
B. Read (Ed.): BNCOD 2001, LNCS 2097, pp. 43-56, 2001.
© Springer-Verlag Berlin Heidelberg 2001

An Effective Data Placement Strategy for XML
Documents

Yuanling Zhu and Kevin Lü

SCISM, South Bank University
103 Borough Road
London SE1 OAA
zhuy@sbu.ac.uk

Abstract. As XML is increasingly being used in Web applications, new
technologies need to be investigated for processing XML documents with high
performance. Parallelism is a promising solution for structured document
processing and data placement is a major factor for system performance
improvement in parallel processing. This paper describes an effective XML
document data placement strategy. The new strategy is based on a multilevel
graph partitioning algorithm with the consideration of the unique features of
XML documents and query distributions. A new algorithm, which is based on
XML query schemas to derive the weighted graph from the labelled directed
graph presentation of XML documents, is also proposed. Performance analysis
on the algorithm presented in the paper shows that the new data placement
strategy exhibits low workload skew and a high degree of parallelism.

Keywords: Data Placement, XML Documents, Graph Partitioning, and Parallel
Data Processing.

1 Introduction

As a new markup language for structured documentation, XML (eXtensible Markup
Language) is increasingly being used in Web applications because of its unique
features in data representation and exchange. The main advantage of XML is that
each XML file can have a semantic schema and makes it possible to define much
more meaningful queries than simple, keyword-based retrievals. A recent survey
shows that the number of XML business vocabularies has increased from 124 to over
250 in six months [1]. It can be expected that data in XML format would be largely
available throughout the Web in the near future. As Web applications are time
vulnerable, the increasing size of XML documents and the complexity of evaluating
XML queries pose new performance challenges to existing information retrieval
technologies. The use of parallelism has shown good scalability in traditional
database applications and provides an attractive solution to process structured
documents [2]. A large number of XML documents can be distributed onto several
processing nodes so that a reasonable query response time can be achieved by
processing the related data in parallel.

44 Y. Zhu and K. Lü

In parallel data processing, effective data placement has drawn a lot of attention
because it has a significant impact on the overall system performance. The data
placement strategy for parallel systems is concerned with the distribution of data
between different nodes in the system. A poor strategy can result in a non-uniform
distribution of the load and the formation of bottlenecks [3]. In general, determining
the optimal placement of data across nodes for performance is a difficult problem
even for the relational data model [4]. XML documents introduce additional
complexity because they do not have a rigid, regular, and complete structure.
Although some XML documents may have a DTD (Document Type Definition) file
to specify their structures and the W3C (World Wide Web Consortium) is working on
the XML Schema standard, either DTD or XML Schema is an optional companion to
the XML documents. We cannot expect that every XML document on the Web is a
valid XML file, which means that it conforms to a particular DTD or XML Schema.

In this paper, we use the labelled directed graph model to represent XML data. A
graph partition algorithm is explored to maximise the parallelism among the different
processing nodes in a shared-nothing architecture where each node has its own
memory and disks. The distribution of the data is dependent on the queries applied to
the data. XML queries are based on path expressions because of its lack of schema
information. As path expressions access data in a navigational manner, elements
along the objective path should be placed together to minimise communication cost.
At the same time, data relative to the same query should be distributed evenly to
different nodes to achieve the load balance. These two objectives are both considered
in the new proposed data placement strategy. Moreover, the new strategy is based on
the unique features of XML documents and the distribution of XML query sets. This
paper also presents the performance analysis on the new data placement strategy.

The remainder of the paper is organised as follows: Section 2 presents the related
work and motivations of the study. Section 3 describes the XML data model and the
algorithm for deriving the weighted graph of XML documents. Section 4 proposes a
new graph-partitioning algorithm based on the features of XML documents. Section 5
analyses the performance of the new algorithm. Section 6 concludes the paper and
discuss pending research issues.

2 Related Work and Motivations

Effective parallelisation of data queries requires a declustering of data across many
disks so that parallel disk I/O can be obtained to reduce response time. A poor data
distribution can lead to a higher workload, load imbalance and hence higher cost.

