CONTRACTING AN ELEMENT FROM A COCIRCUIT.
RHIANNON HALL AND DILLON MAYHEW

ABSTRACT. We consider the situation that M and N are 3-con-
nected matroids such that |[E(N)| > 4 and C* is a cocircuit of M
with the property that M/zy has an N-minor for some zo € C*.
We show that either there is an element 2 € C* such that si(M/z)
or co(si(M/x)) is 3-connected with an N-minor, or there is a four-
element fan of M that contains two elements of C* and an element
2 such that si(M/x) is 3-connected with an N-minor.

1. INTRODUCTION

There are a number of tools in matroid theory that tell us when we
can remove an element or elements from a matroid, while maintaining
both the presence of a minor and a certain type of connectivity. Some
recent results are of this type, but have the additional restriction that
the element(s) must have a certain relation to a given substructure in
the matroid. For example, Oxley, Semple, and Whittle [9], consider a
given basis of a matroid and consider either contracting elements that
are in the basis, or deleting elements that are not in the basis. Hall [3]
has investigated when it is possible to contract an element from a given
hyperplane in a 3-connected matroid and remain 3-connected (up to
parallel pairs).

We make a contribution to this collection of tools by investigating the
circumstances under which we can contract an element from a cocircuit
while maintaining both the presence of a minor and 3-connectivity (up
to parallel pairs), and the structures which prevent us from doing so.
Our result has been employed by Geelen, Gerards, and Whittle [2]
in their characterization of when three elements in a matroid lie in a
common circuit.
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Theorem 1.1. Suppose that M and N are 3-connected matroids such
that |E(N)| > 4 and C* is a cocircuit of M with the property that M /x
has an N-minor for some xo € C*. Then either:

(i) there is an element x € C* such that si(M/x) is 3-connected and
has an N-minor;
(1) there is an element x € C* such that co(si(M/x)) is 3-connected
and has an N-minor; or,
(11i) there is a sequence of elements (x1, xa, T3, x4) from E(M) such
that {x1, x9, x3} is a circuit, {xa, T3, T4} S a cocircuit, x1, T3 €
C*, and si(M/xs) is 3-connected with an N-minor.

The next example shows that statement (ii) of Theorem 1.1 is nec-
essary.

c d

FIGURE 1. The graphic matroid M (Kj5\e).

Consider the rank-4 matroid M whose geometric representation is
shown in Figure 1. Note that M = M (K;5\e). The set C' = {a, b, ¢, d}
is a circuit of M, and hence a cocircuit of M*. Moreover M*/z has a
minor isomorphic to M (K}) for any element € C'. However co(M\z)
is not 3-connected, as it contains a parallel pair, so si(M*/z) is not
3-connected. On the other hand co(si(M*/x)) is 3-connected, and has
a minor isomorphic to M (Ky).

More generally we suppose that r is an integer greater than two.
Consider a basis A = {ay, ..., a,} in the projective space PG(r —1, R).
Let [ be a line of PG(r—1, R) that is freely placed relative to A, and for
alli € {1,...,r} let b; be the point that is in both [ and the hyperplane
of PG(r — 1, R) spanned by A — a;. Let B = {by,...,b.}. We will use
O, to denote the restriction of PG(r — 1, R) to AU B.

Suppose that ©’ is an isomorphic copy of ©, with {a},...,a.} UB
as its ground set. Assume also that the isomorphism from O, to O
acts as the identity on B and takes a; to a} for all i € {1,...,r}. Let
M be the generalized parallel connection of ©, and ©/.. That is, M is
a matroid on the ground set AU A’ U B and the flats of M are exactly
the sets F' such that F'N (AU B) is a flat of ©, and FN (A’ U B) is a
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flat of ©/. Note that if » = 3 then M is isomorphic to M (Kjs\e), the
matroid illustrated in Figure 1.

It is easy to see that ©,. is self-dual and that C' = (A—a;)U(A'—d))
is a circuit of M, and hence a cocircuit of M*. Moreover M*/x has
an isomorphic copy of ©, as a minor for every element x € C. We
note that every three-element subset of A is a circuit of M*. Thus
A — x is a parallel class of M*/x for every x € C'N A. However the
simplification of M*/x contains a unique series pair, and is therefore
not 3-connected. On the other hand co(si(M*/x)) is 3-connected, and
has a minor isomorphic to ©,.

The structure described in the last example has been discovered be-
fore. The matroid ©, is a fundamental object in the generalized A-Y
operation of Oxley, Semple, and Vertigan [7]. Furthermore this con-
struction is an example of a ‘crocodile’; as described by Hall, Oxley,
and Semple [4].

To see that statement (iii) of Theorem 1.1 is necessary consider the
graph G shown in Figure 2. Let C* be the cocircuit of M = M(G)
comprising the edges incident with the vertex a. It is easy to see that
if x is any edge between a and a vertex in {b, ¢, d, e, f} then M/x has
a minor isomorphic to M (Kj), and that these are the only edges in C*
with this property. But in this case neither si(M/z) nor co(si(M/x)) is
3-connected. On the other hand, if we let x; be the edge ad, x5 be cd,
x3 be ac, and x4 be be, then (x4, z9, x3, x4) is a sequence of the type
described in statement (iii) of Theorem 1.1.

FiGURE 2. The graph G.

Our main result shows that there are essentially only two structures
that prevent us from finding an element x € C* such that si(M/x) is
3-connected with an N-minor. These structures are named ‘segment-
cosegment pairs’ and ‘four-element fans’. The dual of the matroid in
Figure 1 contains a segment-cosegment pair, and the graph in Figure 2
contains a four-element fan. Before describing our result in detail we
fix some terminology. Suppose that M is a matroid. Recall that a
triangle of M is a three-element circuit, and a triad is a three-element
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cocircuit. A four-element fan of M is a sequence (z1, 2, T3, x4) of
distinct elements from E(M) such that {z1, zo, 23} is a triangle and
{9, x3, x4} is a triad. A segment of M is a set L such that |L| > 3
and every three-element subset of M is a triangle, and a cosegment of
M is a segment of M*. We say that (L, L*) is a segment-cosegment
pair if L = {xy,...,2;} is a segment of M, and L* = {y;,...,y:} is a
set such that L N L* = () and for every x; € L the set (cl(L) — x;) U y;
is a cocircuit. Segment-cosegment pairs will be considered in detail
in Section 3. A spore is a pair (P, s) such that P is a rank-one flat,
and P U s is a cocircuit. A matroid M is 3-connected up to a unique
spore if M contains a single spore (P, s), and whenever (X, Y) is a
k-separation of M for some k < 3 then either X C PUsorY C PUs.
Theorem 1.1 follows from the next result. It gives a more detailed
analysis of the structures we encounter.

Theorem 1.2. Suppose that M and N are 3-connected matroids such
that |E(N)| > 4 and C* is a cocircuit of M with the property that M ]z
has an N-minor for some xo € C*. Then either:

(i) there is an element v € C* such that si(M/x) is 3-connected and
has an N-minor;

(i1) there is a four-element fan (x1, x9, T3, x4) of M such that z1, x3 €
C*, and si(M/xq) is 3-connected with an N-minor;

(iii) there is a segment-cosegment pair (L, L*) such that L C C*, and
cl(L) — L contains a single element e. In this case e ¢ C* and
si(M/e) is 3-connected with an N-minor. Moreover M/ cl(L) is
3-connected with an N-minor, and if x; € L then M/x; is 3-con-
nected up to a unique spore (cl(L) — x;, y;); or,

(iv) there is a segment-cosegment pair (L, L*) such that L is a flat and
|L — C*| < 1. In this case M /L is 3-connected with an N-minor,
and if x; € L then M/x; is 3-connected up to a unique spore

(L — L, yi)'

We note that if (L, L*) is a segment-cosegment pair of the matroid
M, and M/cl(L) has an N-minor, then |E(M) — cl(L)] > 4. Under
these hypotheses Proposition 3.6 tells us that M/ cl(L) is isomorphic
to co(si(M/x;)) for any element z; € L. Therefore Theorem 1.1 does
indeed follow from Theorem 1.2.

