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Abstract

In this paper, we explore the use of M-regression and M-gjeacvef-
ficients to detect statistical differences between tempmneves that belong
to different experimental conditions. In particular, wensiger the applica-
tion of temporal gene expression data. Here, the aim is &ctigenes whose
temporal expression is significantly different across a Inemrof biological
conditions. We present a new method to approach this probkerstly, the
temporal profiles of the genes are modelled by a parametrouahitile re-
gression model. This model is particularly appealing to lsssnple gene
expression data, as it is very robust against outliers addegs not make any
assumption on the error distribution. Secondly, we furinerease the ro-
bustness of the method by summarising the M-quantile regnesnodels for
a large range of quantile values into an M-quantile coefficid=inally, we
employ a HotellingT ?-test to detect significant differences of the temporal
M-quantile profiles across conditions. Simulated data shtve increased
robustness of M-quantile regression methods over stanmdgréssion meth-
ods. We conclude by using the method to detect differeptedpressed genes
from time-course microarray data on muscular dystrophy.

1To whom correspondence should be addressed.



1 Introduction

Time-course gene expression data are often measured todstadmic biological
systems and gene regulatory networks. The data are protysxdcalled microar-
ray experiments and they provide expression measurenwrtteoiusands of genes
in a biological system under different time points and/aidgical conditions (e.qg.
different diseases). To account for time dependency of éme gxpression mea-
surements over time and the noisy nature of microarray dédadard regression
models such as mixed-effects models are normally used ilyang these data
(Luan & Li, 2003; Ng et al., 2006; Archer & Guennel, 2006; Maaét 2006; Ma
& Zhong, 2008). However, these models have some drawbahbky: depend on
strong distributional assumptions, they require a formpatsication of the random
part of the model and they ignore possible outliers. In tlaiggy, we look at an al-
ternative to these classical models when the aim is theifaetiton of biologically
interesting genes from temporal microarray data.

In general, the identification of biologically interestiggnes in a temporal ex-
pression profiling dataset is challenging and complicatedligh levels of exper-
imental noise. A variety of methods have been suggesteckititdrature for the
detection of differentially expressed genes. Only few @fsthdeal with the most
general situation where both temporal and biological comas are present in the
data (Park et al., 2003; Storey et al., 2005; Vinciotti et2006; Storey et al., 2007;
Yuan & Kendziorski, 2006). Recently, some methods have agagewhich make
use of quantiles and quantile regression models to dettetattially expressed
genes (Wang & He, 2007, 2008; Yu et al., 2007). In (Yu et al07d0we discuss the
advantages of using quantile regression over standardsgign, especially when
modelling gene expression data. In light of the positivelte®btained in (Yu et al.,
2007), in this paper we explore how M-quantile regressionbmsuccessfully used
to model gene expression data.

M-quantile regression (Breckling & Chambers, 1988; Chaml& Tzavidis,
2006) combines the ideas of characterisation of the relstip between a response
variable and explanatory variables when the behaviour oh-average” individ-
uals is of interest. The method of M-quantile regressionaiselol on a “quantile-
like” generalization of regression and influence function M-estimation and as
such provides a robust alternative to standard regressoofels. Indeed, this was
proven on a small number of applications (Kokic & Chambe®97t Chambers &
Tzavidis, 2006). In this paper, we extend both the model heddnge of applica-
tions of this methodology.

The aim of this study is to test for differences in gene exgigsdata across a
number of conditions and time points. Similarly to Chaml&ixzavidis (2006),we
use M-quantile coefficients to capture differences acrbesconditions. We first
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derive a time-dependent conditional M-quantile coeffitieamsed on a parametric
polynomial model which takes also array effects into actodimis results in the
estimation of M-quantile coefficients profiles over time &ach biological condi-
tion. A Hotelling T2-test is finally used to detect the genes which show significan
difference in the temporal profiles across the conditionsctiSn 2 motivates the
model, by comparing it with its standard alternatives, aadves the conditional
M-quantile coefficients. A simulated example is providedatction 3, while Sec-
tion 4 discusses an interesting application to the anabylsrauscular dystrophy
gene expression data. Finally, in Section 5 we discuss thétseand draw some
conclusions.

2 The method

2.1 Why M-quantile?

It is well know how linear least-squares estimates can bebadly when the error
distribution is not normal, particularly when the errore beavy-tailed. To address
this issue, two different approaches have been developdaeititerature. One
approach, termed robust regression, is to employ a fittitgron that is not as
vulnerable as least squares to unusual data. The most comgemanal method
of robust regression is M-estimation, introduced by Hubd&6d). The second
approach, which is also robust to large outliers, is the dnguantile regression
(Koenker, 2005). In particular, quantile regression isdua#en the conditional
variability across the population of interest can be charased by the different
guantiles of the population units.

