
Applying adaptive test cases to

nondeterministic implementations

R. M. Hierons a

aSchool of Information Systems, Computing and Mathematics, Brunel University,
Uxbridge, Middlesex, UB8 3PH, United Kingdom

Key words: State-based testing; Test Execution; Adaptive test cases;
Nondeterministic implementation; Minimising Cost.

1 Introduction

The testing of a state-based system involves the application of sequences of
inputs and the observation of the resultant input/output sequences (traces).
These traces can result from preset input sequences or adaptive test cases in
which the choice of the next input depends on the trace that has observed
up to that input. Adaptive test cases are used in a number of areas including
protocol conformance testing (see, for example, [1,6,9]) and adaptivity forms
the basis of the standardised test language TTCN (see, for example, [2]).

Suppose that we apply adaptive test case γ to the system under test (SUT)
and observe the trace σ̄. If the SUT is deterministic and we apply γ again, after
resetting the SUT, then we will observe σ̄ again. Further, if we have another
adaptive test case γ′ where a prefix σ̄′ of σ̄ is a possible response to γ′ then we
know that the application of γ′ must lead to σ̄′. Thus, for a deterministic SUT
the response of the SUT to an adaptive test case γ′ might be deduced from
the response of the SUT to another adaptive test case γ [4]. This observation
can be used to reduce the cost of testing: we only apply adaptive test case γ′

if we cannot deduce the response to γ′ from the set of observations [4].

While many systems are deterministic, nondeterminism is becoming increas-
ingly common. Nondeterminism in the SUT is typically a consequence of limits
in the ability to observe the SUT. For example, it could be a result of infor-
mation hiding, real time properties, or of different possible interleavings in a
concurrent system (see, for example, [10]). This paper investigates the case
where the SUT is nondeterministic. We consider the situation in which a set
O of traces has been observed in testing and we are considering applying an

Preprint submitted to Elsevier Science 28 November 2005



adaptive test case γ. In general we cannot expect to be able to deduce the
response of a nondeterministic SUT to an adaptive test case γ since there may
be more than one possible response. Instead we consider the question of how
we can decide whether the application of γ could lead to a trace that has not
been observed. A solution to this would allow us to reduce the cost of testing:
if all possible responses of the SUT to γ have already been observed then we
do not have to apply γ in testing and thus reduce the cost of test execution.

This paper considers three cases. Section 3 considers the case where we can
apply a fairness assumption. Section 4 weakens this assumption to us having
a lower bound p on the probability of observing alternative responses of the
SUT to any input and in any state. Section 5 then considers the general case.

2 Preliminaries

2.1 Sequences

Throughout this paper X and Y denote the finite input and output domains
of the SUT. For a set A, A∗ denotes the set of finite sequences of elements
of A including the empty sequence ε. A variable representing a sequence will
have a bar over its name (for example, x̄). The concatonation of sequences c̄
and d̄ is represented by c̄d̄. Given a set B of sequences from A∗, Pre(B) =
{b̄′|∃b̄ ∈ B, b̄′′ ∈ A∗.b̄ = b̄′b̄′′} denotes the set of prefixes of sequences from B.

We assume that the SUT is a black box state-based system whose functional
behaviour is being tested. In testing we thus observe traces of the form 〈x1/y1,
. . . , xk/yk〉 ∈ (X/Y )∗ where x̄ = x1, . . . , xk ∈ X and ȳ = y1, . . . , yk ∈ Y and
we also represent such a trace as x̄/ȳ. A preset test sequence is an element
of X∗. If a set of test sequences, or adaptive test cases, is applied then the
SUT is returned to its initial state after each test using a test postamble [5].
This ensures that each adaptive test case or test sequence is applied in the
same state of the SUT. The postamble could involve the system being reset or
switched off and then on again, an adaptive process, or a sequence of inputs.
Throughout this paper, given an SUT I and an input sequence x̄, I(x̄) denotes
the set of possible output sequences I can produce in response to x̄.

2.2 Adaptive test cases

In this paper T denotes the set of all adaptive test cases that have (finite) input
domain X and (finite) output domain Y . The set T can thus be recursively

2



a

b

0

0

1

1

Fig. 1. An adaptive test case

defined in the following manner [4].

Definition 1 Each element γ ∈ T is either null or a pair (x, f) in which
x ∈ X and f is a function from Y to T .

