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Abstract. We characterize all internally 4-connected binary matroids
M with the property that the ground set of M can be ordered
(e0, . . . , en−1) in such a way that {ei, . . . , ei+t} is 4-separating for all
0 ≤ i, t ≤ n − 1 (all subscripts are read modulo n). We prove that in
this case either n ≤ 7 or, up to duality, M is isomorphic to the polygon
matroid of a cubic or quartic planar ladder, the polygon matroid of a
cubic or quartic Möbius ladder, a particular single-element extension of
a wheel, or a particular single-element extension of the bond matroid of
a cubic ladder.

1. Introduction

We start with a definition: Recall that if M is a matroid on the ground set
E, and X is a subset of E, then the connectivity function λM (X) is defined
to be rM (X) + rM (E − X) − r(M). We say that X ⊆ E is k-separating if
λM (X) < k, and a k-separation of M is a partition (X1, X2) of E such that
|X1|, |X2| ≥ k and both X1 and X2 are k-separating. Then M is n-connected
if it has no k-separations with k < n.

A 3-connected matroid M has path width three if its ground set can be
ordered (e0, . . . , en−1) in such a way that λM ({e0, . . . , ei}) ≤ 2 for all 0 ≤ i ≤
n − 1. Such a matroid is sometimes said to be sequential. The structure of
sequential matroids has been studied by Hall, Oxley, and Semple [2], and by
Beavers and Oxley [1]. It is natural to generalize sequential matroids, and
to consider the 3-connected matroids M whose ground sets can be ordered
(e0, . . . , en−1) in such a way that λM ({ei, . . . , ei+t}) ≤ 2 for all 0 ≤ i, t ≤
n− 1, where we read subscripts modulo n. It is not difficult to see that the
only matroids satisfying these conditions are the wheels, whirls, lines and
colines.

We extend this notion to a higher type of connectivity. In particular,
we consider the matroids M such that the ground set of M can be ordered
(e0, . . . , en−1) so that λM ({ei, . . . , ei+t}) ≤ 3 for all 0 ≤ i, t ≤ n − 1. We
shall say that a matroid with such an ordering of its ground set is cyclically
4-sequential, and we will call (e0, . . . , en−1) a cyclically 4-sequential ordering
(or just a cyclic ordering).
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Let n be a multiple of 3, and consider the following collection of subsets
of {e0, . . . , en−1} where subscripts are read modulo n:

A = {{ei, ei+1, ei+2, ei+3} | 0 ≤ i ≤ n − 3, i ≡ 0 (mod 3)}}

∪ {{e0, . . . , en−1}}.

Then (e0, . . . , en−1) is a cyclically 4-sequential ordering of the transversal
matroid M [A]. If 3 ≤ i ≤ n− 3 and i ≡ 0 (mod 3), then we may arbitrarily
declare sets of the form {ex, ey, ei} to be triangles, where x ∈ {i− 2, i− 1}
and y ∈ {i+1, i+2} (as long as no two such triangles intersect in exactly two
elements). In any such matroid (e0, . . . , en−1) is a valid cyclically 4-sequen-
tial ordering. This seems to indicate that cyclically 4-sequential matroids
can be quite diverse. However, if we restrict our attention to cyclically 4-se-
quential matroids that are also binary and internally 4-connected, we find
that there are essentially only four families of examples. Our main result is
a characterization of such matroids.

It is easy to see that every matroid on a set of at most seven elements
is cyclically 4-sequential. We completely characterize the internally 4-con-
nected binary matroids that are cyclically 4-sequential.

Theorem 1.1. Let M be an internally 4-connected binary matroid and as-
sume that the ground set of M can be ordered (e0, . . . , en−1) in such a way
that λM ({ei, . . . , ei+t}) ≤ 3 for all 0 ≤ i, t ≤ n − 1. Then either n ≤ 7, or
one of M or M∗ is isomorphic to a matroid in the following list:

(i) The polygon matroid of a cubic or quartic planar ladder;
(ii) The polygon matroid of a cubic or quartic Möbius ladder;
(iii) A wheel with a tip; or
(iv) A dual cubic ladder with a tip.

The four classes of matroids in Theorem 1.1 will be described in detail in
Section 3. They have all been discovered before. For example, the wheels
with tips were identified by Kingan and Lemos [3] as a family of almost-
graphic matroids. Mayhew, Royle and Whittle [4] characterize the internally
4-connected binary matroids that have no minor isomorphic to M(K3,3).
The basic classes of such matroids include the triangular Möbius matroids,
which are precisely the dual cubic Möbius ladders with tips, and the triadic
Möbius matroids, which are duals of wheels with tips.

Our notation follows that of Oxley [5]. A triangle is a 3-element circuit,
and a triad is a 3-element cocircuit. The variable n will typically denote
the size of the ground set of a matroid, and (e0, e1, . . . , en−1) will be a
cyclically 4-sequential ordering of that ground set. Indices are always to
be read modulo n. We repeatedly use the fact that in a binary matroid
the intersection of a circuit and a cocircuit has even cardinality. For the
sake of brevity, we refer to this phenomenon as orthogonality. We also make
frequent use of the fact that in a binary matroid the symmetric difference of
a set of circuits is a disjoint union of circuits, and the symmetric difference
of a set of cocircuits is a disjoint union of cocircuits.
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2. Preliminaries

Recall that if M is a matroid on the ground set E, then λM (X) = rM (X)+
rM (E−X)− r(M) for all subsets X ⊆ E. Obviously λM (X) = λM (E−X),
and it is easy to see that λM∗(X) = λM (X) for all X ⊆ E. Moreover
λM (X) = r(X) + r∗(X) − |X|. Then X ⊆ E is k-separating if λM (X) < k,
and it is exactly k-separating if λM (X) = k − 1. A k-separation of M is
a partition (X1, X2) of E such that min{|X1|, |X2|} ≥ k, and λM (X1) =
λM (X2) < k.

The matroid M is n-connected if it has no k-separations where k < n,
and it is internally 4-connected if it is 3-connected, and whenever (X1, X2)
is a 3-separation, either |X1| = 3, or |X2| = 3.

For the sake of completeness, we repeat our principle definition here:

Definition 2.1. A matroid M is cyclically 4-sequential if its ground set can
be ordered (e0, . . . , en−1) in such a way that λM ({ei, . . . , ei+t}) ≤ 3 for all
0 ≤ i, t ≤ n − 1. Such an ordering is a cyclically 4-sequential ordering (or
sometimes just a cyclic ordering).

It is clear that if (e0, . . . , en−1) is a cyclically 4-sequential ordering for M ,
then it is also a cyclically 4-sequential ordering for M∗. Thus the property
of being cyclically 4-sequential is closed under duality.

A simple argument shows that if a matroid has at most seven elements,
then any ordering of its ground set is a cyclically 4-sequential ordering. Thus
every matroid on at most seven elements is cyclically 4-sequential. Our next
lemma eliminates the possibility of an internally 4-connected binary matroid
on eight elements. Recall that the wheel with r-spokes, denoted Wr, is the
graph obtained by taking a cycle of r vertices, and adding a new vertex that
is adjacent to all other vertices.

Lemma 2.2. No binary matroid on eight elements is internally 4-connected.

Proof. It is an easy application of the Splitter Theorem (see [5, The-
orem 11.1.2]) that the only 3-connected 8-element binary matroids are
M(W4), AG(3, 2) and S8 (see [5, Exercise 11.2.3]). Since none of these
is internally 4-connected the result follows. �

Because of the previous observations, when characterizing the internally
4-connected binary matroids that are cyclically 4-sequential, it suffices to
consider matroids on at least nine elements. The rest of the article is devoted
to this case.

Suppose that (e0, . . . , en−1) is a cyclically 4-sequential ordering of the
matroid M . We will use Si to denote the set {ei, . . . , ei+3} for 0 ≤ i ≤ n− 1
(remembering that subscripts are read modulo n). Suppose also that M is
internally 4-connected and binary, and n ≥ 9. Then λM (Si) = 3 for every
0 ≤ i ≤ n − 1. Therefore rM (Si) + rM∗(Si) = 7 and so exactly one the
following occurs:

(i) Si is a circuit;
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(ii) Si is a cocircuit;
(iii) Si contains a triangle; or,
(iv) Si contains a triad.

If Si satisfies (iii) or (iv), then we say that Si is a T -set or a T ∗-set, respec-
tively.

Consider the sequence (X0, . . . ,Xn−1), where the character Xi is either C,
C∗, T or T ∗, according to whether Si satisfies statement (i), (ii), (iii) or (iv)
above. We shall say that (X0, . . . ,Xn−1) is the label-sequence corresponding
to the cyclic ordering (e0, . . . , en−1), and we shall call (S0, . . . , Sn−1) the
set-sequence of (e0, . . . , en−1).

As we shall see, the structure of an internally 4-connected binary matroid
that is cyclically 4-sequential is completely determined by its label-sequence.
Much of the work of the article is spent eliminating certain subsequences
from the label-sequence and classifying the matroid structure that is forced
by the remaining label-sequences.

3. Ladders, wheels, and tips

In this section we define the four classes of matroids that appear in The-
orem 1.1. The cubic planar ladders and the cubic Möbius ladders are the
families of graphs illustrated by Figure 1. We use CPn to denote the cubic
planar ladder on n vertices, and CMn to denote the cubic Möbius ladder on
n vertices.

(a) (b)

Figure 1. (a) Cubic planar ladder. (b) Cubic Möbius ladder.

The quartic planar ladders and the quartic Möbius ladders are illustrated
in Figure 2. The quartic planar ladder on n vertices is denoted by QPn, and
the quartic Möbius ladder on n vertices is denoted by QMn.

We have already defined the wheel Wr to be the graph obtained from the
cycle on r vertices by adding a new vertex, adjacent to all other vertices.
The new edges are called spokes. Let S be the set of spokes. Then S is a
basis of M(Wr). Let M(Wr)

+ be the binary matroid obtained from M(Wr)
by adding a new element x so that S ∪ x is a circuit. We shall say that
M(Wr)

+ is a wheel with a tip. The matrix in Figure 3 represents M(Wr)
+

over GF(2). It is easy to confirm that M(Wr)
+ is internally 4-connected.
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(a) (b)

Figure 2. (a) Quartic planar ladder. (b) Quartic Möbius ladder.
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Figure 3. A matrix representation of M(Wr)
+.

It is clear that M(W3)
+ is F7, the Fano plane. Moreover M(W4)

+ is
M∗(K3,3). Note that M(Wr)

+ is precisely the matroid Fr+1, introduced
by Kingan and Lemos [3] in their work on almost-graphic matroids. If r is
odd then the dual of M(Wr)

+ is Υr+1, one of the triadic Möbius matroids.
This class is one of the fundamental families of internally 4-connected binary
matroids with no minor isomorphic to M(K3,3) [4].

Let r ≥ 3 be an integer, and consider the matrix Ar(α) over GF(2)
displayed in Figure 4. Let e be the element of M [Ar(α)] corresponding to
the last column of the identity matrix in Ar(α). If r ≥ 4 is even and α = 0,
or if r ≥ 5 is odd and α = 1, then M [Ar(α)]\e is the bond matroid of
CP2r−2. In this case we shall denote M [Ar(α)] by M∗

r (CP )+. If r ≥ 4 is
even and α = 1, or if r ≥ 5 is odd and α = 0, then M [Ar(α)]\e is the bond
matroid of CM2r−2, and we shall denote M [Ar(α)] by M∗

r (CM)+. In either
case we shall say that M [Ar(α)] is a dual cubic ladder with a tip.

