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Abstract— We propose a novel Minimum Distance guided Genetic 
Algorithm (MDGA) for Multi-User Detection (MUD) in a 
synchronous Multi-Carrier Code Division Multiple Access 
(MC-CDMA) broadband wireless system. In contrast to 
conventional GAs, our MDGA exploits adequately the output 
from a bank of Matched Filters as guidance. It starts with a 
balanced ratio of exploration and exploitation which is 
maintained throughout the process. A novel replacement strategy 
is proposed which increases dramatically the convergence rate as 
compared to the conventional GAs. This allows us to use the 
simplest form of genetic operators to gain significant reduction in 
computational complexity as well as near-optimum results. The 
simulation results demonstrate that our scheme achieves 99.54% 
and 50+% reduction in computational complexity as compared to 
the MUD schemes using exhaustive search and conventional GA 
respectively. 

Index Terms — MC-CDMA, Multi-User Detection, Genetic 
Algorithm, Multiple Access Interference 

I. INTRODUCTION 

Multi-Carrier Code Division Multiple Access (MC-CDMA) is 
an emerging broadband wireless transmission technique that 
combines the advantages of both Orthogonal Frequency 
Division Multiplexing (OFDM) and Code Division Multiple 
Access (CDMA) together [1-3]. In MC-CDMA, orthogonal 
spreading chips from different users are modulated over all the 
available sub-carriers to achieve high frequency diversity gain. 
Multi-path problem can be mitigated effectively by using 
multi-carrier OFDM modulation technique. This system allows 
all the users to simultaneously share the same frequency band 
by transmitting data on all sub-carriers at a same time. However, 
MC-CDMA suffers from a so-called Multiple Access 
Interference (MAI) problem because in reality spreading codes 
are not always perfectly orthogonal. To reduce MAI, Verdu [5] 
proposed a joint detection of all users in CDMA system, called 
multi-user detection (MUD). The idea of MUD is to treat MAI 
as a part of information, not noise. In this way, it could improve 
the system performance significantly. Hence, MUD has 
received much attention for both CDMA and emerging 
MC-CDMA systems [4-8]. 

However, the optimal MUD detector proposed by Verdu 
becomes impractical due to high computational complexity 
when there is a large number of users. With the optimal MUD 

detector, the receiver should consider all possible combinations 
of the transmitted signal and check which one could maximize 
the joint correct decision probability of the bits received from 
all the users. This is not feasible since the system has to check 
every possible combination of the bit vector sent. For example, 
if there are K users in the system, the total number of 
possibilities becomes 2K. Hence, the computational complexity 
of the optimal detector increases exponentially with the 
increasing number of users. Therefore, recent research work 
focuses on looking for suboptimal MUD solutions which are 
feasible in practice. 

Genetic Algorithm (GA) [9] is an intelligent technique 
derived from the principles of genetics and natural selection 
which can be used to search suboptimal solution with low 
complexity for multi-objective combinatory optimization 
problem. GA based suboptimal MUD was first proposed in [10] 
for CDMA systems showing its capability in approaching 
single-user performance bound at lower computational 
complexity than the exhaustive search used in the optimal 
detector. Later some other GA based MUDs have been 
proposed (e.g. [1, 11]) with a much better start than that in [10] 
but gradual convergence towards the optimum solution due to 
their classic sophisticated replacement strategies. Therefore, a 
simple intelligent scheme is still required to improve the 
convergence rate without increasing the complexity of the 
system. In this paper we introduce a novel and simple search 
mechanism to increase significantly the convergence speed of 
conventional GA schemes (e.g. [10, 11]) for MUD application. 

The rest of the paper is organized as follows. Section II 
describes the system model for synchronous MC-CDMA 
system. The Minimum Distance guided GA is proposed in 
section III, followed by its performance analysis in section IV. 
Section V concludes the paper. 

