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Abstract. We consider the following Schnakenberg model on the inter-
val (−1, 1):⎧⎨

⎩
ut = D1u

′′ − u + vu2 in (−1, 1),
vt = D2v

′′
+ B − vu2 in (−1, 1),

u
′
(−1) = u

′
(1) = v

′
(−1) = v

′
(1) = 0,

where
D1 > 0, D2 > 0, B > 0.

We rigorously show that the stability of symmetric N−peaked steady-
states can be reduced to computing two matrices in terms of the diffusion
coefficients D1,D2 and the number N of peaks. These matrices and their
spectra are calculated explicitly and sharp conditions for linear stability
are derived. The results are verified by some numerical simulations.

1. Introduction

Since the work of Turing [18] in 1952, a lot of models have been established

and investigated to explore the so-called Turing instability.

One of the most interesting models in biological pattern formation is the

Schnakenberg model [16] on a one-dimensional interval, which can be stated

as follows:

⎧⎪⎨
⎪⎩

ut = D1u
′′ − u + vu2 in (−1, 1),

vt = D2v
′′

+ B − vu2 in (−1, 1),
u

′
(−1) = u

′
(1) = v

′
(−1) = v

′
(1) = 0,

(1.1)

where D1 > 0, D2 > 0, B > 0 are positive constants. Substituting

u = η−1û, v = ηv̂,
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and dropping hats we obtain the following form of the system⎧⎪⎨
⎪⎩

ut = ε2u
′′ − u + vu2 in (−1, 1),

vt = Dv
′′

+ 1
2
− cvu2 in (−1, 1),

u
′
(−1) = u

′
(1) = v

′
(−1) = v

′
(1) = 0,

(1.2)

if we choose

B =
1

2
η

and set

ε2 = D1, D = D2, c = η−2.

Here c > is fixed. The Schnakenberg model is a prototype Turing system for

simple chemical reactions with limit cycle behavior.

Turing’s basic idea is as follows: Consider a system of reaction-diffusion

equations with very different diffusion coefficients. In the case of the Schnaken-

berg model this basic condition is ε2 << D. Then the homogeneous state

u = v = 0 becomes unstable and stable patterns emerge. For the particu-

lar Turing patterns of symmetric N -peaked solutions we show the following

result: In the singular limit ε << 1 there are thresholds

D1 > D2 > D3 > . . . > DN > . . .

such that for D > DN the N -peaked solution is stable and for D < DN the

N -peaked solution is unstable. Thus we have established the exact stability

threshold. Note in particular that for decreasing D more and more N -peaked

solutions cross this stability threshold and turn stable.

We note that the Schnakenberg model has been widely studied by analyt-

ical and numerical methods. We refer to [10] and the references therein –

in that paper the Schnakenberg model is posed in a two-dimensional square.

By using spatially varying diffusion coefficients the degeneracy of the Turing

bifurcation is removed and new phenomena appear including stable subcrit-

ical striped patterns, and the possibility that stable stripes lose stability

supercritically to give stable spotted patterns.

In the present paper we are concerned with a simple type of Turing pattern:

Symmetric N -peaked solutions in an interval. (See Figure 1 for the case
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Figure 1. Fig. 1: stationary symmetric 3-peaked solutions.
Here D = 1, ε = 0.01.

N = 3.) By symmetric solutions we mean solutions which have a translation

symmetry: The solution consists of N peaks on say the interval (− 1
N

, 1
N

) so

as to constitute a steady state on (−1, 1). Therefore existence which is based

on the implicit function theorem follows quite easily from [17]. A proof is

included in Appendix A.

What is at the focus of our interest, however, is the question of stability.

Here for ε small enough (linear) stability can be explicitly expressed in terms

of the diffusion coefficient D and the number N of spikes. Our goal is

to provide a rigorous and explicit treatment for the stability of symmetric

N−peaked solutions in an interval. We emphasize that this analysis is not

the classical stability of Turing systems which studies the homogeneous state.

Rather we directly explore the stability of our Turing pattern which is far

from homogeneity.

We follow the theoretical foundation in [28]. Stability is established by

studying the large eigenvalues which tend to a non-zero limit and the small
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eigenvalues which tend to zero in the limit ε → 0 separately. Large eigenval-

ues are explored by studying nonlocal eigenvalue problems.

Small eigenvalues are calculated by giving asymptotic expansions with

rigorous error estimates. Note that one needs to expand the eigenfunction

up to the order O(ε) term. This requires some fine analysis and is done in

Section 4.

We believe that our approach can be very useful in the study of other

reaction-diffusion systems as well.

A similar analysis for the Gierer-Meinhardt system [5] has been carried

out in [28] (proofs) and [9], [19] (matrix calculations). We also refer to [14]

for the single-spike case and the survey article [11].