In Figure 5 we show geometric representations of dual cubic ladders with
tips. Note that these are not orthodox geometric representations, as they
show matroids with rank greater than four, but they do display the pattern
of triangles in these matroids. Assuming that r is odd, Figure 5 (a) shows
M∗

r (CP )+, and Figure 5 (b) shows M∗

r (CM)+. If r is even then Figures 5 (a)
and 5 (b) depict M∗

r (CM)+ and M∗

r (CP )+ respectively.
We observe that M∗

r (CP )+ is the matroid B3r−2, and M∗

r (CM)+ is S3r−2,
where these matroids were used by Kingan and Lemos [3]. It is not difficult
to see that M∗

r (CM)+ is ∆r, a triangular Möbius matroid [4]. It is possible
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Figure 4. The matrix Ar(α).
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Figure 5. Geometric representations of M∗

r (CP )+ and M∗

r (CM)+.

to define the duals of quartic ladders with tips, in much the same way that
we have defined duals of cubic ladders with tips. The matroids that we
obtain in this case are precisely the duals of wheels with tips.

4. Guts and coguts elements

Suppose that M is a matroid on the ground set E, and that (e0, . . . , en−1)
is a cyclic ordering of E. A subset P ⊆ E is sequential if it can be ex-
pressed in the form {ei, . . . , ei+t}, for some 0 ≤ i, t ≤ n − 1. Suppose that
(P0, . . . , Pk−1) is an ordered partition of E. We say that (P0, . . . , Pk−1) is
displayed by the ordering (e0, . . . , en−1) if every set of the form Pi∪· · ·∪Pi+t

is sequential (in this case 0 ≤ i, t ≤ k − 1, and subscripts are to be read
modulo k).

Lemma 4.1. Suppose that (e0, . . . , en−1) is a cyclically 4-sequential ordering
for the matroid M . Let (A, {x}, B) be a partition of E(M) that is displayed
by the ordering and suppose that A and B are exactly 4-separating. Then x
belongs to exactly one of cl(A) ∩ cl(B) or cl∗(A) ∩ cl∗(B).
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Proof. Note that A ∪ x is exactly 4-separating because B is exactly 4-sepa-
rating. As A and A ∪ x are both exactly 4-separating, it follows that

3 = r(A) + r∗(A) − |A| = r(A ∪ x) + r∗(A ∪ x) − |A ∪ x|

and so

[r(A ∪ x) − r(A)] + [r∗(A ∪ x) − r∗(A)] = 1.

That is, A spans x in exactly one of M and M∗. The same argument shows
that B spans x in exactly one of M and M∗.

Assume that x ∈ cl(A). Then r(A) = r(A ∪ x). Since A is exactly
4-separating it follows that

r(A) + r(B ∪ x) − r(M) = 3.

Therefore r(A∪x)+r(B∪x)−r(M) = 3. Similarly, B is exactly 4-separating,
so r(A∪ x) + r(B)− r(M) = 3. We conclude that r(B ∪ x) = r(B) and that
therefore x ∈ clM (A)∩clM (B). The dual argument shows that if x ∈ cl∗(A),
then x ∈ cl∗(B). �

Suppose that M is a matroid on the ground set E. If (A, {x}, B) is a
partition of E and x ∈ cl(A)∩cl(B) then we shall say that x is in the guts of
(A, {x}, B). If x ∈ cl∗(A) ∩ cl∗(B) then we shall say that x is in the coguts
of (A, {x}, B).

Lemma 4.2. Suppose that (e0, . . . , en−1) is a cyclically 4-sequential ordering
for the matroid M and let x be an element of E(M). Suppose that there is
a displayed partition (A, {x}, B) of E(M) such that A and B are exactly
4-separating and x is in the guts of (A, {x}, B). Then x is in the guts of
(A′, {x}, B′) whenever (A′, {x}, B′) is a displayed partition of E(M) such
that A′ and B′ are exactly 4-separating. Similarly, if x is in the coguts of
the displayed partition (A, {x}, B), where A and B are exactly 4-separating,
then x is in the coguts of any displayed partition (A′, {x}, B′) such that A′

and B′ are exactly 4-separating.

Proof. Suppose that x ∈ cl(A) ∩ cl(B), where (A, {x}, B) is a displayed
partition, and both A and B are exactly 4-separating. Let (A′, {x}, B′) be
another displayed partition such that A′ and B′ are exactly 4-separating.
We lose no generality by assuming that A ⊆ A′. Therefore x ∈ cl(A′), so
x ∈ cl(B′) by Lemma 4.1, and we are done. The result follows from the dual
of this argument when x ∈ cl∗(A) ∩ cl∗(B). �

Suppose that (e0, . . . , en−1) is a cyclic ordering of the internally 4-con-
nected matroid M and that n ≥ 9. Let x be any element of E(M). We can
find a displayed partition (A, {x}, B) such that |A|, |B| ≥ 4. Since M is
internally 4-connected and A and B are sequential sets, it must be the case
that A and B are exactly 4-separating. If x is a guts element of (A, {x}, B)
then we say that x is a guts element of the ordering (e0, . . . , en−1), and we
label x with a g. If x is a coguts element of (A, {x}, B) then we say that
x is a coguts element of the ordering, and we label x with a c. Lemma 4.1
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tells us that every element of E(M) receives a label, and Lemma 4.2 assures
us that the labeling is well-defined. We refer to the label of an element as
its (g, c)-label.

The next result shows how we can use the (g, c)-labeling to manipulate
the cyclic ordering.

Lemma 4.3. Suppose that (e0, . . . , en−1) is a cyclically 4-sequential ordering
for the internally 4-connected matroid M , where n ≥ 9, and suppose that
ei and ei+1 have the same (g, c)-label. Then swapping ei and ei+1 produces
another cyclically 4-sequential ordering. Moreover, every element receives
the same (g, c)-label in both cyclic orderings.

Proof. We may assume by duality that ei and ei+1 are guts elements of the
ordering (e0, . . . , en−1). We first show that the new sequence

(e0, e1, . . . , ei−1, ei+1, ei, ei+2, . . . , en−1)

is a cyclic ordering for M .
Suppose that the partition (X1, X2) of E(M) is displayed by the new

ordering. If ei, ei+1 ∈ X1 or if ei, ei+1 ∈ X2, then (X1, X2) is also displayed
by the original sequence, so λ(X1) ≤ 3, as required. Thus, by symmetry,
we need only consider the case that ei+1 ∈ X1 and ei ∈ X2. Suppose that
λ(X1 − ei+1) ≤ 2. Then it is certainly true that λ(X1) ≤ 3, as desired.
Therefore we will assume that λ(X1 − ei+1) = 3. Note that this implies
that |X1 − ei+1| ≥ 3. By exactly the same argument, we can assume that
λ(X2 − ei) = 3, and that therefore |X2 − ei| ≥ 3.

Assume that (X1 − ei+1) ∪ ei fails to be exactly 4-separating. Since this
set is sequential in the original ordering, we conclude that

λ((X1 − ei+1) ∪ ei) ≤ 2.

As M is internally 4-connected this means that either |(X1 − ei+1)∪ ei| ≤ 3
or |(X2−ei)∪ei+1| ≤ 3, and in either case we get a contradiction. Therefore
(X1−ei+1)∪ei is exactly 4-separating. Hence (X2−ei)∪ei+1 is also exactly
4-separating.

Now,

((X1 − ei+1) ∪ ei, {ei+1}, X2 − ei)

is a displayed partition in the original ordering. Since ei+1 is a guts element
in the original ordering, and both (X1 − ei+1) ∪ ei and X2 − ei are exactly
4-separating, it follows that ei+1 ∈ cl(X2 − ei). Next we consider the par-
tition (X1 − ei+1, {ei}, (X2 − ei) ∪ ei+1). This is displayed by the original
ordering; and, as ei is a guts element and both X1−ei+1 and (X2−ei)∪ei+1

are exactly 4-separating, we conclude that ei ∈ cl((X2 − ei) ∪ ei+1). But
ei+1 ∈ cl(X2 − ei), so ei ∈ cl(X2 − ei). As λ(X2 − ei) = 3, this implies
that λ(X2) ≤ 3, exactly as desired. Therefore the new ordering is indeed a
legitimate cyclic ordering.
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To complete the proof, we must show that in the new cyclic ordering,
every element keeps the same (g, c)-label that it had in the original order-
ing. First suppose that n ≥ 10. Let Z2 = {ei+2, . . . , ei+5} and let Z1 =
E(M)− (Z2 ∪{ei, ei+1}). Then |Z1|, |Z2| ≥ 4. Since (Z1 ∪ ei, {ei+1}, Z2) is
displayed in the original ordering, it follows that ei+1 ∈ cl(Z2). Furthermore
(Z1, {ei}, Z2∪ei+1) is displayed in the original ordering, so ei ∈ cl(Z2∪ei+1),
and therefore ei ∈ cl(Z2). Since (Z1 ∪ ei+1, {ei}, Z2) is displayed in the new
ordering, it follows that ei is a guts element of the new ordering. A sym-
metric argument shows that the (g, c)-label of ei+1 is unchanged in the
new ordering. If x ∈ E(M) − {ei, ei+1} then we can find a displayed par-
tition (Z1, {x}, Z2) such that |Z1|, |Z2| ≥ 4 and either ei, ei+1 ∈ Z1 or
ei, ei+1 ∈ Z2. Therefore the (g, c)-label of x is unchanged.

It remains to consider the case that n = 9. It is easily seen that if
x ∈ E(M) − {ei, ei+1, ei+5}, then there is again a partition (Z1, {x}, Z2)
such that |Z1|, |Z2| ≥ 4 and ei and ei+1 are both contained in either Z1 or
Z2. Therefore we need only check that the labels are unchanged on ei, ei+1,
and ei+5.

Let Y1 = {ei−3, ei−2, ei−1} and let Y2 = {ei+2, ei+3, ei+4}. The partition
(Y1 ∪ ei, {ei+1}, Y2 ∪ ei+5) is displayed in the original ordering, so ei+1 ∈
cl(Y2 ∪ ei+5). Similarly, ei ∈ cl(Y1 ∪ ei+5) because ei+5 = ei−4. Suppose that
λ(Y1) = 3. The partition (Y1, {ei}, Y2∪{ei+1, ei+5}) shows that ei ∈ cl(Y2∪
{ei+1, ei+5}), and hence ei ∈ cl(Y2 ∪ ei+5) as ei+1 is a guts element. Since
(Y1∪ei+1, {ei}, Y2∪ei+5) is displayed in the new ordering, it follows that ei

is a guts element in the new ordering. Similarly (Y1, {ei+1}, Y2 ∪{ei, ei+5})
is displayed in the new ordering, and as Y1 is exactly 4-separating and ei+1 ∈
cl(Y2 ∪ ei+5) it follows that ei+1 is also a guts element. Finally we note that
(Y1, {ei+5}, Y2 ∪{ei, ei+1}) is displayed in both orderings, and Y1 is exactly
4-separating, so the (g, c)-label on ei+5 is unchanged. Therefore, in the case
where λ(Y1) = 3, we are done. A symmetric argument shows that the labels
on ei, ei+1, and ei+5 are unchanged if Y2 is exactly 4-separating. Therefore
we will assume that λ(Y1) ≤ 2 and λ(Y2) ≤ 2.

If there is some element x in cl(Y1) − Y1, then λ(Y1 ∪ x) ≤ 2, and we
have a contradiction to internal 4-connectivity. Therefore Y1, and by sym-
metry Y2, is a closed set. We have noted that ei+1 ∈ cl(Y2 ∪ ei+5). Since
ei+1 /∈ cl(Y2), this means that ei+5 ∈ cl(Y2 ∪ ei+1). The displayed partition
(Y1 ∪ ei, {ei+5}, Y2 ∪ ei+1) implies that ei+5 is a guts element of the original
ordering.

