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ABSTRACT

The concept of Cyclic Normalised Equivalent Strain Functionals (CNESnFs) suitable for low-
cyclic fatigue is developed in this paper. It reduces any fatigue strength and durability model to
a unique form what facilitates the models comparison. Generalisation of some known fatigue
durability models and introduction of new linear and nonlinear ones including those sensitive to
the load sequence, are made. The functional concept allows to unite the strength and durability
description under static, fatigue, creep and dynamic loading and their combinations. Examples
of such new complex functional strength conditions are presented. The non-local versions
of the CNESnFs applicable to strain fields sharply varying in space coordinates and to crack
initiation and propagation analysis are also presented.
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INTRODUCTION

There exist a number of cyclic fatigue theories accounting for damage accumulation under
variable load intensity, multiaxiality and non-proportional loading. However their forms are often
incomparable analytically and their refinements to include some additional observed fatigue
effects are not evident. When one tries to develop a general approach to description of fatigue
strength and durability for different classes of materials under complex multiaxial loading, one
has to reduce all known fatigue theories to a unique comparable form and make sure the model
refinements to include, e.g., overloading and sensitivity to the load sequence, are sufficiently
simple. For a material under uniaxial or multiaxial non-regularly oscillating stress, such a theory
was given in [6] by phenomenological strength conditions presented in terms of the Cyclic
Normalised Equivalent Stress Functionals (CNESFs). Since the strain history (strain process)
is more representative for low-cyclic fatigue, the concept of Cyclic Normalised Equivalent Strain
Functionals (CNESnFs) will be developed in this paper.

To overcome the well-known shortcomings of the the traditional local approaches, such as
inability to describe adequately the high stress concentration, short crack effects and other
scale effects caused by the material pronounced micro-structure, non-local strength conditions
and fracture criteria may be employed for time and history independent materials under mono-
tone (”static”) loading (see e.g. [8, 1, 2, 3, 4]). The non-local conditions use stresses or strains
obtained on the assumption of solid macro-homogeneity by solving usual local boundary value
problems (e.g. of elasticity). All micro-heterogeneity is then implicitly taken into account by a
corresponding non-locality of the strength condition. Non-local condition parameters should be
obtained from macro-tests, although they could in principle be estimated also by developing ad-
equate micro-mechanical models where local strength conditions operate. Some modifications
of the ”static” non-local approaches to fatigue crack initiation stage were used in [9, 10, 11].
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In this paper, we will describe the local and the non-local versions of the functional approach
to fatigue, applicable to both the crack initiation and propagation.

LOCAL CYCLIC NORMALISED EQUIVALENT STRAIN FUNCTIONAL AND STRENGTH CON-
DITION

A general functional approach to the strength analysis of time dependent materials was de-
scribed in [5]. It may still be applied to fatigue analysis using time as a natural parameter,
however a special cyclic parameterisations seem to be more relevant for the cyclic fatigue. The
corresponding cyclic approach, based on the stress history analysis was developed in [6, 7].
Here we present its counterpart based on the strain history, applicable also to low-cyclic fatigue.

Let {ε} = {εc(m)}m=1,2,... be a cyclic, generally non-periodic, multiaxial strain process
independent on the space coordinates, where the tensor function εc(m) = {εij(τ ); τm−1 ≤
τ ≤ τm} is an m−th cycle and τ is time. Denoting by n∗{ε} the durability (number of
cycles to rupture) under a process {ε}, the notion of the generalised strain–durability Sn–N
diagram, λ 7→ n∗{λε}, (similar to the Coffin-Manson plot for plastic strain amplitude) may be
introduced, where λ is a non-negative number by which the process {ε} is multiplied. Then the
cyclic functional safety factor, the cyclic normalised equivalent strain functional and the cyclic
endurance normalised equivalent strain can be defined:

The cyclic strain functional safety factor λN({ε}; n) is supremum of λ ≥ 0 such that
n∗{λ′′ε} > n for any λ′′ ∈ [0, λ]; if there is no such λ, we take λ({ε}; n) = 0. The cyclic
normalised equivalent strain functional, CNESnF, is defined as ΛN({ε}; n) := 1/λN({ε}; n)
if λN({ε}; n) 6= 0, and ΛN({ε}; n) := ∞ otherwise. The endurance normalised equivalent
strain functional is ΛN

th({ε}) = ΛN({ε}; ∞).
Note that the Cyclic Normalised Equivalent Strain Functional is a counterpart of the Cyclic

Normalised Equivalent Stress Functional introduced in [6, 7] and coincides with it for linear
elastic materials. As follows from the definition, ΛN({ε}; n) is positively homogeneous in {ε}
and monotonously non-decreasing in n. The cyclic stable strength condition for a cycle n can
be written in the form

ΛN({ε}; n) < 1.

