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Abstract

In this paper, we consider an initial-boundary value problem for the Korteweg-
de Vries equation on the negative quarter-plane. The normalized Korteweg-de
Vries equation considered is given by

uτ + uux + uxxx = 0, x < 0, τ > 0,

where x and τ represent dimensionless distance and time respectively. In par-
ticular, we consider the case when the initial and boundary conditions are given
by u(x, 0) = ui for x < 0 and u(0, τ ) = ub,

∂

∂x
u(0, τ ) = ubx for τ > 0. Here the

initial value ui < 0 and we restrict attention to boundary values ub and ubx in

the ranges 0 < ub < −2ui and |ubx| ≥
1
√

3
(ub − ui)(−ub − 2ui)

1
2 respectively.

The method of matched asymptotic coordinate expansions is used to obtain the
large-τ asymptotic structure of the solution to this problem, which exhibits the

formation of a dispersive shock wave when |ubx| >
1
√

3
(ub − ui)(−ub − 2ui)

1
2 .

We also present detailed numerical simulations of the full initial-boundary value
problem which support the asymptotic analysis presented. A brief discussion
is also given of the large-τ asymptotic structure to this problem when ui < 0,
ub ≥ −2ui and ubx ∈ (−∞,∞).

1 Introduction

In this paper we consider the following initial-boundary value problem for the normal-
ized Korteweg-de Vries equation, namely,

uτ + uux + uxxx = 0, x < 0, τ > 0, (1.1)

u(x, 0) = ui, x < 0, (1.2)

u(0, τ) = ub, τ > 0, (1.3)

∂

∂x
u(0, τ) = ubx, τ > 0, (1.4)

where the initial value ui < 0 and we restrict attention to boundary values ub and ubx

in the ranges 0 < ub < −2ui and |ubx| ≥ 1√
3
(ub − ui)(−ub − 2ui)

1
2 respectively. In

what follows we label initial-boundary value problem (1.1)-(1.4) as IBVP.
We note that the Korteweg-de Vries equation is a canonical equation combining

both nonlinearity and dispersion and as such arises in the modelling of many physical
phenomena including for example shallow-water gravity waves, ion-acoustic waves and



waves in the atmosphere and ocean. Clearly, the literature relating to the Korteweg-
de Vries equation is vast and we make no attempt here to summarize it, rather we
make reference only to the most salient to this present paper. The analysis of initial-
boundary value problems on the positive quarter-plane has received considerable at-
tention over recent years, and a review of some of the more significant literature in the
area can be found in [11], [13] and [14]. In particular, in the recent paper [7] the large-
time development of the solution to an initial-boundary value problem for the positive
quarter-plane was considered in detail, using the method of matched coordinate ex-
pansions. However, the analysis of initial-boundary value problems on the negative
quarter-plane is far less developed, although some excellent numerical studies exist
(see for example [13] and [14]). Further, the well-posedness of negative quarter-plane
problems has been addressed in, for example, [3] and [13] (and references therein).
There are a number of physical applications, including weakly nonlinear long waves
propagating on a fluid with surface tension [6], and the plasma-sheath transition layer
[12].

In [8] (hereafter, referred to as L) the method of matched asymptotic coordinate
expansions was used to develop the complete large-τ asymptotic structure of the so-
lution to IBVP when ui < 0 for boundary values ub and ubx in the ranges

(I) 0 < ub < −2ui, |ubx| < 1√
3
(ub − ui)(−ub − 2ui)

1
2 .

The large-τ asymptotic structure of solution to IBVP in this case was obtained by
careful consideration of the asymptotic structures as τ → 0 (−∞ < x ≤ 0) and as
x → −∞ (τ ≥ O(1)). The methodology used was analogous to that developed in the
context of reaction-diffusion equations and is elucidated in [10]. The leading order
structure of the solution to IBVP for x = O(1) (≤ 0) was found to be the steady
state solution

us(x) = ul − 3ul sech2

(√−ul

2
x± sech−1

(
ub − ul

−3ul

) 1
2

)
, (1.5)

with x = O(1) (≤ 0), and where

ul =

(
r+ + r− +

1

2

)
ub, ul ∈

(
ui,−

ub

2

]
, (1.6)

with

r± =
1

2ub

(
−6u2

bx − u3
b ± 2

√
3 ubx

√
3u2

bx + u3
b

) 1
3

. (1.7)

The −[+] sign in (1.5) is taken when ubx is positive [negative] respectively. Further,
the rate of convergence of the solution of IBVP to the steady state us(x) was found
to be exponential in τ as τ → ∞, with

u(x, τ) = us(x) +O

(
τ−

3
2 exp

[
− 2

3
√

3
(−ul)

1
2 τ

])
(1.8)

as τ → ∞ with x = O(1) (≤ 0). This steady state solution is connected to the
oscillatory behaviour (oscillating about ui) when x < uiτ by the expansion wave

u(x, τ) ∼ x

τ
, x ∈ (uiτ, ulτ) (1.9)

as τ → ∞. We note that this expansion wave is connected to the steady state and
oscillatory behaviour by localized connection regions, located at x = ulτ and x = uiτ
respectively. The full details of these results are reported in L, which both confirm the
numerical simulations presented in [13] and [14], and extend the analysis presented in
[14].
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The aim of this present paper is to extend the analysis presented in L by determin-
ing the complete large-τ structure of the solution to IBVP when ui < 0 for boundary
values ub and ubx in the ranges

(II) 0 < ub < −2ui, |ubx| = 1√
3
(ub − ui)(−ub − 2ui)

1
2

and

(III) 0 < ub < −2ui, |ubx| > 1√
3
(ub − ui)(−ub − 2ui)

1
2 .

In each case the asymptotic analysis presented is supported by detailed numerical
simulations. We conclude by giving a brief discussion of the large-τ asymptotic struc-
ture of the solution to IBVP when ui < 0 and with boundary values ub and ubx in
the ranges ub ≥ −2ui and ubx ∈ (−∞,∞). When (ub > −2ui, ubx ∈ (−∞,∞)) or
(ub = −2ui, ubx 6= 0) then ul < ui and the large-τ asymptotic structure of the solution
to IBVP follows, after minor modification, that given for case (III). However, when
(ub = −2ui, ubx = 0) then ul = ui and the large-τ asymptotic structure of the solution
to IBVP follows, after minor modification, that given for case (II).