If ei /∈ cl(Y2 ∪ {ei+1, ei+5}) then λ(Y1 ∪ ei) ≤ 2, and we again have a con-
tradiction to internal 4-connectivity. Therefore ei is in cl(Y2 ∪{ei+1, ei+5}),
and as ei+1 ∈ cl(Y2 ∪ ei+5), it follows that ei ∈ cl(Y2 ∪ ei+5). Since
(Y1 ∪ ei+1, {ei}, Y2 ∪ ei+5) is displayed in the new ordering, it follows that
ei is a guts element in the new ordering. Moreover ei ∈ cl(Y2 ∪ ei+5), but
ei /∈ cl(Y2) implies that ei+5 ∈ cl(Y2 ∪ ei), and now the displayed parti-
tion (Y1 ∪ ei+1, {ei+5}, Y2 ∪ ei) implies that ei+5 is a guts element in the
new ordering, as desired. Finally, we have noted that ei+5 ∈ cl(Y2 ∪ ei), so
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ei+1 ∈ cl(Y2∪ei). Now, the partition (Y1∪ei+5, {ei+1}, Y2∪ei) implies that
ei+1 is a guts element in the new ordering, completing the proof. �

If (e0, . . . , en−1) is a cyclic ordering in which ei and ei+1 share the same
(g, c)-label, then we shall say that

(e0, e1, . . . , ei−1, ei+1, ei, ei+2, . . . , en−1)

is obtained by switching ei and ei+1. After we perform a switching in the
cyclic ordering, we denote the new set-sequence by (S′

0, S
′

1, . . . , S
′

n−1).
Recall that if (e0, . . . , en−1) is a cyclic ordering of the internally 4-con-

nected matroid M , then Si = {ei, ei+1, ei+2, ei+3} is 4-separating for
0 ≤ i ≤ n − 1. It is easy to see that if Si is a T -set or a circuit, then
r(Si) = 3. On the other hand, if Si is a cocircuit or a T ∗-set, then it must
be the case that r(Si) = 4. The next lemma shows that when consecutive
sets Si and Si+1 have the same rank we can deduce information about the
(g, c)-labeling.

Lemma 4.4. Suppose that (e0, . . . , en−1) is a cyclically 4-sequential ordering
for the matroid M and that n ≥ 9. Let Si = {ei, ei+1, ei+2, ei+3} for all
0 ≤ i ≤ n − 1. Suppose that Si and Si+1 have the same rank. Then either:

(i) both ei and ei+4 are guts elements; or,
(ii) both ei and ei+4 are coguts elements.

In particular, if {ei+1, ei+2, ei+3} is a triangle then ei and ei+4 receive the
same (g, c)-label.

Proof. Taking the dual when necessary, we may assume that ei is a guts
element of the cyclic ordering. Then ei is in the closure of Si+1, so r(Si+1 ∪
ei) = r(Si+1) = r(Si). This implies that Si spans Si+1∪ ei = Si ∪ ei+4. Thus
ei+4 ∈ cl(Si) and it follows that ei+4 is a guts element. �

Suppose that (e0, . . . , en−1) is a cyclically 4-sequential ordering of a ma-
troid and that n ≥ 9. If S ⊆ Si for some i, then let P = {ej , . . . , ej+t} be
the smallest possible sequential set that contains S, where 0 ≤ j, t ≤ n− 1.
Note that P is well defined as n ≥ 9 and S ⊆ Si. We say that ej and ej+t

are the endpoints of S. The following useful observation is easily checked.

Lemma 4.5. Let (e0, . . . , en−1) be a cyclically 4-sequential ordering of the
matroid M , where n ≥ 9. Then

(i) if Si contains a cocircuit C∗, then the endpoints of C∗ are coguts ele-
ments; and,

(ii) if Si contains a circuit C, then the endpoints of C are guts elements.

5. Characterizing label-sequences

This section is devoted to characterizing label-sequences and their asso-
ciated matroid substructures together since the two topics are intimately
related. We shall see that when we have knowledge of some sequential part
of a label-sequence, then we also have much information on the structure of
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that part of the matroid. The results of this section are therefore of inde-
pendent interest to situations where some 4-separator of a binary internally
4-connected matroid behaves like part of a cyclic ordering. While we haven’t
explored it yet, we believe that the relationship will be similar to that of
wheels, whirls and fans in 3-connected matroids.

We recall some definitions: if (e0, . . . , en−1) is a cyclic ordering for a ma-
troid M , then a set Si is a T - or T ∗-set if it contains a triangle or triad
respectively. The set-sequence corresponding to the ordering (e0, . . . , en−1)
is (S0, . . . , Sn−1), and the corresponding label-sequence is the sequence
(X0, . . . ,Xn−1), where Xi is a character from the set {C, C∗, T, T ∗}, de-
pending on whether Si is a circuit, cocircuit, T -set, or T ∗-set. Throughout
this section, M will be an internally 4-connected binary matroid on at least
nine elements, and (e0, . . . , en−1) will be a cyclically 4-sequential ordering
for M .

Lemma 5.1. If Si is a T -set, then Si+1 is not a T ∗-set.

Proof. This is true simply because no triangle meets a triad in an internally
4-connected binary matroid with at least nine elements. �

Lemma 5.2. If Si is a circuit or a cocircuit, then neither Si−1 nor Si+1 is
a circuit or a cocircuit.

Proof. Suppose that Si is a circuit. Then Si+1 cannot be a cocircuit, for this
would violate orthogonality (note that ei and ei+4 are distinct elements as
n ≥ 9). If Si+1 is a circuit, then Si∆Si+1, the symmetric difference of Si and
Si+1, is a disjoint union of circuits. As Si∆Si+1 = {ei, ei+4}, and M has
no parallel elements, this cannot occur. It follows that if Si is a circuit then
Si+1 is neither a circuit nor a cocircuit. The result follows now by applying
duality and symmetry. �

Lemma 5.3. If Si is a circuit, then neither Si−4 nor Si+4 is a circuit, and
if Si is a cocircuit, then neither Si−4 nor Si+4 is a cocircuit.

Proof. Assume that Si is a circuit. We first show that Si+4 is not a circuit.
By cyclically shifting labels as necessary, we can assume that i = 0. Assume
that the lemma fails, so that S0 and S4 are both circuits.

Note that e0, . . . , e7 are distinct elements as n ≥ 9. The set S1 cannot be a
circuit or a cocircuit by Lemma 5.2. Moreover, S1 cannot be a T ∗-set, since
a triad containing e4 would contradict orthogonality with the circuit S4, and
if {e1, e2, e3} were a triad then we would have a violation of orthogonality
with the circuit S0. Therefore S1 must be a T -set. A symmetric argument
shows that S3 is also a T -set. Also, the triangle T1 contained in S1 must
contain e4, and the triangle T3 contained in S3 must contain e3.

Note that both triangles T1 and T1∆S0 contain e4 and just one of them
contains e3. Let T ′

1 be the triangle contained in S0∪e4 that contains {e3, e4}.
By symmetry, there is a triangle T ′

3 in S4 ∪ e3 such that {e3, e4} ⊆ T ′

3. Now
T ′

1∆T ′

3 is a 2-element set that is the union of circuits of M ; a contradiction.
The lemma follows by duality and symmetry. �
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Lemma 5.4. By switching elements, we can assume that either:

(i) every set Si is a circuit or a T ∗-set; or,
(ii) every set Si is a cocircuit or a T -set.

Proof. We begin with a sublemma.

5.4.1. Suppose that Si is a circuit and that Si+1 is a T -set. Then we can
switch a pair of elements in such a way that the label-sequence is unchanged,
except that in the new ordering S′

i is a T -set.

Proof. By cyclically shifting labels as necessary we will assume that i = 0.
Since no triangle is contained in {e0, e1, e2, e3}, the triangle in S1 contains
e4. Lemma 4.5 implies that e3 and e4 are guts elements of the ordering. We
therefore apply Lemma 4.3 and deduce that

(e0, e1, e2, e4, e3, e5, . . . , en−1)

is a valid cyclic ordering and that all elements retain their (g, c)-label.
Let (S′

0, . . . , S
′

n−1) and (X ′

0, . . . ,X
′

n−1) respectively be the set-sequence and
label-sequence of this new ordering. Clearly S′

j = Sj if j /∈ {0, 4}, so in this

case X ′

j = Xj . We will show that S′

0 is a T -set and that X ′

4 = X4.

There is a partition {A,B} of S0 such that A∪e4 and B∪e4 are triangles
of M . Note that one of them is contained in {e0, e1, e2, e4}, thus S′

0 is a
T -set.

It remains only to show that X ′

4 = X4. Lemma 5.3 tells us that S4

is not a circuit. Also, triangle A ∪ e4 tells us that S4 is not a cocircuit.
If S4 is a T ∗-set, then {e5, e6, e7} must be a triad by orthogonality with
S0. Then S′

4 = {e3, e5, e6, e7} is also a T ∗-set, so we are done. Therefore
we will assume that S4 is a T -set. If the triangle in S4 does not contain
e4, then S′

4 is also a T -set, so we assume that it does contain e4. Let
{x, y, z} = {e5, e6, e7}, and suppose that the triangle in S4 is {x, y, e4}.
By orthogonality with S0 the set S′

4 = {e3, e5, e6, e7} does not contain a
cocircuit using e3, so S′

4 is not a cocircuit. Moreover, no triad can meet
{x, y}, as these elements are contained in a triangle. Therefore S′

4 is not a
T ∗-set. If X ′

4 6= X4 then it must be the case that S′

4 is a circuit. Then

{x, y, z, e3}∆{x, y, e4} = {z, e3, e4}.

is a triangle, and as {e3, e4} is contained either in triangle A ∪ e4 or in
triangle B ∪ e4, we conclude that z is parallel with an element in S0, a
contradiction. Thus X ′

4 = X4. �

Sublemma 5.4.1 above shows that whenever the subsequence (C, T ) ap-
pears in the label-sequence, we can switch a pair of elements in such a way
that we remove the C and replace it with a T , leaving every other character
in the label-sequence unchanged. By performing this operation wherever
possible, and using symmetry, we can assume that if Si is a circuit, then
neither Si−1 nor Si+1 are T -sets. Lemma 5.2 now implies that if Si is a
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circuit, then Si−1 and Si+1 are T ∗-sets. Moreover, by using duality, we can
also assume that if Si is a cocircuit, then Si−1 and Si+1 are T -sets.

Suppose that Si is a circuit. Let t be the least positive integer such that
Si+t is not a T ∗-set. Since Si+t−1 is a T ∗-set it follows that Si+t cannot be a
cocircuit by our earlier assumption. Nor can Si+t be a T -set by the dual of
Lemma 5.1. Thus Si+t is a circuit, so Si+t+1 is a T ∗-set. Continuing in this
way we see that every set Sj is either a circuit or a T ∗-set. Similarly, if Si

is a cocircuit, we can show that every set Sj is either a cocircuit or a T -set.
Therefore we will assume that no set Si is a circuit or cocircuit. Lemma 5.1
shows that in this case either every set Sj is a T -set, or every set Sj is a
T ∗-set. This completes the proof of Lemma 5.4. �

By virtue of Lemma 5.4, and by using duality, we will henceforth assume
that (e0, . . . , en−1) is a cyclic ordering of the internally 4-connected binary
matroid M , where n ≥ 9, and that every set Si is either a cocircuit or a
T -set.

Lemma 5.5. The subsequence

(T, T, T, C∗, T, T, T )

does not occur in the label-sequence of (e0, . . . , en−1).

Proof. Suppose that the lemma fails. By cyclically shifting labels as nec-
essary we may assume that Si is a T -set for all i ∈ {0, 1, 2, 4, 5, 6}, and
that S3 is a cocircuit. The triangle in S6 must be {e7, e8, e9} by orthog-
onality with S3. The same argument shows that {e0, e1, e2} is a triangle.
Lemma 4.5 applied to {e7, e8, e9} asserts that e9 is a guts element. Since S5

and S6 are both T -sets it follows that they both have rank 3, so Lemma 4.4
implies that e5 is also a guts element.