By dualizing we immediately obtain the following corollary of The-
orem 1.1.

Theorem 1.3. Suppose that M and N are 3-connected matroids such
that |E(N)| > 4 and C is a circuit of M with the property that M\zq
has an N-minor for some xo € C'. Then either:
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(i) there is an element © € C' such that co(M\z) is 3-connected and
has an N-minor;
(1) there is an element x € C such that si(co(M\z)) is 3-connected
and has an N-minor; or,
(111) there is a four-element fan (xy, xo, T3, x4) in M such that
Tg, x4 € C, and co(M\x3) is 3-connected with an N-minor.

We note that Lemos [5] has considered the situation that a 3-con-
nected matroid M contains a circuit C' with the property that M\z is
not 3-connected for any element x € C. He shows that in this case C
meets at least two triads of M.

In Section 2 we introduce essential notions of matroid connectiv-
ity. Section 3 contains a detailed discussion of one of the structures
we uncover: segment-cosegment pairs. In Section 4 we collect some
preliminary lemmas, and in Section 5 we complete the proof of Theo-
rem 1.2. Notation and terminology generally follows that of Oxley [6],
except that the simple (respectively cosimple) matroid associated with
the matroid M is denoted si(M) (respectively co(M)). We consistently
write z instead of {z} for the set containing the single element z.

2. ESSENTIALS

This section collects some elementary results on matroid connectiv-
ity. Let M be a matroid on the ground set E. The connectivity function
of M, denoted by Ay (or A when there is no ambiguity), takes subsets
of E to ZT U{0}. It is defined so that

Anr(X) = 17 (X) + 1ar(E — X) — v(M)

for any subset X C E. Note that A\(X) = A(F — X) and A\« (X) =
Ay (X) for any subset X C E. It is well known, and easy to verify,
that the connectivity function of M is submodular. That is, for all
X, Y C FE, the inequality

AXNY)+AMXUY) < AX)+AY)

is satisfied.

We say that a subset X C F is k-separating or a k-separator of M
if A\(X) < k, and we say that a partition (X, £ — X) is a k-separation
of M if X is k-separating and |X|, |E — X| > k. A k-separator X
or a k-separation (X, £ — X) is ezact if A(X) = k — 1. A matroid
M is n-connected if M has no k-separation for any k& < n. We define
a k-partition of M to be a partition (X, Xo,...,X,,) of E such that
X, is k-separating for all 1 < ¢ < n. We say that the k-partition
(X1, Xo,...,X,) is exact if each k-separator X; is exact.

The next result is easy.
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Proposition 2.1. Let N be a muinor of the matroid M and let X be a
subset of E(M). Then Ay(E(N)NX) < Ay (X).

Proposition 2.2. Suppose that M is a matroid and that (X, Y, 2) is
a partition of E(M). If N\(X) = A(Y') then z is in cl(X) Ncl(Y) orin
c*(X) Nel*(Y), but not both.

Proof. Since
AMX)=r(X)+r(YUz)—r(M)=r(XUz)+1(Y)—r(M)=XY)

it follows that r(Y Uz) —r(Y) = r(X Uz) —r(X). Therefore, z € cl(X)
if and only if z € cl(Y'). In the case that z ¢ cl(X) and z ¢ cl(Y) then

rYUz)—t"(Y)=([YUz|+r(X)—1r(M))
—(Y]+r(XUz2)—r(M))=1+1(X)—r(XUz)=0.

Thus z € cl"(Y'). The same argument shows that z € cI*(X).
Finally we note that z € cl"(X) if and only if z ¢ cl(Y). Thus
cl(X) Nel(Y) and cl*(X) Nel*(Y) are disjoint. O

The next result is well known, and follows without difficulty from
the dual of [8, Lemma 2.5].

Proposition 2.3. Suppose that X is an exactly 3-separating set of the
3-connected matroid M. Suppose also that A C E(M)— X. If |A] > 3
and A C cl*(X) then A is a cosegment of M.

Definition 2.4. Suppose that M is a matroid and that x € E(M).
Let (X;, X3) be a partition of F(M) — x such that there is a positive
integer k with the property that:

(i) M(Xy) = A(X2) =k —1;

(ii) r(X1), r(X2) > k; and,

(ili) = € cl(X1) Nel(Xy).

In this case (X1, Xs, x) is a vertical k-partition of M.
The next result is well known and easy to prove.

Proposition 2.5. Let M be a 3-connected matroid and suppose that
si(M/z) is not 3-connected for some x € E(M). Then there exists a
vertical 3-partition (X1, Xa, x) of M.

Proposition 2.6. Suppose that (X1, X, x) is vertical k-partition of
the k-connected matroid M. Let A be a subset of cl(Xo Ux). Then
(X1 — A, (XoUA) —x, x) is also a vertical k-partition of M.
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Proof. Suppose that z is some element in X; N A. Then \(X; — z) is
either k —2or k — 1. If A\(X; —2) =k — 2 then (X; — 2z, Xo U{x, 2})
is a (k — 1)-separation of M, a contradiction. Hence A\(X; —2) =k —1
which implies that r(X; — z) = r(X;). Thus cl(X; — 2) = cl(X}), and
hence = € cl(X; — z). It follows that (X; — z, Xy U 2, x) is a vertical
k-partition of M. By continuing to transfer elements in X; N A from
X into Xy we eventually conclude that (Xy — A, (XoUA) —z, z) is a
vertical k-partition of M, as desired. 0

Suppose that M; and M, are matroids such that E(M;) N E(Ms) =
{p}. Then we can define the parallel connection of My and M,, denoted
by P(Mi, M,). The ground set of P(M;, M,) is E(M;) U E(M,). If
p is a loop in neither M; nor M, then the circuits of P(M;, M,) are
exactly the circuits of Mj, the circuits of Ms, and sets of the form
(Cy — p) U (Cy — p), where C; is a circuit of M; such that p € C; for
i=1, 2. If pis aloop in M; then P(Mj, My) is defined to be the direct
sum of M; and M, /p. Similarly, if p is a loop in My then P(M;, M,)
is defined to be the direct sum of M;/p and M. We say that p is
the basepoint of the parallel connection. It is clear that P(M;, M,) =
P(M,, My).

The next result follows from [6, Proposition 7.1.15 (v)].

Proposition 2.7. Suppose that My, and M, are matroids such that
E(My) N E(My) = {p}. Ife € E(My) — p then P(My, My)\e =
P(Ml\e, MQ) and P(Ml, M2)/€ = P(Ml/e, MQ)

Assume that M; and M, are matroids such that E(M;) N E(Msy) =
{p}. If pisnot aloop or a coloop in either M; or My then P(M;, My)\p
is the 2-sum of M; and M,, denoted by M; &9 My. We say that p is
the basepoint of the 2-sum.

The next result follows from [10, (2.6)].

Proposition 2.8. If (X, X5) is an exact 2-separation of a matroid
M then there exist matroids M, and Ms on the ground sets X1 Up and
Xo U p respectively, where p is in neither X, nor Xs, such that M is
equal to My ®o M.

Proposition 2.9. Suppose that N is a 3-connected matroid. Let M
be a matroid with a vertical 3-partition (X1, Xa, x) such that N is a
minor of M/x. Then either |E(N)NX;| <1, or |[E(N)N X, <1.

Proof. Since (Xi, X3) is a 2-separation of M/x the result follows im-
mediately from Proposition 2.1. U

Lemma 2.10. Suppose that N is a 3-connected matroid such that
|E(N)| > 2. Let M be a matroid with a vertical 3-partition (X1, Xa, x)
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such that N is a minor of M/x. If |E(N) N X;| <1 then M/x/e has
an N-minor for every element e € X1 — clp(Xs).