The CNESnF ΛN is a material characteristic which is not necessary connected with a
geometrical, stiffness-related or abstract damage measure and can be identified from the cyclic
strain durability tests under homogeneous strain process fields. Using the above definition, any
cyclic strength condition written in terms of a damage measure can be expressed in terms of
a corresponding ΛN , although not always analytically, and easily generalised to include e.g.
instant overloading, creep or dynamic effects.

For periodic multiaxial fatigue processes (i.e. with the same strain loop εc
ij on all cy-

cles), one can easily determine the CNESnFs ΛN({εc}; n) = ΛN∗(εc; n) from the cor-
responding Sn–N diagrams. Suppose, e.g., a material strength under a periodic multiaxial
in-phase loading is described by a power Sn–N diagram (Basquin type relation) n∗{ε} =
(|||εc|||/ε∗(R))−b, where |||εc||| = supε∈εc |ε|; |ε| is a matrix norm of the tensor function

ε, e.g., |ε| =
√∑3

i,j=1 ε2
ij ; ε∗(R) and b = b(R) are positive material characteristics de-

pending generally on the cycle εc shape in the strain space, i.e. on the tensor counterpart
Rij := εc

ij/|||ε||| of the asymmetry ratio but not on the cycle norm |||εc|||. Then we have the
following CNESnF and fatigue strength condition,

ΛN∗(εc; n) =
|||εc|||

ε∗(R)
n1/b < 1. (1)
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The Sines type fatigue strength condition can be rewritten in terms of the associated CNESnF,

ΛN∗(εc; n) =
σa,eq

σ∗
−1(n)

+ 3σh,m

[
1

σ∗
0(n)

− 1

σ∗
−1(n)

]
< 1, (2)

whereas the Crossland type fatigue strength condition can be rewritten as

ΛN∗(εc; n) = σeq,a

[
2

σ∗
−1(n)

− 1

σ∗
0(n)

]
+ 3σh,max

[
1

σ∗
0(n)

− 1

σ∗
−1(n)

]
< 1, (3)

Here σa,eq = µεa,eq is the von Mises form of the stress amplitude; σh,m = Kεh,m =
Kεii,m/3 is the mean hydrostatic stress, and σh,max = Kεh,max = Kεii,max/3 is the
maximum hydrostatic stress during the cycle; µ and K are the shear and volume expansion
elastic moduli; σ∗

−1(n) and σ∗
0(n) are the (amplitude) S–N diagrams for the same material

under uniaxial periodic loading with the asymmetry ratios R = −1 and R = 0, respectively.

Palmgren-Miner linear accumulation rule

For a Basquin type material under a multiaxial cyclic (non-periodic) in-phase self–similar load-
ing or for b independent on R, the Palmgren-Miner linear accumulation rule leads to the follow-
ing CNESnF and strain strength condition, c.f. [7],

ΛN
0 ({ε}; n) =




n∑

m=1

( |||εc(m)|||
ε∗(R(m))

)b



1/b

=




∫ n

0

( |||εc(m)|||
ε∗(R(m))

)b

dm




1/b

< 1, (4)

where |||εc(m)||| is a piece-wise constant function of the cycle number m, ε∗(m) = ε∗(R(m))
and b = b(R) should be taken as positive material characteristics in the power Sn–N diagram
for the corresponding multiaxial periodic process.

If one would like to take into account an influence of both the instantaneous overloads of
material and creep durability, one can add a term with εeq(ε) (e.g. von Mises, Tresca or other in-

stantaneous equivalent strain) and a term ΛT
0 (ε; t′) =

[
1

ε∗
T

∫ t′
0 |ε(τ )|bT dτ

]1/bT
connected with

the linear Robinson rule of time-dependent damage accumulation and power time-durability di-
agram [5], and arrive at another, complex NESnF and local strength condition,

ΛIT N
0 ({ε}; n(t)) = sup

0≤t′≤t

{
εeq(ε(t′))

εr
+ ΛT

0 (ε; t′) + ΛN
0 ({ε}; n(t′))

}
< 1 (5)

where εr is a material strain strength under uniaxial monotone tensile loading; n(t) is an
integer-valued function of time t. The term ΛT

0 (ε; t′) can be also considered as describing
dynamic strength, c.f. [5].