Therefore e5 ∈ cl(S1). We also know that e0 ∈ cl(S1), because {e0, e1, e2}
is a triangle. As S1 is a T -set, and hence has rank 3, it follows that
r({e0, . . . , e5}) = 3. Therefore M restricted to {e0, . . . , e5} is isomorphic to
M(K4). As {e0, e1, e2} is a triangle, there must be a triangle that contains
{e4, e5} and an element from {e0, e1, e2}. But symmetric arguments show
that M restricted to {e4, . . . , e9} is isomorphic to M(K4) and that e4 and e5

are in a triangle with an element of {e7, e8, e9}. This leads to a parallel pair
and a contradiction unless n = 9 and {e4, e5, e0} = {e4, e5, e9} is a triangle.
In this case, S3 is a cocircuit of rank 4 and {e0, . . . , e5} and {e4, . . . , e9} are
isomorphic to M(K4), therefore E(M) ⊆ cl(S3) and r(M) = 4. Now, we
observe that

λ({e0, . . . , e4}) = r({e0, . . . , e4}) + r({e5, . . . , e9}) − r(M) ≤ 3 + 3 − 4 = 2;

a contradiction since M is internally 4-connected. This completes the proof.
�

Lemma 5.6. The subsequence

(C∗, T, T, T, T, C∗)
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does not occur in the label-sequence of (e0, . . . , en−1).

Proof. Suppose that the lemma is false. We can assume that Si is a T -set
for i ∈ {1, . . . , 4}, while S0 and S5 are cocircuits. By orthogonality with S5,
the triangle in S2 must be {e2, e3, e4}, and the cocircuit S0 implies that the
triangle in S3 is {e4, e5, e6}.

By applying Lemma 4.5 to S0 and S5 we see that e3 and e5 are coguts
elements. Thus e5 ∈ cl∗(S1), so there is a cocircuit C∗

1 in S1 ∪ e5 that
contains e5. Similarly, there is a cocircuit C∗

2 ⊆ S4 ∪ e3 and this cocircuit
contains e3. Furthermore, C∗

1 is properly contained in {e1, . . . , e5} by or-
thogonality with the triangle {e2, e3, e4}, and C∗

2 is properly contained in
{e3, . . . , e7}. It cannot be the case that C∗

1 is a triad, for then it would
meet the triangle {e2, e3, e4}. The triangle {e4, e5, e6} means that C∗

2 is
not a triad. It follows that both C∗

1 and C∗

2 have cardinality four. As
C∗

1 contains e5, orthogonality with {e4, e5, e6} means that it contains e4.
Similarly, orthogonality with {e2, e3, e4} means that e4 ∈ C∗

2 . Thus C∗

1 is
either {e1, e2, e4, e5} or {e1, e3, e4, e5}, and C∗

2 is either {e3, e4, e5, e7} or
{e3, e4, e6, e7}. This gives us four cases to consider.

First suppose that C∗

1 = {e1, e3, e4, e5}. If C∗

2 = {e3, e4, e5, e7}, then e1

and e7 are in series, a contradiction. If C∗

2 = {e3, e4, e6, e7} then

C∗

1∆C∗

2∆S5 = {e1, e8}

is a cocircuit, so e1 and e8 are in series. This is again a contradiction.
Hence C∗

1 = {e1, e2, e4, e5}. By symmetry, C∗

2 = {e3, e4, e6, e7}. Then

S0∆C∗

1∆C∗

2∆S5 = {e0, e8}

is a series pair and we have a contradiction. �

Lemma 5.7. The subsequence

(C∗, T, T, C∗, T, C∗)

does not occur in the label-sequence of (e0, . . . , en−1).

Proof. Suppose that the lemma fails. By shifting labels we can assume that
S0, S3 and S5 are cocircuits, and that S1, S2 and S4 are T -sets. By orthog-
onality with S5 we deduce that the triangle in S2 is {e2, e3, e4}. Lemma 4.5
implies that e5 is a coguts element. Therefore there is a cocircuit C∗ ⊆ S1∪e5

that contains e5. Since {e2, e3, e4} is a triangle, C∗ 6= {e1, . . . , e5} and C∗

is not a triad. Therefore |C∗| = 4. Suppose that C∗ contains {e1, e2, e3}.
Then C∗∆S0 = {e0, e5}, a contradiction. Therefore e4 ∈ C∗. Now e3 /∈ C∗,
for otherwise |C∗∆S3| = 2. Hence C∗ = {e1, e2, e4, e5} and

S0∆C∗∆S3 = {e0, e6},

so M contains a series pair. This contradiction completes the proof. �

Lemma 5.8. If {ei, ei+1, ei+2} is a triangle and Si+1, Si+2, and Si+3 are
T -sets, then {ei+2, ei+3, ei+4} is also a triangle.
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Proof. We will assume that i = 0, so that {e0, e1, e2} is a triangle, and S1,
S2, and S3 are T -sets. Assume that {e2, e3, e4} is not a triangle. Since the
triangle in S1 has at least two elements not in {e0, e1, e2}, it must contain
e3 and e4. Therefore {e1, e3, e4} is a triangle. The triangles in S2 and S3

must contain two elements not in {e1, e3, e4}, so the triangle in S2 contains
e2 and e5 and the triangle in S3 contains e5 and e6. These two triangles also
do not share two elements, so they are {x, e2, e5} and {y, e5, e6}, where
{x, y} = {e3, e4}. Now

{e0, e1, e2}∆{e1, e3, e4}∆{x, e2, e5}∆{y, e5, e6} = {e0, e6}

so M has a parallel pair, a contradiction. �

Recall that a set is sequential if it can be expressed in the form
{ei, . . . , ei+t}, where 0 ≤ i, t ≤ n − 1.

Lemma 5.9. Suppose that Si, . . . , Si+4 are T -sets. Then one of them con-
tains a sequential triangle.

Proof. Suppose that none of the sets Si, . . . , Si+4 contains a sequential tri-
angle. We will assume that i = 0. Now r(S0) = 3, as S0 is a T -set. The
triangle in S1 must contain e4, so e4 ∈ cl(S0). The same argument shows that
e5, e6, e7 ∈ cl(S0). As n ≥ 9 the elements e0, . . . , e7 are distinct. Therefore
cl(S0) is a rank-3 flat containing at least eight elements, a contradiction. �

Lemma 5.10. Suppose that Si+1, . . . , Si+t are distinct T -sets, where t < n
and that Si and Si+t+1 are cocircuits. Then either t = 1 or t = 2k for some
positive integer k 6= 2.

Proof. We first assume that t < n. It follows from Lemma 5.6 that t is not
equal to four. Suppose that t is an odd number greater than one. We can
assume that S0 and St+1 are cocircuits (not necessarily distinct), and that
Sj is a T -set for all j ∈ {1, . . . , t}. By orthogonality with S0, the triangle in
S3 must be {e4, e5, e6}. Thus S4 is a T -set, so t ≥ 5. If t = 5 then we have
a contradiction to orthogonality between {e4, e5, e6} and S6, so t ≥ 7. By
repeatedly applying Lemma 5.8, we see that {ej , ej+1, ej+2} is a triangle
if j ∈ {4, . . . , t − 1} is an even integer. In particular, {et−1, et, et+1} is a
triangle that meets the cocircuit St+1 in a single element. This contradiction
proves that the lemma holds. �

Lemma 5.11. Suppose that {a, ei+1, ei+2}, {ei+2, ei+3, ei+4}, and
{ei+4, ei+5, b} are triangles for some a, b /∈ {ei+1, ei+2, . . . , ei+5}, and that
ei+5 /∈ cl(Si+1). Then {ei+1, ei+2, ei+4, ei+5} is a cocircuit of M .

Proof. Since ei+5 /∈ cl(Si+1), we have r(Si+1 ∪ ei+5) = 4, and since Si+1 ∪
ei+5 is exactly 4-separating it must contain a cocircuit C∗. No triad of M
meets a triangle, so C∗ has at least four elements, and therefore must meet
{a, ei+1, ei+2}, {ei+2, ei+3, ei+4}, and {ei+4, ei+5, b}. By orthogonality with
these triangles, C∗ must be {ei+1, ei+2, ei+4, ei+5}. �
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Lemma 5.12. Suppose that Si is a T -set for all i ∈ {0, . . . , n− 1}. Then n
is even and up to a cyclic shift of the ordering, for every even integer k ∈
{0, . . . , n− 1}, {ek, ek+1, ek+2} is a triangle and {ek+1, ek+2, ek+4, ek+5} is
a cocircuit.

Proof. Suppose that n is odd. Lemma 5.9 tells us that there is a sequential
triangle. By shifting labels we can assume that {e0, e1, e2} is a triangle. By
repeatedly applying Lemma 5.8 we see that {ej , ej+1, ej+2} is a triangle if
j ∈ {0, . . . , n − 1} is even. In particular, {en−1, en, en+1} = {en−1, e0, e1}
is a triangle. The symmetric difference of this triangle with {e0, e1, e2}
produces a parallel pair, a contradiction. We conclude that n is even.

Again, by Lemma 5.9, we may assume, after a possible cyclic shift of the
ordering, that {e0, e1, e2} is a sequential triangle. Now, repeatedly applying
Lemma 5.8 implies that {ek, ek+1, ek+2} is a triangle if k ∈ {0, . . . , n − 1}
is an even integer.

Suppose that e5 is a guts element. Note that e4 ∈ cl(S0) because of the
triangle {e2, e3, e4}. Now, e5 ∈ cl(S1) because it is a guts element, and
e6 ∈ cl(S2) because {e4, e5, e6} is a triangle. Thus the restriction of M
to cl(S0) contains the seven elements {e0, . . . , e6} and the disjoint triangles
{e0, e1, e2} and {e4, e5, e6}. As r(S0) = 3, this is a contradiction. Therefore
e5 is a coguts element. By symmetry, we see that ek+1 is a coguts element
for every even integer k ∈ {0, . . . , n − 1}. We now apply Lemma 5.11 and
see that {ek+1, ek+2, ek+4, ek+5} is a cocircuit for every even integer k, as
desired. �

Lemma 5.13. Suppose that Si is a cocircuit and that Si+1, Si+2, and Si+3

are T -sets. Then Si−1 is a T -set. Moreover

(i) if ei+1 is a guts element then Si−2 is a T -set and Si−3 is a cocircuit;
and,

(ii) if ei+1 is a coguts element then Si−2 is a cocircuit.

Proof. We see from Lemma 5.2 that Si−1 must be a T -set. Note that if Si−2

is a T -set, then Si−3 must be a cocircuit by Lemma 5.5.
It remains to show that ei+1 is a guts element if and only if Si−2 is a

T -set. If Si−2 is a cocircuit then ei+1 is a coguts element by Lemma 4.5.
For the converse, suppose Si−2 is a T -set. By orthogonality with cocircuit
Si, the triangle in Si−2 contains ei and ei+1, hence we apply Lemma 4.5 and
conclude that ei+1 is a guts element. �

Lemma 5.14. Suppose that Si+1, . . . , Si+t are distinct T -sets for some t >
6, and that Si and Si+t+1 are cocircuits. Then {ei+j , ei+j+1, ei+j+2} is a
triangle if j ∈ {2, . . . , t} is an even integer. Furthermore, for j ∈ {1, . . . , t+
3}, ei+j is a guts element if j is even, and ei+j is a coguts element if j is
odd.

Proof. We will assume by shifting labels that i = 0, so that S0 and St+1

are cocircuits, while S1, . . . , St are T -sets. Lemma 5.10 implies that t is
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even. Orthogonality with S0 implies that the triangle in S3 is {e4, e5, e6}.
By repeatedly applying Lemma 5.8, we deduce that {ej , ej+1, ej+2} is a
triangle if j ∈ {4, . . . , t − 2} is an even integer. It follows from Lemma 4.5
that ej is a guts element if j ∈ {4, . . . , t} is even. As both S2 and S3 are
T -sets, it follows that r(S2) = r(S3) = 3. Now Lemma 4.4 implies that e2

and e6 receive the same (g, c)-labeling, so e2 is a guts element. Similarly,
r(St−2) = r(St−1) = 3, so et+2 is also a guts element.

