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Optimizing the Length of Checking Sequences

R. M. HieronsSenior Member, IEEENd H. Ural

Abstract

A checking sequence, generated from a finite state machine, is a test sequence that is guaranteed to lead to a
failure if the system under test is faulty and has no more states than the specification. The problem of generating a
checking sequence for a finite state machigs simplified if M has a distinguishing sequence: an input sequence
D with the property that the output sequence produced/bin response td is different for the different states of
M. Previous work has shown that, where a distinguishing sequence is known, an efficient checking sequence can be
produced from the elements of a sétof sequences that verify the distinguishing sequence used and the elements
of a setY of subsequences that test the individual transitions by following each transibiprthe distinguishing
sequence that verifies the final statetofn this previous workA is a predefined set arfl is defined in terms of
A. The checking sequence is produced by connecting the elemefitsanfl A, to form a single sequence, using
a predefined acyclic séf,. of transitions. An optimization algorithm is used in order to produce the shortest such
checking sequence that can be generated on the basis of theAaed E.. However, this previous work did not
state how the setd and E. should be chosen. This paper investigates the problem of finding approgréaatd E..
to be used in checking sequence generation. We show howA sty be chosen so that it minimizes the sum of
the lengths of the sequences to be combined. Further, we show that the optimization step, in the checking sequence
generation algorithm, may be adapted so that it generates the ogiim&xperiments are used to evaluate the
proposed method.
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. INTRODUCTION

F Inite state machines (FSMs) can be used to model many types of systems including communication
protocols [24] and control circuits [22]. A number of specification languages such as SDL, Estelle,
X-machines and Statecharts are based on extensions of FSMs. FSM based test techniques can often &
applied to systems specified using such languages [13], [17], [21], [23], [25], [27].

Given a formal model or specification of the required behaviour offygem under test (SUT)
it is normal to assume that behaves like an unknown model that can be described using a particular
formalism [14]. Given an FSMV/, that models the required behaviour of SUTit is normal to assume
that / behaves like an (unknown) FSW/; with the same input and output alphabets)dds A common
further assumption is that/; has no more states thav.

SupposelV! hasn states. Let the set of deterministic FSMs with the same input and output alphabets as
M and no more tham states be denote®l( /). A finite set of input sequences ischecking experiment
for M if, between them, they distinguisi/ from every element ofo (1) which is not equivalent td/.
Given FSM M, there is some checking experiment [20].cBAecking sequends an input sequence that
forms a checking experiment.

The problem of generating a checking sequence for an B&EM simplified if M/ has a distinguishing
sequence: an input sequenbewith the property that the output sequence producedvbyn response
to D is different for the different states df/. There are two main alternative approaches for verifying a
state: using a unique input/output sequence (UIO) or a characterization set. An input/output seggence
is a unigue input/output sequence for stateé A/ produceg; in response ta when in states and does not
producey in response ta from any other state ol/. A setWW of input sequences is a characterization
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set if each pair of distinct states of is distinguished by a sequence frdm. Every minimal FSM has a
characterization set but need not have a UIO for every state or a distinguishing sequence. While checking
sequences can be produced on the basis of UIOs or a characterization set, restrictive assumptions ar
made in the literature. One of these assumptions is that there is a reliable reset operation, i.e. a rese
operation that is known to have been correctly implemented. It is then possible to produce a polynomial
size checking experiment [3], [28]. However not all SUTs have such a reset and in some cases the use
of a reset can make testing more expensive and reduce the expected effectiveness of a test sequence
checking sequence (see, for example, [2], [10], [29]).

There has been much interest in the generation of short checking sequences from dd R&kh a
distinguishing sequence is known [6], [7], [12], [26]. Naturally, the use of a short checking sequence makes
testing more efficient and this has is particularly beneficial if a checking sequence is to be reused, possibly
in regression testing or for different implementations of a standard. Recently Hierons and Ural [12] showed
that an efficient checking sequence may be produced by combining the elements in a predefihed set
of sequences called’-sequencéswith the transition tests in a sét (defined on the basis of and M)
using a predefined acyclic sét of transitions fromM . An optimization algorithm is used to generate the
checking sequence from, T, and E.. However, they did not indicate how and E. should be chosen
and these choices can have a significant impact on the overall checking sequence length.

This paper considers the problem of generating the 4etsd £ with the aim of producing a minimum
length checking sequence amongst those that can result from the application of the algorithm from [12].
Such a checking sequence is said taopémal We give an algorithm that produces a sethat minimizes
the sum of the lengths of the subsequences to be combined in generating the checking sequence. We als
show that the optimization phase of the checking sequence generation algorithm can be adapted so that i
also generates the sgt.: it produces theptimal E. for the givenA. Thus, the overall checking sequence
generation approach can be seen as having two stages:

1) minimizing the sum of the sizes of the subsequence to be combined; then

2) combining these subsequences optimally.

This paper is structured as follows. Section Il introduces the basic concepts and notation used in this
paper. Section Il states results due to Ural et al. [26] and Hierons and Ural [12] that will be used in
generating a checking sequence. It then gives a new checking sequence generation algorithm that take
as input the FSMM and the setd of o/—sequences. This is followed, in Section 1V, by an algorithm
for generating a set of’-sequences that minimizes the sum of the lengths of the subsequences to be
combined. In Section V a number of general results are proved while Section VI contains an experimental
evaluation which demonstrates that the choicedofnd E. can have a significant impact on the length
of the resultant checking sequence. Finally, in Section VIl conclusions are drawn.

[I. PRELIMINARIES
A. Finite State Machines

A (deterministic and completely specified) FSM is defined by a tuplés, s;, X, Y, 4, A) in which S
is a finite set ofstates s; € S is theinitial state, X is the finiteinput alphabetY” is the finite output
alphabet ¢ is the next state functiomnd A is the output function The functionsy and A can be extended
to take input sequences. See, for example, [16] for general information on FSMs.