The large-τ solution to IBVP in case (III) contains a dispersive shock wave
(undular bore). This dispersive shock wave is connected to the steady state (1.5)
(where ul < ui and is given by (1.6) and (1.7)) and the oscillatory behaviour when

x < (2ul − ui) τ
(
where u = ui +O

(
τ−

1
2

)
as τ → ∞

)
by localized connection regions,

located at x =
(

2ui

3 + ul

3

)
τ and x = (2ul − ui) τ respectively. The rate of convergence

of the solution to IBVP to the steady state us(x) in this case is exponential in τ as
τ → ∞, with

u(x, τ) = us(x) +O

(
exp

[
−
(

2

3

) 3
2

(ui − ul)
1
2

(
−ui −

ul

2

)
τ

])
(1.10)

as τ → ∞ with x = O(1) (≤ 0). The dispersive shock wave has been examined using
Whitham’s quasi-classical method (see [4], [5] and [15]) and the approximate solution
of (1.1) when x ∈

[
(2ul − ui) τ,

(
2
3ui + ul

3

)
τ
]

for τ ≫ 1 (within which the Whitham
equations are valid) connecting u = ui to u = ul, is given (up to an arbitrary phase
shift) by

u(x, τ) =2 (ui − ul) dn2

[√
ui − ul

6

(
x− 1

3

[ (
1 +m2

)
(ui − ul) + 3ul

]
τ

)
,m

]

−
(
1 −m2

)
(ui − ul) + ul, (1.11)

where dn[.,m] is the standard Jacobian elliptic function (see [1], pp. 569-581) with
modulus m (0 ≤ m ≤ 1). The modulus is a function of x/τ and is determined by the
modulation equation

1

3

(
1 +m2

)
(ui − ul) + ul −

2

3

(ui − ul)m
2(1 −m2)K(m)

E(m) − (1 −m2)K(m)
=
x

τ
= y, (1.12)

where K(m), E(m) are the standard complete elliptic integrals of the first and second
kind respectively. The group velocity, vg, at the front (when m = 1) and rear (when
m = 0) of the dispersive shock wave are given by 2ui

3 + ul

3 and (2ul − ui) respectively.
We note that the wave number, k, is given by

k =
π

K(m)

√
ui − ul

6
, (1.13)
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while the mean height, uh̄, phase velocity, vp, and wave envelope, ue, of this oscillatory
solution are given by

uh̄ = −(1 −m2)(ui − ul) + ul + 2(ui − ul)
E(m)

K(m)
, (1.14)

vp =
1

3
(1 +m2)(ui − ul) + ul, (1.15)

and
ue = ui ±m2(ui − ul). (1.16)

Finally, It follows from (1.12) that as m → 1−
(
that is, as y →

(
2ui

3 + ul

3

)−)
we ap-

proach the the front of the wave (the soliton limit) and the oscillations break up and
approach solitons. In particular, via (1.11), we have that

u(y, τ) = ul + 2 (ui − ul) sech2

(√
ui − ul

6

(
y −

[
2ui

3
+
ul

3

])
τ

)
+O

(
1 −m2

)

(1.17)
as m→ 1−. We note from (1.17) that the leading soliton has amplitude 2 (ui − ul) and

speed 2ui

3 + ul

3 . Further, as m → 0+
(
that is, as y → (2ul − ui)

+
)

we approach the

rear of the wave (the harmonic limit) and the solution approaches linear oscillations
about ui, with phase velocity

vp =
1

3
(ui + 2ul) (1.18)

and wave number

k =

√
2(ui − ul)

3
. (1.19)

The full details of the large-τ asymptotic structure of the solution to IBVP in this
case are reported in Section 2.3.2.

The final case, case (II), separates the distinct large-τ structures of the solution to
IBVP in cases (I) and (III). In this case the oscillatory behaviour when x < uiτ is
connected to the steady state solution (1.5) (with ul = ui) via a localized connection
region, located at x = uiτ . The rate of convergence of the solution to IBVP to the
steady state us(x) is given by (1.8) (with ul = ui). The full details of this case are
reported in Section 2.3.1.

We conclude by noting that the methodology presented in this paper for initial-
boundary value problem IBVP is applicable to a large class of nonlinear evolution
equations. In particular, where a coherent structure forms the large-time attractor
for the solution to initial-value (or initial-boundary value) problem for a nonlinear
evolution equation (or system of equations).

2 Asymptotic solution to IBVP as τ → ∞

To develop the asymptotic structure of the solution to IBVP as τ → ∞, we must
follow L and first consider both the asymptotic structures to the solution of IBVP
as τ → 0 followed by x → −∞. The details are as in L, and we repeat here only the
overall results.

2.1 Asymptotic solution to IBVP as τ → 0

Following L, the asymptotic structure of the solution to IBVP as τ → 0 has two
regions. We have:
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Region I x = o(1) as τ → 0

η = xτ−
1
3 = O(1) (≤ 0) as τ → 0 and,

u(η, τ) = ub −
3

2
(ub − ui)

∫ 0

η 3−

1
3

Ai(s)ds

−
√

3

[
Γ

(
2

3

)
ubx − (ub − ui)

2

] ∫ 0

η 3−

1
3

Bi(s)ds+ o(1) (2.1)

as τ → 0 with η = O(1) (≤ 0), where Ai[.] and Bi[.] are the standard Airy functions
(see [1], pp. 446-450).

Region II x = O(1) (< 0) as τ → 0

u(x, τ) = ui + exp

(
ı̇

2

3
√

3
(−x) 3

2 τ−
1
2 +

1

4
ln τ +

[
ı̇

(
π

4
+ tan−1

(
As

Ac

))
− 3

4
ln(−x)

+
1

2
ln

(
A2

c +A2
s

4

)]
+ τ

1
2

[
ı̇
ui√
3
(−x) 1

2 + . . .

]
+ o

(
τ

1
2

))

+ exp

(
− ı̇

2

3
√

3
(−x) 3

2 τ−
1
2 +

1

4
ln τ +

[
− ı̇

(
π

4
+ tan−1

(
As

Ac

))

− 3

4
ln(−x) +

1

2
ln

(
A2

c +A2
s

4

)]
+ τ

1
2

[
−ı̇ ui√

3
(−x) 1

2 + . . .

]
+ o

(
τ

1
2

))

(2.2)

as τ → 0 with x = O(1) (< 0), where

Ac =
3

5
4 (ub − ui)

2
√
π

(2.3)

and

As =
3

3
4

√
π

[
Γ

(
2

3

)
ubx − (ub − ui)

2

]
. (2.4)

The asymptotic structure as τ → 0 is now complete, with the expansions in regions
I and II providing a uniform approximation to the solution of IBVP as τ → 0.

2.2 Asymptotic solution to IBVP as x → −∞

Following L, we have,

Region III τ = O(1) as x→ −∞

u(x, τ) = ui + exp

(
ı̇

2

3
√

3
(−x) 3

2 τ−
1
2 + ı̇

ui√
3
(−x) 1

2 τ
1
2 − 3

4
ln(−x)

+

[
ı̇

(
π

4
+ tan−1

(
As

Ac

))
+

1

4
ln τ +

1

2
ln

(
A2

c +A2
s

4

)]
+ o (1)

)

+ exp

(
− ı̇

2

3
√

3
(−x) 3

2 τ−
1
2 − ı̇

ui√
3
(−x) 1

2 τ
1
2 − 3

4
ln(−x)

+

[
− ı̇

(
π

4
+ tan−1

(
As

Ac

))
+

1

4
ln τ +

1

2
ln

(
A2

c +A2
s

4

)]
+ o (1)

)

(2.5)
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as x→ −∞ with τ = O(1). Expansion (2.5) remains uniform for τ ≫ 1 provided that
(−x) ≫ τ , but becomes nonuniform when (−x) = O(τ) as τ → ∞.