By applying Lemma 4.5 to S0 we see that e3 is a coguts element. Suppose
that e5 is a guts element. Since {e6, e7, e8} is a triangle, Lemma 4.4 implies
that e9 is also a guts element. It cannot be the case that t = 8, for in that
case S9 would be a cocircuit, and therefore e9 would be a coguts element
by Lemma 4.5. Both e8 and e10 are guts elements, so e8 ∈ cl(S4), e9 ∈
cl(S5), and e10 ∈ cl(S6). We deduce that cl(S4) contains {e4, . . . , e10}. But
r(S4) = 3, and as t > 8 we see that {e4, . . . , e10} contains two disjoint
triangles: {e4, e5, e6} and {e8, e9, e10}. This is a contradiction, so e5 is a
coguts element.

Since both e3 and e5 are coguts elements and the sets S1, . . . , St all have
rank 3, by repeatedly using Lemma 4.4, we can easily see that ek is a coguts
element if k ∈ {1, . . . , t + 3} is odd.

The fact that {e2, e3, e4} is a triangle follows easily from Lemma 4.5
because S1 is a T -set and e1 is a coguts element. A similar argument shows
that {et, et+1, et+2} is a triangle. �

Lemma 5.15. Suppose that Si+1, . . . , Si+6 are T -sets, and that Si and
Si+7 are cocircuits. By switching consecutive guts elements we can assume
that {ei+2, ei+3, ei+4}, {ei+4, ei+5, ei+6} and {ei+6, ei+7, ei+8} are trian-
gles, and that one of the following cases holds:

(i) ei+j is a guts element if j ∈ {2, 4, 6, 8}, and a coguts element if j ∈
{1, 3, 5, 7, 9}; or

(ii) ei+j is a guts element if j ∈ {1, 2, 4, 5, 6, 8, 9} and a coguts el-
ement if j ∈ {3, 7}. Also {ei+1, ei+2, ei+5}, {ei+1, ei+3, ei+6},
{ei+4, ei+7, ei+9} and {ei+5, ei+8, ei+9} are triangles.

Moreover the label-sequence is unchanged by this switching.

Proof. We will assume by shifting labels that i = 0, so that S0 and S7

are cocircuits while S1, . . . , S6 are T -sets. Orthogonality with S0 implies
that the triangle in S3 is {e4, e5, e6}. Thus e4 and e6 are guts elements
by Lemma 4.5. Since every set in S1, . . . , S6 has rank 3, we can apply
Lemma 4.4 and deduce that e2 and e8 are also guts elements. Applying
Lemma 4.5 to S0 and S7, we see that e3 and e7 are coguts elements.

Suppose that e5 is a coguts element. Lemma 4.4 implies that e1 and e9

are also coguts elements. Therefore the triangle in S1 cannot contain e1 by
Lemma 4.5, so {e2, e3, e4} is a triangle. A symmetric argument shows that
{e6, e7, e8} is a triangle. Therefore the lemma holds (as statement (i) is
true) without any switching in the case that e5 is a coguts element.
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Therefore we assume that e5 is a guts element. Lemma 4.4 implies that e1

and e9 are guts elements also. Therefore e1 ∈ cl(S2). Note that e6 ∈ cl(S2)
because of the triangle {e4, e5, e6}. Thus cl(S2) contains {e1, . . . , e6}. As
r(S2) = 3, this means that M restricted to {e1, . . . , e6} is isomorphic to
M(K4). A similar argument shows that M |{e4, . . . , e9} ∼= M(K4). Note
that Lemma 5.13 shows that Sn−2 is a T -set.

As e4, e5, and e6 are consecutive guts elements, Lemma 4.3 implies that
any reordering of these three elements produces a valid cyclic ordering for
M . Since {e4, e5, e6} is a triangle of the M(K4)-restriction {e4, . . . , e9},
there are elements x, y ∈ {e4, e5, e6} such that {x, e7, e8} and {y, e8, e9}
are triangles. We switch e4, e5, and e6 so that {e5, e8, e9} and {e6, e7, e8}
are triangles. Lemma 4.3 asserts that this reordering does not change the
(g, c)-label of any element.

Since {e4, e5, e6} is a triangle it follows that r(S3) = 3. We have already
stated that e7 is a coguts element, so e7 /∈ cl(S3). Therefore r(S3 ∪ e7) = 4.
As S3 ∪ e7 is exactly 4-separating it follows that S3 ∪ e7 contains a cocircuit
C∗. It cannot be the case that C∗ is a triad, for then C∗ would meet the
triangle {e4, e5, e6}. Nor can C∗ contain e5, because of orthogonality with
the triangle {e5, e8, e9}. Therefore C∗ = {e3, e4, e6, e7}.

As {e4, e5, e6} is a triangle of the M(K4)-restriction {e1, . . . , e6}, there
is an element z ∈ {e4, e5, e6} such that {z, e1, e2} is a triangle. By or-
thogonality with C∗, it must be the case that z = e5. Now, it follows that
either {e1, e3, e4} or {e2, e3, e4} is a triangle. We have already deduced
that e1 and e2 are guts elements. Therefore Lemma 4.3 implies that we
can switch e1 and e2 if necessary and assume that {e2, e3, e4} is a triangle.
Then {e1, e3, e6} is also a triangle.

We now have that {e2, e3, e4}, {e4, e5, e6} and {e6, e7, e8} are all trian-
gles, as desired. Moreover statement (ii) of the lemma holds. It remains to
show that the label-sequence has not been changed by this switching. Before
performing any switching, the sets S1, S2, S5, and S6 were all T -sets. After
switching, {e2, e3, e4}, {e4, e5, e6} and {e6, e7, e8} are triangles, so S′

1, S′

2,
S′

5 and S′

6 remain T -sets. Furthermore, after switching, S′

0 is a cocircuit
while S′

1, S′

2 and S′

3 are T -sets, and e1 is a guts element. Therefore S′

n−2 is
a T -set by Lemma 5.13. We had already noted that Sn−2 was a T -set before
switching. As S′

n−2, S′

1, S′

2, S′

5 and S′

6 were the only sets whose labels could
have been changed by our switching, the proof is complete. �

Lemma 5.16. Suppose that Si+1, . . . , Si+t are distinct T -sets, where t ≥ 6,
and that Si and Si+t+1 are cocircuits. By switching, we can assume that
either:

(i) for j ∈ {1, . . . , t+3}, element ei+j is a guts element if j is even, and a
coguts element if j is odd. In this case Si−2 and Si+t+3 are cocircuits
while Si−1 and Si+t+2 are T -sets; or,
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(ii) t = 6 and the elements ei+1, ei+2, . . . , ei+t+3 do not alternate between
guts and coguts. Moreover, Si−3 and Si+t+4 are cocircuits while Si−2,
Si−1, Si+t+2 and Si+t+3 are T -sets.

Proof. Suppose that t > 6. Then Lemma 5.14 implies that ei+j is a guts
element if j ∈ {1, . . . , t + 3} is even, and a coguts element otherwise. Then
Si−2 is a cocircuit and Si−1 is a T -set by Lemma 5.13. Symmetry shows
that Si+t+3 is a cocircuit and that Si+t+2 is a T -set.

Now we will suppose that t = 6. We will assume, by switching if necessary,
that Lemma 5.15 holds. If statement (i) of that lemma is true, then again by
applying Lemma 5.13 we can see that statement (i) of the current lemma is
true. Assume that statement (ii) of Lemma 5.15 holds. Lemma 5.13 implies
that Si−3 is a cocircuit, and that Si−2 and Si−1 are T -sets. By symmetry
we see that Si+t+4 is a cocircuit, and that Si+t+2 and Si+t+3 are T -sets. �

Lemma 5.17. Suppose that Si+1, . . . , Si+t are T -sets, where t ≥ 6, and
that Si and Si+t+1 are cocircuits. Assume also that if j ∈ {1, . . . , t + 3}
is even, then ei+j is a guts element, and otherwise ei+j is a coguts ele-
ment. Then n = t + 3, and Si−2 is a cocircuit, while Si−1 is a T -set.
Furthermore, up to switching elements in such a way as to leave the label-
sequence unchanged, we can assume that {ei−1, ei+1, ei+2} is a triangle and
that {ei, ei+j , ei+j+1, ei+j+2} is a cocircuit if j ∈ {3, . . . , t − 1} is odd.

Proof. We can assume that i = 0. Lemma 5.10 implies that t is even, and
since the elements ei+j for j ∈ {1, 2, . . . , t + 3} alternate between guts and
coguts, Lemma 5.16 implies that Sn−2 and St+3 are cocircuits while Sn−1

and St+2 are T -sets. Lemmas 5.14 and 5.15 assert that {ej , ej+1, ej+2}
is a triangle for all even integers j ∈ {2, . . . , t}. Orthogonality with the
cocircuits S0 and Sn−2 implies that the triangle in Sn−1 contains both en−1

and e2, so either {en−1, e0, e2} or {en−1, e1, e2} is a triangle. We will show
that we can switch e0 and e1 if necessary, and assume the latter. Certainly
both e0 and e1 are coguts elements, by virtue of Lemma 4.5 applied to Sn−2

and S0. Thus, by Lemma 4.3, switching e0 and e1 produces a valid cyclic
ordering. Before this switching, S1 is a T -set. After switching, S′

1 still
contains the triangle {e2, e3, e4} and is a T -set. Since Sn−2 is a cocircuit,
Sn−3 must be a T -set by Lemma 5.2. The triangle in Sn−3 cannot contain
e0 by orthogonality with S0, so {en−3, en−2, en−1} is a triangle. Therefore,
after switching, S′

n−3 still contains a triangle. As S′

n−3 and S′

1 are the only
members of the set-sequence that are changed by switching e0 and e1, it
now follows that this switching leaves the label-sequence unaltered. We will
henceforth assume that {en−1, e1, e2} is a triangle. We continue with the
following sublemma.

5.17.1. {e0, ej , ej+1, ej+2} is a cocircuit if j ∈ {3, . . . , t − 1} is an odd
integer.
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Proof. Let j be any odd integer in {3, . . . , t−3}. We use C∗

j to denote the set

{ej , ej+1, ej+3, ej+4}. Now {ej−1, ej , ej+1} and {ej+1, ej+2, ej+3} are trian-
gles, and ej+4 is a coguts element, so ej+4 /∈ cl(Sj). Therefore, Lemma 5.11
implies that C∗

j is a cocircuit.

Now if j is any odd integer in {3, . . . , t − 3}, then

{e0, e3, e4, e5}∆C∗

3∆C∗

5∆ · · ·∆C∗

j = {e0, ej+2, ej+3, ej+4}

must be a cocircuit. This completes the proof of the sublemma. �

It remains to show only that n = t + 3. Suppose first that n ≤ t + 5. It
cannot be the case that n ≤ t + 2, for in that case Sn−2 would be both a
cocircuit and a T -set. Suppose that n = t + 4. Then Sn−2 = St+2 is both a
cocircuit, and a T -set, a contradiction. Finally we suppose that n = t + 5.
Then St+1 and St+5 = S0 are cocircuits, and this violates Lemma 5.3. Thus
in the case that n ≤ t + 5 it follows that n = t + 3, so the result holds.

We now assume that n > t + 5. Consider the triangle in the T -set St+2.
It cannot be contained in either of the cocircuits St+1 or St+3, so it contains
et+2 and et+5. Therefore either {et+2, et+3, et+5} or {et+2, et+4, et+5} is a
triangle. We will switch et+3 and et+4 if necessary so as to assume that
{et+2, et+3, et+5} is a triangle. Note that both et+3 and et+4 are coguts
elements, by virtue of applying Lemma 4.5 to St+1 and St+3. Therefore
this switch produces a valid cyclic ordering. Moreover, the only sets in the
set-sequence that are changed by this switch are St and St+4. The set St

contains the triangle {et, et+1, et+2}, and is therefore a T -set both before
and after the switch. Before the switch, St+4 must be a T -set, as St+3 is a
cocircuit. The triangle in St+4 must be {et+5, et+6, et+7}, by orthogonality
with St+1. Now we can see that the label-sequence is unchanged by switching
et+3 and et+4. Moreover, as we have assumed that n > t + 5, switching et+3

and et+4 does not affect our assumption that {en−1, e1, e2} is a triangle.
Nor does it affect the claim made in 5.17.1.