Throughout this papeM = (5, s, X,Y,d,\) denotes a deterministic completely specified FSM that
describes the required behaviour of the STThe number of states df/ is denoted: and the states of
M are enumerated, giving = {s1, ..., s, }. Only deterministic completely specified FSMs are considered
in this paper. For information on testing from non—deterministic finite state machines see, for example, [8],
[9], [11], [18], [19], [30]. For information on testing from incompletely specified FSMs see, for example,
[18].

These are defined in Section III.



Fig. 1. The FSMM,

An FSM, that is denoted/, throughout this paper, is described in Figure 1. Héfes {s;,...,ss5},
X = {a,b} andY = {0,1}. From the arcs; — s, with label /0 it is possible to deduce that ¥/,
receives input: when in states; it produces outpub and moves to state,. Thus, in M, §(s1,a) = s9
and \(sy,a) = 0.

A transition 7 is defined by a tuplgs;,s;,z/y) in which s; is the starting state = is the input,
s; = 6(s;,x) is theending stateandy = A(s;,z) is the output. Thus, for examplé/, contains the
transition (s1, s2, a/0). Input r is a reset operationof A if, irrespective of the current state af, it
always takesV/ to its initial state. IfA/ has a reset operation then it h@set capacity

Two statess; and s; of M are equivalentif, for every input sequence, A(s;,z) = A(s;,z). If
A(s;, Z) # A(sj,z) then z distinguishesbetweens; and s;. Thus, for example, the input sequence
distinguishes states ands; of M,. Two FSMsM; and M, are equivalentif and only if for every state
of M, there is an equivalent state 8f, and vice versa. An input sequence distinguishes between two
FSMs if its application leads to different output sequences for these FSMs. An input sequénee
checking sequender M if and only if z distinguishes between/ and all elements o (1) that are
not equivalent ta\/.

FSM M is minimalif no FSM with fewer states than/ is equivalent to)M/. A sufficient condition for
M to be minimal is that every state can be reached from the initial stateé ahd no two states of/
are equivalent. There are algorithms that take an FSM and return an equivalent minimal FSM [20]. Thus
only minimal FSMs are considered in this paper.

Given FSM M, a distinguishing sequends an input sequenc® whose output distinguishes all the
states ofM. More formally, for alls, s’ € S if s # s’ then\(s, D) # A(s', D). Thus, for exampleM,
has distinguishing sequenega. To see thauba is a distinguishing sequence far, observe that the
response taiba from the different states oil/, are all different: froms; we get010, from s, we get
011, from s3 we get101, from s, we get001, and froms; we get110. While not every FSM has a
distinguishing sequence, there has been interest in the problem of generating a checking sequence in th
presence of a distinguishing sequence [7], [12], [15], [26]. This paper considers the problem of generating
an efficient checking sequence from a deterministic, minimal, and completely specified/F3hh a
known distinguishing sequende.

B. Directed Graphs and Networks

A directed graph (digraph)= is defined by a tupldV, E) in which V' is a set of vertices and’' is
a set of directed edges between the vertices. Each edge may have a label. Anfexgevertexwv; to



vertexv; with labell will be represented byw;, v;, ). Edgee leavesy; andentersv;. For a vertexw € V,
indegreeg(v) denotes the number of edges frdththat enterv and outdegreer(v) denotes the number
of edges fromE that leavev.

Given an FSM, it is possible to produce a corresponding digraph in which each state is represented by a
vertex and each transition is represented by an edge. Throughout thispapér, E) (V = {vy,...,v,})
is a digraph, that represenid, in which states; is represented by vertex. A transition from states;
to states; with input  and outputy is represented by edge = (v;,v;, z/y) from E. For example,
(ve,v5,a/0) is an edge of the digraph fav/, that represents the transitigs, s;, a/0).

A sequenceP = (ni,n, x1/v1),- -, (1,7, 2.1 /y,_1) Of pairwise adjacent edges frofi forms
a walk in which eachnoden; represents a vertex frof and thus, ultimately, a state from. Here
initial(P) denotesn;, which is theinitial node of P, and final(P) denotes:,, which is thefinal node
of P. The sequenc# = (z,/y1), ..., (z,—1/y,—1) is thelabel of P and is denotedabel(P). T is said to
be atransfer sequencéom n; to n,. The walk P can be represented by the tugle, n,, T') or by the
tuple (ny,n,, I/O) in which I = x,..., z, is theinput portionof T andO = y,...,y, is the output
portion of 7. The costof a sequence is the number of elements in the sequence and is derpted

A tour is a walk whose initial and final nodes are the same. Given a fouf ¢e,...,¢;, ¢, =
(niynit1, ), (L <@ < k) thene;,... e e,...,ej—1 is a walk formed bystarting I' with edgee;. An
Euler Touris a tour that contains each edge exactly once. If the vertices represented by the nodes of walk
P are distinct,P is said to be gpath A sequence of edges, ..., e, ¢; = (N, ni1, ), (1 < i < k)
forms acycleif e, ...,e,_; is a path andv; andn,,, represent the same vertex. A getof edges from
G is acyclicif no subset ofE’ forms a cycle.

A digraph isstrongly connected for any ordered pair of verticeg;, v;) there is a walk fromy; to v;.
A digraph G is weakly connected the underlying undirected graph is connected: for each ordered pair
(vi,v;) of vertices there is a sequenge;, ny, 1), ..., (ng, nkt1, k) in which each node:, represents a
vertex fromV', n, represents;, n,, represents;, and for eachn,,n,41,l.) (1 <r < k) at least one of
(ny,npy1, 1) and (n,41,n,, 1) is in E. Naturally, every strongly connected digraph is weakly connected
but the converse is not the case. An FSMti®ngly connected the digraph that represents it is strongly
connected. Only strongly connected FSMs are considered in this paper.