The robustness of robust regression and quantile regreBambeen measured
theoretically in terms of their breakdown point. Intuitiyethe breakdown point
of an estimator is the proportion of incorrect observati@res arbitrarily large
observations) an estimator can handle before giving atrarity large result. The
higher the breakdown point of an estimator, the more roliust i According to
this measure, it was found that robust regression, alseccdl-regression, has a
high breakdown point (Mendes & Tyler, 1996), whereas qlemnggression such
as LAD (Least Absolute Derivation) regression, is not at@ltiust to observations
with unusual predictor values; that is, it has a low breakdgeint (Giloni et al.,
2006). In view of these results, M-quantile regression jgles’a good alternative to
both models. It integrates both M-regression and quarggeassion, by providing
a “quantile-like” generalization of regression based dluance functions. That is,
itis as robust as M-regression to outliers and contamindaéa and it is used when
the conditional variability across the population of irtgrcan be characterised by



the M-quantile coefficients of the population units.

In this paper, we show how M-quantile regression can be useeltect differen-
tially expressed genes via the use of M-quantile coeffisiefihese are described in
the next section. The approach is particularly appealinghis application: first of
all, it does not require strong distributional assumptiamdg it is more robust against
outliers, which are expected in gene expression data dueeterhall sample size
and the noisy nature of the data. Indeed, M-quantile modetmaatically provide
robust inference against outliers, which is seldomly adesd under the existing
models for gene expression data. Secondly, in contrastxedyeffects models for
gene expression analysis, the application of M-quantdeassion avoids the prob-
lems associated with the specification of random effectswalg inter-condition
differences to be characterised by condition-specific Mrgile coefficients. This
is discussed also by Chambers & Tzavidis (2006) in theiriagpbn to small-area
estimation. Finally, the M-quantile coefficients summatise information over all
guantiles of the distribution, so a test based on these isatag to perform better
than, for example, a median quantile regression, when miegsthe conditional
variability across the experimental conditions.

2.2 M-quantile coefficients

In this section, we derive the M-quantile coefficients anplese how these can be
used to characterise the level of gene expression over tnderudifferent biolog-
ical conditions. Loosely speaking, the M-quantile coediintiof a point(x, y) is
the quantile value associated to the M-quantile regredsierthat passes through
this point. In (Chambers & Tzavidis, 2006), an applicatiéthe M-quantile coef-
ficients is described to small area estimation. There the mdai is that different
areas correspond to different average values of the M-deawiefficients. In this
paper, we extend this idea to gene expression data, by takmgccount both the
temporal dimension of the data as well as the presence efrelift biological con-
ditions. In general, we expect that the variability betwbgnogical conditions is a
significant part of the overall variability of the gene pagidon. That is, we expect
genes under a particular condition to have similar M-qutefficients over time
(although these coefficients may not be equal for all obsktivee points they are
expected to be identical statistically).

Most of the papers on gene expression data either deal vattethporal mod-
elling of gene expression data or with statistical testslftferent biological condi-
tions, but rarely combine these two. When both time and ¢mmdi are present in
the data, instead of a single value of the M-quantile coefficfor each condition
(as in (Chambers & Tzavidis, 2006)), the M-quantile coegiitinow becomes a
function of time. Our aim is then to estimate the M-quantdefticient for differ-
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ent time points and biological conditions and finally to depea statistical test to
detect differences in the temporal M-quantile coefficienfiies across biological
conditions.

Let y;c denote the gene expression at timender the biological condition
and for a particular gene. Lety denote the true gene expression at titmend
under conditiorc. The vectoruc = (ucp, - - - , uct) for all time pointst is the true
temporal profile for a specific gene under the biological coa c. Similarly to
(Vinciotti et al., 2006), we consider the following standdinear model

Yet = Hct + A + €Ect, (2.1)

wherena is the array effect, to account for the fact that gene expaesdrom the
same array are normally more similar to each other than gepeegsions from
different arrays simply due to experimental errors, agds the error term with
mean zero and constant variance. Then we model the geneseixprat time for
conditionc, wherec = {1, - - - , C}, as a polynomial of degreg

ﬂthﬁOC‘f‘ﬁlct‘f‘""f‘ﬂcptp (2.2)

Note that the coefficients of the polynomial depend on thelitmm c, that is a
different polynomial is allowed for each condition. Note@that a different model
is fit for each gene.