Proof. Since (X3, X3) is an exact 2-separation of M/z, it follows from
Proposition 2.8 that M /z is the 2-sum of matroids M; and M, along
the basepoint p, where E(M;) = X; Up and E(M,) = Xy Up. Thus
M/.CE == P(Ml, Mg)\p

Suppose that E(N) N X; = (). Then there is a partition (A, B) of
X; such that N is a minor of M/xz/A\B. Suppose that p is a loop in
M, /A\B. Proposition 2.7 implies that

M/x/A\B = P(M,/A\B, M>)\p.

Now the definition of parallel connection implies that M/x/A\B is
isomorphic to My/p. Tt is easily seen that if e € X; then there is
a minor M’ of M;/e such that E(M’) = {p} and p is a loop of M.
Proposition 2.7 implies that P(M’, M;)\p is a minor of M/x/e. But
P(M', Ms)\p is isomorphic to Ms/p, so M/x/e has an N-minor.

Next we suppose that p is a coloop of M;/A\B. Then, by definition
of the parallel connection, M /x/A\B is isomorphic to My\p. Suppose
that e € X; — cl(X3). Since p is not a coloop of M, it follows easily
that p € cly(Xz). Thus e is not parallel to p in M;. Therefore there
is a minor M’ of M;/e such that E(M’) = {p} and p is a coloop of
M’. Again using Proposition 2.7 we see that P(M', M,)\p is a minor
of M/x/e. But since P(M’', My)\p is isomorphic to My\p we deduce
that M/x/e has an N-minor.

Now we assume that |E(N) N X;| = 1 and that z is the unique
element in E(N) N X;. There is a partition (A, B) of X; — z such
that N is a minor of M/x/A\B. It follows from Proposition 2.7 that
P(M,/A\B, M,)\p has an N-minor. Consider the matroid M;/A\B.
If {z, p} is not a parallel pair in this matroid then z must be a loop or
coloop in P(M;/A\B, Ms)\p. This implies that z is a loop or coloop
in N, a contradiction as N is 3-connected and |E(N)| > 2. Therefore
z and p are parallel in M;/A\B, and therefore P(M;/A\B, Ms)\p is
isomorphic to My. Thus M, has an N-minor.

Since p is not a loop or coloop of M; there is a circuit of size at
least two in M; that contains p. Suppose that e € X; — cly(Xs).
Then e cannot be parallel to p in M;, so M;/e has a circuit of size
at least two that contains p. Hence there is a minor M’ of M; /e such
that p € E(M’) and M’ consists of a parallel pair. Proposition 2.7
implies that P(M’, My)\p is a minor of M/x/e. But P(M', M)\p is
isomorphic to My, so M/x/e has an N-minor. 0
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Definition 2.11. Suppose that M is a matroid and that A and B are
subsets of E(M). The local connectivity between A and B, denoted by
M(A, B), is defined to be r(A)+1(B)—r(AUB). Equivalently, M(A, B)
is equal to Apjaus)(A).

Proposition 2.12. [8, Lemma 2.4 (iv)] Let M be a matroid and let
(A, B, C) be a partition of E(M). Then M(A, B)+\(C) =11(A, C)+
A(B). Hence (A, B) =N(A, C) if and only if A\(B) = A\(C).

Corollary 2.13. Let (X, Y, Z) be an exact 3-partition of the 3-con-
nected matroid M. Then (X, Y)=N(X, Z) =1(Y, Z).

Proposition 2.14. Suppose that M is a matroid and that X andY are
disjoint subsets of E(M) such that (X, Y)=1. If z, y € X Ncl(Y)
then r({z, y}) < 1.

Proof. Assume that r({z, y}) = 2. Let X’ =cl(X) and V' =cl(Y). It
is easy to see that r( X' UY’) =r(X UY). However

r(X'UY") <r(X)+r(Y)—r(X'NY") <r(X)+r(Y)-2=r(XUY)—1.
This contradiction completes the proof. O

We conclude this section by stating a fundamental tool in the study
of 3-connected matroids, due to Bixby [1].

Theorem 2.15 (Bixby’s Lemma). Let M be a 3-connected matroid
and suppose that x is an element of E(M). Then either si(M/x) or
co(M\x) is 3-connected.

3. SEGMENT-COSEGMENT PAIRS

Suppose that M is a matroid. Recall that L is a segment of M if
|L| > 3 and every three-element subset of L is a circuit of M, and that
L* is a cosegment of M if |[L*| > 3 and every three-element subset of
L* is a cocircuit. We restate the definition of segment-cosegment pairs
given in Section 1.

Definition 3.1. Suppose that L = {z1,...,2;} is a segment of the
matroid M and there is a set L* = {y;, ...,y } with the property that
LNL* =0 and (cl(L) — ;) Uy; is a cocircuit of M for all ¢ € {1,...,t}.
In this case we say that (L, L*) is a segment-cosegment pair of M.

In a 3-connected matroid a segment-cosegment pair is an example of
a ‘crocodile’; a structure that provides a collection of equivalent 3-sep-
arations. ‘Crocodiles’ were considered by Hall, Oxley, and Semple [4].
The next result explains the name segment-cosegment pair.
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Proposition 3.2. Suppose that (L, L*) is a segment-cosegment pair of
the 3-connected matroid M. Then L* is a cosegment of M.

Proof. Suppose that y; € L*. The definition of a segment-cosegment
pair means that y; € cl*(cl(L)). Thus L* C cl*(cl(L)). Moreover cl(L)
is exactly 3-separating in M. The result follows by Proposition 2.3. [

Proposition 3.3. Suppose that (L, L*) is a segment-cosegment pair of
the 3-connected matroid M. Then M/ cl(L) is 3-connected.

Proof. Suppose that L = {z1,...,2;} and L* = {y1,...,y}. Assume
that M/ cl(L) is not 3-connected, so that (X7, X») is a k-separation of
M/ cl(L) for some k < 2. Let Ly = cl(L). Note that for i € {1, 2} we
have

tar/no(Xi) = 1 (X5 U Lo) — 1ar(Lo) = rar(X) — M (X, Lo),

SO I'M<X,L) = rM/Lo(Xi) + HM(Xia Lo)
Suppose that My (X1, Lo) = 0. Then ry(X1) = raryr,(X:) and
1"M<X2 U Lo) = rM/Lo(X2> + 2, SO

A (X1) = 1yre (X1) + (Taryng (X2) +2) — (v(M/Lo) + 2)
= )\M/Lo(Xl) < k.

This is a contradiction as M is 3-connected. By using a symmetric
argument we can conclude that My, (X;, Lg) > 0 for all i € {1, 2}.

Suppose that z; € cly(X;) for some ¢ € {1,...,t}. Then there is a
circuit C; € X; Ux; such that z; € Cy. For all k € {1,...,t} —i the
set (Lo — x) U yg is a cocircuit. It cannot be the case that C7 meets
this cocircuit in a single element, so y, € X for all k € {1,...,t} — .

Now suppose that x; € cly(X3) for some j € {1,...,t}. By using
the same arguments as above we can conclude that L* —y; C X5. As
L*—y; and L*—y; have a non-empty intersection this is a contradiction.
Therefore cly(Xs) N L = 0. Note that M(Xs, Lo) < 2 because r(Lg) =
2. If N(Xy, Ly) were two, it would follow that Ly C cl(X3). Hence
M(Xs, Lo) = 1.

Let j be an element of {1,...,t} —i. Then Ly C cly (X2 Ux;), and
there must be a circuit Cy C X, U {x;, z;} such that {x;, z;} C Cb.
But then C5 meets the cocircuit (Lo — z;) Uy, in a single element, z;.
From this contradiction we conclude that cly(X;) N L = @, and by
symmetry cly(X2) N L = (). This means that

I—]M(Xl, Lo) = |_|M(X2, LD) = 1.

It must be the case that xy € cly/ (X7 U xy), and there is a circuit
03 Q X1 U {Il, .172} such that {l’l, ZEQ} Q 03. Since (LO - ZEl) U U1
is a cocircuit we conclude that y; € X;. But we can use an identical
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argument to show that y; € X,. This contradiction completes the
proof. O

We now restate the definition of a spore.