A networkis a digraph in which there are two special vertices,gbarces andsink ¢, and each edge
is given acapacityand acost A flow £’ for a networkN is an assignment of non—negative integer values
to each edge such that the flow through an edge (the value assigned to this edge) does not exceed th
capacity of the edge and the flow is conserved: for each vertex, excapd ¢, the total flow entering
the vertex is equal to the total flow leaving it. Given a fléwof a networkN, the size of the flow|F|,
is the net flow leaving the sourceof N. Thecostof F' is the sum, over the edges, of the flow through
the edge multiplied by the cost of the edge. For more on digraphs and networks see, for example, [5].

C. Recognizing states and verifying edges

The algorithms of Ural et al. [26] and Hierons and Ural [12] use the notion of recognizing a node,
corresponding to the state reached by a given input/output sequence, and verifying an édgenese
notions, which are defined in terms of a given distinguishing sequéhcare defined below. The key
point is that, since the SUT has no more states thaw, if we observe the: possible responses of
M to D when applied tol, then D must also be a distinguishing sequence folOnce this has been
demonstrated, we can ugeto investigate the structure éfand thus to determine whether it is equivalent
to M.

Consider a walkP and the nodes within it. Lef) = label(P).

Definition 1 1) A noden; of P is d—-recognizedn Qias states of M if n; is the initial node of a
subpath ofP whose label is input/output sequenbg A(s, D).



2) Suppose thatn,,n;, T) and (n;,ny, T') are subpaths of” and D/\(s, D) is a prefix toT (and
thusn, andn; are d—recognized i) as states of M). Suppose also that node, is d—recognized
in Q as states’ of M. Thenn, is t-recognizedn @ ass'.

3) Suppose that,, n;, T) and(n;, ng, T') are subpaths of such that,, andn; are either d-recognized
or t-recognized in) as states of M andn, is either d—recognized or t-recognizedhas state
s’ of M. Thenn; is t-recognizedn Q as s'.

4) If noden; of P is either d—recognized or t-recognized (has states thenn, is recognizedn Q
as states.

5) Edgee = (v, v, x/y) is verified in Q if there is a subpath{n;, n;,1,7;/y;) of P such thatn; is
recognized as, in Q, n,,; is recognized as, in Q, x; =z andy; = .

The first rule says that a node is d—recognized as a stéieis followed by the input/output sequence
D/ (s, D). This is essentially saying thd? defines a one—to—one correspondence between the states of
the SUT and the states @f/: this must be the case if the different responses t® are observed in
the SUT. The second and third rules say that if an input/output sequence is observed from two different
nodesn andn’ that are both recognized (d-recognized or t-recognized) as the same state then their final
nodes should correspond to the same staté/of

The fifth rule is related to a transition test that is defined as follows:tfdresition testfor a transition
T = (si,85,x/y) is label(t)D/A(s;, D)T; for some transfer sequence. The following result, that
provides a sufficient condition for an input/output sequence to be a checking sequence, may now be
stated.

Theorem 1 (Theorem 1, [26]) LetP be a walk fromG that starts atv; and Q = label(P). If every edge
(vi,vj,z/y) of G is verified in@), then() is a checking sequence 61.

In this paper checking sequence generation is based on Theorem 1.

[1l. GENERATING CHECKING SEQUENCES

This section gives an algorithm for generating a checking sequence Moon the basis of a dis-
tinguishing sequenc® for M. It starts by definingy’'—sequences [12]. We then adapt the algorithm of
Hierons and Ural [12]. The change introduced in this paper allows th&_ safttransitions used, to connect
the required subsequences, to be chosen during optimization. The problem of ch@eseguences is
considered in Section IV.

A. Defininga’—sequences

In previous work [12]a’-sequences were used as the basis for generating a checking sequence. First
we definea’—sequences and we then explain their role in the construction of a checking sequence.
The o/-sequences are defined in the following way [12]. The first step is to chigose V (1 <
k < q) whose union isV and to order the elements within eath, giving V, = {vf,..., v} }. Let
s¥ denote the state represented #fy For eachv’, produce a sequencP/\(s¥, D)TF; the result of
applying D in states! followed by a transfer sequendé® whose final state correspondsdp, (v%, .,
can be anyvi, 1 < j < ¢,1 < w < m;). For eachV;, form a walk P, from s§ with label @, =
D/)\(s’f,D)T{“D/)\(SS,D)Tf...D/)\(sfnk,D)Tf%D/)\(s{;},D)Ti (1 <j<g¢gl <w < my). The set
{au,...,qa,} is called an’—set. Given anv’—setA, each sequence; € A is called ano’—sequence from
A. Where then/—set A is clear, its members are simply called-sequences
The transfer sequence, that follows the executioDdiom states;, is denotedr;.
The o/—sequences play the following roles in checking sequence generation.
1) They verify that the distinguishing sequenbeused is also a distinguishing sequence for the SUT.
This is achieved by applyind in every state of\/: if the n different responses are observed then,
since the SUT has at moststates,D must distinguish the states of the SUT.



Fig. 2. The digraptGp

2) For each state; they d—recognize the final state (say reached by the walk from; with label
D/X(s;, D)T;. This is achieved by the subsequerf@ﬁ/\(sz, D)T; followed by the input ofD. Note
that if the subsequenc@/)\(sl, D)T; is seen elsewhere in the label of a walk, then the final node
of this is t-recognized as the statgreached froms; by a walk with labelD/\(s;, D)T; since the
initial node of D/\(s;, )T is d—recognized as; and the node reached ly/\(s;, D)T; has been
d-recognized as; in an o/—sequence.