As et+3 is a coguts element, et+3 /∈ cl(St−1), so St−1 ∪ et+3 has rank 4.
Now, as {et−2, et−1, et}, {et, et+1, et+2}, and {et+2, et+3, et+5} are trian-
gles, we apply Lemma 5.11 and deduce that C∗

t−1 = {et−1, et, et+2, et+3} is
a cocircuit. By taking the symmetric difference of this set with St+1, we dis-
cover that {et−1, et, et+1, et+4} is a cocircuit. However, {e0, et−1, et, et+1}
is also a cocircuit by 5.17.1. By taking the symmetric difference of these two
cocircuits we see that {e0, et+4} is a union of cocircuits. But e0 and et+4

are distinct elements as n > t + 5, so we have a contradiction. �

Suppose that t is a positive integer. We say that (Si, . . . , Si+3t) is a
C∗TTC∗-sequence if, for j ∈ {0, . . . , 3t}, set Si+j is a cocircuit if j is a
multiple of 3 and a T -set otherwise.

Lemma 5.18. Let (Si, . . . , Si+3t) be a C∗TTC∗-sequence for some integer
t ≥ 1. For j ∈ {0, . . . , 3t + 3}, if j is a multiple of 3 then ei+j is a coguts
element, otherwise ei+j is a guts element. Furthermore, if j ∈ {0, . . . , 3t−3}
is a multiple of 3, then either:



CYCLICALLY SEQUENTIAL MATROIDS 21

(i) {ej+1, ej+3, ej+4} and {ej+2, ej+3, ej+5} are triangles; or,
(ii) {ej+1, ej+3, ej+5} and {ej+2, ej+3, ej+4} are triangles.

Proof. We start by proving that either statement (i) or (ii) is true. We
assume by shifting labels that i = 0. Let j ∈ {0, . . . , 3t − 3} be a multiple
of 3. Then Sj and Sj+3 are cocircuits, while Sj+1 and Sj+2 are T -sets.
Suppose that {ej+2, ej+3, ej+4} is not a triangle, and let T1 and T2 be the
triangles contained in Sj+1 and Sj+2 respectively. Since T1 is not contained
in the cocircuit Sj, it must be the case that ej+4 is in T1. Orthogonality with
Sj+3 shows that ej+3 ∈ T1, so T1 = {ej+1, ej+3, ej+4}. A similar argument
shows that T2 = {ej+2, ej+3, ej+5}. Therefore statement (i) of the lemma
holds.

Next we suppose that {ej+2, ej+3, ej+4} is a triangle. Suppose that ej+1 /∈
cl(Sj+2), so that r(Sj+2∪ej+1) = 4. As Sj+2∪ej+1 is a sequential set it must
therefore contain a cocircuit C∗. It cannot be the case that C∗ is a triad,
for then C∗ would meet the triangle {ej+2, ej+3, ej+4}. Nor can C∗ have
cardinality five by orthogonality with the same triangle. Therefore |C∗| = 4.
If C∗ were to meet Sj in three elements, then the symmetric difference of
these two sets would have cardinality two and be a union of cocircuits. This
is impossible, so |C∗∩Sj| 6= 3. The same argument shows that |C∗∩Sj+3| 6=
3. It now follows easily that C∗ = {ej+1, ej+2, ej+4, ej+5}. However this
means that

Sj∆C∗∆Sj+3 = {ej , ej+6},

and therefore M contains a cocircuit of size at most two. This contradiction
implies that ej+1 ∈ cl(Sj+2).

As Sj+2 contains the triangle {ej+2, ej+3, ej+4}, it follows that r(Sj+2 ∪
ej+1) = 3, thus there is a circuit in Sj+2 ∪ ej+1 that contains ej+1. Since
the symmetric difference of this circuit with {ej+2, ej+3, ej+4} is also a cir-
cuit, the cardinalities of this circuit and this symmetric difference are both
three. Thus, there is a triangle in Sj+2 ∪ ej+1 that contains ej+1 and ej+5.
This triangle must contain exactly two elements from each of Sj and Sj+3.
Therefore {ej+1, ej+3, ej+5} is a triangle. Hence statement (ii) of the lemma
holds.

It remains to show that if j ∈ {0, . . . , 3t + 3} is a multiple of 3, then ei+j

is a coguts element, and that ei+j is a guts element otherwise. Suppose that
j ∈ {0, . . . , 3t} is a multiple of 3. Then Sj is a cocircuit, so ej and ej+3 are
coguts elements by Lemma 4.5. By applying Lemma 4.5 to the triangles
in (i) and (ii) of the lemma, we see that ej+1 and ej+2 are guts elements.
This completes the proof. �

Lemma 5.19. Suppose that Si+1, . . . , Si+6 are T -sets, Si and Si+7 are co-
circuits, and that ei+j is a guts element if j ∈ {1, 2, 4, 5, 6, 8, 9}. Then
n ≡ 1 (mod 3), and if j ∈ {7, 8, . . . , n} is equivalent to 1 (mod 3), then
Si+j is a cocircuit. Otherwise, Si+j is a T -set. Moreover, up to switching
consecutive guts elements, we may assume that if j ∈ {7, 8, . . . , n − 1} and
j ≡ 1 (mod 3), then {ei+5, ei+j+1, ei+j+2} is a triangle and either:
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(i) {ej+1, ej+3, ej+4} and {ej+2, ej+3, ej+5} are triangles; or,
(ii) {ej+1, ej+3, ej+5} and {ej+2, ej+3, ej+4} are triangles.

Proof. We assume that i = 0, so that S0 and S7 are cocircuits. Lemma 5.2
implies that S8 is a T -set. If S9 were a cocircuit then e9 would be a
coguts element by Lemma 4.5, contrary to our hypothesis. Thus S9 is a
T -set. Consider the maximal string of T -sets that contains S8 and S9.
Lemma 5.5 implies that this string cannot have length greater than two,
so S10 must be a cocircuit. Therefore (S7, S8, S9, S10) is a C∗TTC∗-se-
quence. Let (S7, . . . , S7+3t) be a maximal C∗TTC∗-sequence for some in-
teger t ≥ 1. Then by Lemma 5.2, S8+3t is a T -set. Consider the maximal
string of T -sets that contains S8+3t. This string cannot have length one, by
Lemma 5.7. It cannot have length two, for that would contradict the maxi-
mality of (S7, . . . , S7+3t). Now, Lemma 5.10 tells us that its length is even
and at least six. Furthermore, since S5+3t and S6+3t are T -sets, Lemma 5.16
tells us that the string of T -sets containing S8+3t has length exactly six. It
follows that S8+3t, S9+3t, . . . , S13+3t are all T -sets. Moreover, as S7+3t is a
cocircuit and S5+3t is a T -set, Lemma 5.13 (i) implies that e8+3t is a guts
element. Now, by Lemma 5.15 (ii), we may assume {e8+3t, e9+3t, . . . , e16+3t}
are ordered such that e8+3t, e9+3t, e11+3t, e12+3t, e13+3t, e15+3t and e16+3t

are guts elements and {e8+3t, e9+3t, e12+3t} is a triangle. Note that any
switching of elements from {e8+3t, e9+3t, . . . , e16+3t} that was necessary to
make this assumption has not altered the label-sequence or any properties
of our sequence established so far. For example, S7, S8, . . . , S7+3t is still a
C∗TTC∗-sequence and {e1, . . . , e9} still contains the same set of guts ele-
ments.

Now, we may further assume by Lemma 5.15 that {e1, e2, e5} and
{e5, e8, e9} are triangles. We assert that any switching that is neces-
sary to ensure these are triangles, does not alter the label-sequence or
any properties of our sequence established so far. To see this, it suf-
fices to check the case where {e1, . . . , e9} = {e8+3t, . . . , e16+3t}. In this
case we would have {e1, e2, e5} = {e8+3t, e9+3t, e12+3t} is a triangle, and
{e8+3t, e9+3t, e11+3t, e12+3t, e13+3t, e15+3t, e16+3t} = {e1, e2, e4, e5, e6, e8, e9}
are guts elements, as required.

We now show by induction that {e5, ej+1, ej+2} is a triangle if j ∈
{7, 8, . . . , 7 + 3t} and j ≡ 1 (mod 3). This is certainly true if j = 7.
Take j ∈ {10, 11, . . . , 7 + 3t} such that j ≡ 1 (mod 3) and such that
{e5, ej−2, ej−1} is a triangle of M . Then (Sj−3, . . . , Sj) is a C∗TTC∗-se-
quence, so by Lemma 5.18, ej+1 and ej+2 are guts elements. Thus ej+2 ∈
cl(Sj−2) and as {e5, ej−2, ej−1} is a triangle, we also have e5 ∈ cl(Sj−2).
Then Sj−2∪{ej+2, e5} has rank 3 and is an M(K4)-restriction of M in which
{e5, ej−2, ej−1} is a triangle. Also, by Lemma 5.18, either {ej−2, ej , ej+2}
and {ej−1, ej , ej+1} are triangles, or {ej−2, ej , ej+1} and {ej−1, ej , ej+2} are
triangles. In either case, the fourth triangle of the M(K4)-restriction must
be {e5, ej+1, ej+2}, as required.
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In particular, {e5, e8+3t, e9+3t} is a triangle. But we have already seen
earlier in the proof that {e8+3t, e9+3t, e12+3t} is a triangle of M . Since M
has no parallel pairs, it follows that e5 = e12+3t, therefore n = 7 + 3t and
(S7, S8, . . . , S0) is a C∗TTC∗-sequence in which {e5, ej+1, ej+2} is a triangle
if j ∈ {7, 8, . . . , n} and j ≡ 1 (mod 3).

Furthermore, by Lemma 5.18, either {ej+1, ej+3, ej+5} and
{ej+2, ej+3, ej+4} are triangles or {ej+1, ej+3, ej+4} and {ej+2, ej+3, ej+5}
are triangles if j ∈ {7, 8, . . . , n − 3} is such that j ≡ 1 (mod 3), as
required. �

The following lemma is the core of our argument. It shows that every pos-
sible label-sequence falls into one of only four families. In the next section,
we will see that the label-sequence is enough to determine the structure of
the corresponding cyclically sequential matroid.

Lemma 5.20. Suppose that M is an internally 4-connected binary matroid,
and that (e0, . . . , en−1) is a cyclically 4-sequential ordering for M , where
n ≥ 9. By switching the order of elements in the cyclic ordering, cyclically
shifting the ordering and exploiting duality, we can assume that one of the
following statements is true:

(i) n is even and Sj is a T -set for every j ∈ {0, 1, . . . , n − 1}. More-
over, for every even integer j ∈ {0, 1, . . . , n − 1}, {ej , ej+1, ej+2} is
a triangle and {ej+1, ej+2, ej+4, ej+5} is a cocircuit.

(ii) n is odd, Sn−2 and S0 are cocircuits, while Si is a T -set if i ∈
{1, 2, . . . , n−3, n−1}. Furthermore, {en−1, e1, e2} is a triangle, and
if j ∈ {2, 3, . . . , n− 3} is even, then {ej , ej+1, ej+2} is a triangle and
{e0, ej−1, ej , ej+1} is a cocircuit.

(iii) n is a multiple of 3. For j ∈ {0, 1, . . . , n− 1}, set Sj is a cocircuit if
j is a multiple of 3, otherwise Sj is a T -set. Furthermore, if j is a
multiple of 3, then either {ej+1, ej+3, ej+5} and {ej+2, ej+3, ej+4} are
triangles, or {ej+1, ej+3, ej+4} and {ej+2, ej+3, ej+5} are triangles.