Definition 3.4. Suppose that P is a rank-one flat of a matroid M and
that s is an element of E(M) such that P U s is a cocircuit. Then we
say that (P, s) is a spore.

Recall from Section 1 that a matroid M is 3-connected up to a unique
spore if it contains a single spore (P, s), and whenever (X, Y) is a
k-separation of M for some k < 3 then either X C PUsorY C PUs.

Lemma 3.5. Suppose that (L, L*) is a segment-cosegment pair of the
3-connected matroid M where |[E(M)—cl(L)| > 4. Let L = {xy,..., 2.}
and L* = {y1,...,y}. Then M/x; is 3-connected up to a unique spore
(cl(L) — x4, y;), for alli € {1,... t}.

Proof. Let E be the ground set of M and let Ly = cl(L). We will
show that M/z; is 3-connected up to the unique spore (Lo — z;, y;).
Certainly (Lo — x;, y;) is a spore of M/xz;. Suppose that (P, s) is a
spore of M /z; that is distinct from (Lo — x4, y;).

We initially assume that Ly —x; = P. Thus s # y;. As (Ly —x;)Us
and (Lo — x;) Uy; are both cocircuits of M /z; it follows that E — (Lo U
{s, y;}) is the intersection of two hyperplanes of M/x;. Thus

'nfa (B = (Lo U{s, 4i})) < x(M/x;) — 2.
and therefore
ra/eo (B — (Lo U{s, yi})) < v(M/x;) — 2 =1(M/Lo) — 1.

Hence {s, y;} contains a cocircuit in M/Lgy. Therefore M /Ly contains
a cocircuit of size at most two, a contradiction as M /Ly is 3-connected
by Proposition 3.3, and |E(M/Lg)| > 4.

Now we must assume that Lo — x; # P. Hence P U x; is a rank-
two flat of M that meets Ly in exactly one element, x;. Suppose that
P contains a single element p. Then {p, s} is a cocircuit of M, a
contradiction. Therefore P Uz; contains at least one triangle. Suppose
that P does not contain y;, where j # i. Then there is a triangle in
P U x; that meets the cocircuit (Ly — z;) U y; in exactly one element,
x;. This contradiction shows that L* —y; C P.

Assume that t > 3. As L* is a cosegment there is a triad of M
contained in L*—y;. However this triad is also contained in the segment
P Uz;, and is therefore a triangle. But |E(M)| > 4 and a 3-connected
matroid with at least five elements cannot contain a triangle that is
also a triad. This contradiction shows that t = 3.
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Suppose j € {1, 2, 3} and that j # . If |[P| > 2 then there is a
triangle contained in P that contains y;. However this triangle would
meet the cocircuit (Lo — ;) Uy; in exactly one element. Thus |P| = 2,
and P = L* — ;.

Suppose that j, k € {1, 2, 3} and neither j nor k is equal to i. Then
Ly U P contains the two cocircuits (Lo — z;) Uy; and (Lo — zx) U yy.
Hence 1y (E — (Lo U P)) < r(M) — 2. However it is easy to see that
ry(LoUP) =3. As |P| = 2 it follows that £ — (Ly U P) contains at
least two elements. Thus (Lo U P, E — (Lo U P)) is a 2-separation of
M, a contradiction.

We have shown that (Lo — x;, y;) is the unique spore of M/z;. Next
we show that M /z; is 3-connected up to this spore. Suppose that
(X, Y) is a k-separation of M /z; for some k < 3. By relabeling if
necessary we will assume that y; € X. Assume that the result is false,
so that neither X nor Y is contained in (Lo — x;) U y;. Therefore X
contains at least one element from E—(LoUy;). As M /Ly is 3-connected
by Proposition 3.3 we deduce from Proposition 2.1 that either X — L
or Y — Ly contains at most one element. We have already concluded
that X — Ly contains at least two elements (as y; € X), so Y — Ly
contains precisely one element. As M is 3-connected it contains no
parallel pairs, so M /z; contains no loops. Therefore 1/, (Y) = 2, and
hence rpz/q,(X) < r(M/x;) — 1. Thus Y contains a cocircuit of M /x;.
As M /z; has no coloops, and any cocircuit that meets a parallel class
contains that parallel class it follows that Ly — x; C Y. Let s be the
single element in Y — Ly. It cannot be the case that Y is a cocircuit in
M /z;, for that would imply that (Lo — x;, s) is a spore of M/x; that
differs from (Lo — z;, y;), contradicting our earlier conclusion. Now
we see that Y — s = Ly — z; must be a cocircuit of M/x;, but this
is a contradiction as Ly — x; is properly contained in the cocircuit
(Lo — z;) Uy;. The completes the proof. O

The next result shows that Theorem 1.1 is a consequence of Theo-
rem 1.2.

Proposition 3.6. Suppose that (L, L*) is a segment-cosegment pair of
a matroid M, and that M/ cl(L) is 3-connected and |E(M)—cl(L)| > 4.
Let L = {xy,...,2¢} and L* = {y1,...,y:}. Then co(si(M/x;)) =
M/ cl(L) for any element x; € L.

Proof. Let Ly = cl(L) and let z; # z; be an element of L. Suppose that
P and S are disjoint subsets of E(M)—x; chosen so that co(si(M/z;)) =
M/x\P/S. As Ly — x; is a parallel class in M /z; we may assume that
Ly — {z;, xj} C P and that z; ¢ P. We may assume that y; ¢ P,
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and hence {z;, y;} is a union of cocircuits in M/z;\P. Therefore we
may assume z; € S. Since the elements in Ly — {z;, z;} are loops in
M/z;/z; it follows that

M/ \P/S = M/xi/x;/(Lo = {xi, 2;)\(P = (Lo — {i, 2;}))/ (S — ;).
This last matroid is equal to M/ Lo\ (P—(Lo—{z;, x;}))/(S—x;). Since
M/ Ly is 3-connected and the elements in P — (Lo — {x;, z;}) are either
loops or parallel elements in M/Lg it follows that P = Ly — {z;, z,}.
Thus M /x,\P/S = M/Ly/(S—=z;). But M /Ly is 3-connected, so S—z;
must be empty. Thus M /Ly = co(si(M/x;)), as desired. O

4. PRELIMINARY LEMMAS

Proposition 4.1. Suppose that C* is a cocircuit of the 3-connected
matroid M. Assume that (X1, Xa, x) is a vertical 3-partition of M such
that x € C*. Then C*N (X1 —cl(X3)) # 0 and C* N (Xy —cl(Xy)) # 0.

Proof. Note that r(X), r(Xy) > 3 implies that |[E(M)| > 4, so every
circuit and cocircuit of M contains at least three elements. Let X
be X; — cl(X3). The fact that r(X;) > 3 implies that X contains a
cocircuit, so |X| > 3. Suppose that x is not in cl(X). Then r(X) <
r(Xy). Since |X| > 3 this implies that (X, cl(X3)) is a 2-separation of
M, a contradiction.

Now suppose that C* C cl(X3). Then as z € cl(X) and x € C* there
is a circuit in M that meets C* in exactly one element, z. This is a
contradiction. The same argument shows that C* N (X, — cl(X7)) # 0,
so the proposition holds. U

Definition 4.2. Suppose that M is a 3-connected matroid and that A
is a subset of E(M). A minimal partition with respect to A is a vertical
3-partition (X7, Xo, z) of M that satisfies the following properties:
(i) = € A;
(ii) if (Y1, Ya, y) is a vertical 3-partition of M such that y € AN(X; U
r) and Xy NY; =0, then (Y1, Y3, y) = (X1, X, x); and,
(iii) if (Y3, Ya, y) is a vertical 3-partition of M such that y € AN(X;U
z) and Xy NYs = 0 then (Yz, Y3, y) = (X1, Xo, ).

If there is no ambiguity we will refer to a minimal partition with
respect to A as a minimal partition.