3) An a’—sequenceik from A starts with input sequenc® and thus its initial node is recognized.
Thus, ana/—sequence can be used to check the ending state of a transition [12].

The execution ofD, followed by a given transfer sequence, from each state, may be represented by a
digraphG 5 induced by the set of edges of the fofm, v;) such that there is a walk from to s; with
label D/\(s;, D)T;. The digraphi’ ; generated fromi, with empty transfer sequences and distinguishing
sequencerba is given in Figure 2. Recall that aw'—sequence must end in som¥& \(s;, D)T; that is
contained in the body of possibly anothérsequence. Thus, ar-set is represented by a get, ..., p,}
of walks in G5 such that eachy; ends with an edge with the property that there exists a waik that
containse before its final edge.

From this it is possible to see that the following providecnset for Mj:

« The sequence; corresponding to the execution &iDD DD from ss5: this contains the edges of
G p that leave verticess, vq, v4, v1, @anduv,. Note that here the walk ends with an edge (froyto
vy) that was included earlier in the walk.

« The sequence, corresponding to the execution 6fD from s : this contains the edges 6f5 that
leave vertices); andv;. Here the walk ends with an edge (from to v5) that was included in the
walk in G representingy; and before the final edge of this walk.

We use these’—sequences in checking sequence generation.

If a walk P contains evenp,, (1 < k < ¢), and thus its label contalns eveyy—sequence from’—setA,
the final node of somé), with labela,, = D/A(s}, D)TFD/X(ss, D)Ty ... D/X(sk, , D)T D/X(si,, D)T}
is preceded by a subsequend/\(s?, D)TJ, contained within somey; € A and thus followed byD
in @;. Thus, by the definition of recognition, # contains every?; (1 < k < g), then the final node of
eachP, is recognized.

We useE,, to denote the set of edges of the foip = (v, v;, a1), (1 < k < q).

B. Checking sequences: a sufficient condition

This section gives a sufficient condition, from [12], for a sequence to be a checking sequence. This
result is a consequence of Theorem 1.

Theorem 2 Let A denote ana’-set andGy = (V, E U Ey) for someEy that satisfies the following
properties:
1) For each transitionr, with ending states;, £y contains one edge representindollowed by either
D/X(s;, D)T; or somea’—sequence from.
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2) For every o’—sequencey, from A, Ey contains one edge that represents or a transition 7

followed byay..

3) Every edge fronEy represents am’—sequence or a transition, with ending states;, followed by

either a sequence froM or D/\(s;, D)T;.

Supposd’ is a tour of Gy that contains every edge froftiy. Lete be an edge front'y that represents
the test for a transition whose ending state ig. LetI” denotel” with e replaced by the corresponding
sequence, . .., e, of edges fronty (and soe; represents’) and let P denote the walk formed by starting
I with the edgee,. Also letG[E.] denote the digraph induced by the set of edge# ithat are not in
Exy and suppose that/[E¢| is acyclic. Then)) = label(P)D/\(s1, D) is a checking sequence fad .

C. Producing the checking sequence

This subsection explains how, given afi-setA, we can produce a checking sequence. The algorithm
developed in this section utilizes the optimization algorithm, for the RCPP, used in [1]. By Theorem 2, it
is sufficient to generate a checking sequence on the basis of a tour produced from the following:

1) For each transitionr, with ending states;, one instance of following by D/\(s;, D)T; or an

o'—seqguence.

2) For everya/—sequencey;, eithera; or some transition followed by &;.

3) Some acyclic set of connecting transitions.

If an o/—sequencey; is used to check the ending state of some transitiome get overlap between a
transition test and an’—sequence. Thus, since we aim to produce an optimal checking sequence, each
o’—sequence is used to check the ending state of some transition, except possibly one if the checking
sequence starts with ari—sequence.

The problem of producing a minimal length tour that satisfies these conditions can now be considered.
The first step is to produce a netwalk from G = (V, E), described below and outlined in Figure 3, and
derive the minimum cost/maximum flow (min cost/max flow)of N.

The networkN has vertex sefs,t} U{s|,..., s, }U{t],...,t.}, in which s is the source andis the
sink. Thes! represent nodes after the execution of a transition being tested and before the execution of
an o/-sequence ob/\(s;, D)T; and thet, represent nodes before the start of a transition test.

The edges are defined by the following rules:

1) For eachi, there is an edge from to s, with capacityindegrees(v;) and cost0. This is because

there areindegreeg(v;) edges ofG that end at;, each representing a transition that needs to be
followed by ana’—sequence oD /\(s;, D)T;.



Fig. 4. The network and flowy for My

2) For eachi, there is an edge fron to ¢ with capacityoutdegreeg(v;) and cost). This is because
there areoutdegreer(v;) edges ofG that leavev;, each representing a transition that needs to be
tested.

3) For eacha’-sequencey, from v; to v; there is an edge frong, to ¢ with capacityl and costay|.
This represents the execution @f as part of a transition test.

4) For each state;, with s; reached by the walk with labéd/A(s;, D)T; from s;, there is an edge from
s; to t’; with capacityindegreeg(v;) — outdegreeg,_,(v;) and cost|D/A(s;, D)T;|. This represents
the use ofD/X(s;, D)T; as part of a transition test. The capacity is the number of transitions that
will be followed by D/\(s;, D)T; but not ana’—sequence in the tour: each transition with ending
states; must be followed byD /\(s;, D)T; but outdegreeg,_,(v;) of these will be followed by an’'—
sequence. The capacity of an edge Ieavmg senand representing the execution Bf/ \(s;, D)T;
is thus reduced by if there is somex’'—sequence leaving;, as thisa’—sequence will be used to
recognize the final state of one transition enterinpgEacho’—sequence can always be executed
in this manner as for every, 1 < i < n, indegreeg(v;) > 0 (as M is strongly connected) and
outdegreeg,,(v;) < 1.