 

II. SYNCHRONOUS MC-CDMA SYSTEM MODEL 

We consider a bit-synchronous MC-CDMA system as shown 
in Fig. 1, where K users simultaneously transmit data bits over 
an additive white Gaussian noise (AWGN) channel. Assuming 
that the number of chips is equal to the number of sub-carriers, 
each user bit is firstly spread by a unique pseudo-random 
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sequence. Then each chip of the corresponding spread signal is 
modulated over each of the “M” orthogonal sub-carriers. The 
kth user’s transmitted signal is given by, 

∑
=

⋅=
M

m

tj
kmk

k
k

metbtc
M

E
ts

1
, )()(

2
)( ω

                       (1) 

where, Ek: The transmit power of the kth user (k = 1, …, K), 
M: Number of sub-carriers, 
Tb: Data bit duration, 
bk(t): The transmitted bit sequence of the kth user, 
ck,m(t): Time-domain representation of the kth user’s 
spreading sequence over the mth sub-carrier, 
ck(t) = {ck,0(t), ck,1(t), …, ck,m(t)}: Time-domain 

representation of the kth user’s spreading code over all 
sub-carriers, 
ωm = 2πfm, where fm (m=1, …, M) are the subcarrier 

frequencies and fm=f1+(m-1)∆f, where frequency spacing 
∆f is 1/Tb. 
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Fig. 1. Transmitter model of MC-CDMA under AWGN uplink channel. 
 

After the spreading and OFDM modulation, the signal is 
then transmitted over the AWGN channel. Hence, a number of 
users are able to share all the bandwidth (sub-carriers) 
simultaneously. The energy of the spreading sequence over a 
bit period of “Tb” for each user is assumed to be “1”. Note that 
the spreading sequences used may not be perfectly orthogonal 
to each other in reality due to the cross-correlation product. 
Assuming perfect synchronization at the receiver, they will 
have good auto-correlation properties but bad cross-correlation 
properties. 

Fig. 2 shows a simple MC-CDMA receiver followed by a 
novel GA based MUD. The data carried by each sub-carrier is 
firstly de-modulated. The demodulated data on the sub-carrier 
frequency f1 yields a composite part of the spread signals of all 
the users, contributed by the 1st chips of their respective 
spreading sequences. Similarly, for the sub-carriers f2 till fM, 
the contribution is from the set of the 2nd chips till the last set of 
chips of the spreading sequences from all users respectively. 
The received signal on the mth sub-carrier is, 
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where, n(t) is the AWGN noise added to the signal with 
two-sided power spectrum density No/2. 
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Fig. 2. MC-CDMA receiver model for uplink. 

 
The information of any particular bit of a user is carried by 

all of the sub-carriers at any given time. The matrix 
representation of the received signal on the mth sub-carrier is as 
follows: 

            nEbCr += mm                                                     (3) 
where, s(t) 
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As shown in Fig. 2, the output from the matched filters can 
be represented in a form of vector “Zm” [1]: 

           ]z,,z[ m,Km,1m L=Z nEbR += m                   (5) 

where,      
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jkρ  is actually the value of cross-correlation (j≠k) and the 

auto-correlation (j=k) of the spreading sequences contributing 
on the mth sub-carrier. MAI imposed by the cross-correlation 
between the spreading codes is the main problem in an 
MC-CDMA system. The Matched Filter Conventional Detector 
(CD) for the MC-CDMA system treats MAI as noise. However 
if we exploit knowledge of the users’ spreading sequences as 
auxiliaries, the MAI can be substantially reduced [1], resulting 
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in the corresponding user capacity gains and better BER 
performance. 