Lemma 4.3. Suppose that M is a 3-connected matroid and that A is
a subset of E(M). Suppose that for some element z € A there is a
vertical 3-partition (Zy, Zs, z) of M. Let Z = Zy — cl(Zy). Then there
is a minimal partition (X1, Xo, x) with respect to A such that X1 C Z
and x € AN(ZUz).
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Proof. Let Z be the family of vertical 3-partitions (S, Se, z) with the
property that S; C Z;. Choose (7], Z}, z) from Z so that if (S, Ss, 2)
is in Z, then S is not properly contained in Zj. Observe that Propo-
sition 2.6 implies that Z] C Z.

Let S be the family of vertical 3-partitions (S, Sz, s) with s € AN
(Z1Uz). Let Sy be the set of vertical 3-partitions (S, S, s) in S with
the property that either S; C Z{ or Sy C Z{. Without loss of generality
we will assume that if (57, S, s) is in Sy then S; C Z]. Suppose that
(S1, Sa, z) is a member of Sy. Then our choice of (7], Z}, z) means
that S; = Z{ and Sy = Zi. If (7], Z}, z) is the only member of Sy
then we can set (X, Xo, ) to be (Z1, Z}, z), and we will be done.
Therefore we will assume that there is at least one vertical 3-partition
(S1, S, s) in Sy such that s # z. Let S be the collection of such
partitions.

We now let (X7, Xs, x) be a vertical 3-partition in S; chosen so that
if (51, Sa, s) € &1, then S; U s is not properly contained in X; Uxz. We
will prove that (X1, Xo, x) is the desired vertical 3-partition.

It is certainly true that X; C Z. If there is some element e in
X; Nel(Xe Ux) then (X —e, Xy Ue, x) is a vertical 3-partition by
Proposition 2.6. However this contradicts our choice of (X7, Xy, z).
Therefore Xy U x is a flat. We assume that (Y;, Y, y) is a vertical
3-partition and that y € AN (X; Ux). As X; C Z] it follows that
y € AN Z]. Our assumption on (X, X, ) means that neither Y, Uy
nor Y5 Uy can be properly contained in X; U x.

Suppose that X, NY; = (. Then Y] Uy must be equal to X; U z. If
y # x then the fact that y € cl(Y3) and Yo = X5 means that y € cl(X),
which is a contradiction as Xy U x is a flat. Therefore y = =z, so
(Y1, Ya, y) is equal to (X, Xo, ). The same argument shows that if
XoNYy = 0 then (Y7, Ys, y) = (X2, X1, ). Thus (X3, X, x) is the
desired minimal partition. O

Proposition 4.4. Suppose that M is a matroid and that A C E(M).
Suppose that (X, Xo, x) is a minimal partition with respect to A. Then
XoUx 1s a flat of M.

Proof. Suppose that there is some element z € X; N cl(X3 U z). Then
(X1 — 2z, Xo Uz, z) is a vertical 3-partition of M by Proposition 2.6.
This contradicts the fact that (X, X5, ) is a minimal partition. O

Lemma 4.5. Suppose that M is a 3-connected matroid and that A C
E(M). Suppose that (X1, Xo, x) is a minimal partition with respect to
A. Suppose also that (Y1, Ya, y) is a vertical 3-partition of M such that
y€ ANXy and x € Y. Then the following statements hold:



CONTRACTING COCIRCUIT ELEMENTS 15

(1)) XiNY; #0 foralli,j € {1, 2};
(ii) Each of X1 NYs,, (X1 NYs)Uy, XoNYy, (XoNY))Ux, and XoNYs
18 3-separating i M ;
(111) (X1 NYy)U{x, y} is 4-separating in M ;
(iv) Neither X; MYy nor X1 NY; is contained in cl(Xy), X1 NY, €
cl(Ya), and X1 NYs € cl(Y1);
(v) r((X5 NYs) Uy) = 2; and,
(vi) If (X1 NY1) U {x, y} is 3-separating in M, then r((Xy NYy) U
{r,y}) =2

Proof. We start by proving (i). Since y # « the definition of a minimal
partition means that X, NY; # () and X, NY5 # (. Moreover Xy U is
a flat of M by Proposition 4.4, and y € X, so y ¢ cl(X,Uz). However
y € cl(Y1) Ncl(Yz). It follows that neither Y nor Y, can be contained
in Xy Uz. Thus both Y] and Y5 meet X;.

Next we prove (ii). Consider X;NY5. Since A(X7) = 2 and A\(Y3) =2
the submodularity of the connectivity function implies that A\(X;NY3)+
AMX7UYy) <40 If X3 NYsis not 3-separating then A\(X; U Ys) < 1.
However | X;UY3| > 2 and the complement of X;UY; certainly contains
at least two elements, since it contains z, and X, N Y] is non-empty.
Thus M has a 2-separation, a contradiction. This shows that X; NY5
is 3-separating.

Since X; and Y5 Uy are both 3-separating the same argument shows
that (X7 NY3) Uy is 3-separating. Since the complement of X, UY;
contains both y and at least one element in X; N Y;, we can also show
that XoNY; and (X2NY])Ux are both 3-separating. The same argument
shows that X5 NY; is 3-separating.

Consider (iii). The submodularity of the connectivity function shows
that

AMXiNnY)Uu{z, y})+ AM(X1UY)) <4

Thus if (X;NY7)U{z, y} is not 4-separating then A(X; UY;) = 0. But
this cannot occur as X;UY] is non-empty, and its complement contains
X5 NYs, which is non-empty.

Next we move to (iv). Since Xy U x is a flat of M it follows that
cl(Xs) does not meet X;. Therefore cl(X3) cannot contain X; NY; or
X1 NYs.

Suppose that X; NY] is contained in cl(Y2). Then Y; — cl(Y3) is
contained in X, Ux. However Proposition 2.6 says that

(Y1 = cl(Yz), cl(Y2) -y, y)

is a vertical 3-partition of M. Thus y is in the closure of Y; — cl(Y2),
which means that y € cl(XyUz). But this is a contradiction as y € X7,
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and Xy Uz is a flat of M. The same argument shows that X; NY5 is
not contained in cl(Y}).

To prove (v) we suppose that r((X; NYs2) Uy) > 3. Consider the
partition (X; NYs, Xo UY], y) of E(M). It follows from (ii) that

AM(X1NYy)Uy) = AX1NYs) =2,

so A(Xp UY)) = 2. Furthermore y € cl(Y}), so y is in the closure of
X, UY;. Proposition 2.2 shows that y € cl(X;NY3), so r(X;NYs) > 3.
Now it is easy to see that

(X1NYs, XoUYy, y)

is a vertical 3-partition of M. However y € AN X; and X; N Y5 does
not meet Xs, so we have a contradiction to the fact that (X;, Xy, z)
is a minimal partition.

We conclude by proving (vi). Suppose that A((X;NY;)U{z, y}) = 2.
This implies that A(X2UY3) = 2. Since y € cl(Y2) it follows easily that
A(X1NYy)Uz) =2. Consider the partition

((Xl ﬂ}/l)UZL', XZUY27 y)

of E(M). Since y € cl(Y2) it follows from Proposition 2.2 that y is in
the closure of (X;NY;)Uxz. Thusif r((X;NY1)U{z, y}) > 3 it follows
that r((X; NY;)Ux) > 3. In this case

((Xl m}/l)u.flf, XQU}/% y)

is vertical 3-partition of M that violates the fact that (X, X, x) is a
minimal partition. This completes the proof of the lemma. U

Proposition 4.6. Suppose that (X1, Xo, x) is a minimal partition of
the 3-connected matroid M with respect to the set A C E(M). Assume
that (Y1, Ys, y) is a vertical 3-partition of M such that y € AN X, and
xeYy. If | XiNYs| > 2 then

N(XinY)U{z, v}, XiNYy) =N((XiNY) Uy, XinY;) = 1.

Proof. The hypotheses imply that |E(M)| > 4, so every circuit or
cocircuit of M contains at least three elements. Let 7 = N((X; NY;) U
{z, y}, X1 NY;). We know from Lemma 4.5 (v) that r(X; NY3) < 2.
Therefore m < 2. On the other hand, since | X7 NY3| > 2, the fact that
r((X1NYs)Uy) < 2 implies that y € cl(X; NY3). This in turn implies
that 7 > 1.