5) For each transition froms; to s; there is a corresponding edge frafnto ¢’ with infinite capacity
and costl. This represents an edge used to connect transition tests.

Consider transitionr = (s;, s;, z/y) and transition testabel(7)D/\(s;, D)T; in which D/\(s;, D)T;
labels a walk froms; to s;. The execution of- as part of this transition test is represented by flow from
t/ to ¢ and flow froms to /. The execution ofD/\(s;, D)T; as part of this transition test is represented
by flow from s’ to #;.
The min cost/max flowF’ is then found. This flow can be derived in low order polynomial time (see, for
example, [1]). The network, and corresponding min cost/max flow, producetl/fas shown in Figure
4. Here, the only edges between téhat are shown are those used in the flow. The actual flow through
an edge is represented by an integer label and a dotted line represeritsaguence.
From F' the digraphG’ = (V’, E’), in which V' = {a4,...,a,} U {by,...b,}, is produced. The edge
set £’ is defined by the following:
1) For each transitionr from s; to s; in M there is a corresponding edge frénto a;. This represents
the execution ofr as part of a transition test.
2) Given an edge from; to ¢’ in N with flow f in I’ there aref corresponding edges from to b;.
These represents the use of someor D/\(s;, D)T; as part of a transition test.
3) Given an edge front; to ¢’ in N with flow f in F, there aref corresponding edges from to b;.
These represent the execution of transitions used to connect transition tests.

As flow is conserved at vertices, the digragh is symmetric(every vertex has an equal number of
edges entering and leaving it). Thus,Gf is connected, it has an Euler Tolir(see, for example, [5])



and the corresponding checking sequence contaigg F) + |S||X| + |D| transitions, wherewost(F)
denotes the cost of the flow. Conditions under whicld:’" is guaranteed to be connected are considered
in Section V. If G’ is not connected then a set of tours can be produced. These tours can be connected
by adding further transitions [12], [26].

We choose some edgéan I that represents a transition test for a transitidhat ends at; and replace
e by the corresponding sequenege. . ., e, of edges fromG to form tourI”. We then starl” with e, to
form a walk P with label Q and QD/\(s;, D) then forms a checking sequence. The (polynomial time)
checking sequence generation algorithm can be summarised in the following way.

Algorithm 1

1) InputM, distinguishing sequende anda’/—setA (and thus the transfer sequendgs. .., T,).

2) Produce network and min cost/max flow’ for N .

3) Generatéy’ from F.

4) If G' is strongly connected, produce an Euler Tbuof G'; else produce a set of tours and connect
these [12], [26] to form a tour.

5) Choose some edgein I that represents a transition test for a transitiadhat ends a¢, and replace
e by the corresponding sequenge. . . , e;, of edges fronGG to form tourl”.

6) Let P denote a walk produced by startiﬁngth eo and letQ) = label (P).

7) Return the input/output sequen@é /\(s;, D).

We now prove that the algorithm produces a checking sequence.

Lemma 3 The set of edges between tewith non—zero flow irF', defines an acyclic subgraph 6f.

Proof: Proof by contradiction: suppose there is somesetof edges between th¢in N such that
these edges define a cycle and they have non-zero flaWw iAroduce an assignme#t of integers to
edges ofN by taking F' and reducing the flow through each edgeFif by 1. Since each edge iB®
has positive (integer) flow i, no edge is given negative flow iR’. Further, sinceZ“ defines a cycle,
given a vertext;, in forming F’ we remove the same number of units of flow enterihgs we remove
units of flow leavingt;. Thus, flow is conserved id” and soF” is a flow. Finally, we have the same net
flow leaving s in ' and F’ and the same net flow enterirign F* and F’. Thus, F” is also a max flow
but it is a max flow with lower cost thah”. This contradictsF’ being a min cost/max flow, as required.

[ |

Theorem 4 The sequence produced by Algorithm 1 is a checking sequence.

Proof: First observe that by Lemma 3 the set of edges betweer tileat have non-zero flow in

F, define an acyclic digraph. Further, each edge figmis included in the resultant sequence. The result
thus follows from Theorem 2. [ ]

The digraphGj, produced from flowFy, for My, is shown in Figure 5. Heren > 1 occurrences of an
edge are represented by label Solid lines are used for edges that represéasequences or instances
of D; individual transition (as part of transition tests or used to connect transition tests) are represented
using dotted lines. An Euler tour of this leads to the following checking sequence in which the label of
a transition froms; to s; is denoted byr;;.

D//\(Sl, )Tng/)\(Sl, )a/()b/17'34D//\(s4, )TlQD/)\(SQ, )T45D/A(S57 )TQ5D/)\(S5, )
G/Otg,lD/)\(Sl, )a/OT53a2a/Ob/17350417'44D/)\(s4, )TllD/)\(Sl, )
It is possible to check that all of the nodes are recognized and thus that all of the edgGgsad
verified. This sequence thus defines a checking sequence.

Note that the set of connecting transitions is generated during optimization. In [12], [26] a set of
connecting transitions is found prior to the optimization: this prior choice may be suboptimal.
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Fig. 5. The digraphG} produced fromF,

IV. FINDING AN o/—SET

The process of generating a checking sequence, in the presencevbfsaet, was described in Section
lll. This section discusses the problem of generatingoérset A that minimizes the total length of
the sequences iy, length(Ey) = > .5 |z|. For each state;, somea’-sequence will contain a
corresponding subsequené¥ \(s;, D)T; for some transfer sequend@g. In Section IV-A, an algorithm
for generating amy—set, once thd; have been chosen, is described. Section IV-B contains a proof that
if empty transfer sequences are used (feis the empty sequence for dll < i < n) then anyo/—set
produced in this way minimizekngth(E~) and thus that empty transfer sequences should be used.