A standard approach to fit the model in (2.1) is to use mixéeceimodels,
where the fixed effects are the true gene expressions overaaross conditions
and the random effects are given by the array effects. As tannative to this,
we show how differences across the conditions over time eacaptured by M-
qguantile coefficients. In general, lgte [0, 1]. The g-th conditional quantile of Y
given X = x is defined by

Qq(X) = argmina <o E[pq(Y — @)| X = X],

where the loss function is given by, (u) = qu whenu > 0 andpq(u) = (1 —q)u
whenu < 0. It is well known that

q = PrlY < Qq(x)IX =x].
In analogy to the M-quantile extension, we can re-write #sis

_ Ellpy<qqeo)X = X]
N E[1|X = X]

Now we replace thé. 1 loss function by the Huber proposal function H(u). This
function is differentiably, with the derivativél’(u) = w(u) given by w(u) =
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ul(ul < k) + ksgnu)l (Ju] > k). The constank depends on the level of noise
and outliers in the data and is normally chosen to 13d3. With this loss function,
the conditional M-quantile is now the solution to

Qq(X) = argminaj<co E[H(Ya)[(1 = )1 (Y < @) + gl (Y > &)]].

After taking the derivatives, the conditional M-quantiledomes the solution to
Ely Ya)[L -l (Y <a) +ql(Y > a)]] =0. Thatis

_ Elv (Y = Qq()IY < Qq()]IX = X]
E[y (Y = Qq(x)IX =x] '

This is the M-quantile coefficient, that is the quantile wabf the M-quantile re-
gression line that goes through a point x.

In our applicationx is one measurement of gene expression at one of the time
points so there is one M-quantile coefficient for each ob=#ryene expression.
Solving the equation (2.3) directly is complicated. As ihéthbers & Tzavidis,
2006), we derive an accurate approximation of the M-quarmilefficient, by fit-
ting M-quantile regression lines for a large number of gieamnalues, using the
parametric model in (2.1) and (2.2), and then using a lingarpolation to find the
closest quantile value for the point in consideration.

The final aim is to detect the genes that are differentialiyressed over time
across the conditions. Rather than working out a test oné¢he gxpression levels
themselves, we expect to achieve greater robustness loygtést differences on
the M-quantile coefficients over time. That is because tivadges are computed
from all the quantiles of the data distribution and as suadapsulate the informa-
tion from the whole distribution (and not just its mean or ma&jl. The idea is that,
if a gene is expressed differently across conditions, fangxe it is over-expressed
in one condition and under-expressed in the other, themiliibe reflected in the
M-quantile coefficients. That is the M-quantile coefficefdr one condition will
be significantly lower or higher than the M-quantile coeéfitis of the other condi-
tion. Of course, the temporal aspect of the data should Entaito consideration
too, so the question is the one of detecting differencesamMiquantile coefficients
over time. Similarly to (Vinciotti et al., 2006), though nam the M-quantile co-
efficients, we fit a polynomial model to the M-quantile coeéfids over time and
then use a Hotelling 2-test to detect significant differences amongst the parame-
ters of the polynomials across the conditions. The test campare any number
of biological conditions simultaneously and the degreeseddom of the test are
derived from the number of parameters that are estimatéeimbdel, as described
in (Vinciotti et al., 2006). In the spirit of M-regression theds, which we advo-
cate in this paper as a way to increase robustness, we usamiddiegression to

(2.3)
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fit the polynomial model to the M-quantile coefficients. Thisould take care of
any possible outliers still present in the M-quantile ca#gfits values. We believe
that the use of M-regression for the temporal profiles coedbinith the use of M-

guantile coefficients to summarise the information fromrgdarange of quantiles
makes this methodology extremely robust against outheng;h are very common
in microarray data as well as many other applications.

3 Simulation

We have simulated data with 2000 genes, for two biologicatidmns and across
9 time points. The first 1000 genes are simulated as not diffelly expressed
between the two conditions, with their expression drawmf@N (0, ¢2) distri-
bution. The remaining 1000 genes are simulated as diffietgnéxpressed, with
the temporal profile linearly increasing for condition 1 dimearly decreasing for
condition 2. For all genes, the noisewas varied uniformly between 0.03 and
1.2, whereas the slope of the linear profile for the diffaediyt expressed genes
was varied uniformly between 0.005 and 0.2. Figure 1 shoesistogram of p-
values obtained using the Hotelliif-test to compare the temporal profiles of the
M-quantile coefficients, as described in the previous eacti

Simulated data Simulated data: non-DE genes
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Figure 1: Histogram of p-values for all the genes (left paoalthe simulated data,
with the p-values obtained from the M-quantile regressest.t The right panel
shows the histogram of p-values for the 1000 non-diffeedigtexpressed genes in
the dataset.