We apply adaptive test case γ in the following way. If γ = null then we
terminate. Otherwise γ = (x, f) and we apply x, observe an output y, and
then apply adaptive test case f(y) 1 . An adaptive test case can be represented
by a tree such as that shown in Figure 1 and we assume that this representation
is finite. Figure 1 represents an adaptive test case in which we apply input a,
terminating if the output is 0. If the output is 1 then we apply input b and
whatever the response to b after a, the adaptive test case then terminates. This
adaptive test case can be defined by: γ = (a, f), f(0) = null, f(1) = (b, f ′),
f ′(0) = null, and f ′(1) = null.

Given an adaptive test case γ, IO(γ) denotes the set of traces that can be
observed using γ [4]. For example, the adaptive test case γ given in Figure 1
has: IO(γ) = {〈a/0〉, 〈a/1, b/0〉, 〈a/1, b/1〉}. Since every adaptive test case is
represented by a finite tree, IO(γ) is finite and every element of IO(γ) is finite.
Naturally, when γ is applied to an actual implementation this SUT may only
be able to produce a subset of IO(γ) in response to γ. The length of γ ∈ T ,
length(γ), is the length of the longest trace in IO(γ) [4]. Given γ ∈ T , the
size |γ| of γ is the number of nodes in the tree that represents γ [4]. Given
σ̄ ∈ Pre(IO(γ)), γσ̄ denotes the adaptive test case obtained if we have been
applying γ and have observed trace σ̄; this corresponds to the node of the tree
representing γ that is reached from the root by a path with label σ̄.

Throughout this paper O is the set of traces that have already been observed.
Previous work has shown that sometimes we can deduce the response of a
deterministic SUT to some adaptive test case γ on the basis of O [4]. In this
paper we generalise this to a nondeterministic SUT and consider the problem
of deciding whether the SUT can produce any response to adaptive test case
γ that is not in Pre(O): if the SUT cannot produce a trace that is not in

1 We could allow f to be a partial function, where we terminate if f is applied to
some y 6∈ dom f , but to simplify the exposition we only consider total functions.
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Pre(O) then testing with γ can provide no additional information 2 .

3 Using the fairness assumption

In this section we assume that we have the following fairness assumption [8]:
we have an integer k such that if we apply any input sequence x̄ to the SUT
k times then all possible responses of the SUT to x̄ are observed. We also
assume that each test sequence or adaptive test case 3 has been applied at
least k times. We weaken this assumption in the following sections. We let Φ
denote the set of possible SUTs for which we could have observed O in testing
while satisfying this fairness assumption.

We define a recursive function det1f that takes the trace σ̄ that has been
observed so far in an adaptive test case, the current node (either null or a
pair (x, f)), and the set Oσ̄ of traces that follow σ̄ in O and decides whether
the possible responses of the SUT to (x, f) after σ̄ are in Oσ̄.

Definition 2 The function det1f is defined by the following rules in which σ̄
is a trace, (x, f) is an adaptive test case, and Oσ̄ is a set of traces.

det1f (σ̄, null, Oσ̄) = true

det1f (σ̄, (x, f), Oσ̄) = (∃y ∈ Y.x/y ∈ Pre(Oσ̄)) ∧
(∀y ∈ Y.(x/y ∈ Pre(Oσ̄)) ⇒ det1f (σ̄x/y, f(y), Oσ̄x/y))

The base case is trivial: we know the response to null. In the recursive case, if
we apply (x, f) after σ̄ then we require that x has been applied after σ̄ and for
all y ∈ Y , either the SUT cannot produce σ̄x/y (this has not been observed
in O and we have repeated the application of each adaptive test case at least
k times) or the set of possible responses to f(y) after σ̄x/y is in Oσ̄x/y. We
can now define function detf that takes γ ∈ T and a set O of observed traces
and decide whether O contains all possible responses of the SUT to γ.

Definition 3 The function detf is defined by detf (γ, O) = det1f (ε, γ, O).

Proposition 1 Suppose that if we apply any x̄ ∈ X∗ to the SUT k times then
all possible responses of the SUT to x̄ will be observed and that the set O of
traces have been observed in response to the application of a set of adaptive

2 We make an implicit assumption here that in testing we only observe traces.
3 It has been shown that if the fairness assumption holds for input sequences then
the corresponding fairness assumption for adaptive test cases must also hold [3].
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test cases k times. Then the response of the SUT to adaptive test case γ is
guaranteed to be contained in Pre(O) if and only if detf (γ, O) is true.