Note that strength condition (5) lead to an accumulation rule sensitive to the loading se-
quence. One can create not only sums but also other homogeneous combinations of those
three terms to get other possible simple forms of the NESnF describing instant, time-dependent
and cycle-dependent effects on the durability.

Linear and non-linear accumulation rules for CNESnF partial increments

Let us consider another type of accumulation rules sensitive to loading sequence. In contrast
to the Palmgren-Miner linear accumulation rule for partial life–times, we can write a linear (c.f.
[6]) or non-linear accumulation rule for partial increments of CNESnF.
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Let a CNESnF ΛN∗(εc; n) for a periodic multiaxial fatigue process, i.e. with equal strain
loop εc

ij on all cycles, be known, for example be given by one of expressions (1)-(3). Then a
CNESnF and corresponding strength condition for a non-periodic oscillating process {ε} can
be taken in the following linear form

ΛN({ε}; n) = max
1≤n′≤n



ΛN∗(εc(n′); 1)+

n′−1∑

m=1

[
ΛN∗(εc(m); n′ − m + 1) − ΛN∗(εc(m); n′ − m)

]


 < 1. (6)

Non-linear versions of the accumulation law can be also introduced. For example, one can
consider the following one with the power-type nonlinearity,

ΛN({ε}; n) = max
1≤n′≤n





(
ΛN∗(εc(n′); 1)

)β
+

n′−1∑

m=1

[(
ΛN∗(εc(m); n′ − m + 1)

)β −
(
ΛN∗(εc(m); n′ − m)

)β
]



1
β

< 1. (7)

Here the constant β > 0 is a material parameter.
To obtain the fatigue strength condition for the Basquin, the Sines, or the Crossland type

material under non-periodic cyclic loading, one has to substitute, respectively, expressions (1),
(2) or (3) in (6) or (7). Similarly, one can use the linear (6) or non-linear (7) accumulation laws
to extend the Dang Van, Kakuno, Mucha and other periodic fatigue strength conditions to the
non-periodic cycling. One can check that (6) and (7) interpolate the Sn–N diagram, that is,
degenerate into the corresponding strength conditions for a periodic processes if εc(n) = εc.
Note that the strength conditions (6) and (7) are sensitive to the loading sequence in contrast
to the Palmgren–Miner rule. They account for instant overloading and can be also combined
with the creep/dynamic strength conditions similar to (5).

Local quasi-ductile and brittle fatigue strength conditions

The above fatigue strength conditions can be employed not only to the strain fields independent
on space coordinates but also to ones moderately varying in the coordinates, leading to the so-
called local cyclic quasi-ductile strength conditions at any material point y.

To describe cyclic fracture, i.e. crack initiation and propagation under cycling loading, one
have to analyse the brittle strength, that is strength at a particular point y along a particular
infinitesimal plane with a normal vector ~ζ at that point. The local brittle cyclic strength condition
for a plane ~ζ at a point y can be taken in the form

Λ({εc(y)}; n, y, ~ζ) < 1. (8)

Here Λ({εc(y)}; n, y, ~ζ) is a local brittle cyclic normalised equivalent strain functional, which
is defined similar to the above and is a material characteristics positively homogeneous in {εc

ij}
and non-decreasing in n. Particular forms of the brittle NESnFs can be obtained from (4)-(7),
where the strain tensor loop sequence {εc

ij(m; y)}m=1,2,... is replaced by the strain vector

loop sequence {~εc(m; y, ~ζ)}m=1,2,... on the plane ~ζ.
There is no fracture in the body D if inequality (8) is satisfied on all planes ~ζ at all points

y ∈ D but a crack nucleates or initiates on the plane ~ζ∗(y∗) at the point y∗ during the cycle
n∗(D), where and when the inequality violates. During the next cycles, the crack set Y ∗
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propagates and one can track it taking into account the strain field redistribution on each cycle
due to the body shape change when a new portion of Y ∗ becomes a part of the body boundary.
This allows to describe the growth of the CNESnF ΛN({ε(D)}; n, y∗

0, ~ζ) on each plane at each
point before and after the fracture initiation as well as the cyclic crack propagation through the
damaged material points and planes.