2.3 Asymptotic solution to IBVP as τ → ∞

As τ → ∞, the asymptotic expansion in region III continues to remain uniform for
(−x) ≫ τ . However, as already noted, a nonuniformity develops when (−x) = O(τ).
As in L, we proceed by introducing region IV in which y = x/τ = O(1) as τ → ∞.

To examine region IV we introduce the scaled coordinate y = x
τ , where y = O(1) (<

0) as τ → ∞, and write (as suggested by (2.5))

u(x, τ) = ui +
(
eg+(y,τ) + eg−(y,τ)

)
as τ → ∞, (2.6)

where
g±(y, τ) = ±ı̇g0(y)τ + g1(y) ln τ ± ı̇g2(y) + g3(τ) + o (1) , (2.7)

as τ → ∞, with y = O(1) (< 0). It is instructive to first consider the leading order
problem in region IV. On substituting (2.6) and (2.7) into equation (1.1) (when written
in terms of y and τ) we obtain the leading order problem as

(g′0)
3

+ (y − ui) g
′
0 − g0 = 0, y < 0, (2.8)

g0(y) =
2

3
√

3
(−y) 3

2 +
ui√
3
(−y) 1

2 + o
[
(−y) 1

2

]
y → −∞. (2.9)

The final condition, (2.9), arises from matching (2.6) ((−y) ≫ 1) with expansion (2.5)
(−x = O(τ)). Equation (2.8) has a one-parameter family of linear solutions,

g0(y) = −α
(
y + α2 − ui

)
, y ∈ (−∞,∞), (2.10)

for each α ∈ R, together with the associated pair of envelope solutions,

g0(y) = ± 2

3
√

3
(ui − y)

3
2 , y ∈ (−∞, ui]. (2.11)

Combinations of (2.10) and (2.11) which remain continuous and differentiable also
provide solutions to (2.8) (envelope touching solutions). The problem (2.8),(2.9) thus
has a one-parameter family of solutions, namely, the envelope solution

g0(y) =
2

3
√

3
(ui − y)

3
2 , y ≤ ui, (2.12)

together with the family of envelope touching solutions, given by,

g0(y, α) =

{
2

3
√

3
(ui − y)

3
2 , y ≤ yT (α, ui)

−α
(
y −

[
ui − α2

])
, yT (α, ui) < y < ui − α2

(2.13)

for each α > 0, where,
yT (α, ui) = ui − 3α2. (2.14)

Each of the above solutions is illustrated in Figure 1. Since the solution to (2.8) and
(2.9) approaches zero as

y → yc(α, ui) =

{
ui, α = 0
ui − α2, α > 0

, (2.15)

then the expansion (2.6) with (2.7) becomes nonuniform as y → y−c (α, ui), specifically
when

y = yc(α, ui) +O
(
δ(τ, α)

)
, (2.16)

6



0

g0

yyT (α, ui) ui − α2

g0(y, α)

g0(y)

ui

Figure 1: A sketch of g0(y) illustrating the envelope touching solution g0(y, α) (given by
(2.13)) and the full envelope solution g0(y) (given by (2.12)). We note that yT (α, ui) =
ui − 3α2.

with

δ(τ, α) =

{
τ−1, α > 0,

τ−
2
3 , α = 0.

(2.17)

We again note that when α > 0, although g0(y, α) and g′0(y, α) are continuous over
the range of definition y ≤ yc(α, ui), the second derivative g′′0 (y, α) is discontinuous
at the point at which the linear solution meets the envelope solution, that is at y =
y−T (α, ui). This indicates that a thin transition region exists in a neighbourhood of
y = y−T (α, ui) in which third order derivatives are retained at leading order to smooth
out the discontinuity in curvature.

In L, when considering the parameter range (I) it was determined that α = 0 with
the large-τ structure of the solution to IBVP containing an expansion wave. However,
in this present paper our aim is to extend the analysis presented in L by developing
the large-τ structure of the solution to IBVP in cases (II) and (III). As already noted
the large-τ structure of the solution of IBVP in these cases is distinct and in what
follows they must be considered separately. We begin with case (II).

2.3.1 Case (II) 0 < ub < −2ui, |ubx| = 1
√

3
(ub − ui)(−ub − 2ui)

1

2

In this case, α = 0, and continuing expansion (2.6) results in,

g1(y) = −1

2
, y < 0, (2.18)

with g2(y) and g3(y) remaining indeterminate O(1) functions, where

g3(y) ∼ −3

4
ln(−y) +

1

2
ln

(
A2

s +A2
c

4

)
, g2(y) ∼

π

4
+ tan−1

(
As

Ac

)
as y → −∞.

Thus we have, in region IV,

u(y, τ) = ui +
ḡ3(y)

τ
1
2

cos

(
2

3
√

3
(ui − y)

3
2 τ + g2(y)

)
+ o

(
1

τ
1
2

)
(2.19)
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as τ → ∞ with y = O(1) (∈ (−∞, ui)) and ḡ3(y) = exp (g3(y)). Expansion (2.19)
becomes nonuniform as y → u−i . We must now introduce localized region C in which

y = ui +O
(
τ−

2
3

)
as τ → ∞. Thus we write

y = ui +
ζ

τ
2
3

(2.20)

in region C, with ζ = O(1) as τ → ∞. It follows from (2.20) and expansion (2.19) in
region IV, that we should expand as

u(ζ, τ) = ui + ψ(τ)Ḡ(ζ) + o (ψ(τ)) as τ → ∞ (2.21)

with ζ = O(1), and the gauge function

ψ(τ) = o(1) as τ → ∞ (2.22)

is to be determined. On rewriting equation (1.1) in terms of ζ and substituting from
(2.21) we obtain

ψ′(τ)Ḡ − 1

3

ψ(τ)

τ
ζḠζ +

ψ2(τ)

τ
1
3

ḠḠξ +
ψ(τ)

τ
Ḡξξξ = 0. (2.23)

A nontrivial balance requires

ψ2(τ)

τ
1
3

∼ ψ(τ)

τ
as τ → ∞, (2.24)

and so, without loss of generality, we take,

ψ(τ) = τ−
2
3 . (2.25)

We observe that all terms in (2.23) are retained at leading order as τ → ∞ and (2.23)
becomes

Ḡζζζ + ḠḠζ − ζ

3
Ḡζ − 2

3
Ḡ = 0, −∞ < ζ <∞. (2.26)

We note that equation (2.26) admits the solution Ḡ(ζ) = ζ. The matching condition
between expansion (2.21) with (2.25), and expansion (2.19) in region IV then requires

Ḡ(ζ) ∼ ũ∞ (−ζ)
1
4 cos

(
2

3
√

3
(−ζ) 3

2 + θ̃∞

)
as ζ → −∞. (2.27)

We observe that

ḡ3(y) ∼ ũ∞ (ui − y)
1
4 , g2(y) ∼ θ̃∞ as y → u−i ,

where the constants ũ∞ > 0 and θ̃∞ are undetermined at this stage. Finally for u to
remain bounded as τ → ∞ when y = ui +O(1) then we require

ζ−1 Ḡ(ζ) bounded as ζ → ∞. (2.28)

We recall from L, when considering parameter range (I), that we required a solution to
(2.26), (2.27) which satisfied the boundary condition Ḡ(ζ) → ζ as ζ → ∞. However,
in this case we require a solution of (2.26), (2.27) which satisfies

Ḡ(ζ) → 0+ as ζ → ∞. (2.29)

The boundary condition (2.29) can be developed to give

Ḡ(ζ) ∼ D ζ
1
4 exp

(
− 2

3
√

3
ζ

3
2

)
as ζ → ∞, (2.30)
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where D > 0 is a constant. The leading order problem in this case is now complete,
and is given by (2.26), (2.27) and (2.30). The boundary value problem (2.26)-(2.30) is
both nonlinear and nonautonomous. A numerical study of initial-value problem (2.26),
(2.30) using a shooting method (see [9] for details) reveals that a unique solution exists,
which is oscillatory in ζ < 0, being of the form (2.27) for (−ζ) ≫ 1 for each

D ∈
(

0,
3

1
4

√
π

)
.