As noted earlier, the application of the/\(s;, D)T; can be represented by a digraph, = (V, Ep)
in which an edge fromy; represents a walk with labéb/\(s;, D)T; from s;. In G, each vertex has one
edge leaving it ands; is composed of components in the form of circuits, possibly with trees attached.

The digraph produced fak/,, using empty transfer sequences, is given in Figure 2.

A. Finding o/—sequences given the
Eacha/—setA = {ay,...,a,} is defined by a set = {P,, ..., P,} of walks such thatabel(P},) = ay,
(1 < k < q). To construct eacl, € m, first construct a seP = {py, ..., p,} of paths such that every edge
of G is covered exactly once. For eaghe P, we produce the sequenkgel(p,) D /\(s;, D)T;, wheres;
is the ending state ¢f,.. This giveso/'—setA = {label(p)D/\(s;, D)T;|pr € P, s; is the ending state of;,}.
The problem of generating am—set may thus be reduced to that of producing such a set of paths given
G (and thus from the transfer sequendgs. .., T),).
The digraphG 5 is composed of a number of (weakly connected) componénts..,C,, 1 <r <n.
The following algorithm produces paths that cover each component that is not in the form of a cycle.
Cyclic components are then considered.

Algorithm 2
1) Initially all edges ofG' ;, are unmarked and = ).
2) While there exists some with an unmarked edge leaving it and no unmarked edge entering it, do

a) Choose some; with an unmarked edge leaving it and no unmarked edge entering it.

b) Find the longest path in G ; that starts ab; and does not use any marked edge pAs a path
it has no repeated edges.

c) Follow p by the edge leaving its ending vertexGf, to get the walkP.
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d) Add P tor and mark the edges pf

endwhile
3) Outputr.

The general problem of finding the longest path in a digraph is NP—complete (see, for example, [4]).
However, since inGj each vertex has only one edge leaving it, here the longest path problem can be
solved in linear time.

In the example, there are two possible starting poinisand vs. If vertex vs is chosen initially the
longest path i$5 — v, — v4 — v; — v, and thus therY—sequence;, corresponding tes — v, — vy —

v; — vy — vy, IS produced. The only remaining unmarked edgesis- v; and thus thex'—sequence,,
corresponding tas — v; — vg, IS then chosen.

At the end of Algorithm 2 there may still be unmarked edges in which case the @atput does not
define ana/—set. However, we know that any vertex that has an unmarked edge leaving it also has an
unmarked edge entering it. We thus get the following result.

Proposition 5 When Algorithm 2 terminates the remaining unmarked edgé&spform a set of cycles.

Proof: Let Gg = (V, Er) denote the digraph defined by the vertex sezgf and the set of edges of

G p that are unmarked at the end of Algorithm 2. By the termination criterion of Algorithm 2 we know
that every vertex of7; that has an edge that leaves it also has an edge that enters it.

First we prove that no vertex @f z has an edge entering it but no edge leaving it. Proof by contradiction:
suppose there is such a vertexLet p denote a maximal path fro@'; that ends at and letv” denote
the starting vertex op. By the maximality ofp and the fact that every vertex 6f; that has an edge that
leaves it also has an edge that enters it, we knowdhhts an edge from entering it. Thusp defines
a subdigraph of7; that is of the form of a cycle with a path leaving it. This contradicts each vertex
having at most one edge leaving it as required.

Since no vertex ofiz has more than one edge leaving it, it is now sufficient to prove that no vertex of
G r has more than one edge entering it. Observe that the total number of edges entering vertices is equa
to the total number of edges leaving vertices. The result thus follows from the facts that: no vertex has
an edge entering it and no edge leaving it; no vertex has an edge leaving it and no edge entering it; and
no vertex has more than one edge leaving it. [ |

If the edges of a componerdt; form a cycle then it is possible to start a walk whose label is an
o’—sequence at any point within this. The walk produced has initial and final vertices corresponding to
those of some edge ifi;. Suppose an edge from to v, is chosen and the corresponding-sequence is
ay. Thena, contains everyD/\(s., D)T. that corresponds to an edge frat. While D/\(s,, D)T, is
included twice (once at the beginning, once at the end) the sequeniseused to recognize, once in
testing and thus, iy, replaces one execution @f/\(s,, D)T, from s,. Thus the choice of edge from
C; does not affectength(Ex).

The final algorithm can now be given.

Algorithm 3
1) Generate a set of walksusing Algorithm 2.
2) In G mark the edges contained in walks fram
3) While there are unmarked edgesin, do
a) Choose a vertex; that has an unmarked edge leaving it.
b) Find the longest wallo in Gy that starts at; and does not use any marked edge. This walk
returns tov; since only edges forming cyclic components remain unmarked after Algorithm 2.
c) Follow p by the edge leaving its ending vertex to dget
d) Add P tor and mark the edges pf
endwhile
4) Outputr.
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Theorem 6 Algorithm 3 returns a set of walks that define aft-set.

Proof: By Proposition 5 we know that the set of unmarked edges after Algorithm 2 is of the form of
a set of cyclic components. The result now follows from observing that each iteration of the loop creates
a walk P that defines am’—sequence and Algorithm 3 terminates when no edges are unmarkeda

B. Finding the optimall;

The previous section gave an algorithm that generates-sset given the sefT’,...,T,} of transfer
sequences. This section contains results that prove that émfeigd to the minimal value dbngth(Ex)
and that, given empty;, any two o’—sets produce the same valuelefigth(E~). The first step is to
place a lower bound ofength(Ey).