Assume that 7 = 2. Then X; NY, C cl((X; NY7) U {x, y}). Since
x, y € cl(Y7) this means that X;NY; C cl(Y7). But this contradicts (iv)
of Lemma 4.5. Exactly the same argument shows that M((X; NY;) U
v, X1 NYs) = 1. O
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Lemma 4.7. Suppose that (X, Xo, ) is a minimal partition of the
3-connected matroid M with respect to the set A C E(M). Assume
that (Y1, Ya, y) is a vertical 3-partition of M such that y € ANX; and
reY. If | XiNnYs| > 2 theny € cl((XyNY))Ux).

Proof. The hypotheses imply that every circuit of M contains at least
three elements. Since |X; N Y3| > 2 it follows from Lemma 4.5 (v)
implies that y € cl(X;NY2). We assume that y ¢ cl((X,NY7)Uz). Since
X1NY} is non-empty by Lemma 4.5 (i) it follows that |(X;NY7)Ux| > 2,
so A((X1NYy)Uz) > 2. Furthermore A((X;NY))U{x, y}) < 3 by (iii)
of Lemma 4.5. As y € cl(Y3) we deduce that

2<A(XinY)Uz) < AM((XinY))U{z, y}) < 3.

Thus A((X; NY1)Uz) = 2. Moreover it follows from (ii) in Lemma 4.5
that A((X1; NY2) Uy) = 2. Therefore

((Xl N 1/’1> U z, (Xl N }/‘2) U Y, X2)

is an exact 3-partition.

As x € cl(X3) it follows that M((X; NY;) Uz, X3) > 1. Now Corol-
lary 2.13 implies that M((X; NY2) Uy, Xy) > 1. But (iv) and (v) of
Lemma 4.5 imply that X; NY5 € cl(X,) and that r((X; NY2) Uy) = 2.
We deduce that M((X; NY;) Uy, Xo) = 1. Again using Corollary 2.13
we see that

N(XiNY)Uz, (XiNYy)Uy) = 1.
Proposition 4.6 tells us that
(X, NYy)U{z, y}, XiNnYs) =1

Since y € cl(X; NY32) we can easily deduce that y € cl((X; NY))Ux),
contrary to our initial assumption. U

Lemma 4.8. Suppose that C* is a cocircuit of the 3-connected matroid
M. Suppose that (X1, Xo, x) is a minimal partition of M with respect
to C*. Assume that si(M/xq) is not 3-connected for any element xy €
C*N Xy. Let (Y1, Ya, y) be a vertical 3-partition of M such that y €
C*N Xy, and assume that x € Yy. Then | X1 NYs| = 1.

Proof. The hypotheses of the lemma imply that every circuit and co-
circuit of M contains at least three elements. Let us assume that the
lemma fails, so that |X; NY3| > 2. Now (v) of Lemma 4.5 implies that
(X1 NY3) Uy contains a triangle of M that contains y. Since C* meets
this triangle in y, there must be an element z € X; NY; such that
z e C".

By assumption si(M/z) is not 3-connected so Proposition 2.5 implies
that there is vertical 3-partition (Z], Z}, z). Let us assume that x € Z1.



18 RHIANNON HALL AND DILLON MAYHEW

Suppose that y € Z!, where {i, j} = {1, 2}. Since r((X;NY5)Uy) = 2
and z € cl(Z]) it follows that (X; NY2) Uy C cl(Z)), as y # z and
z€ X1NYy Let Z; = Z;U (X1 NYa) Uy and let Z; = Z; — Z;. Then
Proposition 2.6 implies that (Z;, Zs, z) is a vertical 3-partition. Note
that x € Z;, whether 7 is equal to 1 or 2.

Suppose that ¢ = 2. Then (X; NY2) Uy C Zy Uz This means
that (X3 NZ)Ux C (X3 NYy)U{z, y}. Lemma 4.7 says that z €
cl((X1NZy)Uz). Therefore z € cl((X1NY1)U{x, y}). But since {y, 2z}
spans (X1 NY,) Uy this implies that (X; NY7) U {x, y} spans X; NYa.
As z, y € cl(Y7) it now follows that Y] spans X; NYs, in contradiction
to Lemma 4.5 (iv). Therefore i =1, s0 (X1 NYy)Uy C Z; U 2.

We conclude that X; N Zy C (X; NY;) U {x, y}. Suppose that
| X1NZy| > 2. Tt follows from (v) of Lemma 4.5 that r((X1NZ)Uz) = 2.
Therefore z is in cl(X1NZ5), and hence in cl((X;NY7)U{z, y}). Exactly
as before, we conclude that Y; spans X;NY5, a contradiction. Therefore
|1 X1 N Zs| < 1.

As r(Zy) > 3 we deduce that | Xo N Zy| > 2. But A(Xy N Zy) < 2
by (ii) of Lemma 4.5, so it follows that \(X; N Z;) = 2, and hence
AMX1UZp) =2. Now AM( X1 Ux)+ A(Z1 U z) =4, so the submodularity
of the connectivity function implies that

We now conclude that A((X; N Z;) U {z, z}) < 2. It follows from (vi)
of Lemma 4.5 that r((X; N Z;) U {x, 2}) = 2.

We have already deduced that (X;NY;)Uy C Z3 Uz, 50 X1NYs C
(X1NZ1)Uz. But | X1NYs| > 2, and r((X1NZ7)U{z, z}) = 2. Therefore
z € cl(X1 NYsz). We also know that y € cl(X; NY;). Proposition 4.6
asserts that

N((XinY)Uu{z, y}, XinYs) =1

Since z,y € cl(X; NYsy) it follows from Proposition 2.14 that
r({z, y}) < 1, a contradiction as M is 3-connected. This completes
the proof of the lemma. O

5. PROOF OF THE MAIN RESULT

We restate Theorem 1.2 here.

Theorem 5.1. Suppose that M and N are 3-connected matroids such
that |E(N)| > 4 and C* is a cocircuit of M with the property that M ]z
has an N-minor for some xo € C*. Then either:

(i) there is an element v € C* such that si(M/x) is 3-connected and
has an N-minor;



CONTRACTING COCIRCUIT ELEMENTS 19

(i1) there is a four-element fan (xq, x2, T3, 4) of M such that x1, x3 €
C*, and si(M/x3) is 3-connected with an N-minor;

(111) there is a segment-cosegment pair (L, L*) such that L C C*, and
cl(L) — L contains a single element e. In this case e ¢ C* and
si(M/e) is 3-connected with an N-minor. Moreover M/ cl(L) is
3-connected with an N-minor, and if x; € L then M/x; is 3-con-
nected up to a unique spore (cl(L) — x;, y;); or,

(iv) there is a segment-cosegment pair (L, L*) such that L is a flat and
|L — C*| < 1. In this case M/L is 3-connected with an N-minor,
and if x; € L then M/x; is 3-connected up to a unique spore

(L — Xy, yi)'

Proof. Assume that M is a counterexample to the theorem. Let x
be an element of C* such that N is a minor of M/xy. By hypoth-
esis si(M/xg) is not 3-connected, so Proposition 2.5 implies there is
a vertical 3-partition (71, Zs, xy). It follows easily that |E(M)| >
7. By Proposition 2.9 we will assume, relabeling as necessary, that
|[E(N)N Zy| < 1. Let Z = Z; — cl(Z3). Lemma 2.10 implies that M /e
has an N-minor for every element e € Z, and Lemma 4.3 implies that
there is a minimal partition (X, Xs, x) with respect to C* such that
reC*N(ZUux), and X; C Z.

Proposition 4.1 implies that C* has a non-empty intersection with
X; —cl(Xy). If s € C*N (X1 —cl(X2)) then si(M/s) is not 3-connected
by hypothesis. Therefore there is a vertical 3-partition (S, Sa, s).