Various data placement strategies have been developed by researchers to exploit the
performance potential of shared-nothing relational database systems. Since the
complexity of the problem is NP-complete [5], heuristics are normally used to find a
nearly optimal solution in a reasonable amount of time. According to the criteria used
in reducing costs incurred on resources such as network bandwidth, CPUs, and disks,
data placement strategies can be classified into three categories, which are network
traffic based [6], size based [7], and access frequency based [8]. The main idea of

An Effective Data Placement Strategy for XML Documents 45

these approaches is to achieve the minimal load (e.g. network traffic) or a balance of
load (e.g. size, I/O access) across the system using a greedy algorithm. Our algorithm
is a combination of the network traffic based and access frequency based strategy,
because it aims to minimise the communication cost and to maximise the intra-
operation parallelism.

In parallel object-oriented database systems, data placement strategy is also critical to
the system performance and is far more complex. [9] pointed out that in designing a
data placement method for a parallel object-oriented databases, two major factors that
most of the time contradict each other must be taken into account: minimising
communication cost and maintaining load balance. [4] used a greedy similarity graph
partitioning algorithm to assign object into different processing nodes aiming to
minimise inter-node traversals and maximise parallelism. This algorithm attempts to
place objects that have a higher degree of similarity on different disks, where two
objects are more similar if they are accessed together in a navigational manner but
less similar if the two objects can be accessed together in a parallel manner. Although
the paper gives an equation to compute the similarity between two nodes, there’s no
definite method for getting the weights between two nodes.

Data placement strategies in both relational and object-oriented parallel database
systems could be helpful to the study of the data placement strategy for XML
documents. The idea of our data placement strategy for XML data is similar to those
in parallel object-oriented databases. But we focus on how to construct the weighted
graph from the original XML document, which forms the basis of the graph
partitioning algorithm. The objective of the research is trying to find a nearly optimal
data distribution so that the system throughput and resource utilisation can be
maximised. Our graph partition algorithm is based on the multilevel graph partition
algorithm for its efficiency and accuracy. The unique features of XML documents and
XML queries have been studied to provide the foundation for the graph partition.

3 Graph Model of XML Data

3.1 Labelled Directed Graph

The latest W3C working draft on XML Information Set (InfoSet) [10] provides a data
model for describing the logical structure of a well-formed XML 1.0 document. In
this model, an XML document’s information set consists of a number of Information
Items, which are abstract representations of some components of an XML document.
For example, in the XML document of figure 2, there are three different types of
information item: document information items, element information items, and
attribute information items. The specification presents the information set as a tree
and accordingly the information items as the node of the tree. Any information item in
the XML document can be reached by recursively following the properties of the root
information item. Similar to the data model used in Lore [11], we extended the
InfoSet data model to a directed labelled graph, where the vertices in the graph

46 Y. Zhu and K. Lü

represent the information items and arcs represent the semantic links between the
information items.

<Publications>
<Proceeding>

<Conference>VLDB</Conference>
<Year>1999</Year>
<Location>Edinburgh</Location>
<Article id=’A1’ reference=’A2 A3’ >

<Title>Query Optimization for XML </Title>
<Author>Jason McHugh </Author>
<Author>Jennifer Widom</Author>

</Article>
</ Proceeding >
<Proceeding>

<Conference>ICDT</Conference>
<Year>1997</Year>
<Article id=“A2“>

<Title>Querying Semi-Structured Data</Title>
<Author>Serge Abiteboul</Author>

</Article>
</ Proceeding >

<Proceeding>
<Conference>ICDE</Conference>
<Year>1998</Year>
<Article id=’A3’ Reference=’A2’>

<Title>Optimizing Regular Path Expressions Using Graph
Schemes</Title>

<Author>Mary F. Fernandez</Author>
<Author>Dan Suciu</Author>

</Article>
</ Proceeding >

</Publications>

Fig. 1. An example for XML documents

Figure 2 describes the graph presentation of the XML document in Figure 1. We use
the definition in [12] as our definition for the labelled directed graph:

Definition 3.1 Let L be an arbitrary set of labels. A tuple),,,,(ltsAVG = is a L-

labelled directed graph, if V is a set of vertices, A is a set of arcs, s and t are total
functions from A to V assigning each arc its source and target vertex, and l is a total
label function from A to L assigning each arc a label.

We can see that the labelled directed graph of single XML document is actually a
graph with a unique root. Any vertex in the graph can be reached from the root by
following a certain path.