Lemma 7 Supposél/ has distinguishing sequenég n states and input alphabét. Thenlength(Ey) >
n|X|+ n|D|(|X]| + 1).

Proof: Suppose also thdfy has been formed using—setA = {a,, ..., &,}, whereq; is D /X(s}, D)T}
D/X(sy, D)Ty ... D/X(st, DT D/X(sl,, D)T3, (1 < j < gl <w < mJ) EachD/\(s;, D)T; appears
at least once within the body of some. Repetition occurs through the final section of eaglappearing
within the body of somey;. Thus

q
> la.| = n|D| +q|D].

z=1

The transitions may be enumerated to give, ... 7, } such that, infy, 7,..., 7, are followed by

as, ..., 0, respectively. Given transition, let o(z) satisfy the property that the endlng staterofs s,(.)
ThereforeEy = {na, ..., 7,04} U UZ'Z)flLrl{TZD/A(sU (), D)1z} Thus
n|X|
>l = z il + Y [1D/A(so Do)
Z€Ey 2=q+1
n|X|
—q+2|az|+ (X[ =) (D] + 1)+ Y T
z=1 2=q+1

> q+n|D|+q|D| + (n|X| = q)(|D| + 1)

= n|X|+n|D| + n|X||D| = n|X| + n|D|(1 + | X]).

The result thus follows. B [ ]
It is now sufficient to prove that ang'—set, produced by Algorithm 3, with empfl§ achieves this
lower bound and thus is optimal.

Lemma 8 SupposeM has distinguishing sequend®, n states and input alphabeX. Suppose also
that £y contains the sequences produced usingrarset A generated by Algorithm 3 in which, for all
1 <i<n,|T;| =0. Thenlength(Ey) = n|X| + n|D|(|X| + 1).

Proof: Supposed = {ai,...,a,}. As, for all1 < j <n, T; = ¢, @; has input portionD*: D for
somek;, > ._, k; = n. Thus

q
> laz| = (n+g)D].
z=1
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The transitions may be enumerated so that= {ra, ..., 7,a,} U™ {7.D/A(s0(z), D)}. Thus

z=q+1
q n|X]| - -
Yoz =) Inal+ Y [n=D/A(ser), D)l
reEy z=1 z=q+1
q n|X| B
=g+ lal+@X|—q)+ > D]
z=1 z=q+1
q nlX|
=nlX[+ ) la.[+ > |D|
z=1 z=q+1

=n|X[+ (n+q)|D| + (n|X| = )| D]
=n|X| +[D|(n+ ¢+ n|X[ - q)

= n|X|+n|D|(1 + |X])
The result thus follows. [ |

Theorem 9 Suppose thab/y contains the subsequences generated usirgetA produced by Algorithm
3 in which, for all1 < i <mn, |T;| = 0. Then thisa’-set minimizes the value &fngth(Ex).

Proof. This follows directly from Lemmas 7 and 8. [ |

V. GENERAL PROPERTIES OF THE ALGORITHMS

The proposed algorithm produces a symmetric digraptand if G’ is strongly connected, an Euler
Tour of G’ is used to define a minimum length checking sequence, for the glverhis section gives
two sufficient conditions foli’ to be strongly connected. These conditions are equivalent to those given
in [1] for an algorithm that connects a set of subsequences but need not generate a checking sequence.

Lemma 10 If M has reset capacity the@’ is strongly connected.

Proof: As M has reset capacity, evebyis connected ta,. Thus the set o0b; is weakly connected.
As M is strongly connected, every, is reached by some edge from some Thus, as the set df; is
weakly connected(’ is weakly connected. It is known, however, that a weakly connected symmetric
digraph is strongly connected (see, for example, [5]). TBUs$s strongly connected, as required. ®

Lemma 11 If M has a loop (a transition whose initial and final states are the same) for every state then
G' is strongly connected.

Proof: As M has a loop for every state, eabhis connected to the corresponding As it is
sufficient to prove thaty’ is weakly connected, and eaéhis connected to some;, it is sufficient to
prove that for anyu,; there an undirected walk fromy to a;. A walk p from G can be simulated by, for
each edge from v; to v; in p, replacinge by a pair of edges$b;, a;) (b;,a;) in G'. Thus, as5 is strongly
connected, there is an undirected walk frapto a; for all 1 < i < n. ThusG’ is weakly connected and,
as G’ is symmetric,GG’ is strongly connected. [ |

The proposed checking sequence generation algorithm has the same time complexity as those giver
in [26] and [12] and we now explore this complexity. For an FSM witlstates Algorithms 2 and 3
both take time ofO(n). Thus the complexity of the algorithm is dominated by the time taken to find the
min cost/max flow which is o) (evlogv) for a digraph withv vertices and: edges [1]. Thus, since the
digraph representing/ hasn vertices andi| X | edges, the worst case time complexityign?| X | logn).
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VI. EXPERIMENTAL EVALUATION

This section describes an experimental evaluation that investigated the effect of using non—-empty
transfer sequenced}j in the construction of they—sequences. There were two motivations for this
study. First, while the proposed use of empty transfer sequences guarantees that the sum of the length
of the subsequences to be combined is minimized, there is no guarantee that this leads to the shortes
checking sequence. Second, while we might expect the use of empty transfer sequences to normally be
desirable, experimental evaluation can provide some indication as to how significant an impact this has
on the length of the resultant checking sequence.
We used a set of randomly generated FSMs with distinguishing sequences. We produced these FSMs
in the following way. For a given integer, for each state; (1 < ¢ < n) and inputz we randomly chose
the next state; and outputy. This led to an FSM with: states but this FSM might not have the desired
properties. The FSM was rejected if it was not minimal, was not strongly connected, or we failed to find
a distinguishing sequence.
For each FSMM we applied the following experiments:
1) We used Algorithm 3 to produce ar—set with empty transfer sequences as proposed in Section
IV. We then generated a checking sequence using Algorithm 1.