The joint optimum decision rule for a K-user synchronous 
CDMA system was discussed in [1]. That model can be easily 
extended to a K-user MC-CDMA system model. The 
discrete-time correlation metric on the mth sub-carrier can be 
expressed in vector form as: 
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Since the data is transmitted over M orthogonal sub-carriers, 
the contribution of all the likelihood functions will yield an 

optimum vector  
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Hence, the decision rule for the optimum K-user MC-CDMA 
multi-user detection scheme based on the maximum likelihood 
criterion is to choose the specific bit combination b out of 2K 
possible combinations, that maximizes the correlation metric of 
Equation (7). Therefore, it is 
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In the next section, we propose a novel Minimum Distance 
guided GA for MUD (MDGA-MUD) which provides fast 
convergence towards near-optimum solutions with low 
computational complexity. 

III. MINIMUM DISTANCE GUIDED GENETIC ALGORITHM 

Our proposed novel GA is designed to accelerate the searching 
speed to find the optimal solution by adequately exploiting the 
output of a bunch of CDs as guidance. As compared to 
conventional GA mechanisms for MUD [1, 10, 11], our 
MDGA proposes two main modifications, M1 and M2. The 
idea is to keep a balanced search throughout the GA 
generations: M1 allows us to start the initial search guided by 
CD’s output together with a reasonable amount of randomness 
derived from general GA theory. M2 is an intelligent 
replacement strategy that plays the dominant role in providing 
fast convergence rate. Combining the two modifications 
together offers our GA a good jumping-off point of search as 
well as increased convergence with low complexity while 
keeping the optimum performance. Next, we explain in detail 
how the MDGA operates. 

A. Initial Population (M1) 

This section explains the first modification – named M1 in 
this paper. Considering that a good initial estimation of the 
possible solutions is worthful for GA to obtain good 
performance at low cost of searching progress, the selection of 
initial population to approach optimal solution is created by 
mutating the output of a CD. 

Let the total population of chromosomes be “Np”, where 
each chromosome is represented as each row vector in the 
population matrix. In order to ensure that each bit of a CD’s 

output experiences change at least once, we generate the initial 
“K+1” set of population by perturbing the CD’s output in such 
a way that the Hamming Distance (the number of different bits) 
between the CD’s output and the new individual remains 1, 
which is the essence of our so-called Minimum Distance 
approach. The CD’s output is considered as a robust 
jumping-off point of search. However, there is a high 
probability that a search which is guided only by CD’s output 
can get stuck at local optima at high SNR values. In order to 
ensure a certain proportional searching diversity we make the 
rest of the population randomly to explore optimum solution in 
the search space as shown in Fig. 3. 

            

 Initial Population

1   -1   -1    1

-1   1    1    1

-1  -1    1   -1

1   1    1    1

-1   1    1    1

1   -1    1    1

1    1   -1    1

1    1    1   -1

The population in this sub-block of initial 
popluation has the Hamming Distance of 1  

with respect to the CD’s output. 
 (Minimum Distance Approach) 

Conventional Detector’s output 

The population in this sub- block of initial 
population is created randomly. 

 
 

Fig. 3. Formation of Initial pool for the proposed GA. 

It is noted here that this modification in the formation of 
initial population will create some dependency of the 
population size on the number of users. For example, if the 
number of users is “K”, then the population size should be 
chosen in a range of K<NP≤2K. So, the algorithm will adjust 
the population size with the increasing number of users which 
is actually in accordance with the study carried out by [1]; 
indicating the need of properly increasing the population size 
when the number of users in the system is increased. 

B. Fitness Function 

In general GA, the goal of a fitness function is to evaluate the 
worth or status of each chromosome. In the MUD problem, the 
objective of the fitness function is the maximization of the cost 
(or objective) function, as defined in Equation (7). Each bit in 
vector “b” actually represents a bit sent by a particular user. The 
task of MUD is to detect all the users’ bits coherently. In order 
to correctly detect the bit of each user, we need to find such a 
combination of vector “b” that will maximize the cost function. 
Hence, GA is invoked in a search for such an optimum solution 