The only parameter to choose is the degree of the polynom{al2). For this,
we choose throughouyt = 2, that is a quadratic polynomial. This was chosen also
in (Vinciotti et al., 2006) and (Yu et al., 2007), with the aohkeeping the number
of parameters in the model low, given the small sample-smenally available in
gene expression applications, and of making the interoetaf the results eas-
ier from a biological point of view, in terms of up-regulatadd down-regulated
genes. However, the methodology described in the papernpletely flexible
with respect to the parametric M-quantile regression mdeiglre 1 shows a good
distribution of p-values for the test. The non-differefiyi@xpressed genes in the
dataset show a uniform distribution of p-values (right plas one would expect,
whereas the differentially expressed genes have all pegailose to zero.

Figure 2 shows a comparison of the M-quantile coefficienthoetwith two
more standard approaches. In the first method, we simply lisea regression
model on the gene expression data, or equivalently a miKedtenodel if array
effects were also simulated (functiom in R). A different model is fit to each
condition and the profiles are then compared using a Hogellifrtest. This is
the standard approach often used in the literature and isatine approach used in
(Vinciotti et al., 2006). In the second approach, we use areM-regression to fit
the temporal profiles on the gene expression data acrosgiocosdfunctionrim in
R). Here the aim is to increase the robustness of the methadibyg M-regression
models directly on the data, rather than mean regressioelsiothe third method
is the one that we suggest in this paper: a two-step procedueecby first the M-
guantile coefficients are estimated over time using quedkéiguantile regression
models for values of the quantile g ranging between 0.00Dz81D, with step 0.01,
and secondly a median M-regression model is fit to the M-gigectefficients, one
for each condition. Note that the M-quantile coefficients @stimated from all the
data, for all the conditions, compared to the other methdu=srevdifferent models
are fit to each condition separately. So one further advarméghe methodology
presented in this paper is that the variability in the datsetser accounted for.

Figure 2 shows the ROC curves for each of the three methots, adjust-
ing the p-values with a Benjamini-Hochberg (BH) correction multiple testing
(functionmulttest in R).We expect the M-quantile coefficient test taqen better
than the other methods, especially in the presence of ndises. is exactly what
Figure 2 shows: when the noise is drawn from a normal didiohuleft panel),
the methods are all performing similarly well, but when tleése is contaminated
(right panel) then the M-quantile coefficient test is periorg best, followed by the
M-regression model and finally by the mean regression maolelleast robust of
all. We have considered different ways of contaminatingibise, either by using
a mixture of normals or a mixture of normal and exponentias@ocand found that
the out-performance of the method is strictly related tadibgree of contamination.
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Figure 2: ROC curves comparing the M-quantile coefficiest teith the more
standard M-regression and mean regression tests.

The results in Figure 2 show quite a severe case where abburtlaot the data is
contaminated by an exponential distribution with parameéte= 0.5 and the re-
maining data is simulated from a normal distribution. Thisidates the case when
unusually large values of gene expression data are observed

4  Application

In this section, we show a real application of this methodglavhere we have
applied the test based on the M-quantile coefficients onaarcay data from wild-
type mice and three mouse strains with different forms ofeulas dystrophy. The
aim is to identify genes with differences in temporal expies profiles between
the strains. The four mouse strains were profiled at difteages: dystrophin-,
beta-sarcoglycan and gamma-sarcoglycan deficient mideyaa-type mice. The
first three are animal models for different muscular dydtrep. The data contains
7144 genes, whose expression is measured over 9 time pbmtgach gene, we
have available 16 time series profiles, four for each cladse data and biolog-
ical problem are further described in (Vinciotti et al., B)O In (Vinciotti et al.,
2006) and (Yu et al., 2007), we analyse the same dataset bagbd log-ratios of
gene expression for the two channels from each array. Td&gigatios is quite a
standard technique in microarray analysis, to overcom@dssibility of spot ef-



fects. By taking log-ratios, one can only estimate the geqpeession profile with
respect to one of the time points, normally the first one. Ia gaper, we model
the log-intensity values for each channel separately, aoinifiormation can be ob-
tained also at the first time point. Array effects are accedrior by including the
corresponding random effects in the mixed model (Equatitp 2

