma �� is a UIO� Thus
tt�t� is a test subsequence� �

This link between ISs and test subsequence overlap will be utilized in
order to reduce the test sequence length� The use of this� and the use of ISs
to give more UIOs� will now be described in detail�

��� Invertible sequences and Testing

It has been shown that ISs can be used both to represent test subsequence
overlap and to extend the set of UIOs� An IS can therefore play two sepa�
rate roles in testing� either allowing the �nal state of its last transition to
be veri�ed �and thus testing it without using an extra UIO� or connecting
tests� An algorithm� based on graph and network theory� that utilizes these
properties will now be given� This will extend the algorithm given in Hierons
�����
 by using ISs� It will also allow transitions from TI to be tested as if
they were from TR� this extends the applicability of the algorithm as in some
cases it is not possible to utilize the invertibility of all of the elements of TI�
The algorithm will be divided into � steps�

�
�
� Step �

Given an FSM F � �S� T� s�� �jSj � n�� represented by a digraph G� the
transition sets TI and TR are produced� From this a network N � with vertex
set V � � W 
X 
 Y 
 Z 
 fs� tg in which the source is s and the sink is t� is
produced� This network is shown in Figure 	� In Step � edges from Z to W �
representing the transitions being tested� will be added and a tour generated�

The vertex set W represents the �nal states of transitions being tested�
the set X represents the initial states of transitions to be tested as non�
invertible transition� and the set Y represents the initial states of transitions
to be tested as invertible transitions� The sets X and Y are connected to
the set Z which represents the initial states of transitions being tested� This
stage of the algorithm involves producing a min cost max �ow for N � whose
edges will now be described�

The capacity of the edge from s to wi �� � i � n� is indegreeT �si� and the
capacity of the edge from zi � Z to t is outdegreeT �si�� The �ow from each yi
to the corresponding zi is limited to outdegreeTI�si�� as this is the maximum

�	



number of transitions leaving si that can be tested as invertible transitions�
For each i� � � i � n� there is an edge from wi to yi with in�nite capacity�
The �ow from each xi to the corresponding zi is not limited as it may be
necessary to test some transitions from TI as if they were not invertible� None
of these edges has a cost� as each corresponds to the execution of a transition
being tested� in testing every transition is executed in this manner�

Given a prime IS of the form t	x �non�empty sequence t	 and �nal transi�
tion x� in which the initial state of t	 is si and the �nal state of t	 �and thus
the initial state of x� is sj an edge from wi to zj�with cost jt	j and capacity ��
is included� This edge represents testing x by executing the IS t	x and later
verifying its �nal state� which is why it has capacity � and provides �ow of
� to zj� Prime ISs are used as any non�prime IS can be produced from this
and it is vital that the elements tested in this manner are from TR �Lemma
	 tells us that prime ISs of length greater than � end in elements from TR�
as otherwise the capacity from yj would need reducing�

The edges from W to X represent the UIOs and thus for each UIO with
initial state si� �nal state sj � and length m there is an edge from wi to xj
with cost m� Edges between the vertices of X represent executing transitions
in order to get to the initial state of a transition from TR and thus a copy of
each transition from T is included and give in�nite capacity and cost ��

The edges between the vertices of W represent transitions joining testing
sequences and thus must be invertible� A copy of the elements from TI
and the set of known prime ISs is therefore included� each is given capacity
in�nity and the cost is the length of the sequence �clearly � for individual
transitions��

A max �ow� min cost F � for N is now found� The �ow can be seen as
a set of transitions�sequences that can be executed by following edges from
the �ow plus edges from Z to W representing the transitions �these replace
the �ow from s and to t�� The max �ows will represent the set of sequences
that contain a test for each transition� and for a max �ow the corresponding
test has length jT j plus the cost of the �ow� From F � a symmetric digraph
G� will be produced and an Euler Tour of G� will give the test sequence �this
process will be described in Step ���

�
�
� Step �

If the full �ow from Y is used in F �� the algorithm now goes to Step �� If�
however� some of the transitions from TI are tested as if they were transitions