(iv) n ≡ 1 (mod 3). Set Sj is a cocircuit if j = 0 or j ∈
{7, 8, . . . , n − 1} and j ≡ 1 (mod 3), and a T -set otherwise.
Also, {e2, e3, e4}, {e4, e5, e6}, {e6, e7, e8}, {e1, e2, e5}, {e5, e8, e9},
{e1, e3, e6} and {e4, e7, e9} are triangles. Furthermore, if j ∈
{7, 8, . . . , n− 1} and j ≡ 1 (mod 3), then {e5, ej+1, ej+2} is a trian-
gle and either {ej+1, ej+3, ej+5} and {ej+2, ej+3, ej+4} are triangles,
or {ej+1, ej+3, ej+4} and {ej+2, ej+3, ej+5} are triangles.

Proof. By Lemma 5.4 we can assume that Si is either a T -set or a cocircuit
for all i ∈ {0, . . . , n − 1}. By Lemma 5.10, a consecutive sequence of T -sets
has length either 1, 2 or an even integer greater than 4. If every Si is a T -set
then (i) follows from Lemma 5.12.

If there is no consecutive sequence of more than two T -sets, then ev-
ery consecutive sequence of T -sets has length one or two, while Lemma 5.2
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implies that every occurrence of a cocircuit in the label-sequence is immedi-
ately followed and preceded by a T -set. Lemma 5.7 now tells us that either
every maximal consecutive sequence of T -sets has length one or every max-
imal consecutive sequence of T -sets has length two, while Lemma 5.3 rules
out the first of these two possibilities. Thus, n is a multiple of 3, and by
cyclically shifting labels as necessary, we can assume that Si is a cocircuit
whenever i ∈ {0, 1, . . . , n − 1} is a multiple of 3, while Si is a T -set for all
other i ∈ {0, 1, . . . , n − 1} (that is (S0, S1, . . . , Sn−1, S0) is a C∗TTC∗-se-
quence). The fact that either {ej+1, ej+3, ej+5} and {ej+2, ej+3, ej+4} are
triangles or {ej+1, ej+3, ej+4} and {ej+2, ej+3, ej+5} are triangles follows
immediately from Lemma 5.18. Therefore (iii) must hold.

Finally suppose that some Si is a cocircuit and there is a consecutive
sequence of six or more T -sets. We may assume that S1, . . . , St is a max-
imal consecutive sequence of T -sets with S0 and St+1 being cocircuits.
Lemma 5.16 tells us that by possibly switching, we can assume that ei-
ther the elements {e1, . . . , et+3} alternate between guts and coguts, or that
t = 6 and the guts elements of {e1, . . . , e9} are {e1, e2, e4, e5, e6, e8, e9}. For
the first of these cases, we apply Lemma 5.17 which tells us that n = t + 3
and provides us with the list of triangles and cocircuits described in (ii).
Thus, (ii) follows from the first of our two cases. We now consider the sec-
ond case. We may apply Lemma 5.19 here to deduce that n ≡ 1 (mod 3)
and that (S7, . . . , Sn−1, S0) is a C∗TTC∗-sequence. We obtain the list of
triangles of (iv) from Lemmas 5.15 and 5.19. We conclude that (iv) follows
from the second of our two cases.

The result now follows. �

Proposition 5.21. Let (Si, . . . , Si+3t) be a C∗TTC∗-sequence. Then
{ei+1, ei+2, ei+j+1, ei+j+2} is a circuit if j ∈ {3, . . . , 3t} is a multiple of
3 and j < n.

Proof. Note that the restrictions on j ensure that ei+1, ei+2, ei+j+1 and
ei+j+2 are distinct elements. We assume that i = 0. Lemma 5.18 tells
us that either {e1, e3, e4} and {e2, e3, e5} are triangles, or {e1, e3, e5} and
{e2, e3, e4} are triangles. In either case, we take the symmetric difference
of the two triangles and find that {e1, e2, e4, e5} is a circuit. This provides
the base case of an inductive argument.

Suppose that j ∈ {6, . . . , 3t} is a multiple of 3, j < n, and that the
lemma holds for j − 3 so that {e1, e2, ej−2, ej−1} is a circuit. By applying
Lemma 5.18 to the C∗TTC∗-sequence (Sj−3, Sj−2, Sj−1, Sj), we see that ei-
ther {ej−2, ej , ej+1} and {ej−1, ej , ej+2} are triangles, or {ej−2, ej, ej+2}
and {ej−1, ej, ej+1} are triangles. In either case, by taking the symmet-
ric difference of these two triangles with {e1, e2, ej−2, ej−1}, we see that
{e1, e2, ej+1, ej+2} is a circuit. This completes the proof. �

Proposition 5.22. Let (Si, . . . , Si+3t) be a C∗TTC∗-sequence for some 6 ≤
3t ≤ n−3. Let k ∈ {6, . . . , 3t} be a multiple of 3, and let a ∈ {ei+k−2, ei+k−1}
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and b ∈ {ei+k+1, ei+k+2} be such that {ei+k, a, b} is not a triangle. Then
{ei+1, ei+2, ei+k, a, b} is a circuit of M .

Proof. Note that the restrictions on k and t ensure that ei+1, ei+2, ei+k,
a and b are distinct elements. We may assume by a cyclic shift that i =
0. Let a′ ∈ {ek−2, ek−1} − {a}. We know that {ek, a′, b} is a triangle by
Lemma 5.18, and that {e1, e2, a, a′} is a circuit by Proposition 5.21. The
symmetric difference {ek, a

′, b}∆{e1, e2, a, a′} = {e1, e2, ek, a, b} is a union of
disjoint circuits. By the connectivity of M , it cannot contain more than one
circuit. Therefore {e1, e2, ek, a, b} is a circuit, as required. �

6. Proof of the main theorem

In the last section we characterized the possible label-sequences that can
arise from a cyclically 4-sequential ordering of an internally 4-connected
binary matroid and we built up a description of many of the small circuits
and cocircuits of such a matroid. In this section we show that each of the
four possible sequences mentioned in Lemma 5.20 leads to a matroid in one
of our basic classes described in Section 3.

Note that it is well known that if two binary matroids have the same
ground set, and they share a common basis for which the fundamental cir-
cuits are the same, then the matroids have the same representation over
GF(2) and are therefore equal. We will use this to show that our cyclically
sequential binary matroids are indeed isomorphic to matroids of the basic
classes from Section 3. Note also, that traditionally the term “fundamental
circuit” has been used with regards to bases only. We extend its definition
to encompass all independent sets as follows. Let I be an independent set
of a matroid M , and let e ∈ E(M) − I. If I ∪ e contains a circuit C, then
C is the fundamental circuit of e with respect to I. Otherwise e has no
fundamental circuit with respect to I.

Throughout this section, M will be an internally 4-connected binary ma-
troid and (e0, . . . , en−1) will be a cyclically 4-sequential ordering, where
n ≥ 9. By switching and applying duality we will assume that one of the
four statements in Lemma 5.20 holds.

Lemma 6.1. Suppose that statement (i) of Lemma 5.20 holds. Then M is
the polygon matroid of a quartic planar ladder, or the polygon matroid of a
quartic Möbius ladder.

Proof. We construct a basis B of M and show that it has the same
collection of fundamental circuits as a corresponding basis of the quar-
tic planar or Möbius ladder. Let B = {e0, e2, e4, . . . , en−4}. We show
that B is indeed a basis of M by first showing that it is independent.
Clearly {e0, e2} is independent by the size and connectivity of M . Now
let 2 ≤ i ≤ n− 6 be an even integer such that {e0, e2, e4, . . . , ei} is indepen-
dent. Then by Lemma 5.20, {ei+1, ei+2, ei+4, ei+5} is a cocircuit avoiding
{e0, e2, e4, . . . , ei}, thus {e0, e2, e4, . . . , ei, ei+2} is independent. It follows
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that B is independent. We must now show that B spans E(M). Since
{ej , ej+1, ej+2} is a triangle for all even j, we see that {e1, e3, e5, . . . , en−5} ⊆
cl(B). By the connectivity of M , if {en−3, en−2, en−1} were not contained in
cl(B), then it would be a triad of M meeting the triangle {en−4, en−3, en−2},
a contradiction to the fact that no triangle meets any triad in M . Hence
{en−3, en−2, en−1} ⊆ cl(B) and B spans E(M), thus B is indeed a basis of
M .

We now find the fundamental circuits of M with respect to B. Let
1 ≤ i ≤ n − 5 be an odd integer. Then by Lemma 5.20, {ei−1, ei, ei+1}
is a triangle, and hence the fundamental circuit for ei with respect to B.
Now consider the fundamental circuit for en−2. Clearly {e0, e2, e4, . . . , en−2}
is dependent. Let 0 ≤ i ≤ n − 2 and 2 ≤ j ≤ n − 4 be even inte-
gers such that {ei+2, ei+4, . . . , ei+j} is independent. Then by Lemma 5.20,
{ei+j+1, ei+j+2, ei+j+4, ei+j+5} is a cocircuit avoiding {ei+2, ei+4, . . . , ei+j},
and hence {ei+2, ei+4, . . . , ei+j , ei+j+2} is also independent. It follows that
for all even integers 0 ≤ i ≤ n − 2, {e0, e2, e4, . . . , en−2} − {ei} is indepen-
dent, and therefore {e0, e2, e4, . . . , en−2} is a circuit, namely the fundamental
circuit of en−2 with respect to B.

Now consider the fundamental circuit of en−3 with respect to B. We
know that {e0, e2, e4, . . . , en−2} and {en−4, en−3, en−2} are circuits of M ,
and that the symmetric difference {e0, e2, e4 . . . , en−6}∪{en−3} is a union of
disjoint circuits of M . We have already established that {e0, e2, e4 . . . , en−6}
is independent, thus {e0, e2, e4 . . . , en−6} ∪ {en−3} is a circuit, namely
the fundamental circuit of en−3 with respect to B. A symmetric argu-
ment shows that the fundamental circuit of en−1 with respect to B is
{e2, e4, e6 . . . , en−4} ∪ {en−1}.
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Figure 6. (a) Quartic planar ladder. (b) Quartic Möbius ladder.

Now consider the quartic planar and Möbius ladders of Figure 6. It is
easily checked that B′ = {0, 2, 4, . . . , n − 4} is a basis and that the fun-
damental circuits with respect to this basis are {i − 1, i, i + 1} for all odd
integers 1 ≤ i ≤ n − 5; {0, 2, 4, . . . , n − 2}; {0, 2, 4, . . . , n − 6} ∪ {n − 3} and
{2, 4, 6, . . . , n − 4} ∪ {n − 1}. It follows that M is isomorphic to the cycle
matroid of a quartic planar or Möbius ladder. Note that the quartic ladder
underlying M is planar when n is a multiple of 4, and Möbius otherwise. �
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Lemma 6.2. Suppose that statement (ii) of Lemma 5.20 holds. Then M is
a wheel with a tip.

Proof. Consider the set B = {e2, e4, . . . , en−1}. Any circuit in this set would
violate orthogonality with one of the cocircuits Sn−2 or {e0, ej , ej+1, ej+2}
for odd integers 1 ≤ j ≤ n−4. Therefore B is independent. Considering the
list of triangles in the statement of Lemma 5.20(ii), clearly every element,
except for possibly e0, is spanned by B. As M has no coloops it follows
that B is a basis of M . The unique circuit in B ∪ e0 must be B ∪ e0, for
otherwise there is a violation of orthogonality with one of the cocircuits Sn−2

or {e0, ej , ej+1, ej+2}, where 1 ≤ j ≤ n − 4 is odd.
If j ∈ {3, . . . , n − 2} is an odd integer, then the fundamental circuit

of ej with respect to B is {ej−1, ej , ej+1}. The fundamental circuit of e1

is {en−1, e1, e2}, and the fundamental circuit of e0 is B ∪ e0. It follows
immediately that M is represented over GF(2) by a matrix of the type
shown in Figure 3. Therefore M is isomorphic to a wheel with a tip. �

Lemma 6.3. Suppose that statement (iii) of Lemma 5.20 holds. Then M
is the bond matroid of a cubic planar ladder, or the bond matroid of a cubic
Möbius ladder.