5.1.1. Suppose that s € C* is contained in X; — cl(Xs2) and that
(S1, Sa, s) is a vertical 3-partition such that v € Sy. Then |X1NS| > 2
and (X7 N Sy) U{s, x} is a segment of M.

Proof. Lemma 4.8 tells us that |X; NSy = 1. By Lemma 4.5 (i) we
know that |X;NS;| > 1. Assume that | X;NS;| = 1. Then X contains
exactly three elements: the unique element in X; N S, the unique
element in X; N .Sy, and s. By the definition of a vertical 3-partition it
follows that r(X;) = 3 and that X; is a triad of M. As z € cl(X;) it
follows that there is a circuit C' C X; Uz that contains x. It cannot be
the case that the single element in X; N5 is in C, for that would imply
that X; NSy C cl(S)), contradicting Lemma 4.5 (iv). As C does not
meet the triad X; in a single element it follows that (X; N S;) U {z, s}
is a triangle.

If we let x5 be the unique element in X; N S7, let x4 be the unique
element in X7 NSs, and let 27 = x and x3 = s, then (x1, x9, x3, 4) is a
four-element fan of M. If si(M/xy) is 3-connected then statement (ii)
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of Theorem 5.1 holds, which is a contradiction as M is a counterex-
ample to the theorem. Therefore we will assume that si(M/xz5) is not
3-connected.

Since si(M/x3) is not 3-connected Theorem 2.15 asserts that
co(M\z3) is 3-connected. Assume that every triad of M that con-
tains z3 also contains xs. Then co(M\z3) = M\z3/x2. However xj
is contained in a parallel pair in M/xo, so si(M/x3) is obtained from
M\x3/x5 by possibly deleting parallel elements. As M\x3/xs is 3-con-
nected it follows that si(M/z5) is 3-connected, contrary to hypothesis.

Therefore there is a triad 7™ of M that contains x3 but not z5. Now
T* cannot meet the triangle {z, 23, 3} in exactly one element, and
therefore z; € T*. Let yo be the unique element in 7% — {x, z3}.
Since every triad that contains x3 must contain either x; or x5, and
since both {z1, 3} and {3y, x3} are contained in triads of M it follows
that co(M\x3) = M\x3/x1/x. Note that x3 is a loop of M/x1/xs, so
M\l’g/xl/fbg = M/ZEg/ZL‘l/ZL‘Q.

As si(M/x3) is not 3-connected there is a vertical 3-partition
(Z1, Zs, x3) of M. By relabeling as necessary we may assume that
x1 € Zy. Hence xy € cl(Zy U x3), so by Proposition 2.6 we may
assume that xo € Z;. Now (73, Z2) is an exact 2-separation of
M/xs, but M/x3/x1/x2 is 3-connected. By Proposition 2.1 we see
that Zy — {x1, x2} must contain at most one element. If 7, = {x1, x5}
then r(Z3) < 2, a contradiction. Therefore Z, — {z1, 22} contains ex-
actly one element. Let this element be y3. It is easy to see that Z
must be a triad of M.

We relabel xy with y;. Let L = {x1, zo, 3} and let L* = {y1, yo, y3}-
Now L is a segment of M. Proposition 4.4 implies Xy U 21 is a
hyperplane, and as {z1, z2, 3} is a triangle it is easy to see that
M(Xs Uy, {x2, x3}) = 1. If there were some element e in cl(L) — L
then Proposition 2.14 would imply that r({e, z1}) < 1, a contradiction.
Therefore L is a flat of M. Moreover (L — z;) Uy; is a cocircuit of M
for all i € {1, 2, 3}, so (L, L*) is a segment-cosegment pair of M.

By applying Proposition 3.3 and Lemma 3.5 we see that M/L
is 3-connected, and that M/x; is 3-connected up to a unique spore
(L —x;, y;) for all i € {1, 2, 3}. We know that M /z3 has an N-minor.
However {x;, xo} is a parallel pair in M /x5, so M /x3\z, has an N-mi-
nor. Furthermore {5, y3} is a series pair of M/xz3\x1, so M/x3\x1/z2,
and hence M /L, has an N-minor. Thus statement (iv) of Theorem 5.1
holds, a contradiction. We conclude that | X; N .S;| > 2.

Since A(X; Uxz) = A(S1 Us) = 2 it follows that
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Suppose that A\((X; N Sy) U{s, 2}) > 3. Then A(X; US;) < 1, so
A(X2NSy) < 1. However, as | X; N S,| = 1 it follows that | XoNSs| > 2,
so M contains a 2-separation, a contradiction. Thus A((X; N S;) U
{s, x}) <2 and it follows from Lemma 4.5 (vi) that (X, N.S;) U {s, 2}
is a segment. 0

5.1.2. The rank of X1 U x is three. Moreover, X is a cocircuit of M.

Proof. Let s € C* be an element in X; — cl(X3) and suppose that

(S1, Sa, s) is a vertical 3-partition such that z € S;. Then r((X; N

S1) U {s, z}) = 2 by 5.1.1, and as |X; N S| = 1, Lemma 4.5 (iv)
implies that r(X; Uxz) = 3.

Proposition 4.4 asserts that X, Ux is a flat of M, so X} is a cocircuit.

U

5.1.3. Suppose that y and z are elements in C* N Xy, and (Y1, Y3, y)
and (Zy, Zs, z) are vertical 3-partitions such that x € Yy N Zy. Then

‘le}/Q’:‘XlﬂZ2’:1 and leY'Q:leZQ

Moreover
(XiNY))U{z, y} = (XinNZ) U{x, z}.

Proof. Let x’ be the unique element in X; NY,. From 5.1.1 we see that
(X1 NYy)U{z, y} is a segment. The only element of X; not in (X; N
Y1) U{x, y} is 2’. It cannot be the case that 2’ € cl((X1NY1)U{z, y})
by Lemma 4.5 (vi). The same arguments shows that (X,NZ;)U{z, 2z}
is a segment, and the only element of X not in this segment is 2’. Now
the result follows easily. 0

5.1.4. Let y € C* be an element in X, and suppose that (Y1, Y, y) is
a vertical 3-partition such that x € Y. Then |XoNYy| = 1.

Proof. We know by 5.1.1 that (X; NY;) U {x, y} is a segment. Let
L' = (X;NnY;)U{x, y} and let 2’ be the unique element in X; N Y.
Since the complement of C* is a flat of M which does not contain the
segment L’ it follows that at most one element of L’ is not contained
in C*. As |X; NYj| > 2 we can find an element z € (X; NY;) N C*.
There must be a vertical 3-partition (Z;, Zs, z) such that = € Zj.
From 5.1.3 we see that the unique element in X; N Z, is 2/, and that
(Xl N Zl) U {ZL‘, Z} = LI.

Let Y/ and Z] denote X, NY; and X3 N Z; respectively for i = 1, 2.
As (Xi, Xo, ) is a minimal partition it follows that Y/ and Z! are
non-empty for all ¢ € {1, 2}. Henceforth we will assume that |Y]| > 1
in order to obtain a contradiction.

5.1.5. x € cl(YY).
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Proof. We know that A\(Y{ U x) < 2 by Lemma 4.5 (ii). Since |Y{| >
2 it follows that A(Y{ U z) = 2 and hence A\(X; UYs) = 2. Since
x € cl(X; UY3) it follows that A(Y]) = 2, so Lemma 2.2 implies that
x € cl(Y)). O

5.1.6. Neither Y N Z| nor Yy N Z} is empty.

Proof. We know from 5.1.5 that = € cl(Y{). Since z € cl(Z) but
(X1 N Z1) € cl(Zy), we deduce that © ¢ cl(Zy) as L' is a segment
containing both = and z. Thus x ¢ cl(Z5 U 2). Hence Y] — Z} # 0 so
Y/NZ #0.

Note that z is in the closure of Zy = Z,Ua/, but z ¢ cl(Z}) as X; is a
cocircuit by 5.1.2. This observation means that 2’ € cl(ZjUz). However
z €Yy, and 2/ ¢ cl(Y7) by Lemma 4.5 (iv). Thus 2’ ¢ cl(Y] U z). It
follows that Z) — Y/ # 0, so Z, NY;, # 0. O

5.1.7. (L'U (YN Z]),Y>U Zs) is a 3-separation of M.