��



from TR �i�e� the capacity of the edges from Y is not fully used� it is necessary
to determine which transitions from TI are to be treated in this manner� the
extra �ow leaving some xi must be associated with the extra �ow from W
to X� Some set A � TI of transitions� whose testing as elements of TR is
consistent with the �ow F �� is found�

The set A is found by producing a max �ow for a network N � with vertex
set V �� � fs� tg 
 B 
 C� where s is the source� t is the sink� each vertex
in B corresponds to the initial state of a transition� and each vertex in C
corresponds to the �nal state of a transition� For each transition in TI that
goes from si to sj an edge from bi to cj with capacity � is included� For
each wi with �ow outdegreeTR�si� � ei to X in F � an edge from ci to t with
capacity ei is included� For each xi with �ow outdegreeTR�si� � fi to zi in
F � there is an edge from s to bi with capacity fi� The network is shown in
Figure �� A max �ow for this network gives a set of edges from TI whose
treatment as non�invertible will allow a tour associated with the �ow F ��

�
�
� Step �

Having found the set A and the set A� of transitions tested as part of an IS�
it is possible to produce the graph G� � �V ���� E ����� V ��� � P 
 Q� shown in
Figure �� E�ectively the vertices in P represent the situation after executing
a UIO and before executing a transition from TR while the vertices from Q
represent the situation before executing a UIO and thus the edges between
the qi must be invertible �ISs or ITs��

The edges will represent transitions or sequences of transitions involved
in testing and an Euler Tour will represent the test sequence� For each
transition that is to be tested as non�invertible and that is not tested as part
of an IS� from state si to state sj� there is a corresponding edge from pi to
qj� This transition set is TR 
A�A�� For each UIO from state si to sj with
�ow m in F � there are m edges from qi to pj� each represents the execution
of this UIO� For each transition in TI � A from state si to sj an edge from
qi to qj is included and for each transition x � A�� tested as part of a IS t	x
with initial state si and �nal state sj � there is an edge from qi to qj�

For each unit of �ow from wi to wj in F � there is an edge from qi to
qj representing this IT or IS� For each unit of �ow from xi to xj in F � a
corresponding edge from pi to pj is added�

Suppose W is a walk that covers every edge of G�� In W a non�invertible
transition� that is not tested as part of an invertible sequence� is represented

��



by an edge to Q and thus is followed by a number of ISs and ITs and then
�nally a UIO� Similarly any transition that is either being tested as an IT or
as part of an IS will be followed by a number of ISs and ITs and then a UIO�
Thus W will contain a test for every transition�

It is easy to verify that� as �ow is conserved in a network� this graph is
symmetric� An Euler Tour of G� can therefore be found as long as G�� with
the isolated vertices removed� is connected� Possible approaches to dealing
with G� being disconnected will be discussed in Section ����

The Euler Tour of G�� with each edge replaced by the corresponding
transition or sequences of transitions� gives the test sequence� of length
cost�F �� � jT j� unless it does not include a UIO� in this case a UIO can
be added to the end� The algorithm will be applied to an example in Section
��	�

��� The connectivity of G�

It is possible for the digraph G� to be symmetric but� even with the isolated
vertices removed� disconnected� If this is the case G� does not have an Euler
Tour� though an Euler Tour can be produced for each component� As a tour
of the whole digraph is required it is necessary to add edges to connect G�

while maintaining its symmetry� This can be done by adding circuits to G��
It is important to connect these tours at the correct points� which are the
sections that lie after the execution of a UIO and before the next execution
of a transition to be tested� These correspond to vertices in P �

Clearly it is desirable to �nd the smallest set of circuits� in terms of total
number of transitions� that connects G�� One approach is to initially �nd
the pair of components that requires the shortest circuit to connect it and
add this circuit forming a new graph G�

�� This process is repeated until some
connected G�

r is found� An Euler Tour of G�

r provides the test sequence�
The advantage of this rather naive algorithm is that its computational

complexity is low� Unfortunately� however� the solution need not be opti�
mal� but this is to be expected as the problem of minimally connecting the
components is NP�complete� An alternative approach is given in Ural et al�
�����
�

��



��� Example

The algorithm outlined in Section ��
 will now be applied to the FSM F with
state set S � fs�� s�� s�� s�� s�g input alphabet � � fa� b� cg� output alphabet
� � fx� yg� and whose transitions are given in Table �� The entries in Table
� give the output and next state for the initial state and input given by the
row and column respectively� The sets TI and TR are given in Tables 
 and
� respectively� The set of UIOs to be used is given in Table 	 � these are the
shortest UIOs for each state�

a b c

s� x� s� x� s� x� s�
s� x� s� x� s� x� s�
s� x� s� x� s� y� s�
s� x� s� x� s� y� s�
s� x� s� x� s� x� s�

a b c

s� x� s� x� s� x� s�
s� x� s�
s� y� s�
s� y� s�
s� x� s�

Table �� the FSM F Table 
� the set TI
a b c

s�
s� x� s� x� s�
s� x� s� x� s�
s� x� s� x� s�
s� x� s� x� s�

UIO Final State
s� b�x� c�y s�
s� c�x� a�x� c�y s�
s� c�y� a�x� c�x s�
s� c�y� a�x� c�y s�
s� c�x� c�y� a�x� c�y s�

Table �� the set TR Table 	� the UIOs
There are a number of prime ISs� The ones to be use� and their interme�

diate states� are given in Table ��
t	 x

s� � c�y� � s� s� � a�x� � s�
s� � c�x� � s� s� � a�x� � s�
s� � c�x� � s� s� � a�x� � s�
s� � c�y� � s� s� � a�x� � s�
Table �� the ISs

The algorithm produces the network and min cost� max �ow F � shown
in Figure �� in which only the edges with non�zero �ow are shown� The �ow
F � has cost 
� and thus the test sequence produced has length 
�� �� � ���
If ISs are not used� but ITs are� a test sequence of length �	 is produced�

The symmetric graph G� is de�ned by�
Vertex set V � fp�� p�� p�� p�� p�� q�� q�� q�� q�� q�g�
The edges are�

��



�� Corresponding to A�� q� � c�y� a�x� � q�� q� � c�x� a�x� � q�� q� �
c�x� a�x� � q�� q� � c�y� a�x� � q�


� Corresponding to TR�A�� p��b�x� � q�� p��b�x� � q�� p��b�x� �
q�� p� � b�x� � q�

�� Corresponding to the UIOs� q�� � p�� q�� � p�� q�� � p�� q�� � p�

	� Corresponding to TI� q�� a�x� � q�� q�� b�x� � q�� q�� c�x� � q��
q� � c�x� � q�� q� � c�y� � q�� q� � c�y� � q�� q� � c�x� � q�

�� Corresponding to connecting ISs� q�� � q�� q�� � q�� q�� � q�

�� Corresponding to connecting transitions between the xi� p� � c�x� �
p�� p� � c�x� � p�

It is easy to check that this digraph� G�� is symmetric� As G�� with the
isolated vertex p� removed� is connected an Euler Tour can be produced� as
required� This tour� in which UIOi�j denotes the UIO from state si to state
sj and IS denotes an IS used to connect testing� is�

p� � b�x � q� � c�x� a�x� q� � a�x� q� � c�x� q� � c�y � q�

q� � c�x � q� � c�y � q� � c�x� a�x� q� � c�y� a�x� q� � UIO��� � p�

p� � c�x � p� � b�x� q� � IS � q� � c�x� q� � IS � q�

q� � b�x � q� � c�y� a�x� q� � UIO��� � p� � b�x� q�

q� � IS � q� � UIO��� � p� � c�x� p� � b�x� q� � UIO��� � p�

��� A comparison with other techniques

There are a number of techniques that aim to generate a test sequence that
includes a test for every transition �Aho et al� �����
� Yang and Ural �����
�
Hierons �����
�� The algorithm outlined in Section ��
 subsumes the algo�
rithm given in Hierons �����
 and� as it allows invertible transitions to be
tested as transitions from TR� is generally more applicable� The example
given in Section ��	 demonstrates that the algorithm outlined in this paper
can lead to a shorter test sequence than that given in Hierons �����
 and
clearly it can never produce a longer test sequence� The algorithm given in
Hierons �����
 subsumes those of Yang and Ural �����
 and Aho et al� �����


��



and thus again cannot produce a longer test sequence than these� It is also
important to note that all of these algorithms have the same computational
complexity as they are based on network optimization for networks of the
same order�

It is more di�cult to compare the algorithm given in this paper with
di�erent classes of algorithm� such as the W and Wp algorithms �Chow
�����
� Fujiwara et al� �����
�� The worst case behaviour of the W and Wp
methods is certainly better than those based on the use of UIOs or a DS� as
there is no polynomial upper bound on the length of UIOs and DSs �Lee and
Yannakakis ����	
�� It has� however� been noted that UIOs are usually quite
short and thus that the tests produced using UIOs are typically much shorter
than those used producing the W method �Sidhu and Leung �����
� and�
presumably� the Wp method� This is because� when using a characterizing
set� it is necessary to execute each transition a number of times�

It is important to note that the problem of producing a checking sequence
has not been addressed in this paper� In order to produce a checking sequence
it is necessary to verify the UIOs used� and thus the use of multiple UIOs for
each state may not reduce the total length of a checking sequence�

� Conclusions

Invertible sequences are strongly linked to state identi�cation sequences and
can be utilized in generating a set of UIOs or a DS� If the FSM FII� formed
by taking the transitions given by invertible inputs� is minimal it is known
that F has a DS of length at most jSj� and an algorithm for generating this
DS has been outlined�

Certain properties of ITs help us decide whether an FSM has a DS or
UIOs for each state� In particular� if FI is strongly connected then either F
has a UIO for every state or no state of F has a UIO� If some state of an
FSM has no ITs leaving it then the state does not have a UIO�

Invertible sequences can be used to connect transitions that are being
tested without losing information about the state� if the �nal state of an IS
is known then so is its initial state� If the �nal state of the IS has been
veri�ed� the last transition of the IS and the transition that preceded the IS
have both been tested� This can help reduce the number of UIOs needed in
testing� and thus reduce the length of the test sequence produced without
increasing the computational complexity of the algorithm�


�



The algorithm outlined in this paper generates shorter test sequences
when it is simply necessary for there to be a test for every transition� It does
not� however� produce a checking sequence� In order to produce a checking
sequence a further sequence must be added� This extra sequence may be
longer for methods� such as this� that use multiple UIOs�

� References

�� A�V� Aho� A�T� Dahbura� D� Lee� and M�U� Uyar� ����� An Optimiza�
tion Technique for Protocol Conformance Test Generation Based on
UIO Sequences and Rural Chinese Postman Tours Proceedings of Pro�
tocol Speci�cation� Testing� and Veri�cation VIII� pp������ Atlantic
City� North�Holland�


� E� Brinksma� ����� A Theory For The Derivation of Tests� Proceed�
ings of Protocol Speci�cation� Testing� and Veri�cation VIII� pp����	�
Atlantic City� North�Holland�

�� T�S� Chow� ����� Testing Software Design Modelled by Finite State
Machines� IEEE Transactions on Software Engineering� � �� March
����� pp��������

	� N�V� Evtushenko� A�V� Lebedev� and A�F� Petrenko� ����� On Check�
ing Experiments With Nondeterministic Automata� Automatic Control
and Computer Sciences� �� pp������

�� S� Fujiwara� G� v� Bochmann� F� Khendek� M� Amalou� and A�Ghedamsi�
����� Test Selection Based on Finite State Models� IEEE Transactions
on Software Engineering� �� �� June ����� pp��������

�� S� Fujiwara and G� v� Bochmann� ���
� Testing Non�deterministic
State Machines with Fault Coverage� Proceedings of Protocol Test Sys�
tems� IV� pp
���
���

�� A� Gibbons� ����� Algorithmic Graph Theory� Cambridge University
Press�

�� F�C� Hennie� ���	� Fault�detecting experiments for sequential circuits�
Proceedings of Fifth Annual Symposium on Switching Circuit Theory
and Logical Design� November ���	� pp�������


�



�� R�M� Hierons� ����� Extending Test Sequence Overlap by Invertibility�
The Computer Journal� �� 	� pp�
������

��� R�M�Hierons� ����� Invertible Sequences and State Identi�cation�Gold�
smiths Mathematics and Computing Technical Report ��
�
���

��� C�M Huang and J�M Hsu� ���	� An Incremental Protocol Veri�cation
Method� The Computer Journal� �� �� pp��������

�
� Z� Kohavi� ����� Switching and Finite State Automata Theory� McGraw�
Hill�

��� I� Kohavi and Z� Kohavi� ����� Variable�Length Distinguishing Se�
quences and Their Application to the Design of Fault�Detection Exper�
iments� IEEE Transactions on Computers� August ����� pp��
�����

�	� D� Lee and M� Yannakakis� ���	� Testing Finite�State Machines� State
Identi�cation and Veri�cation� IEEE Transactions on Computers� ��
�� pp�����
��

��� J�L� Lenstra and A�H�G� Rinnooy Kan� ����� On General Routing
Problems� Networks� �� pp
���
���

��� G� Luo and J� Chen� ����� Generating Test Sequences For Communi�
cation Protocol Modelled by CNFSM� Proceedings of 	rd Pan Paci�c
Computing Conference� pp������	�

��� G� Luo� G� v� Bochmann� and A� Petrenko� ���	a� Test Selection Based
on Communicating Nondeterministic Finite�State Machines Using a
Generalized Wp�Method� IEEE Transactions on Software Engineering�
�	 
� pp�	������

��� G� Luo� A� Das� and G� v� Bochmann� ���	b� Generating Tests For
Control Portion of SDL Speci�cations� Proceedings of Protocol Test
Systems� VI �C����� pp������

��� E�P� Moore� ����� Gedanken�Experiments� in Automata Studies� Edi�
tors C� Shannon and J� McCarthy� Princeton University Press� pp�
��
����








�� H� Motteler� A� Chung� and D� Sidhu� ���	� Fault Coverage of UIO�
based Methods for Protocol Testing� Proceedings of Protocol Test Sys�
tems� VI �C����� pp
�����


�� A� Petrenko� G� v� Bochmann� and R� Dssouli� ���	a� Conformance
Relations and Test Derivation� Proceedings of Protocol Test Systems�
VI �C����� pp��������



� A� Petrenko� N� Yevtushenko� A� Lebedev� and A� Das� ���	b� Nonde�
terministic State Machines in Protocol Conformance Testing� Proceed�
ings of Protocol Test Systems� VI �C����� pp��������


�� A� Petrenko� N� Yevtushenko� G� v� Bochmann� and R� Dssouli� �����
Testing in Context� Framework and Test Derivation� Computer Com�
munications� ��� pp�
����
	��


	� M� Phalippou� ����� The Limited Power Of Testing� Proceedings of
Protocol Test Systems� V �C����� pp	���	�


�� A� Rezaki and H� Ural� ����� Construction of checking sequences based
on characterization sets� Computer Communications� �� �
� pp�����
��


�� K� Sabnani and A� Dahbura� ����� A Protocol Test Generation Proce�
dure� Computer Networks� �� 	� pp
���
���


�� Y�N� Shen� F� Lombardi� and A�T� Dahbura� ����� Protocol Confor�
mance Testing Using Multiple UIO Sequences� Proceedings of Protocol
Speci�cation� Testing� and Veri�cation IX� pp�����	�� Twente� Nether�
lands� North�Holland�


�� D� Sidhu and T� K� Leung� ����� Experience with Test Generation for
Real Protocols� ACM SIGCOMM ��� pp
���
���


�� P� Tripathy and K� Naik� ���
� Generation of Adaptive Test Cases
From Non�deterministic Finite State Models� Proceedings of the �th
International Workshop on Protocol Test Systems� Sept ���
� Montreal�
pp�����
��

��� B� Yang and H� Ural� ����� Protocol Conformance Test Generation
Using Multiple UIO Sequences with Overlapping� ACM SIGCOMM
��� Communications� Architectures� and Protocols� Sept 
	�
� p����
�
�� Twente� Netherlands� North�Holland�


�



��� H� Ural� X� Wu� and F� Zhang� ����� On Minimizing the Lengths of
Checking Sequences� IEEE Transactions on Computers� �� �� pp������

�
� C�D� Wezeman� ����� The CO�OP Method For Compositional Deriva�
tion of Conformance Testers� Proceedings of Protocol Speci�cation� Test�
ing� and Veri�cation IX� pp�	������ Atlantic City� North�Holland�


	