An Effective Data Placement Strategy for XML Documents 47

1

2

Proceeding

conference
Year location

6

Article

Title
Author

Author

11

Proceeding

conference
Year

18

Proceeding

conference
Year

7

Query
Optimization for

XML 8

Jason
McHugh

14

Article

TitleAuthor

16

Serge Abiteboul

Reference

15

Querying Semi-
Structured Data

12

ICDT

19

ICDE
20

1998 21

Article

Title

Author
Author

23

Mary F. Fernandez

13

1997

24

 Dan Suciu22

Optimizing Regular Path
Expressions Using
Graph Schemas

Reference

3

VLDB

5

Edinburg

4

1999

9

Jennifer Widom

Proceedings

Reference

Id

10
A1

Id

17
A2

Id

25

A3

Fig. 2. The labelled directed graph representation for the XML document in Figure 1.

Definition 3.2 A nonempty sequence),(,,...,1,10 imimiii vavav is called a path in the

graph),,,,,(ltsAVG = if 1)(-= ijij vas and ijij vat =)(for all positive mj £ ,

and all arcs and all vertices in that sequence are pair wise distinct.

3.2 Weighted Graph

Query languages for XML documents generally utilise path expressions to exploit the
information stored in XML documents. Path expressions are algebraic representations
of sets of paths in a graph and are specified by a sequence of nested tags. For
example, the path expression „proceeding.article.title“ for the XML document in
Figure 1 refers to the titles of all articles published in all proceedings. As shown in
[12], an XML query can also be presented by a labelled directed graph. Two XML
queries and their graph presentations were shown in Figure 3. The elements in the
graph are labelled with predicates, where the predicate true() serves as a wildcard.

Definition 3.3 Given a set of unary predicates P , a tuple),,,,(qqqqqq ltsAVG = is

a query schema if the elements are labelled with predicates):(PAVl qq fi¨ .

The graphs in Figure 3 can act as schemas, which partly describe the structure of the
XML document. If the predicate in a schema is true for the corresponding vertices and
arcs in an instance, we say that the instance conforms to the schema. The answer to a
query of XML documents is the union of all instances conforming to the query
schema. If those instances could be evenly distributed among several different disks
and therefore could be accessed in parallel during the query processing, the response
time for a query would be largely shortened. Meanwhile, one instance should avoid
spanning multiple partitions to reduce the communication cost. These two objectives

48 Y. Zhu and K. Lü

conflict because the first one tries to distribute vertices across as many partitions as
possible, while the second one tries to group the relevant vertices together.

Article

TitleAuthor

’Jenifer Widom’ true()

true()
Reference

Title

true()

true()

Article

Q1: select all papers authored by
’Jenifer Widom’

Q2: select all papers that cite the papers
authored by ’Jenifer Widom’

Author

’Jenifer Widom’

Fig. 3. Two typical XML queries and their corresponding graph based presentation

The data placement of XML documents over different sites can be viewed as a graph
partitioning problem. Each edge between two vertices in the graph is associated with
a weight to describe the frequency of traversals on it. The higher the weight is, the
more possible it is to assign the two vertices to the same partition. In our algorithm,
the weight between two vertices reflects two factors. One is the possibility of the two
vertices to be accessed together in sequential manner, and another one is the
likelihood of two vertices to be access together in parallel manner.

With the knowledge on the distribution of the XML query set, a weighted graph could
be derived based on the labelled directed graph defined in section 3.1.

Definition 3.4),,,(wrEVGw = is the weighted graph for a labelled directed

graph),,,,(ltsAVG = , if E is a set of edges, r is a total functions from A to V
assigning each edge its vertices, and w is a total weight function assigning each edges

in E a number to describe the traversal frequency of that edge. For each Ee ˛ , there

exists at least one arc Aa ˛ with the same vertices as e .

Algorithm 3.1 describes the method to derive the weighted graph from the original
labelled directed diagram based on the query distributions. In this algorithm, if the
arcs in the labelled directed graph are traversed in a query, the weights between the
corresponding vertices are computed based on the query frequency. If there is more
than one instance that conforms to a query schema, the arcs between any two
instances are studied to compute the weight of the edges that connect these two
instances. The value of parameter m is an adjustable number between zero and one,

which indicates the relative benefit by increasing the degree of parallelism compared
with lowering communication cost. If the communication overhead is high, a higher
value for m can be chosen.