vector . 
∧

b

C. Replacement Strategy (M2) 

After the successful evaluation of the initial pool, truncation 
selection takes place in which the candidate solutions are 
ordered by fitness, and according to some selection rate, 
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“Xrate”. In our case, we set a fixed value Xrate =1/2. The most 
⎣Np/2⎦ fittest individuals in the rank list are selected as 
candidate parents, where ⎣•⎦ stands for floor operator. For 
example, if the population size is 30, we first select 15 best 
candidates by the truncation-selection method and then starting 
from the fittest two parents we form two offspring by 
performing simple one-point crossover operation. Then, from 
the next two fittest mating parents we form two more offspring 
and so on till we form NP-(K+1)=30-(15+1)=14 new offspring. 
We designed the mating process in a way that in each 
generation, the number of offspring generated is K+1-⎡Np/2⎤ 
less than the selected parents, where symbol ⎡Np/2⎤ acquires the 
ceiling value of Np/2. 

After successful mating, we replace K prior chromosomes in 
the rank except fittest mate from the population matrix by 
performing the same Minimum Distance approach using the 
fittest mate, i.e. the population matrix will contain the fittest 
mate on the top along with the “K” individuals having 
Hamming Distance of 1 biased from the fittest and the 
previously formed “Np-(K+1)” number of offspring. This is 
how we exploit the information of the best mate (local search) 
at each generation and how we create a reasonable number of 
offspring out of the mating pool for exploration. 
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-1  -1    1    1 

-1    1   1   -1 

1   -1   -1   -1 

Mating Pool New Pool 
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In MDGA, the GA is firstly guided by CD’s output and then 
in the following generations, it is guided by the best mate 
created from the population matrix in each generation. The 
fittest-initiated “K+1” individuals along with the “Np-(K+1)” 
offspring generated from the mating pool ensures that the GA 
would not likely be stuck at the local maximum. The process 
involved in the replacement strategy is shown in the Fig. 4, with 
an example population size of 8 chromosomes for a 4-user 
MC-CDMA system. Note that the crossover point is taken after 
the 2nd bit. 

D. Type of Mutation & Crossover 

The new population matrix undergoes mutation process 
which further ensures that our GA search would not get stuck 
around local maxima. Usually, the mutation probability is 
chosen closer to 0 (in our case, it is chosen to be 0.1 which 
gives the best result from a serial of pretests). 

The crossover operator is chosen to be the simplest of its 

nature i.e. one-point crossover to reduce computational 
complexity as compared to conventional GA [11] that uses 
double or uniform crossover. The crossover probability is 
chosen to be 1. The population size after each generation 
remains constant reflecting the simplicity of the algorithm in its 
implementation. 

E. Elitism 

The Elitism property is invoked just like in any other 
conventional GA to preserve the superior chromosome of the 
fittest individual during mutation process. There is only one 
best chromosome to be found, and hence, the elitism property is 
invoked only for one fittest individual out of the total 
population in every generation. Fig. 5 shows the flow of 
operations in the proposed GA. In the next section we define 
the simulation parameters and show the performance and the 
convergence rate of the highlighted MDGA based MUD. 

 

b̂

 

Fig. 4. A Novel Replacement Strategy for MDGA. 

 
Fig. 5. Flow chart of MDGA-MUD. 

IV. SIMULATION RESULTS 

The BER, optimum solution detection time and the 
computational complexity involved are the three main 
performance criteria to be satisfied. The detection time is 
governed by the number of generations required to obtain a 
reliable decision. The computational complexity is determined 
by the total number of objective function evaluations. Table I 
shows the configuration parameters used in the simulations. 
BPSK modulation type is chosen in the system. 

As shown in Fig. 6, MDGA can converge very close to the 
optimum within only 5 generations with a population size of 30 
when the number of users is 15. This is because that MDGA 
can not only find a good start point but also achieve a high 
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convergence rate with each generation due to the proposed two 
methods (M1 and M2). The number of cost function 
evaluations taken by MDGA is only 150 till it obtains 
near-optimum solutions. 
 