We conclude that boundary value problem (2.26), (2.27) and (2.30) has a unique

solution for each D ∈
(

0, 3
1
4√
π

)
. Moreover, for specified D, in the above range, then

ũ∞ > 0 and θ̃∞ are fixed uniquely. The parameter D remains undetermined.
The remaining details of the large-τ asymptotic structure of the solution of IBVP

follow, after minor modifications, those given in L and are summarized here for brevity.

Region V(a) (−x) = O(τ) as τ → ∞

y = x
τ = O(1)

(
∈
(
ui,

ui

4

) )
as τ → ∞ and ,

u(y, τ) = ui + exp

(
− 2

3
√

3
(y − ui)

3
2 τ − 1

2
ln τ +H(y) + o(1)

)

as τ → ∞ with y = O(1)
(
∈
(
ui,

ui

4

) )
. H(y) = O(1) is undetermined, with,

H(y) =

{
1
4 ln(y − ui) + lnD + o(1) as y → u+

i ,

lnHc + o(1) as y → ui

4
−

where Hc is a constant.

Region TR x = ui

4 τ − 1

3(−ui)
1
2

ln τ +O(1) as τ → ∞

z =

(
x− ui

4 τ + 1

3(−ui)
1
2

ln τ

)
= O(1) as τ → ∞ and,

u(z, τ) = ui+
[
12(−ui)e

2xce
√
−uiz +Hce

− 1
2

√
−uiz

]
τ−

1
3 exp

[
−1

4
(−ui)

3
2 τ

]

+ o

(
τ−

1
3 exp

[
−1

4
(−ui)

3
2 τ

])

as τ → ∞ with z = O(1).

Region V(b) (−x) = O(τ) as τ → ∞

y = x
τ = O(1)

(
∈
(

ui

4 , 0
) )

as τ → ∞ and,

u(y, τ) = ui+exp
(√

−uiyτ + [2xc + ln 12(−ui)]
)

+ Ĥ(y)τ−
1
2 exp

[
− 2

3
√

3
(y − ui)

3
2 τ

]

+ o

(
τ−

1
2 exp

[
− 2

3
√

3
(y − ui)

3
2 τ

])

as τ → ∞ with y = x
τ = O(1)

(
∈
(

ui

4 , 0
) )

. Ĥ(y) = O(1) is undetermined, with

Ĥ(y) =

{
Hc as y → ui

4
+,

c0y as y → 0−,

9



ui

ui

ub

u

y

SV(b)V(a) TRIV C

ui

4

u = O(1)

u = ui +O
(
τ−

2
3

)

O
(
τ−1

)
O
(
τ−1

)
O
(
τ−

2
3

)

u = ui +O
(
τ−

1
2

)
u = ui + (EXP)u = ui + (EXP)

Figure 2: A schematic representation of the asymptotic structure of u(y, τ) in the

(y, u) plane, as τ → ∞, when 0 < ub < −2ui and |ubx| = 1√
3
(ub − ui)(−ub − 2ui)

1
2

(giving that ul = ui). Note the case when ubx is positive is depicted in region S. Here
(EXP) denotes terms exponentially small in τ as τ → ∞.

where c0 is a constant.

Region S x = O(1) (≤ 0) as τ → ∞

u(x, τ) = ui − 3ui sech2

(√−ui

2
x+ xc

)
+O

(
τ−

3
2 exp

[
− 2

3
√

3
(−ui)

3
2 τ

])

as τ → ∞ with x = O(1) (≤ 0), and where xc is given by

xc = ±sech−1

(
ub − ui

−3ui

) 1
2

where the −[+] sign is taken when ubx = 1√
3
(ub − ui)(−ub − 2ui)

1
2 [ubx = − 1√

3
(ub −

ui)(−ub − 2ui)
1
2 ] respectively. We note that the rate of convergence is exponential in

τ as τ → ∞, being O
(
τ−

3
2 exp

[
− 2

3
√

3
(−ui)

3
2 τ
])

.

This then completes the large-τ asymptotic structure of the solution to IBVP in
case (II). A uniform approximation has been given through regions III, IV, C, V(a),
TR, V(b) and S. A sketch of the asymptotic structure of u(x, τ) as τ → ∞ is given
in Figure 2.
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2.3.2 Case (III) 0 < ub < −2ui, |ubx| > 1
√

3
(ub − ui)(−ub − 2ui)

1

2

We recall in this case that the large-τ solution of IBVP exhibits the formation of a
dispersive shock wave in y ∈

(
2ul − ui,

2ui

3 + ul

3

)
, where ul < ui. As y → (2ul − ui)

+

we approach the rear of the wave (the harmonic limit) and the solution approaches
linear oscillations about ui, with phase velocity vp and wave number k, given by (1.18)
and (1.19) respectively. A consideration of expansion (2.6) with (2.13)2 indicates that
we require α = k, giving that ui − α2 = vp and, via (2.14), that

yT (k, ui) = 2ul − ui.

Therefore, there exists a localized region, region C, within which the structure of the
solution g0(y, k) changes from the the envelope solution (2.13)1 to the linear solution
(2.13)2, which is consistent with the oscillatory behaviour at the rear of the dispersive
shock wave (as y → (2ul − ui)

+).
We begin in region IV where y ∈ (−∞, 2ul − ui). Here g0(y, α) is given by (2.13)1

(with α = k) and following Section 2.3.1 we have that

u(y, τ) = ui +
ḡ3(y)

τ
1
2

cos

(
2

3
√

3
(ui − y)

3
2 τ + g2(y)

)
+ o

(
1

τ
1
2

)
(2.31)

as τ → ∞, with y ∈ (−∞, 2ul − ui) and where the functions ḡ3(y) and g2(y) are
as given in Section 2.3.1. As y → (2ul − ui)

− we move out of region IV into the
localized connection region, region C, located at y = (2ul − ui) + o(1). This localized
region connects the oscillatory behaviour of region IV with the dispersive shock wave,
the bulk of which is contained in region DSW, where y ∈

(
2ul − ui,

2ui

3 + ul

3

)
and

u = O(1). The approximate solution to IBVP in this region is given by (1.11) (with
(1.12)).