We have run the test based on the M-quantile coefficients isndéitaset to
detect genes with the temporal profile significantly diffeér@cross the four different
biological conditions. The model and the test are run inddpatly for each of the
7444 genes and a standard multiple testing method is usedjustdhe resulting
p-values (functiormulttest in R). We have compared the results with a standard
approach where a mixed-effect model is used to fit the genession profiles over
time (functionlme in R). Purely based on the number of differentially expeds
genes, at the 5% cut-off, the M-quantile method detects 885@s as differentially
expressed, whereas the standard approach detects 536 dgers of all, these
numbers are much larger than the ones found in previous @8akdenes detected
as differentially expressed with the method in Vinciottaét(2006)). However, the
results are not directly comparable, as previous methods esed on log-ratios
of gene expression and the temporal profiles were estimaitddrespect to the
first time point. In fact, many genes are expected from bipkogshow significant
differences right at the first time point. A simple t-test bie gene expression data
at the first time point finds 2289 genes as differentially esped between at least
one pair of conditions. Secondly, as expected, the numlgzrrds found by the M-
guantile method is lower than the standard approach, as pexethe method to be
more robust against noise and as such to filter out many moesgédeed, 85% of
the genes detected by the M-quantile method are detectethykhe mixed-effect
method.

We have checked the six genes that were biologically vadlat (Vinciotti
et al., 2006) by means of gPCR experiments, nanigki, Dpp4, Tcap, Myoz2,
Dbp and Casg2. The new test detecSpp4, Myoz2 and Casg2 as differentially
expressed, wheredlkl, Tcap andDbp as not-differentially expressed. Figure 3
shows the profiles for some representative genes. The |eél ghows the fit of
the mixed effect model, one for each condition, whereasigtd panel shows the
temporal profile of the M-quantile coefficients, again onedach condition. The
results are quite similar to the ones found in Vinciotti et(3D06), with genes like
Casg2 (first row) being detected by both methoddyoz2 (second row) andIkl
(third row) are the two genes where the results diffdyoz2 is found differentially
expressed only by the M-quantile method, wheri@ld is not found differentially
expressed by the new method. Interestingly, the expressitsmforMyoz2 shows
guite a high variability, as pointed out also in Vinciottiadt (2006) so it seems to
be a good candidate to show the increased robustness of thednBlk1 instead
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shows some differential expression at the first and last piowet, which is evident
both at the gene expression and M-quantile coefficient pofiHowever, this dif-
ference does not seem to pass the HotelliRgest for the M-quantile coefficients.

5 Discussion and Conclusion

In this paper, we describe a new method to detect diffedyneapressed genes
from temporal profiling datasets. The aim is to find genes whesporal expres-
sion profile is significantly different across a number oflbgical conditions. The
presence of both the temporal dimension as well as the eliftdsiological condi-
tions makes this task particularly interesting.

The method suggested in this paper is based on the use of MHguagres-
sion to model the temporal profile of a gene under a partidutdogical condition.
Like quantile regression (Yu et al., 2007), this method dussrequire any strong
assumption on the error distribution, and as such it diffeag¢es itself from the vast
majority of the literature on gene expression data wherespeession of a gene
across a number of experiments is modelled via a normallalision. Furthermore,
in contrast to standard mean regression and even quamnjikssson, M-quantile re-
gression is known to be more robust against possible largei®, by the use of
specific influence functions. This advantage is of particafgpeal to gene expres-
sion data, as the sample size is normally quite small anddteerbtoriously quite
noisy.

To further increase the robustness of the method, we sursentéie M-quantile
regression models for a large range of quantile values intdlaguantile coef-
ficient. By construction, the individual M-quantile coeféint of an observation
(which range between 0 and 1) represents a dimensionlessinesaf the residual
heterogeneity in the response after heterogeneity in thigl@as been conditioned
away. Thisis similar to (Chambers & Tzavidis, 2006), explat now also the tem-
poral daspect of the data is taken into consideration, hgrim the estimation of
M-quantile coefficient profiles over time. Finally, we emptHotelling T ?-test to
detect significant differences of the temporal M-quantilefiles across a number
of biological conditions. We have shown the increased rotass of the method
on simulated data and an application of the method on real fdatn microarray
experiments.

The work in this paper can be extended in different dire&idfirstly, quantile
and M-quantile regression methods can be extended to mudehctions between
genes, thus aiding the statistical reconstruction of gegalatory networks. Sec-
ondly, the approach does not make any assumption on thedestabution and as
such it can be applied to a variety of other applications.
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Figure 3: Mixed-effect model on expression data (left) amchpgoral profile of
the M-quantile coefficients (right panel) for three genes/musly validated using
qPCR experiments. The different lindglcorresponding tddabedifferent biologi-

cal conditions.