TABLE I CONFIGURATION OF THE MDGA-MUD 

PARAMETERS METHODS/VALUES 

Population size Np 30 
INITIALIZATION Initial population generated using M1 
Selection Method Truncation Selection 

Selection rate 50% 
Crossover operation Single-point crossover 

Crossover Probability pc 1 
NEW POOL New pool created using M2 

Mutation operation Standard binary mutation 
Mutation Probability pm 0.1 

Elitism Yes 
Termination Generation 5 
Spreading Factor (SF) 15 
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Fig. 6. The BER performance of the first 5 generations of MDGA assisted 
MUD in MC-CDMA over an AWGN channel. The MDGA-MUD can converge 
very close to the optimum in as low as 5 generations with a population size of 30 
for a 15-user synchronous MC-CDMA system (SF=15 & M=15). 

 
In Fig 7, we investigate the individual impact of each 

modification. Although the Modification 2 (M2) has a poor 
start because of the conventional approach used in intializing 
the GA population which it actually happens in the first 
geneation, but it also provides great deal of convergence in the 
successive generations due to the novel replacement strategy 
used in MDGA. Whereas the Modification 1 (M1) has a good 
start due to the Minimum Distance aproach used to initiate the 
population and poor convergence due to the conventional 
replacement strategy. Their mutual contribution provides good 
convergence which is the essential of our proposed scheme. 

When SNR increases, the MAI gets higher. This causes the 
output from CD further away from the optimum. In order to 
deal with such an issue, the MDGA introduces reasonable 
amount of randomness in the initial population in order to gain 
the diversity in the search space at high SNR values. 
Furthermore, it utilizes the information carried by the best 
individual in the population matrix in each generation so as to 
get better and better solutions. It also ensures that the presence 

of significant amount of diversity in the new population set by 
newly producing a number of offsprings from the selected 
mates. The new comers (offsprings) along with those 
individuals exploited best mate’s by the Minimum Distance 
approach reacts in our GA to converge very fast towards the 
optimum. The conventional GA lacks this ability and is more 
likely to get stuck at local maxima and hence requires an 
increase in the number of generations before search 
termination.  

2 4 6 8 10 12 14 16

10
-5

10
-4

Generations
B

E
R
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Matched Filter Conventional Detector (CD)
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Fig. 7. Convergence comparison of MDGA vs. Conventional GA [11] for 
10-User MC-CDMA system under 9dB SNR. It also shows the role played by 
each modiciation independently. Please note that the convergence graphs of the 
two modifications actually cross each other after the first generation. 
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Fig. 8. MDGA is robust with the increasing number of users in the MC-CDMA 
system. 
 

The population size in MDGA is dependent on the number of 
users “K” in the system. The simulation results in Fig. 8 show 
that with the increasing number of users in the system, MDGA 
still closely inosculates the optimum solution. This shows that 
the fixed relationship between Population size and the number 
of users (Pop = 2K) with the Termination Generation = 5 is true 
for all user scenarios and hence, our scheme is robust with the 
increasing number of users in the system. 

In this paper, the computational complexity is defined as the 
number of cost function evaluations needed to reach the 
optimum solution [1]. The percentage of complexity involved 
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is %100
2

×⎟
⎠
⎞

⎜
⎝
⎛ ×

K

GenPop . As shown in Fig. 9, MDGA can give 

the near-optimum solution within only 150 cost function 
evaluations (Gen = 5, Pop = 30) as compared to 215 (32,768) 
evaluations taken by exhaustive search. Hence, it achieves 
99.54% reduction in complexity as compared to ML-MUD. 
Also from Fig. 7, as compared to conventional GA [11] with 
240 (Gen = 12, Pop = 20) cost function evaluations, the MDGA 
reaches the optimum in only 100 (Gen = 5, Pop = 20) cost 
function evaluations, ensuring 58.3% complexity reduction in 
terms of cost function evaluations. 
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Fig. 9. BER Comparison of MDGA vs. Conventional GA [11] with the same 
computational complexity (P=30 and Gen=5) vs. De-Correlating. The MDGA 
based MUD in 15-User synchronous MC-CDMA (SF=15 & M=15) system, 
outperforms Conventional GA with significant reduction in the BER. 