Note also the studies of multi-pulses on the real line [2], [3], [4] where the

geometric singular perturbation method is used.

For the Fitzhugh-Nagumo model singular limit eigenvalue analysis has

been done in [15].

In higher dimensions, in the shadow system case (D = ∞) the existence

of single- or N -peaked solutions is established in [8, 7, 12, 13, 20, 21, 22]

and other papers. For the Gierer-Meinhardt system in the two-dimensional

strong coupling case (D < ∞), the existence of 1-peaked solutions is estab-

lished in [25], and the stability of N -peaked solutions is studied in [26, 27].

Before we state the main results let us find out the right scaling. To this

end, set

D =
D̂

ε
, v = εv̂, u =

1

ε
û. (1.3)

Then (1.2) changes to

⎧⎪⎨
⎪⎩

ût = ε2û
′′ − û + v̂û2 in (−1, 1),

εv̂t = D̂v̂
′′

+ 1
2
− c

ε
v̂û2 in (−1, 1),

û
′
(−1) = û

′
(1) = v̂

′
(−1) = v̂

′
(1) = 0,

(1.4)

Let us drop the hats. We obtain the standard form⎧⎪⎨
⎪⎩

ut = ε2u
′′ − u + vu2 in (−1, 1),

εvt = Dv
′′

+ 1
2
− c

ε
vu2 in (−1, 1),

u
′
(−1) = u

′
(1) = v

′
(−1) = v

′
(1) = 0,

(1.5)
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From now on, we work with (1.5) exclusively and we assume that D > 0 and

c > 0 are constant and independent of ε.

Before we state our main results we introduce some notation. Let L2(−1, 1)

and H2(−1, 1) be the usual Lebesgue and Sobolev spaces. With the variable

w we denote the unique solution of the following problem:⎧⎪⎨
⎪⎩

w
′′ − w + w2 = 0 in R1,

w > 0, w(0) = maxy∈R w(y),
w(y) → 0 as |y| → ∞

(1.6)

In fact, it is easy to see that w(y) can be written explicitly

w(y) =
3

2
(cosh y)−2. (1.7)

The steady-state problem for (1.5) is the following:⎧⎪⎨
⎪⎩

ε2u
′′ − u + vu2 = 0 in (−1, 1),

Dv
′′

+ 1
2
− c

ε
vu2 = 0 in (−1, 1),

u
′
(−1) = u

′
(1) = v

′
(−1) = v

′
(1) = 0,

(1.8)

We will assume throughout this paper that

D < +∞, ε << 1. (1.9)

Our first result can be stated as follows:

Theorem 1.1. Assume that ε << 1 and N is a positive integer. Then (1.8)

admits a solution (uε,N , vε,N) with the following properties:

(a) uε,N(x) = ξ−1
ε

⎛
⎝ N∑

j=1

w(
x − xj

ε
) + o(1)

⎞
⎠ ,

(1.10)

where

xj = −1 +
2j − 1

N
, j = 1, . . . , N, (1.11)

and ξε satisfies

lim
ε→0

ξε = cN
∫ ∞

−∞
w2 := ξ0. (1.12)

(b) vε,N(xj) = ξε, j = 1, · · · , N, (1.13)
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and vε,N → v0, where v0 satisfies⎧⎨
⎩

D∆v0 + 1
2
− 1

N

∑N
j=1 δxj

= 0,

v0(xj) = cN
∫∞
−∞ w2 = ξ0, v0(±1) = 0.

(1.14)

The main purpose of this paper is to study the stability of (uε,N , vε,N). In

particular, we shall find an explicit threshold of D – we call it DN – such

that below DN , (uε,N , vε,N) is linearly stable and above DN , (uε,N , vε,N) is

linearly unstable. More precisely, we have

Theorem 1.2. Assume that D is finite. For N ≥ 2, let

DN :=
1

2c
∫

w2

1

N3
. (1.15)

Then for ε << 1

(a) (uε,1, vε,1) is stable for finite D;

(b) for D < DN , (uε,N , vε,N) is stable while for D > DN , (uε,N , vε,N) is

unstable.

Theorem 1.2 is the first result on the stability of multiple-peaked Tur-

ing patterns for the Schnakenberg model. It is surprising that an explicit

threshold DN can be found. One may ask: What happens at D ∼ DN? It

turns out that for D ∼ DN asymmetric patterns (namely, Turing patterns

consisting of spikes with different heights) appear. For more details, see the

recent work of Ward and Wei [19] for the Gierer-Meinhardt system and [24]

for the Schnakenberg model.

This paper has the following structure: In Section 2 we study the large

eigenvalues of the linearized operator. In Section 3 we begin the study of the

small eigenvalues by proving some preliminaries and stating the key lemma,

which is Lemma 3.1. In Section 4 we compute the small eigenvalues and

prove Lemma 3.1. Section 5 contains some numerical simulations.