To examine region C we introduce the scaled coordinate ξ =
(
y − [2ul − ui]

)
τ

1
2 ,

where ξ = O(1) as τ → ∞, and write (as suggested by (2.31))

u(ξ, τ) = ui +
[
F̂ (ξ) + o(1)

]{
eı̇G(ξ,τ) + e−ı̇G(η,τ)

}
(2.32)

with
G(ξ, τ) = −2A3τ +Aξτ

1
2 + Ĝ(ξ) + o(1), (2.33)

as τ → ∞, where

A = −
√

2(ui − ul)

3

(
= −k

)

and F̂ (ξ)(> 0), Ĝ(ξ) are functions to be determined. We recall in this case that
ui − ul > 0. On substitution of (2.32), (2.33) into equation (1.1) (when written in
terms of ξ and τ), we obtain

3A F̂ Ĝξξ + 6A F̂ξĜξ +
ξ

2
F̂ξ = 0, (2.34)

−3A F̂ξξ + 3A F̂ Ĝ2
ξ +

ξ

2
F̂ Ĝξ = 0, (2.35)

where −∞ < ξ < ∞. Now, matching expansion (2.31)
(
y → (2ul − ui)

−) with
expansion (2.32) (ξ → −∞) requires that,

ḡ3(y) ∼
D

([2ul − ui] − y)
, g2(y) ∼ c1,

as y → (2ul − ui)
−, where D (> 0) and c1 are unknown constants. Hence, equations

(2.34) and (2.35) are to be solved subject to the matching conditions

11



A
D −0.5000 −1.0000 −1.5000 −2.0000
0.1000 0.1446... 0.1023... 0.0835... 0.0723...
1.0000 1.446... 1.0227... 0.835... 0.723...
10.0000 14.46... 10.227... 8.3499... 7.23...

Table 1: Numerical estimates of F∞

(
≈ F̂ (500)

)

A
D −0.5000 −1.0000 −1.5000 −2.0000
0.1000 −0.785... −0.785... −0.785... −0.785...
1.0000 −0.785... −0.785... −0.785... −0.785...
10.0000 −0.785... −0.785... −0.785... −0.785...

Table 2: Numerical estimates of G∞

(
≈ Ĝ(500)

)

F̂ (ξ) ∼
{
F∞ as ξ → ∞,
D (−ξ)−1 as ξ → −∞,

(2.36)

and

Ĝ(ξ) ∼
{
G∞ as ξ → ∞,

− ξ2

12A as ξ → −∞,
(2.37)

where the constants F∞ and G∞ are unknown at this stage. Boundary value problem
(2.33),(2.34),(2.36) and (2.37) is a nonlinear nonautonomous coupled system. We
observe from equations (2.34) and (2.35) that

F̂ 2
ξ + F̂ 2 Ĝ2

ξ = C, (2.38)

where C is a positive constant. Consideration of boundary conditions (2.36)2 and
(2.37)2 gives that

C =

(
D

6A

)2

,

and we further note that boundary conditions (2.36)1 and (2.37)1 can be developed to
give

F̂ (ξ) = F∞ +O

(
1

ξ
cos

[
ξ2

12|A| + . . .

])
(2.39)

and

Ĝ(ξ) = G∞ +O

(
1

ξ
sin

[
ξ2

12|A| + . . .

])
(2.40)

as ξ → ∞.
A numerical study of initial-value problem (2.34), (2.35), (2.36)2, (2.37)2 using a

shooting method reveals, for given values of ui and ul, that a unique solution exists
for each D > 0. We note that the initial-value problem was solved by truncating the
domain to ξ ∈ (−L,L), where L = 500 was taken in what follows. Graphs of F̂ (ξ)
and Ĝ(ξ) against ξ illustrating a typical solution of this initial value problem when
A = −1 and D = 20, are shown in Figure 3. We have for A = −1 and D = 20 the
following numerical estimates F∞ ≈ 20.4 and G∞ ≈ −0.785. Although F∞ and G∞
remain undetermined in this analysis numerical solutions of the initial-value problem
for values of A = − 1

2 , −1, − 3
2 and −2, and D = 10−1, 1 and 10, indicate that F∞ is

an affine function of D, for fixed A. Further, G∞ is independent of both A and D,
with G∞ ≈ −0.785. The results are shown in Tables 1 and 2.
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We conjecture that there exists a unique D > 0, say D = D∗, for given values of
ui and ul, for which boundary value problem (2.34), (2.35), (2.36) and (2.37) has a
unique solution.

As y → y−R (where yR = 2ui

3 + ul

3 ) we move out of region DSW into region S1,
where y = yR + O

(
τ−1

)
as τ → ∞. To examine region S1 we introduce the scaled

coordinate η = (y − yR)τ , and write

u(η, τ) =
(
ul + ū(η)

)
+ o(1) (2.41)

as τ → ∞ with η = O(1). On substituting (2.41) into equation (1.1) (when written in
terms of η and τ) we obtain

ūηηη + ūūη + (ul − yR) ūη = 0, −∞ < η <∞, (2.42)

ū(η) → 0+ as η → ∞, (2.43)

ū(η) bounded as η → −∞. (2.44)

We can integrate (2.42) once, and use the condition as η → ∞, to obtain

ūηη +
1

2
ū2 − (yR − ul) ū = 0, −∞ < η <∞, (2.45)

in place of (2.42). The solution to boundary value problem (2.45), (2.43) and (2.44)
is readily obtained as

ū(η) = 2(ui − ul) sech2

(√
ui − ul

6
η + φ0

)
, −∞ < η <∞, (2.46)

where φ0 is a constant. Solution (2.46) represents a soliton. Therefore, in region S1
we have that

u(η, τ) = ul + 2(ui − ul) sech2

(√
ui − ul

6
η + φ0

)
+ o(1) (2.47)

as τ → ∞ with η = O(1), which is in agreement with (1.17). As η → ∞ we move out
of region S1 into region V where y = O(1) (∈ (yR, 0)). We now examine the form of
(2.47) for η ≫ 1 (as we move into region V). From (2.47) we have

u(η, τ) ∼ ul + A exp

(
−
√

2

3
(ui − ul) η

)
(2.48)

with η ≫ 1, where A = 8(ui − ul)e
−2φ0 (> 0). When written in terms of y, (2.48)

becomes

u(η, τ) ∼ ul + A exp

(
−
√

2

3
(ui − ul)

(
y −

[
2ui

3
+
ul

3

]))
. (2.49)

Thus, we must look for an expansion in region V in the form

u(y, τ) = ul + e−τH(y,τ), (2.50)

where

H(y, τ) = h0(y) + h1(y)
1

τ
+ o

(
1

τ

)
as τ → ∞, (2.51)

with y = O(1)
(
∈ (yR, 0)

)
as τ → ∞. Substitution of (2.50), (2.51) into equation

(1.1) (when written in terms of y and τ) gives on solving at each order in turn and
matching to expansion (2.49) as y → y+

R that

u(y, τ) = ul + exp

(
−
√

2

3
(ui − ul)

(
y −

[
2ui

3
+
ul

3

])
+ lnA + o(1)

)
(2.52)
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Figure 3: Graphs of F̂ (ξ) and Ĝ(ξ) against ξ. Here F∞ ≈ 20.4 and G∞ ≈ −0.785.