 
The relation between the population size and the number of 

users in MDGA helps us to further generalize the 
computational complexity in terms of number of users. For 
constant termination generation (e.g. Gen = 5), the number of 
cost function evaluations are KKGenPop 1052 =×=× . 

Hence, the complexity becomes %100
2

10
×⎟
⎠
⎞

⎜
⎝
⎛

K

K . The amount 

of computational complexity introduced is ten times the 
number of users, i.e. the number of evaluations = 10K, where K 
= (1, 2, 3, …, Kmax). 

V. CONCLUSIONS 

Our MDGA scheme carried out a balanced search based on an 
equal amount of exploration and exploitation within each step 
of the GA. The Minimum Distance technique is used 
effectively along with a novel replacement technique. The two 
techniques together have shown their significant improvement 
on the convergence rate as well as dramatic reduction on the 
computational complexity as compared to the existing GA 
assisted MUDs. Our scheme is less complex than the other 
genetic algorithms because it is realized based on simple 
genetic operators and features (standard bit mutation, one-point 

crossover & fixed population size). 

REFERENCES 
[1] L. Hanzo, L.-L. Yang, E.-L. Kuan, and K. Yen, “Single- and Multi-Carrier 

CDMA: Multi-User Detection, Space-Time Spreading, Synchronization, 
Standards and Networking”. Piscataway, NJ: IEEE Press/Wiley, 2003. 

[2] R. Prasad; S. Hara, “Multicarrier Techniques For 4G Mobile 
Communications”,  IEEE Press/Wiley, June 2003. 

[3] S. Hara and R. Prasad, “Overview of Multi-Carrier CDMA," IEEE 
Communications Magazine, vol. 35, pp. 126-133, Dec. 1997. 

[4] S. Moshavi, “Multiuser Detection for DS-CDMA Communications”, 
IEEE Communications Magazine, October 1996. 

[5] S. Verdu, “Multiuser Detection”, New York, USA: Cambridge University 
Press, 1998. 

[6] S. L. Miller and B. J. Ranbolt, “MMSE Detection of Multi-carrier 
CDMA,” IEEE Journal on Selected Areas in Communications, vol. 18, pp. 
2356-2362, Nov 2000. 

[7] P. Zong, K. Wang, and Y. Bar-Ness, “Partial Sampling MMSE 
Interference Suppression in Asynchronous Multicarrier CDMA System,” 
IEEE Journal on Selected Areas in Communications, vol. 19, pp. 
1605-1613, Aug 2001. 

[8] M. Schnell and S. Kaiser, “Diversity Considerations for MC CDMA 
System in Mobile Communications,” in Proceedings of IEEEISSSTA 
1996, pp. 131-l35,1996. 

[9] J. H. Holland, “Adaptation in Natural and Artificial Systems”, University 
of Michigan Press, Ann Arbor, 1975. 

[10] M. J. Juntti, “Genetic Algorithms for Multiuser Detection in Synchronous 
CDMA,” IEEE International Symposium on Inform. Theory, pp. 492, 
1997. 

[11] H. Wei, and L. Hanzo, “Reduced-Complexity Near-Optimum Genetic 
Assisted Multiuser Detection for Synchronous Multicarrier CDMA”, 
Proc. of 2004 IEEE VTC-Spring Conf., Milan (I), May 17-19 2004, Vol. 3, 
pp. 1717-1721. 

Authorized licensed use limited to: Brunel University. Downloaded on August 6, 2009 at 09:31 from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