Proof. First assume that detf (γ, O) = true and let I denote an element of
Φ. Let O′ denote the set of traces that can be produced by I in response to
γ: we require to prove that O′ ⊆ Pre(O). Proof by induction on the length of
traces in Pre(O′). The result trivially holds for the base case null. Inductive
hypothesis: every trace of length j or less in Pre(O′) is also in Pre(O). Let us
suppose that σ̄ = σ̄1x/y ∈ Pre(O′) has length j + 1. It is sufficient to prove
that σ̄ ∈ Pre(O). By the inductive hypothesis σ̄1 ∈ Pre(O). Thus, since
detf (γ, O) holds we must have that det1f (σ̄1, (x, f), Oσ̄1) = true, (x, f) = γσ̄1 .
Thus, there exists some y′ ∈ Y such that σ̄1x/y′ ∈ Pre(O) and thus in testing
x has been input after σ̄1. Thus, by the fairness assumption, σ̄1x/y ∈ Pre(O)
as required.

Now suppose that detf (γ, O) is false (and so γ 6= null). By definition there
exists x̄/ȳ ∈ Pre(IO(γ)) such that x̄/ȳ ∈ Pre(O), (x, f) = γx̄/ȳ 6= null, and
for all y ∈ Y we have that x̄x/ȳy 6∈ Pre(O). But from this we can deduce
that the SUT I can produce x̄/ȳ but that in testing we have not followed x̄/ȳ
by the input of x. Thus, there exists some y ∈ Y such that ȳy ∈ I(x̄x) and
thus there is some response of the SUT to γ that is not contained in Pre(O)
as required. 2

Proposition 2 Given adaptive test case γ and a set O of traces, detf (γ,O)
can be computed in time of O(|Y ||O|length(γ)).

Proof. Given a node γ′ of γ, let the depth of γ′ denote the length of the trace
that labels the path from the root of γ to γ′. Let m denote an integer with
m < length(γ) and let γ1, . . . , γl denote the nodes with depth m. Given node
γi let σ̄i denote the label of the path from the root of γ to the node γi. Clearly∑l

j=1 |Oσ̄i
| ≤ |O|.

Given y ∈ Y and γi = (x, f), it takes O(|Oσ̄i
|) effort to produce Oσ̄ix/y.

Thus, the overall effort to produce the Oσ̄ix/y is of O(
∑l

j=1

∑
y∈Y |Oσ̄j

|) =

O(
∑l

j=1 |Y ||Oσ̄j
|) and so, since

∑l
j=1 |Oγj

| ≤ |O|, this is of O(|Y ||O|). The
result follows from observing that this does not depend on m and so the overall
time complexity is of O(

∑length(γ)
m=1 |Y ||O|) which equals O(|Y ||O|length(γ)). 2

Note that we do not claim that the algorithm has optimal time complexity;
the key point is that it has low-order polynomial time complexity.
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4 A bound on probabilities

In this section we assume that if the SUT can produce trace σ̄x/y and we
have observed σ̄ then the probability of receiving y in response to x is at least
p and that this holds for all x, y, and σ̄. This assumption allows us to provide
confidence in the SUT not being able to produce trace x̄/ȳ if we have an
adaptive test case γ with x̄/ȳ ∈ Pre(IO(γ)) that has been applied a sufficient
number of times, and we have not observed x̄/ȳ. We can ask the following
question: what is the probability that we do not observe x̄/ȳ if x̄/ȳ is a trace of
the SUT and we have applied an adaptive test case γ with x̄/ȳ ∈ Pre(IO(γ))
m times? By investigating this question, we can set m so that if we do not
observe x̄/ȳ then we have a given confidence in the SUT not being able to
produce x̄/ȳ. The following is clear.

Proposition 3 Suppose that x̄/ȳ ∈ Pre(IO(γ)) and we apply γ to the SUT.
If the SUT can produce ȳ in response to x̄ then the probability of observing
x̄/ȳ is bounded below by pj where j = |x̄|.

Suppose that the SUT can produce the trace x̄/ȳ. The probability of not
observing x̄/ȳ is at most 1− pj and so the probability of not observing x̄/ȳ in
m tests with γ is at most (1 − pj)m. Given 0 < δ < 1 we can choose m such
that the chance of failing to observe x̄/ȳ ∈ Pre(IO(γ)) in m tests with γ is
at most δ if the SUT can produce x̄/ȳ. It is sufficient to choose some m with
δ ≥ (1 − plength(γ))m. Since log is a monotonically increasing function this is
equivalent to:

log δ ≥ log((1− plength(γ))m) = m log(1− plength(γ))

Since log(1− plength(γ)) < 0, if we divide both sides of the above inequality by
log(1− plength(γ)) we change ≥ to ≤. Thus we require m to be an integer that
satisfies the following.

m ≥ log δ

log(1− plength(γ))

Proposition 4 Suppose that if the SUT can produce trace σ̄x/y then the prob-
ability of receiving y in response to x after σ̄ is at least p and that this holds
for all x, y, and σ̄. Let Γ′ denote a set of adaptive test cases and each adaptive
test case γ′ ∈ Γ′ is to be applied at least the following number of times:

log δ

log(1− plength(γ′))

Let E ′ denote a subset of Pre(IO(γ)), γ 6∈ Γ′, and suppose that for every
sequence x̄/ȳ ∈ E ′ there exists γ′ ∈ Γ′ such that x̄/ȳ ∈ Pre(IO(γ′)). Then
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the probability that none of the traces in E ′ will be observed in the application
of the elements of Γ′, if one or more of them can be produced by the SUT in
response to γ, is at most |E ′|δ.