An Effective Data Placement Strategy for XML Documents 49

Algorithm 3.1 Assigning Weight Algorithm
Input:

The labelled directed graph),,,,(ltsAVG =
The graph presentation }...,2,1 ,{ q

n
qqq GGGG =

Where, niltsAVG q
i

q
i

q
i

q
i

q
i

q
i ,...,2,1),,,,,(==

Query distribution: },,...,,{ 21 nllll = where 1
1

=å
=

n

i

l

Adjustable parameter 10, << mm
Output: the weighted graph),,,(wrEVG w =
Begin

Initialise the weight for each edge with zero

For each query q
iG in the query set

For each mjltsAVG ijijij ...,2,1),,,,,(== conforms to
q
iG

For each ijAa ˛
If)()(atas > Then)(),(asvatu ==

Else)(),(atvasu ==
End If

100),(),(**+= ivuwvuw lm
End For

For each mkjltsAVG ikikik £<=),,,,,(
If exists Aa ˛ , })(,)(|)(,)({ ikijikij VasVatVatVas ˛˛˛˛

If)()(atas > Then)(),(asvatu ==
Else)(),(atvasu ==

End If

100)1(),(),(**--= ivuwvuw lm
End If

End For
End For

End For
End

4 Graph Partitioning Algorithm

The graph partitioning problem is NP-complete [13], and heuristics are required to
obtain reasonably good partitions. The problem is to decluster the graph into n
partitions, such that each partition has roughly equal number of vertices and the
number of traversals between different partitions is minimised. In the case of XML
parallel processing, we aim at achieving lowest communication cost and gaining load
balance among different processing nodes.

50 Y. Zhu and K. Lü

[13] introduced a multilevel graph partitioning algorithm, which generally consists of
three phases: coarsening phase, partitioning phase, and uncoarsening phase. The
graph is first coarsened down to a few hundred vertices, a bisection of this much
smaller graph is computed, and then this partition is projected back towards the
original graph. This algorithm is suitable for XML graph partitioning because vertices
to be accessed in navigational manner could coalesce firstly to make sure that they are
assigned to the same processing nodes. Experiments presented in [13] also showed
that the multilevel algorithm outperforms other approaches both in computation cost
and partition quality. Our new data placement strategy is based on a multilevel graph
partitioning approach with the consideration of features of XML documents and XML
query distributions.

The goal of the coarsening phase is to reduce the size of a graph by collapsing the
matching vertices together. The edges in this set are removed, and the two vertices
connected by an edge in the matching are collapsed into a single vertex whose weight
is the sum of the weights of the component vertices. The method used to compute the
matching is crucial, because it will affect both the quality of the partition, and the time
required during the uncoarsening phase. [13] described a heuristic known as heavy-
edge matching (HEM) which tries to find a maximal matching that contains edges
with large weight. The idea is to randomly pick an unmatched node, select the edge
with the highest weight over all valid incident edges, and mark both vertices
connected by this edge as matched. Because it collapsed the heaviest edges, the
resulting coarse graph is loosely connected. Therefore, the algorithm can produce a
good partition of the original graph.

[14] argued that the HEM algorithm may miss some heavy edges in the graph because
the nodes are visited randomly. To overcome this problem, they proposed a heaviest-
edge matching by sorting the edges by their weights and visiting them in decreasing
order of weight. HEM and its variants reduce the number of nodes in a graph by
roughly a factor of 2 at each stage of coarsening. If r (instead of 2) nodes of the graph
are coalesced into one at each coarsening step, the total number of steps can be
reduced form log2(n/k) to logr(n/k). [14] used an algorithm called heavy-triangle
matching (HTM), which coalesces three nodes at a time so that they can get 20% time
saving.

We call our coarsening algorithm HSM (Heaviest Schema Matching). Algorithm 4.1
describes the details of the algorithm. In HSM, the vertices are no longer visited in
random order. The edges are sorted by their weight and the vertices with the
maximum weighted edge are selected to do the matching first. According to algorithm
3.1, there is an edge between two vertices in the weighted graph only if there is an arc
between them in the labelled directed graph. In the other word, the neighbour of a
vertex v in the weighted graph can be accessed together with v by following a
certain path. It is reasonable to collapse the matching vertex with its neighbour
together as many as possible if the weight between them is high enough. This
strategy can improve the efficiency of the coarsen phase.