Particularly, local strength condition (8) and CNESnF associated with (4) can be used for
crack initiation as well as crack propagation analysis (for the CNESF it was shown in [7]). How-
ever, it works only for the power b < 2 in the Basquin relation and the crack start delay is not
predicted. Due to the strain singularity at the crack tip, the CNESnFs like (6) with instant terms
are not applicable to fatigue crack analysis unless their corresponding non-local counterparts
are used.

NON-LOCAL CYCLIC NORMALISED EQUIVALENT STRAIN
FUNCTIONAL AND STRENGTH CONDITION

To analyse strength and durability under oscillating in time and highly inhomogeneous strain
fields and predict both the crack initiation and propagation as a united process, we merge in
this section the above functional approach to the cyclic strength with the non-local approach of
[3] and present a strain based counterpart of the corresponding stress-based non-local cyclic
strength condition [6, 7].

In the non-local version of brittle fracture, we will suppose that cyclic strength of an infines-
imal plane ~ζ at a point y ∈ D does depend not only on the cyclic strain history at the point,
{εc(m; y)}m=1,2,..., but also on the stress history in its neighbourhood and generally, in the
whole of the body, {ε} = {εc(m; x)}m=1,2,..., x ∈ D.

Then we can repeat for a plane ~ζ at a point y the reasonings of the previous section under-
standing under {ε} = {εc(m)}m=1,2,... the cyclic process field in D and arrive at the notions
of non-local cyclic durability n∗¯({ε}; y, ~ζ), CNESnF ΛN¯({ε}; n, y, ~ζ) and the non-local
cyclic strength condition for a plane ~ζ at a point y ∈ D,

ΛN¯({ε}; n, y, ~ζ) < 1. (9)

One can obtain the simplest examples of the non-local CNESnFs and strain strength condi-
tions for a plane ~ζ by replacing the local strain εij(τ ; y) by its non-local counterpart ε¯

ij(τ ; y, ~ζ)
in the local CNESnFs, e.g. in ΛN

0 ({ε(y)}; n), ΛIN
0 ({ε(y)}; n(t)) or ΛIT N

0 ({ε(y)}; n(t))
above. Here ε¯

ij(y, ~ζ) is a weighted average of εij(x) along some neighbourhood (non-locality

zone) Ω(y, ~ζ) of y depending also on ~ζ. That is, one can take,

ΛN¯({ε}; n, y, ~ζ) = ΛN({ε¯(y, ~ζ)}; n), ε¯
ij(τ ; y, ~ζ) =

∫

Ω(y,~ζ)
w(x, y, ~ζ)εij(τ ; x)dx,

(10)
where w(x, y, ~ζ) as well as Ω(y, ~ζ) ⊂ D are characteristics of material and (generally) of the
body D shape, such as

∫
Ω(y,~ζ) w(x, y, ~ζ)dx = 1. Particularly, Ω(y, ~ζ) can be taken as a disc

of a diameter 2d (or a segment of a length 2d for a two-dimensional body D) in the plane ~ζ with
the center in y (or as intersection of the disc/segment with D for y near the boundary of D),
where d is considered as a material parameter, and w(x, y, ~ζ) = 1/|Ω(y, ~ζ)| where |Ω(y, ~ζ)|
is the area/length of Ω(y, ~ζ).

As demonstrated in [7], the fatigue crack propagation numerical analysis using CNESnF is
applicable for the Basquin type material with any power b > 0 of the Sn–N diagram and can
predict the crack start delay and short–crack effect.
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Note that one can similarly introduce the non-local cyclic quasi-ductile strength conditions
and normalised equivalent strain functionals, if one discards above in this section the infinites-
imal plane ~ζ and considers Ω(y) in (10) as a 3D domain for the 3D body or, respectively, 2D
domain for the 2D body.

CONCLUSION

Introduction of the notion of normalised equivalent strain functional and its use in the strength
conditions allowed to unite the strength and durability description under static, fatigue, creep
and dynamic loading and their combinations often appearing in practice.

Unlike some damage measures usually used for such purposes, the functionals are me-
chanically meaningful material characteristics, which can be experimentally determined and/or
verified. This makes a refinement of the CNESnF approximations to reflect e.g. influence of
the load sequence, more straightforward and justified than for damage measures.

The non-local versions of the CNESnFs allow to unite the cyclic strength, durability and
fatigue crack propagation analysis including crack initiation and propagation through the dam-
aged material. It makes also possible to analyse the fatigue strength and durability of structure
elements with singular stress concentrators and describe the short–crack effects and crack
start delay.
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