Finally, in Appendix A we give an existence proof for steady states and

in Appendix B we calculate the matrix B explicitly (which fills a gap left

from Section 2). In Appendix C we compute the matrix M explicitly by

calculating the Green’s function and their first two derivates, which enables

to calculate the expressions in Lemma 3.1 in terms of the diffusion coefficient

and the number N of peaks only.
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We use the notation e.s.t to denote an exponentially small term of order

O(e−d/ε) for some d > 0 in the corresponding norm. By C we denote a

generic constant which may change from line to line.
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2. Stability Analysis: Large Eigenvalues

In this section, we consider the large eigenvalues of the associated lin-

earized eigenvalue problem.

Let (uε,N , vε,N) be the symmetric N−peaked solution constructed in The-

orem 1.1 (which is proved in Appendix A). Thus we have by Theorem 1.1

that

uε,N = ξ−1
ε

N∑
j=1

w(
x − xj

ε
), vε,N(xj) = ξε, j = 1, ..., N, (2.1)

where xj, j = 1, ..., N are the N−peaked points given by (1.11).

We linearize (1.5) at (uε,N , vε,N). For simplicity, we drop the index N . The

eigenvalue problem becomes⎧⎨
⎩

ε2φ′′
ε − φε + 2uεvεφε + ψεu

2
ε = λεφε,

Dψ′′
ε − c

ε
ψεu

2
ε − 2c

ε
vεuεφε = ελεψε.

(2.2)

Here λε is some complex number and

φ′
ε(±1) = ψ′

ε(±1) = 0. (2.3)

We consider two cases: The large eigenvalue case with λε → λ0 �= 0 and

the small eigenvalue case, λε → 0.

The second case is more involved. We will analyze that case in the next

two sections.

Let us now assume that λε → λ0, where λ0 is some complex number.
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Let χ : R → [0, 1] be a smooth cut-off function such that χ(x) = 1 for

|x| < 1
4N

and χ(x) = 0 for |x| > 1
2N

. Set

φε,j(y) = φε(x)χ(x − xj), x = xj + εy. (2.4)

Then it is easy to see that from the equation for φε

φε(y) =
N∑

j=1

φε,j(y) + e.s.t. (2.5)

in H2(−1
ε
, 1

ε
).

We assume that

ε−1
∫ 1

−1
φ2

ε(x) dx ≤ C. (2.6)

Hence ∫ 1
2εN

− 1
2εN

φ2
ε,j(y) dy ≤ C. (2.7)

Assume that (after a standard extension from (−1
ε
, 1

ε
) to the real line, see

for example [6])

φε,j → φj(y) in L2(R).

Now using (2.1) and the equation for ψε, we have as ε → 0, ψε → ψ0, and

ψ0 satisfies

Dψ0
′′ − γψ0

N∑
j=1

δxj
− 2c

N∑
j=1

(
∫

R
wφj)δxj

= 0, (2.8)

where

γ =
c
∫
R w2

ξ2
0

. (2.9)

Let

η =

⎛
⎜⎜⎝

η1
...

ηN

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝

ψ0(x1)
...

ψ0(xN)

⎞
⎟⎟⎠ , Φ =

⎛
⎜⎜⎝

φ1
...

φN

⎞
⎟⎟⎠ .

In Appendix B, we shall show that the following relations hold:(
DN

2
K − γI

)
η = 2c

∫
wΦ, (2.10)
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where K is a symmetric matrix given by

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0

1 −2
. . .

. . . . . . . . .
. . . −2 1

0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.11)

Thus

η = 2c
(

DN

2
K − γI

)−1 ∫
wΦ. (2.12)

Substituting (2.12) into (2.2), we obtain

Φ
′′ − Φ + 2wΦ + 2

c

ξ2
0

(
DN

2
K − γI

)−1

(
∫

R
wΦ)w2 = λ0Φ.

(2.13)

Set

B = γ
(
γI − DN

2
K
)−1

. (2.14)

Then we obtain a system of nonlocal eigenvalue problems

Φ
′′ − Φ + 2wΦ − 2

∫
R wBΦ∫

R w2
w2 = λ0Φ. (2.15)

The eigenvalues of B can be computed explicitly. From Appendix B, we

have that

Proposition 2.1. The eigenvalues of B are given by

bj =

(
1 − DN

γ
(cos

π(j − 1)

N
− 1)

)−1

, j = 1, . . . , N
(2.16)

and the corresponding eigenvectors are given by

q1 =
1√
N

(1, . . . , 1),

qj = (qj,1, . . . , qj,l, . . . , qj,N)T , j = 2, . . . , N,

where

qj,l =
1√
N

cos
π(j − 1)

N
(l − 1

2
), j = 2, . . . , N, l = 1, . . . , N.
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From (2.15) and Proposition 2.1, we see that the large eigenvalues are

reduced to the following nonlocal eigenvalue problem (NLEP):

φ
′′ − φ + 2wφ − 2bj

∫
wφ∫
w2

w2 = λφ, j = 1, ..., N. (2.17)

Let us recall the following key lemma

Lemma 2.2. [23]: Consider the nonlocal eigenvalue problem

φ
′′ − φ + 2wφ − α

∫
R wφ∫
R w2

w2 = λφ. (2.18)

(1) If α < 1, then there is a positive eigenvalue to (2.18).