An Effective Data Placement Strategy for XML Documents 51

The coarsen phase stops when the number of nodes in the coarser graph is small
enough. The coarsened graph iG is made of multivertices and edges that have not

been merged. A vertex in graph iG is called multivertices if it contains more than one

vertex of G . In a weighted graph, the weight of each edge indicates the possibility
for the corresponding vertices to be accessed together both in sequential mode and in
parallel mode. On the other hand, the weight also reflects the workload under the
query distribution. When two vertices are collapsed together, we need to keep the
weight information of the edge being merged. Therefore, we introduced a new

notation w to denote the weight of the multivertices in the coarsened graph. The
workload of each partition will be determined by the sum of the weight of edges and
multivertices in that partition.

Definition 3.5),,,,(wwrEVG kkkk
w
k = is the coarsened graph of a weighted

graph),,,(wrEVG w = , if ,VVVk ¨Ì where V is mad up of multivertices

that are created by collapsing vertices from V , and w is a total weight function

assigning each multivertices in V a number to describe the workload of that vertex.

Algorithm 4.1 Coarsening Graph

Input: The labelled directed graph),,,,(0 ltsAVG =
The weighted graph),,,(000 wrEVG = for G

Output: Coarser graph),,(wEVG nnn = with N vertices

Begin

0=i
Do while the number of vertices in),,,(wrEVG iii = is greater than N

Sort the edges of iE in descending order by their weights

Assume iEvu ˛),(is one of edges with maximum weight

Call),(_ vuverticescollapse to get the new vertices 1’ +˛ iVv
1+= ii

End Do
End

),(_ vuverticescollapse {

},{1 vuVV ii -=+

),(1 vuEE ii -=+

Build a new vertex ’v
Compute the workload for the new vertex:

),()’()’(vuwvwvw +=
For each neighbour iVx ˛ of u and v

If iExu ˛),(and iExv ˛),(Then

52 Y. Zhu and K. Lü

)’,()},(),,{(1 vxxvxuEE ii +-=+

),(),()’,(xvwxuwvxw +=
Else

)’,()},|({1 vxxvuEE ii +-=+

)},|({)’,(xvuwvxw =
End If

If),(),’(vuwxuw ‡ then

Call),(_ vuverticescollapse to get the new vertices 1’ +˛ iVv
End If

End For
}

The second phase of a multilevel graph partitioning algorithm is to compute a
balanced bisection of the coarsened graph. [13] evaluated four different algorithms for
partitioning the coarser graph. The basic idea of those algorithms is to form a cluster
of highly connected nodes. We choose the graph growing heuristic for the
partitioning phase. The heuristic computes a partition by recursively bisecting the
graph into two sub-graphs of appropriate weight. To bisect a graph, we pick up a
multivertices with the highest weight first, find its neighbours and neighbours’
neighbours in a heaviest-edge-first manner until the workload of the new partition
reach the average workload of the graph.

Algorithm 4.2 Partitioning Graph

Input: Coarser graph),,(wEVG nnn = with N vertices

The number of processors:m
Output: The partition function P assigning each vertex nVv ˛ to

one of m partitions
Begin

2=i

åå
˛˛

+=
nn VvEe

n vwewGworkload)()()(

Do while mi <

i

Gnworklaod
workloadAverage

)(
_ =

For do to1 2
ij =

Sort the multivertices in
j

nV in descending order by their weights

Assume
j

nVv ˛ is one of multivertices with maximum weight

)()(vwGworkload j

n
=

 }{2* vV j
n =

An Effective Data Placement Strategy for XML Documents 53

Do while workloadAveragevwew
j

n
j

nEe Vv

_))()(
2 2

<+å å
* *˛ ˛

Assume u is the neighbour of
2*j

nV with the maximum edge weight

}{22 uVV j
n

j
n ¨= **

End Do
End For

2*= ii
End Do

End

During the third phase of multilevel graph partitioning, the partition of the coarsest
graph kG is projected back to the original graph by going through the graphs

121 ,...,, GGG kk -- . The purpose of a partition refinement algorithm is to select two

subsets of vertices, one from each part such that when swapped the resulting partition
has smaller edge-cut. Many algorithms associate with each vertex v a quantity called
gain, which is the decrease in the edge-cut if v is moved to the other part. These
algorithms proceed by repeatedly selecting vertices with the highest gains from each
part and updating the gains of the remaining vertices. Assuming P is the initial
partition of the graph, the gain of a vertex is defined as the following:

),(where,),(),(
)()()()(

Euvuvwuvwg
uPvPuPvP

v ˛-= åå
=„

(1)

 If v is moved to the other partition, the gain of its neighbours should be modified.
The algorithm stops when there’s no vertex with positive gain value left.