14



as τ → ∞ with y = O(1) (∈ (yR, 0)).
At this stage we recall that as in Section 2.3.1, the solution to IBVP when x =

O(1) (≤ 0) in region S, which satisfies boundary conditions (1.3) and (1.4), is given by

u(x, τ) = ul − 3ul sech
2

(√−ul

2
x+ xc

)
+ o(1) (2.53)

as τ → ∞ with x = O(1) (≤ 0), where

xc = ±sech−1

(
ub − ul

−3ul

) 1
2

. (2.54)

The −[+] sign in (2.54) is taken when ubx is positive [negative] respectively. The
correction to expansion (2.53) will be determined at a later stage in this analysis.
From (2.53) we observe that

u(x, τ) ∼ ul + B exp
(√

−ul x
)

+ . . . (2.55)

for (−x) ≫ 1, where B = −12ule
2xc .

Clearly, matching expansion (2.52) (as y → 0−) to expansion (2.53) (as x→ −∞)
fails, and we conclude that region V must be replaced by three regions: region V(a)(
y ∈ (yR, yt)

)
, region TR (transition region), and region V(b)

(
y ∈ (yt, 0)

)
, where yt

is to be determined. It is readily established that:

Region V(a)

u(y, τ) = ul + exp

(
−
√

2

3
(ui − ul)

(
y −

[
2ui

3
+
ul

3

])
τ + lnA + o(1)

)
(2.56)

as τ → ∞ with y = O(1) (∈ (yR, yt)).

Region V(b)

u(y, τ) = ul + exp

(√
−ul yτ + lnB + o(1)

)
(2.57)

as τ → ∞ with y = O(1) (∈ (yt, 0)).
We now examine the transition region, region TR. An examination of expansion

(2.56) (as y → y−t ) and expansion (2.57) (as y → y+
t ) reveals that in this region

y = yt +O
(
τ−1

)
as τ → ∞, where

yt =
yR

√
2
3 (ui − ul)

√
2
3 (ui − ul) +

√−ul

(< 0). (2.58)

To examine region TR we introduce the scaled coordinate z = (y − yt)τ , where z =
O(1) as τ → ∞, and expand as

u(z, τ) = ul +

(
F (z) + o(1)

)
exp

(
yt

√
−ulτ

)
(2.59)

as τ → ∞ with z = O(1). On substitution of (2.59) into equation (1.1) (when written
in terms of z and τ) we obtain at leading order

Fzzz + (ul − yt) Fz + yt

√
−ul F = 0, −∞ < z <∞. (2.60)

Equation (2.60) is to solved subject to the boundary conditions

F (z) ∼






A exp
(
−
√

2
3 (ui − ul) z

)
as z → −∞,

B exp (
√−ul z) as z → ∞.

(2.61)
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Conditions (2.61) are the matching conditions with regions V(a) and V(b) respec-
tively. The solution of (2.60) and (2.61) is readily obtained as

F (z) = A exp

(
−
√

2

3
(ui − ul) z

)
+ B exp

(√
−ul z

)
, −∞ < z <∞. (2.62)

Expansion (2.57) in region V(b) can now be developed to give

u(y, τ) = ul+exp

(√
−ul yτ + lnB

)
+ exp

(
−
√

2

3
(ui − ul) (y − yR) τ + lnA

)

+ o

(
exp

(
−
√

2

3
(ui − ul) (y − yR) τ

))
(2.63)

as τ → ∞ with y = O(1) (∈ (yt, 0)). On examining expansion (2.63) in region V(b)
(as y → 0−), we obtain from (2.63), when written in terms of x, that

u(x, τ) ∼ ul + B exp
(√

−ul x
)

+ A exp

(
−
√

2

3
(ui − ul)x

)
exp

(√
2

3
(ui − ul) yR τ

)

(2.64)
as τ → ∞ with (−x) ≫ 1. On examining (2.64) we determine that the correction to

expansion (2.53) of region S is O
(
exp

(√
2
3 (ui − ul) yR τ

))
as τ → ∞.

Hence, in region S we expand as

u(x, τ) = us(x) + u1(x) exp

(√
2

3
(ui − ul) yR τ

)
+ o

[
exp

(√
2

3
(ui − ul) yR τ

)]

(2.65)
as τ → ∞ with x = O(1) (≤ 0), and where us(x) is given by (1.5). On substitution of
(2.65) into equation (1.1) we obtain the equation for u1(x) as

u′′′1 + usu
′
1 +

(
u′s +

√
2

3
(ui − ul) yR

)
u1 = 0, x ≤ 0. (2.66)

On recalling that
us(x) ∼ ul + B exp

(√
−ul x

)

as x→ −∞, we have, via (2.66), that

u1(x) ∼ D exp

(
−
√

2

3
(ui − ul)x

)
(2.67)

as x → −∞, where D is a constant to be determined. Matching expansion (2.65) (as
x→ −∞) with expansion (2.64) up to exponentially small terms of

O

(
exp

(√
2

3
(ui − ul) yR τ

))

as τ → ∞, requires that
D = A.

Finally, we have in region S that

u(x, τ) = ui−3ui sech2

(√−ui

2
x+ xc

)
+O

(
exp

[
−
(

2

3

) 3
2

(ui − ul)
1
2

(
−ui −

ul

2

)
τ

])

(2.68)
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Figure 4: A schematic representation of the asymptotic structure of u(y, τ) in the (y, u)

plane, as τ → ∞, when 0 < ub < −2ui and |ubx| > 1√
3
(ub − ui)(−ub − 2ui)

1
2 (where

ul < ui). Note the case when ubx is positive is depicted in region S. Here yL = 2ul−ui,

yR = 2ui

3 + ul

3 , yt =
yR

√
2
3
(ui−ul)√

2
3
(ui−ul)+

√
−ul

and (EXP) denotes terms exponentially small in

τ as τ → ∞. We note that yL → u−i and yR → u−i as ul → u−i .

as τ → ∞ with x = O(1) (≤ 0), and where xc is given by (2.54). We note that the
rate of convergence is exponential in τ as τ → ∞, being

O

(
exp

[
−
(

2

3

) 3
2

(ui − ul)
1
2

(
−ui −

ul

2

)
τ

])
.

This then completes the large-τ asymptotic structure of the solution to IBVP in case
(III). A uniform approximation has been given through regions III, IV, C, DSW, S1,
V(a), TR, V(b) and S. A sketch of the asymptotic structure of u(x, τ) as τ → ∞ is
given in Figure 4.