Proof. Let E ′ = {x̄1/ȳ1, . . . , x̄α/ȳα}. Observe that the probability that none
of the elements of E ′ are observed if one or more of them can be produced by
the SUT is at most the sum over 1 ≤ i ≤ α of the probability that x̄i/ȳi is not
observed if it can be produced by the SUT. This is bounded above by |E ′|δ
and the result thus follows. 2

We can now give a condition under which we can have confidence at least c of
the application of γ not being able to produce any trace not observed.

Proposition 5 Suppose that if the SUT can produce trace σ̄x/y then the prob-
ability of receiving y in response to x after σ̄ is at least p and that this holds
for all x, y, and σ̄. Let Γ′ denote a set of adaptive test cases and each adaptive
test case γ′ ∈ Γ′ has been applied at least the following number of times:

log δ

log(1− plength(γ′))

Suppose that O denotes the resultant traces, detf (γ,O) holds and let E =
Pre(IO(γ)) \ Pre(O). Let E ′ denote the minimal elements of E: σ̄ ∈ E is in
E ′ if no proper prefix of σ̄ is in E. If δ ≤ 1−c

|E′| then we have confidence of at
least c in the SUT not being able to produce any response to γ that has not
been observed.

Proof. The SUT cannot produce any trace in E ′ if and only if it cannot
produce any trace in E. From Proposition 4 we need |E ′|δ ≤ 1− c in order to
have confidence c as required. 2

This result gives a condition under which a tester can have a given confidence
in the SUT not being able to produce any response to γ that has not already
been observed. If this confidence is set sufficiently high then the tester could
choose not to apply γ if this condition holds.

5 The general case

In the general case we get the following result.

Proposition 6 The set O of traces is guaranteed to contain the set of possible
responses of the SUT to γ if and only if IO(γ) ⊆ Pre(O).
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Proof. First, if IO(γ) ⊆ Pre(O) then O contains every possible response of
any SUT to γ and thus that we have seen all possible responses of the SUT
to γ. Now suppose that the set O is guaranteed to contain the set of possible
responses of the SUT to γ and x̄/ȳ ∈ Pre(IO(γ)). We now observe that there
exist implementations that produce ȳ in response to x̄ and thus we must have
that x̄/ȳ ∈ Pre(O) as required. 2

The following defines a function det such that det(γ, O) returns true if and
only if IO(γ) ⊆ Pre(O).

Definition 4

det1(σ̄, null, Oσ̄) = true

det1(σ̄, (x, f), Oσ̄) = ∀y ∈ Y.det1(σ̄x/y, f(y), Oσ̄x/y)

det(γ,O) = det1(ε, γ, O)

The proof of the following is similar to that for Proposition 2.

Proposition 7 Given adaptive test case γ and a set O of traces, det(γ,O)
can be computed in time of O(|Y ||O|length(γ)).

6 Conclusions

In testing we observe traces of the SUT. If we can deduce that all traces that
the SUT can produce in response to an adaptive test case γ have already been
observed then we know that we do not have to apply γ. If this is the case then
we can reduce the cost of test execution.

Previous work has considered the case when the SUT is known to be deter-
ministic and we extended this by investigating the situation in which the SUT
could be nondeterministic. We started with the case where we can apply a fair-
ness assumption. We then weakened this assumption to there being a lower
bound p on the probability of observing alternative responses of the SUT to
any input and in any state. We then considered the general case. In all three
cases we showed how the problem can be solved in low order polynomial time.

Since it is sometimes possible to deduce that all possible responses to an
adaptive test case γ have already been observed in testing, the expected cost of
testing depends upon the order in which we apply the adaptive test cases. This
leads to the question of how we can minimise the expected cost of testing. This
problem has been considered for a deterministic SUT and there are algorithms
for producing preset orders [4] and for applying the adaptive test cases on the
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fly [7]. Future work will investigate how these approaches can be extended to
a nondeterministic SUT.
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