2) We applied the following procedur#00 times: For each state of M/ randomly choose some state
s’ from M to be reached by the transfer sequence fé¢gp, D). For eachs;, we generated a transfer
sequencd; that labelled a shortest walk frod{s;, D) to s* and used Algorithm 3 to produce the
correspondingy—setA. We then applied Algorithm 1, withl and the transfer sequences, to produce
a checking sequence. This was done for a randomly generated selection since for an FSM with
states there are™ ways of choosing the transfer sequences.

For each FSMM we recorded the checking sequence length produced using the proposed algorithm
and thus empty transfer sequences. The checking sequence algorithm is deterministic once the transfe
sequences have been chosen and thus we produced only one such checking sequence for each FSM.

For the1000 other experiments with a given FSM we recorded the mean checking sequence length,
the maximum checking sequence length, and the minimum checking sequence length. We used five FSMs
with 5 states, five FSMs with 10 states, five FSMs with 15 states, and five FSMs with 20 states. The
FSMs with 5 states had input and output alphabets of size 3, the FSMs with 10 and 15 states had input
and output alphabets of size 4, and the FSMs with 20 states had input and output alphabets of size 5.
The results are given in Table I.

In all cases the checking sequence with empty transfer sequences was the smallest found. It is interesting
to look at how much of a saving is provided by using empty transfer sequences and to consider both the
saving relative to the mean checking sequence length found and the maximum checking sequence lengtt
found: the former gives an indication of tlexpectedsaving while the latter gives an indication of the
maximumsaving that can be expected. Table Il summarizes this information. For each FSM size it gives
the following information:

1) The first column contains the number of states of the FSMs.

2) The second column contains the mean checking sequence length when we have empty transfer

sequences. This is averaged across the five FSMs with the given number of states.

3) The third column contains the mean, over the five FSMs, of the mean checking sequence length
when we do not use empty transfer sequences. In the fourth column we give the percentage saving:
the difference between the values in the second and third columns divided by the value in the third
column (the larger of the two values). This estimates the expected saving from using empty transfer
sequences.

4) The fifth column gives the mean, over the five FSMs, of the length of the longest checking sequence
found. The sixth column contains the percentage saving: the difference between the values in the
fifth and second columns divided by the value in the fifth column (again, the larger of the two
values). This estimates the maximum saving from using empty transfer sequences.
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TABLE |
EXPERIMENTAL RESULTS

FSM | Number of state§ Empty transfer| Maximum | Minimum | Mean
50 5 68 134 68 97
51 5 94 134 94 118
52 5 63 107 63 88
53 5 60 111 60 90
54 5 71 112 71 91
10.0 10 209 347 251 299
101 10 229 383 241 324
10.2 10 259 473 282 340
103 10 171 301 196 248
104 10 226 375 254 313
150 15 327 593 400 494
151 15 352 603 394 504
152 15 337 563 394 479
153 15 351 583 400 499
154 15 352 601 404 496
20.0 20 625 990 639 854
201 20 530 859 695 769
202 20 561 935 670 789
203 20 560 923 669 817
204 20 568 940 668 813
TABLE I

SUMMARY : MEAN SAVINGS

Number of state§ mean empty transfef mean | saving | mean maximum| saving
5 71.2 96.8 | 26.45% 119.6 40.47%
10 218.8 304.8 | 28.22% 375.8 41.78%
15 343.8 494.4 | 30.46% 588.6 41.59%
20 568.8 808.4 | 29.64% 929.4 38.80%

In the experiments, for each FSM size, the use of empty transfer sequences gave a saving of over 25%
when compared to the mean checking sequence length and a maximum saving of in the order of 40%.

VIlI. CONCLUSIONS

When testing from a finite state machine (FSM) it is often desirable to use a checking sequence:

a test sequence that is guaranteed to lead to failures if the system under test (SUT) is faulty and has nc
more states thai/. There has thus been much interest in the automated generation of efficient checking
sequences [6], [7], [12], [26].

The method recently given in [12], to generate a checking sequence, produces a checking sequence
by connecting a set of subsequences. However, it relies on two elements-#et A and a sett,. of
connecting transitions, to have already been defined. The choideantl £. can have a significant impact
on the length of the resultant checking sequence. This paper has focussed on the problem of ¢hoosing
and E.. The overall checking sequence generation approach, used in this paper, can be seen as havin
two stages:

1) minimize the sum of the lengths of the subsequences to be combined; then

2) combine these sequences optimally.

This paper has given an algorithm that finds @rset A that minimizes the sum of the lengths of
the subsequences to be combined in checking sequence generation. The checking sequence generati
algorithm given in this paper produces the ggtof connecting transitionduring the optimization phase
of test generation. The algorithm thus produces the optifdbor the givenA.

The choice ofE, is guaranteed to be optimal. Thus, experimental evaluation was used to investigate
the other variable: the choice of transfer sequences (which define thB.sEhe experiments were over
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twenty randomly generated FSMs with between 5 and 20 states. In all experiments, the checking sequence

generated using the proposed approach was the shortest found. In the experiments, for each FSM size

the proposed approach gave a mean saving of over 25% and a maximum saving of in the order 40%.
For ease of presentation, we formulated the problem as that of forming a tour from which a checking

sequence is extracted as given in Theorem 2. A succinct formulation of the minimum length checking

sequence construction follows directly from our work: after formi#g find a rural Chinese postman

path over the subset of edgés starting with the application oD (or somea’—sequence) at; .
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