5 Performance Analysis

We used the DBLP [15] data set as our experiment data. The DBLP data set collects
about 140,000 entries for published literature on database research area. The original
DBLP database stored each entry in a separate XML file and organised them by
multiple directories according to its origination. We parsed the files into entities,
which represent the vertices in the graph, and tags, which are the labels in the graph.
The hierarchy of the directories is also reflected in the graph representation. We
specially checked the cite entity in each document and linked it to the corresponding
vertices in the graph. The final graph for partitioning test contains 1,693,444 vertices
and 1,802,158 arcs. We used the query set in [16] to test our algorithms, and the query
frequency was also specified.

54 Y. Zhu and K. Lü

Table 1. Description of query sets and relative query fequencies for the experiment

Frequency
Query Description Result

Number Case1 Case2 Case3 Case4
SQ_1 Select the authors for a given title 8 30% 20% 20% 10%

SQ_2 Select all papers authored by
Michael Stonebraker

169 20% 10% 5% 10%

SQ_3 Select all papers authored by
Michael Stonebraker or Jim Gray

242 20% 10% 10% 15%

SQ_4 Select all papers published between
1990 and 1994

47,527 5% 5% 10% 10%

JQ_1 Select all papers by Jim Gray that
are quoted by Michael Stonebraker

2 10% 30% 20% 10%

JQ_2

Select all papers that quoted
Michael Stonebraker’s papers and
were published between 1990 and
1994

513 10% 20% 25% 30%

JQ_3 Select all pairs of papers that cite
one another 108,717 5% 5% 10% 15%

Fig. 4. Communication costs of different
numbers of processors

Fig. 5. Workload skews of different num-
bers of processors.

For convenience, we briefly called our XML graph partitioning algorithm XGP. As
the objectives of the XGP algorithm are to reduce the communication cost and lower
workload skew, these two measures have been tested to check the quality of the
algorithm. Figure 4 compares the communication costs when the round-robin
algorithm and the XGP algorithm are used for data partitioning. The communication
cost is indicated by the numbers of remote requested pages. We can see that the XGP
algorithm produces less communication cost than the round-robin algorithm does.
Figure 5 shows workload skews among the processing nodes. The workload skew is
indicated by the difference between the workload of each partition to the average
workload. It is defined in formula (2) and (3).

m

ew
workloadAvg Ee

ą̊
=

)(
_ (2)

0

1000

2000

3000

4000

5000

2 4 8 16 32 64 128

Processors

C
o

m
m

u
n

ic
at

io
n

C

o
st

round-robin
XGP

0

0.02

0.04

0.06

0.08

1 2 3 4 5 6 7
Processors

W
o

rk
lo

ad
 S

ke
w

XGP
Round-robin

An Effective Data Placement Strategy for XML Documents 55

m

wokloadavgPiworkload
skewworkload

m

i
å

=

-
= 1

_)(
_

(3)

It can be seen that the workload skew for the XGP algorithm doesnot change much
with the increase of the number of processing nodes. XGP also produces a low
workload skew, which is much less than the round-robin algorithm does.

Fig. 6. Communication costs of different
numbers of processors.

Fig. 7. Workload skews of different num-
bers of processors

The last experiment was to test the impact of query distributions to the workload
balance. We tested the communication costs and workload skews caused by
partitioning with different query frequency distributions. Figure 6 and Figure 7 show
that XGP algorithm performs well under all the four cases showed in table 1. We can
see that the communication costs and workload skews of four cases are quite close.
Because the weight used in the XGP algorithm is dependent on the query frequency,
the partitions for different query distributions will change accordingly.