Proof. We would like to increase the number of sequential triangles in the
ordering as much as possible. Let us say that two cyclic orderings of E(M)
are switching-equivalent if the corresponding label-sequences are identical,
and one can be obtained from the other by switching adjacent elements of the
same (g, c)-label. Let our cyclic ordering be (x0, x1, . . . , xn−1), and consider
the set of all cyclic orderings that are switching-equivalent to (x0, . . . , xn−1).
Suppose that (e0, . . . , en−1) is such a cyclic ordering. There is an index, i+1,
such that if j < i+1 and Sj is a T -set, then Sj contains a sequential triangle,
and i+1 is as large as possible subject to this property. Let us suppose that
(e0, . . . , en−1) has been chosen so that this index is as large as possible.

We will show by contradiction that i + 1 ≥ n − 2. Assume that i + 1 <
n − 2. Note that if Sj contains a sequential triangle, then so does either
Sj−1 or Sj+1. Now our choice of i + 1 means that i is a multiple of 3, Si

is a cocircuit, and Si−2, Si−1, Si+1, and Si+2 are all T -sets. Since i is a
multiple of 3 and i + 1 < n − 2, it follows that i + 1 ≤ n − 5. As Si+1

does not contain a sequential triangle it follows from Lemma 5.20 (iii) that
{ei+1, ei+3, ei+4} and {ei+2, ei+3, ei+5} are triangles. Moreover, ei+4 and
ei+5 are guts elements by Lemma 4.5, so we can switch ei+4 and ei+5 and
produce a new cyclic ordering by Lemma 4.3.

The only sets in the set-sequence that are changed by this switch are Si+1

and Si+5. After the switch, we have S′

i+1 = {ei+1, ei+2, ei+3, ei+5}, which
contains the triangle {ei+2, ei+3, ei+5}, so it is a T -set of the new cyclic or-
der. Moreover by Lemma 5.20, either {ei+4, ei+6, ei+7} or {ei+4, ei+6, ei+8}
is a triangle, hence S′

i+5 = {ei+4, ei+6, ei+7, ei+8} is a T -set of the new
cyclic ordering. Thus the new cyclic ordering is indeed switching-equivalent
to (x0, . . . , xn−1). Note also that i + 1 ≤ n − 5 implies that i + 5 < n, so
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any T -set in S0, . . . , Si that contains a sequential triangle in the original
cyclic order also contains a sequential triangle in the new cyclic ordering.
Furthermore, S′

i+1 contains the sequential triangle {ei+2, ei+3, ei+5} of the
new ordering, contradicting our choice of (e0, . . . , en−1).

Therefore we will assume that whenever Sj is a T -set and j ∈ {0, . . . , n−3}
then Sj contains a sequential triangle. In particular, {ej , ej+1, ej+2} is a
triangle for all integers j ∈ {0, . . . , n − 3} such that j ≡ 2 (mod 3).

Note that by Lemma 5.20, either {en−2, e0, e2} and {en−1, e0, e1} are tri-
angles or {en−2, e0, e1} and {en−1, e0, e2} are triangles. We now construct
a basis of M . Let B = {e1, e4, e7, . . . , en−2} ∪ {e2}. We first show that B is
independent. Suppose that B contains a circuit. Then that circuit cannot
contain any element of e4, e7, . . . , en−2 for that would violate orthogonality
with a cocircuit Sj where j ∈ {3, 6, . . . , n − 3}. Therefore, if B contains a
circuit then it is a subset of {e1, e2}, a contradiction to connectivity. Hence
B is independent.

We now show that every element not in B has a fundamental circuit
with respect to B, which will immediately imply that B is spanning, and
hence a basis. First consider ei where i ≡ 2 (mod 3) and i 6= 2. Then by
Proposition 5.21, {e1, e2, ei−1, ei} is a circuit in which {e1, e2, ei−1} ⊆ B,
and this is the fundamental circuit for ei. The fundamental circuit for e3 is
{e2, e3, e4}, while for e0 it is either {en−2, e0, e1} or {en−2, e0, e2} depend-
ing on whether the triangle of Sn−2 is sequential. Now consider ei, where
i /∈ {0, 3} is a multiple of 3. Then by Proposition 5.22, {e1, e2, ei−2, ei, ei+1}
is a circuit in which {e1, e2, ei−2, ei+1} ⊆ B and e1, e2, ei−2 and ei+1 are
distinct elements (note that when applying Proposition 5.22 here, a and b
are ei−2 and ei+1 respectively). Therefore, {e1, e2, ei−2, ei, ei+1} is the fun-
damental circuit for ei with respect to B.

We have now found all fundamental circuits with respect to B, and as
each element not in B has such a fundamental circuit, B is indeed a basis.
We must now demonstrate that these fundamental circuits correspond to
those of the bond matroid of a cubic planar or cubic Möbius ladder, and
under which conditions each is obtained.

First consider the cubic planar ladder in the case where n is even, and
the cubic Möbius ladder in the case where n is odd. See Figure 7 for the
cyclic ordering of elements. In these cases, the associated bond matroids
have sequential triangles in all T -sets. Clearly B′ = {1, 4, 7, . . . , n−2}∪{2}
is a basis for these bond matroids with the same collection of fundamental
circuits as the basis B has for our matroid M . Therefore, in the case where
{en−1, e0, e1} is a sequential triangle of M , we see that when n is even, M
is isomorphic to the bond matroid of a cubic planar ladder, and when n is
odd, M is isomorphic to the bond matroid of a cubic Möbius ladder.

Now consider the cubic planar ladder in the case where n is odd, and the
cubic Möbius ladder in the case where n is even, see Figure 8. Here, the
bond matroids of these graphs have sequential triangles in all T -sets except
for Sn−2 and Sn−1. It is easily checked that B′ = {1, 4, 7, . . . , n − 2} ∪ {2}
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Figure 7. (a) Cubic planar ladder, for n even. (b) Cubic
Möbius ladder, for n odd.

is a basis for these matroids, and it has the same collection of fundamental
circuits as the basis B has for our matroid M . Therefore, in the case where
{en−2, e0, e1} and {en−1, e0, e2} are triangles of M , we see that when n is
odd, M is isomorphic to the bond matroid of a cubic planar ladder, and
when n is even, M is isomorphic to the bond matroid of a cubic Möbius
ladder. This completes the proof.
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Figure 8. (a) Cubic planar ladder, for n odd. (b) Cubic
Möbius ladder, for n even.

�

Lemma 6.4. Suppose that statement (iv) of Lemma 5.20 holds. Then M
is a dual cubic ladder with a tip.

Proof. Note that as n ≡ 1 (mod 3), it follows that n ≥ 10. We next increase
the number of sequential triangles in the ordering of {e7, . . . , en−1} as much
as possible. Suppose that S8 does not contain a sequential triangle and as-
sume that n > 10. Then by Lemma 5.20, {e8, e10, e11} and {e9, e10, e12}
are triangles, while e11 and e12 are both guts elements (because they are
triangle endpoints), so switching these elements produces a valid cyclic or-
dering. Note that S′

8 = {e8, e9, e10, e12} contains the triangle {e9, e10, e12},
so in our new ordering, S′

8 will be a T -set with a sequential triangle. More-
over, S′

12 = {e11, e13, e14, e15} cannot be a circuit or a cocircuit because of
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its intersection with the cocircuit S13. It cannot contain a triad because S11

contains a triangle. Therefore, {e11, e13, e14, e15} contains a triangle and is
thus a T -set of the new cyclic ordering. Therefore switching e11 and e12 has
not changed the label-sequence.

Now suppose that 8 ≤ i ≤ n − 3, and that i ≡ 2 (mod 3). We will
inductively assume that if 8 ≤ j < i and j ≡ 2 (mod 3), then Sj and
Sj+1 contain the sequential triangle {ej+1, ej+2, ej+3}. If Si does not con-
tain a sequential triangle, then {ei, ei+2, ei+3} and {ei+1, ei+2, ei+4} are
triangles by Lemma 5.20, and we can switch the consecutive guts elements
ei+3 and ei+4. Note that S′

i = {ei, ei+1, ei+2, ei+4} contains the triangle
{ei+1, ei+2, ei+4}. Now, S′

i+4 = {ei+3, ei+5, ei+6, ei+7} cannot be a circuit
or cocircuit because of its intersection with the cocircuit Si+5. It cannot
contain a triad because Si+3 = {ei+3, ei+4, ei+5, ei+6} contains a triangle,
so in this case the label-sequence is unchanged.

In summary, by possibly switching consecutive guts elements, we can
assume that for all i ∈ {8, 9, . . . , n − 3} such that i ≡ 2 (mod 3),
{ei, ei+2, ei+4} and {ei+1, ei+2, ei+3} are triangles, and that either
{en−2, e0, e1} and {en−1, e0, e2} are triangles or {en−2, e0, e2} and
{en−1, e0, e1} are triangles.

By Lemma 5.20, {e5, ei+1, ei+2} is a triangle for all i ∈ {7, . . . , n−3} such
that i ≡ 1 (mod 3). We also know that {e2, e3, e4}, {e4, e5, e6}, {e6, e7, e8},
{e1, e2, e5}, {e5, e8, e9}, {e1, e3, e6} and {e4, e7, e9} are triangles.

We now construct a basis of M . Consider the set B = {e1, e4} ∪
{e5, e8, e11, . . . , en−2}. We first show that B is independent. Any circuit
in B cannot contain an element from {e8, e11, e14, . . . , en−2, e1} by orthogo-
nality with the cocircuits S7, S10, S13, . . . , Sn−3 and S0. As {e4, e5} cannot
contain a circuit, it follows that B is independent.

We now find all fundamental circuits of B to show that every ele-
ment not in B has a fundamental circuit with respect to B. This will
imply that B is spanning, and hence a basis. First consider ei where
i ∈ {8, 9, . . . , n − 1} such that i ≡ 0 (mod 3). Then {e5, ei−1, ei}
is a triangle, hence it is the fundamental circuit for ei with respect
to B. Now consider ei where i ∈ {8, 9, . . . , n − 1} such that i ≡
1 (mod 3). Then {e5, ei−2, ei−1} and {ei−1, ei, ei+1} are triangles of
M , thus {e5, ei−2, ei, ei+1} = {e5, ei−2, ei−1}∆{ei−1, ei, ei+1} is a cir-
cuit of M , the fundamental circuit for ei with respect to B. Now con-
sider e2, e3, e6, and e7. Using our knowledge of the triangles of M ,
we see that the fundamental circuit for e2 is {e1, e2, e5}; for e3 it is
{e1, e3, e4, e5} = {e1, e2, e5}∆{e2, e3, e4}; for e6 it is {e4, e5, e6}; and
for e7 it is {e4, e5, e7, e8} = {e4, e5, e6}∆{e6, e7, e8}. Finally, we con-
sider the fundamental circuit for e0. In the case where {en−1, e0, e1}
is a triangle, the fundamental circuit for e0 is {e5, en−2, e0, e1} =
{en−1, e0, e1}∆{e5, en−2, en−1}. In the case where {en−1, e0, e1} is not a
triangle, {en−2, e0, e1} is a triangle by Lemma 5.20, and is the fundamental
circuit for e0 with respect to B.
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Figure 9. A matrix representation of M .

Having found fundamental circuits with respect to B for all elements not
in B, it now follows that B is spanning and therefore a basis. It also follows
that M is represented over GF(2) by the matrix in Figure 9, where α = 0 if
and only if {en−1, e0, e1} is a triangle. Therefore M is a dual cubic ladder
with a tip, as desired. �

Theorem 1.1 follows from Lemmas 2.2, 5.20, 6.1, 6.2, 6.3, and 6.4.
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