3 Numerical results

In this section we perform representative numerical solutions to IBVP for comparision
to the asymptotic results presented in Section 2. To achieve this we use essentially
the same finite-difference and explicit Runge-Kutta (‘RK4’) algorithm as that used by
Marchant and Smyth in [14]. A description of this scheme is given in Appendix A.
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The results given below correspond to solving over the spatial interval (L, 0) using
M equal width intervals, and over the time interval (0, T ) using N equal width time
steps. We define the step sizes ∆x = −L/M and ∆τ = T/N , and set xj = −j∆x and
τi = i∆τ for j ∈ {0, 1, 2, . . . ,M} and i ∈ {0, 1, 2, . . . , N}. In each of the cases shown
we set T = 70 and L = −700, although the x axis in the plots has in two cases been
shortened in order to better display the features of interest.
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Figure 5: Numerical solution of IBVP when ui = −1, ub = 1 and ubx = −4 for
τ = 14, 42, 70, where (L, 0) = (−700, 0) and (0, T ) = (0, 70). We note that ul ≈
−2.4808.

In their numerical simulations Marchant and Smyth use ∆x = 0.1 and ∆τ = 0.001
and verified stability and accuracy. We found it necessary to use the next natural finer
approximation, ∆x = 0.05 and ∆τ = 0.0001, because we had difficulty in resolving
the vertical position of the platform in front of the shock. Since we are building on
Marchant and Smyth’s discrete scheme we did not consider it necessary to implement
any form of error or step size control.

We first consider Figures 5 and 6 which show, for increasing time, the development
of the solution u(x, τ) of IBVP for two sets of the parameter values ui, ub and ubx

corresponding to case (III) of Section 2. In these figures the horizontal dot-dash line
denotes ul, whereas the dashed line denotes the predicted wave envelope. In both
figures the development of the predicted dispersive shock can clearly be seen, and
we note the excellent agreement between the numerical solutions presented and the
predicted wave envelopes. Further, in both figures we note the rapid (exponential)
convergence of the solution to the steady state profile us(x), given by (1.5), again in
line with the results of Section 2. Figure 5 shows the development of the solution to
IBVP for ui = −1, ub = 1 and ubx = −4 for τ = 14, 42, 70. The development of the
predicted dispersive shock wave connecting u = −1 to u = ul (≈ −2.4808) can clearly
be seen. Figure 6 shows the development of the solution of IBVP for ui = −2, ub = 1
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Figure 6: Numerical solution of IBVP when ui = −2, ub = 1 and ubx = 8 for
τ = 14, 42, 70, where (L, 0) = (−700, 0) and (0, T ) = (0, 70). We note that ul ≈
−4.1374.

and ubx = 8 for τ = 14, 42, 70.Again the development of the predicted dispersive shock
wave can clearly be been seen, in this case connecting u = −2 to u = ul (≈ −4.1374).
In both Figures 5 and 6 a zoomed plot of u(x, 70) against x, for x ∈ (−20, 0), is given
which illustrates clearly the development of the steady state profile us(x).

Finally, Figure 7 shows, for increasing time, the development of the solution u(x, τ)
of IBVP for ui = −1, ub = 4 and ubx = −12 for τ = 14, 42, 70. Here ub > −2ui in
contrast to the previous two figures where 0 < ub < −2ui. However, we recall that the
analysis presented in Section 2 for case (III) can be readily extended to consider the
large-τ solution to IBVP when ui < 0 and with boundary values ub and ubx in the
ranges ub > −2ui and ubx ∈ (−∞,∞). Again we clearly see the development of the
predicted dispersive shock wave connecting, in this case, u = −1 to u = ul (≈ −4.7934).
A zoomed plot of u(x, 70) against x, for x ∈ (−20, 0), is given which again illustrates
clearly the development of the steady state profile us(x).

4 Discussion

In this paper we have obtained, via the method of matched asymptotic coordinate
expansions, the uniform asymptotic structure of the large-τ solution to IBVP when
ui < 0 and with boundary values ub and ubx in the ranges (II) and (III). The results
presented here are complementary to those reported in L, for boundary values in
range (I). The large-τ structure of the solution to IBVP was obtained by careful
consideration of the asymptotic structures as τ → 0 (−∞ < x ≤ 0) and x → −∞
(τ ≥ O(1)). Schematic representations of the structure of the large-τ solution of
IBVP in cases (II) and (III) are given in Figures 2 and 4 respectively. In Section 3 we
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have presented numerical solutions to initial-boundary value problem IBVP in case
(II), which support and illustrate the detailed analysis developed in Section 2.

It has been established that the solution, u(x, τ), to IBVP for x = O(1) (≤ 0) in
cases (II) and (III) is the steady state solution us(x) (given by (1.5)), with the rate
of convergence being exponentially small in τ , as τ → ∞. Specifically, in region S, we
have that

u(x, τ) = us(x)+






O
(
τ−

3
2 exp

[
− 2

3
√

3
(−ui)

1
2 τ
])
, Case (II) (ul = ui)

O
(
exp

[
−
(

2
3

) 3
2 (ui − ul)

1
2

(
−ui − ul

2

)
τ
])
, Case (III) (ul < ui)

as τ → ∞ with x = O(1) (≤ 0), and where ul is given by (1.6) (with (1.7)). In case
(II) [(III)] the solution of IBVP, through regions V(a)-V(b) where (−x) = O(τ) as
τ → ∞, is given at leading order by the constant value ui [ul] respectively. In both
cases region IV allows for the transfer of information from the far field (−y) ≫ 1 [that
is, (−x) ≫ τ ] to the near field (y = O(1)). Within this region the solution to IBVP is

oscillatory, oscillating about ui, with u = ui +O
(
τ−

1
2

)
as τ → ∞. In case (II), region

V(a) is connected to region IV by a localized connection region, region C, located at

y = ui +O
(
τ−

2
3

) [
that is, x = uiτ + O

(
τ

1
3

) ]
as τ → ∞, where u = ui + O

(
τ−

2
3

)
.

However, in case (III) (ul < ui), regions IV and V(a) are connected by a dispersive
shock wave, which allows for the adjustment in the value of u from the wave front
(where u ∼ ul) to the rear of the wave (where u ∼ ui). The bulk of this dispersive
shock wave is contained in region DSW, while the localized connection regions C and
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Figure 7: Numerical solution of IBVP when ui = −1, ub = 4 and ubx = −12 for
τ = 14, 42, 70, where (L, 0) = (−700, 0) and (0, T ) = (0, 70). We note that ul ≈
−4.7934.
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S1 are located at yL = 2ul − ui and yR = 2ui

3 + ul

3 respectively. This dispersive shock

wave is given approximately by (1.11) (with (1.12)). We note that yL → u−i and
yR → u−i as ul → u−i [that is, as we approach case (II)]. We further note the excellent
agreement between the numerical solutions presented in Section 3 and the predicted
wave envelope ue (given by (1.16)) of the dispersive shock wave.

We conclude by noting that the analysis presented in this paper can be readily
extended to consider the large-τ solution to IBVP when ui < 0 and with boundary
values ub and ubx in the ranges ub ≥ −2ui and ubx ∈ (−∞,∞). In particular, when

(i) (ub = −2ui, ubx = 0)
The large-τ structure of the solution of IBVP follows that given for case (II).

(ii) (ub > −2ui, ubx ∈ (−∞,∞)) or (ub = −2ui, ubx 6= 0)
The large-τ structure of the solution of IBVP follows that given for case (III).