Proof. Note that A(Ys) = A(Z2) = 2, s0 A(YaN Zy) + A(Yo U Z5) < 4.
From 5.1.6 we see that Y; N Z, # (). Moreover 2’ € (YoNZy)—(YyNZY),
which implies that |YaNZs| > 2. Thus A(YaNZy) > 2, s0 A(YaUZ,) < 2.
As both L' U (Y{ N Z]) and Y5 U Z, have cardinality at least three the
claim follows. U

Note that y, z € cl(Y2UZ,). Asy and z are contained in the segment
L’ it follows that L' C cl(YoU Zy). If |Y]{ N Z]| > 2 then it must be the
case that L' C cl(Y{ N Z}), for otherwise (Y N Z], (YaU Z3) UL') is a
2-separation of M. But L' C cl(Y{/NZ]) implies that X;NY; C cl(Xy),
a contradiction.

Therefore |[Y/NZ]| < 1. We know from 5.1.6 that Y/NZ] is not empty.
Let e be the unique element in Y/ N Z]. Suppose that e € cl(L’). As
Xy Uz is a hyperplane and L’ is a segment we see that M(Xy Uz, L' —
x) = 1. As e,z € cl(L/ — z) it follows from Proposition 2.14 that
r({e, z}) < 1. We deduce from this contradiction that e ¢ cl(L').

Hence r(L' Ue) = 3, so r(Yo U Zy) = r(M) — 1 by 5.1.7. Thus the
complement of cl(Y; U Z5) is a cocircuit. However L' C cl(Ys U Z3), so
e is a coloop of M, a contradiction.

Our assumption that | X5 N Y;| > 2 has lead to an impossibility.
Since X3 NY) is non-empty by Lemma 4.5 (i) we conclude that 5.1.4 is
true. U

Now we are in a position to complete the proof of Theorem 5.1. Let
r1 = x, and let 2o be some element in C* N X;. There is a vertical
3-partition (Y, Y22, z9) such that x; € Y%, Lemma 4.8 tells us that
| X1 NYZ| = 1. Let y; be the unique element in X; N Y7
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We know that |X; NY?| > 2 and (X; NY?) U {xy, zo} is a segment
by 5.1.1. It follows from Proposition 2.14, and the fact that (X;NY?)U
Ty is a segment while X, Uz is a hyperplane, that (X;NY2)U{xy, zo}
is a flat. The complement of C* can contain at most one element of
(Xl N }/12) U {$1, ZL’Q}. Let L = C* N ((Xl N 1/12> U {Il, IQ}) Then
(L) = (X; NY?) U {z, 22}, and cl(L) — L contains at most one
element.

Suppose that L = {xy,...,2;}. We know that ¢ > 3. Let i be a
member of {2,...,t}. As x; € C* the fact that M is a counterexample
to the theorem means that si(M/x;) is not 3-connected, so there is a
vertical 3-partition (Y{, Y, ;) such that z; € Y. Then

(XiNY]) U{ar, i} = (X NYP) U {an, 2}

by 5.1.3, and 5.1.4 implies that there is a unique element in X, N Y.
Let y; be this element.

Define L* to be {91, ...,y }. Note that LNL* = (). We already know
that (cl(L) — x1) Uy = X is a cocircuit. Suppose that i € {2,...,t}.
Then (cl(L) — x;) Uy; is Y. As Y} contains only one element that is
not in the segment cl(L) it follows that r(Y}) = 3. Thus r(Yy U ;) =
r(M) — 1. Furthermore Yy U z; is a flat, for otherwise the complement
of cl(Y7 U z;) is a cocircuit of rank at most two, which cannot occur
since M is 3-connected. Hence (cl(L) — x;) U y; is a cocircuit.

We have shown that (L, L*) is a segment-cosegment pair. Propo-
sition 3.3 says that M/cl(L) is 3-connected. It is easy to see that
the hypotheses of Lemma 3.5 are satisfied, so M /x; is 3-connected up
to the unique spore (cl(L) — x;, y;), for all ¢ € {1,...,t}. We know
that M/xy has an N-minor, but as cl(L) — xs is a parallel class of
M /x4 it follows that M/zo\(cl(L) — {z1, 22}) has an N-minor. Since
{z1, y2} is a series pair of M/xo\(cl(L) — {x1, x2}) it follows that
M /x\(cl(L) — {z1, x2})/x1, and hence M/ cl(L), has an N-minor.

Suppose that |cl(L) — C*| = 0. Then L = cl(L), and statement (iv)
of Theorem 5.1 holds. Therefore we must assume that there is a single
element e in cl(L) — L. Lemma 2.10 tells us that M /e has an N-minor.
If si(M/e) is 3-connected, then statement (iii) holds. Therefore we
must assume si(M/e) is not 3-connected.

Let 7,41 = e. There must be a vertical 3-partition (Y}, Yo 2,,,).
We assume that z; € Y{™. Since cl(Y,*!) contains z; and x,; it
follows that cl(L) C cl(Y,*!). By Proposition 2.6 we may assume that
Y}* contains cl(L) — z441 = L.

As X5 U x; is a flat it follows that x4 ¢ cl(Xy). However x;,; €
(Y3, so Xy NnYH # 0. We know that X, = (LU {zi11, 11}) — 21,
and as L C Y] it follows that X; N Yy = {y}.
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Since x,41 € cl(YF), there is a circuit C; C Y™ U 2,41 such that
241 € C. But Y2 = (LU {x4;1, ¥2}) — 29 is a cocircuit of M and C
must meet this cocircuit in more than one element. The only element
of Y2 — x;;, that can be in C} is y. Thus y, € Ygt“.

Since (X1, X3, x) is a minimal partition it follows that X, N Y/ is
non-empty. Assume that | X, NY{™| > 2. As AM(X)) +AYS T Uzy) =
4, it follows that

AM(X NV Ume) + AM(X UY ) <4
Furthermore A\(X; U x;) + MYy Umiyy) = 4, so
MXNYS Y ua )+ X uYittua) <4

As (XiNYy™M Uz = {41, 11} we deduce that A(X; N YT U
Zi41) = 2. Thus

(1) )\(Xl U YVQt—H), )\(Xl U Yét+1 U l‘l) S 2.

Both of the sets in Equation (1) contain at least two elements, and by
assumption | X, N Y™ | > 2. Therefore X, NY/"! and (X, NY™) U,
are exactly 3-separating. Since z; € cl(X;) we see from Lemma 2.2
that 71 € cl(Xo MY} ™). Thus there is a circuit Cy € (XoNY T Uz
such that z; C Cy. We have already noted that Y} is a cocircuit, and as
7, € Y2 it follows that [CoNY?| > 2. As Cy—x; C X, the only element
other than z; that can be in Cy NY;2 is yp. Hence yo € Cy C Y1 a
contradiction as we have already deduced that y, € Y51t

We are forced to conclude that X, N Y™ contains a unique element.
Let this element be y; ;. Therefore Y/** = LUgy;,;. Thus r(Y{™) = 3,
so 1(Yyt) = r(M) — 1. If ;' Uz, is not a hyperplane, then the
complement of cl(Yy™ U z;,1) is a cocircuit of rank at most two, a
contradiction. Therefore (cl(L) — x441) Uy = Y] is a cocircuit.

Let Ly = {x1,...,2¢11} and let Li = {y1,...,y+1}. Note that
Ly =cl(L), so Ly is a flat. We have shown that (L, L{) is a segment-
cosegment pair. Moreover, M /x,.; is 3-connected up to a unique spore
(Lo — Z441, Yt+1), by Lemma 3.5. By relabeling Ly and L§ as L and L*
respectively we see that statement (iv) of Theorem 5.1 holds. Hence
M is not a counterexample, and this contradiction completes the proof
of Theorem 5.1. O
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