6 Conclusion

In this study, we have developed a data placement strategy for the XML documents
on parallel processing systems. This approach is based on the multilevel graph
partitioning algorithm with consideration of the unique features of XML data and
XML queries. A new algorithm is proposed for deriving the weighted graph from the
labelled directed graph by using the implied schema information from XML queries.
According to our approach, entities to be accessed by navigation in a query would be
assigned to the same processing node, and instances accessed by the same query are
distributed evenly along all the processing nodes. In the coarsening phase of the
multilevel graph partitioning algorithm, all vertices in the neighourhood of the
selected matching vertex are coalesced based on their edge weight. This criterion
speeds up the procedure of the coarsening and reduces the possibility of assigning
vertices to be accessed by navigation to different processing nodes. In the partitioning

0

100

200

300

400

500

2 4 8 16 32 64 128

Processors

C
o

m
m

u
n

ic
at

io
n

C

o
st

case1 case2
case3 case4

0

0.001

0.002

0.003

0.004

0.005

2 4 8 16 32 64 128

Processors

W
o

rk
lo

ad
 S

ke
w

case1 case2
case3 case4

56 Y. Zhu and K. Lü

phase, the weights of multivertices are used to evenly distribute the workload of a
query. The performance analysis shows that the partition produced by our algorithm
could greatly reduce the communication cost and lower workload skew. In our future
work, we will focus on the parallel processing of XML queries and the XML query
optimisation with the consideration of different data placement strategies.

References

[1] Alan Kotok, An updated Survey of XML Business Vocabularies,
http://www.xml.com/lpt/a/2000/8/02/ebiz/extensible.html, August 2000.

[2] D.B. Skillicorn, Structured Parallel Computation in Structured Documents, external
technical Report, 1995.

[3] Manish Mehta, David J. DeWitt, Data placement in shared-nothing parallel database
systems, VLDB Journal (1997) 6: pages 53–72.

[4] Zhen He and Jefferey Xu Yu, Object Placement in Parallel OODBMS, Proceedings of the
Tenth Australasian Database Conference, pages 101-114, Auckland, New Zealand,
January 1999.

[5] D. Sacca and G. Widerhold, Database partitioning in a cluster of processors. In
proceedings of the 9th VLDB Conference, pages 242-247, Florence, Italy, Oct 31-Nov2,
1983.

[6] P. Apers. Data allocation in distributed database systems. ACM Transactions on Database
Systems, 13(3): 263-304, September 1988.

[7] K.A. Hua, C. Lee, and H.C. Young, An efficient load balancing strategy for shared-
nothing database systems. In proceedings of DEXA’92 conference, pages 469-474,
Valencia, Spain, 1992.

[8] G. Copeland, W. Alexander, E. Boughter, and T. Keller, Data placement in Bubba, in
Proceedings of ACM SIGMOD Conference, pages 99-108, Chicago, Illinois, June 1988.

[9] David Taniar, Toward an Ideal Data Placement Scheme for High Performance Object-
Orented Database Systems, Proceedings of high-performance Computing and
Networking, International Conference and Exhibition, HPCN Europe, pages 508-517,
Amsterdam, 1998.

[10] Roy Goldman, Jason McHugh, Jennifer Widom, From Semistructured Data to XML:
Migrating the Lore Data Model and Query Language, Proceedings of the 2nd
International Workshop on the Web and Databases (WebDB '99), pages: 25-30,
Philadelphia, Pennsylvania, June 1999.

[11] XML Schema Part1: Structures, W3C Candidate Recommendation,
http://www.w3.org/TR/xmlschema-1, 24 October 2000.

[12] A. Bergholz. "Querying Semistructured Data Based On Schema Matching", Doctoral
dissertation, Department of Computer Science, Humboldt University Berlin, Berlin,
Germany, January 2000.

[13] George Karypis and vipin Kumar, A Fast and High Quality Multilevel Scheme for
Partitioning Irregular graphs, SIAM Journal on Scientific Computing, Vol. 20 Number 1,
pages: 359-392. 1998.

[14] A. Gupta, Fast and Effective Algorithms for Graph Partitioning and Sparse-matrix
Ordering, Vol. 41, NO. 1-2, IBM Journal of Research & Development, pages: 171-184,
1997.

[15] DBLP maintained by M. Ley. http://www.informatik.uni-trier.de/~ley/db/index.html,
December 2000.

[16] Feng Tian, David J. Dewitt, Jianjun Chen, and Chun Zhang, The Design and Performance
Evaluation of Alternative XML Storage Strategies,
http://www.cs.wisc.edu/niagara/vldb00XML.pdf, December 2000.

	Introduction
	Related Work and Motivations
	Graph Model of XML Data
	Labelled Directed Graph
	Weighted Graph

	Graph Partitioning Algorithm
	Performance Analysis
	Conclusion
	References