This extension then gives a complete description of the large-τ solution of IBVP for
ui < 0, ub > 0 and ubx ∈ (−∞,∞).

It should be noted that the approach presented can be applied, after minor modi-
fication, to examine the large-time solution of IBVP when ui > 0.

A Appendix: the numerical scheme for the initial

boundary-value problem

Denoting the semidiscrete approximation resulting from spatial discretisation by vj(τ) ≈
u(xj , τ) a finite difference approximation to the Korteweg-de Vries equation on the
negative quarter plane can then be written for j > 2 as,

dvj

dτ
=

(vj+1 − vj−1)vj

2 ∆x
+
vj+2 − 2vj+1 + 2vj−1 − vj−2

2 ∆x3

with vj(0) = ui.

(Note that since the positioning subscripts appear only on the approximate solution,
v, there should be no confusion caused by the subscripts in ui, ub and ubx.) Also,
when j = 0 we get dv0/dτ = 0 for all τ > 0 since v0(τ) = ub. In the discrete scheme
we set v0(0) = ub also even though this may not be consistent with the initial datum.

We treat the case j = 1 a little differently to Marchant and Smyth, [14], by in-
troducing a ‘ghost point’ at x−1 = ∆x. Then, since uτ (0, τ) = 0 we get uxxx(0, τ) =
−u(0, τ)ux(0, τ) = −ububx and it follows then from Taylor’s series that u(∆x, τ) =
u(−∆x, τ) + 2∆xubx − 3−1∆x3ububx +O(∆x5). Dropping the error term to form the
approximation and introducing this into the finite difference formula given above for
j > 2 but, now, for j = 1 also, results in

dv1
dτ

=
(v2 − v0)v1

2 ∆x
+
v3 − 2v2 − v1 + 2v0

2 ∆x3
− (6 − ∆x2 ub)ubx

6∆x2

with v1(0) = ui.

These approximations are all of order O(∆x2) and writing v = (v0, v1, . . .)
T we

have arrived at the autonomous system of ordinary differential equations v̇ = f (v)
with v(0) given.

This system is approximated with the fourth order Runge-Kutta method defined
by vi = vi−1 + 6−1∆τ(k1 + 2k2 + 2k3 + k4) where kn = f(vi−1 + αn∆τkn−1) for
(α1, . . . , α4) = (0, 1

2 ,
1
2 , 1) and with k0 := 0. Here, of course, vi is the approximation

to v(ti) and v0 = v(0). The error per step of this method is O(∆τ5) and so the
accumulated error is O(∆τ4). The well-known downside of this scheme is that it is
only conditionally stable requiring, in this case, ∆τ 6 C∆x3.
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Our numerical simulations show computed solutions over (L, 0) at certain discrete
times τ 6 T . To accomplish this we started at τ = 0 with a grid consisting of
M̂ = pM + 2N intervals extending over (L̂, 0). Here L̂ = M̂ ∆x and p > 1 is a
‘padding constant’. The idea is to explicitly step forward from a set of intervals that
contracts by two grid points at each time step and so it follows that after m time steps
there will be only pM + 2N − 2m intervals carrying data at τm. At τ = τN = T there
are pM intervals with computed data at pM +1 spatial nodes. The role of p is to keep
the lower accuracy tail of data at the nodes xj , for j large, away from the domain of
interest (L, 0).

From these considerations it is clear that the number of operations involved at the
m-th time step is of the order pM + 2N − 2m and so the total cost of the algorithm
is of the order,

cost =
N∑

i=1

(
pM + 2N − 2i

)
= O(pMN +N2),

6 C
(
pN4/3 +N2

)
.

since, for stability, we need ∆t 6 C∆x3 (or T/N 6 −CL3/M3 givingM3 6 −CL3N/T )
which means that M = O(N1/3). We see that the cost is quadratic in N and so very
high resolution solutions are beyond reach without either specialised computer power
or by suffering long execution times. For example, a doubling of the spatial resolu-
tion from M to 2M will require increasing N to 8N to maintain stability. The cost
therefore increases by a factor of 64.

To mitigate this both cores of a dual-core GNU/Linux (openSuSE 10.3) PC were
exploited in a parallel solve (we used OpenMP, see www.openmp.org, with the GNU
compiler g++).

In each of Figures 5, 7 and 6 we solved in (L, 0) = (−700, 0) with M = 14000 and

over (0, T ) = (0, 70) with N = 700000. We took M̂ = 10M + 2N = 1540000 resulting

in L̂ = −77000.

References

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover,
New York (1965)

[2] M.M. Cavalcanti, V.N. Domingos Cavalcanti and F. Natali. Exponential decay
rates for the damped Korteweg-de Vries type equation. (To appear)

[3] A. Faminskii. Quasilinear evolution equations of the third order. Bol. Soc.

Parana. Mat. (3) 91-108 (2007)

[4] B. Fornberg and G.B. Whitham. A numerical and theoretical study of certain
nonlinear wave phenomena. Phil. Trans. Roy. Soc. Lon. Vol. 289, 373-404 (1978)

[5] A.V. Gurevich and L.P. Pitaevskii. Decay of initial discontinuity in the Korteweg-
De Vries equation. ZhETF Pis. Red. Vol. 17, No. 5, 268-271 (1973)

[6] S. Kichenassamy and P.J. Olver. Existence and nonexistence of solitary wave
solutions to high-order model evolution equations. SIAM J. Appl. Math. 23,
1141-1166 (1992)

[7] J.A. Leach. The large-time development of the solution to an initial-boundary
value problem for the Korteweg-de Vries equation. I. Steady state solutions. J.

Differential Equations 246 (9) 3681-3703 (2009).

22



[8] J.A. Leach. The large-time development of the solution to an initial-boundary
value problem for the Korteweg-de Vries equation on the negative quarter-plane.
J. Differential Equations 247 (4) 1206-1228 (2009).

[9] J.A. Leach and D.J. Needham. The large-time development of the solution to
an initial-value problem for the Korteweg-de Vries equation: I. Initial data has
a discontinuous expansive step. Nonlinearity 21, 2391-2408 (2008)

[10] J.A. Leach and D.J. Needham. Matched Asymptotic Expansions in Reaction-
Diffusion Theory. Springer Monographs in Mathematics (2003)

[11] F. Linares and A.F. Pazoto. Asymptotic behaviour of the Korteweg-de Vries
equation posed in a quarter plane. J. Differential Equations 246 (4) 1342-1353
(2009)

[12] H. Liu and M. Slemrod. KdV dynamics in the plasma-sheath transition. Appl.

Math. Lett. 17 (4), 401-410 (2004)

[13] H. Liu and J. Yan. A local discontinuous Galerkin method for the Korteweg-
de Vries equation with boundary effect. Journal of Computational Physics 215,
197-218 (2006)

[14] T.R. Marchant and N.F. Smyth. The initial boundary problem for the Korteweg-
de Vries equation on the negative quarter-plane. Proc. R. Soc. Lond. A 458,
857-871 (2002)

[15] G.B. Whitham. Non-linear dispersive waves. Proc. Roy. Soc. A283, 238-291
(1965)

23