(2) If α > 1 then for any nonzero eigenvalue α of (2.18), we have

Re(λ) < 0.

(3) If α �= 1 and λ = 0, then

φ = c0w
′

for some constant c0, where w is defined in (1.6).

From Lemma 2.2, we see that the critical threshold for the stability of

large eigenvalues is

2 min
j=1,... ,N

bj > 1. (2.19)

which is equivalent to 2bN > 1, i.e.

2 > 1 − DN

γ
(cos

π(N − 1

N
− 1)

and thus

D < D1
N :=

1

cN3
∫

w2(1 + cos π
N

)
. (2.20)

On the other hand, if D > D1
N , by Lemma (2.2), there exists a positive

eigenvalue λ0 to (2.17) and by perturbation, for ε small, there is a positive

eigenvalue for (2.2). (See [1] for related argument.)

In summary, we have arrived at the following proposition:

Proposition 2.3. Let λε → λ0 �= 0 be an eigenvalue of (2.2). Then

(1) if D < D1
N , Re(λε) < 0,

(2) if D > D1
N , there exists a positive λε.
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This finishes the study of large eigenvalues.

At the end of this section, we study the following linear operator, which

will be useful later. Let

Φ =

⎛
⎜⎜⎜⎜⎝

φ1

φ2
...

φN

⎞
⎟⎟⎟⎟⎠ ∈ (H2(R))N

and

L0Φ = Φ
′′ − Φ + 2wΦ.

Let

LΦ := Φ
′′ − Φ + 2wΦ − 2

∫
wBΦ∫
w2

w2. (2.21)

It is easy to see that the conjugate operator L∗ is given by

L∗Ψ = Ψ
′′ − Ψ + 2wΨ − 2

∫
w2BT Ψ∫

w2
w, (2.22)

where

Ψ =

⎛
⎜⎜⎜⎜⎝

ψ1

ψ2
...

ψN

⎞
⎟⎟⎟⎟⎠ ∈ (H2(R))N .

We obtain the following

Lemma 2.4. Assume that 2bj �= 1. Then

Ker(L) = (X0)
N , (2.23)

where

X0 = span
{
w

′
(y)
}

,

w is defined in (1.6), and

Ker(L∗) = (X0)
N . (2.24)

Proof: Let us first prove (2.23). Suppose

LΦ = 0.

Let us diagonalize B such that

P−1BP = J,
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where P is an orthogonal matrix and J has diagonal form, i.e.,

J =

⎛
⎜⎜⎜⎜⎝

d1 0
d2

. . .
0 dN

⎞
⎟⎟⎟⎟⎠

with suitable real numbers bj j = 1, 2, . . . , N .

Defining

Φ = P Φ̃

we have

Φ̃
′′ − Φ̃ + 2wΦ̃ − 2

∫
R wJΦ̃∫

w2
w2 = 0. (2.25)

For l = 1, 2, . . . , N we look at the l-th equation of system (2.25):

Φ̃
′′
l − Φ̃l + 2wΦ̃l − 2bl(

∫
R

w)−1(
∫

R
wΦ̃l)w

2 = 0. (2.26)

By Lemma 2.18 (3), the last equation (2.26) tells us that

Φ̃l ∈ X0. (2.27)

Continuing in this way for l = 1, . . . , N , we have

Φ̃l ∈ X0, l = 1, . . . , N. (2.28)

(2.23) is thus proved.

To prove (2.24), we proceed in the same way for L∗.

Using σ(B) = σ(BT ) the l-th equation of the diagonalized system is as

follows:

Ψ̃
′′
l − Ψ̃l + 2wΨ̃l

−2bl(
∫

R
w)−1(

∫
R

w2Ψ̃l)w = 0. (2.29)

Multiplying (2.29) by w and integrating over the real line, we obtain

(1 − 2bl)
∫

R
w2Ψ̃l = 0,

which implies that ∫
R

w2Ψ̃l = 0,

since 2bl �= 1.
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Thus all the non-local terms vanish and we have

L0Ψ̃l = 0, l = 1, . . . , N. (2.30)

This implies that Ψ̃l ∈ X0 for l = 1, . . . , N . �

As a consequence of Lemma 2.4, we have

Lemma 2.5. The operator

L : (H2(R))N → (L2(R))N

is an invertible operator if it is restricted as follows

L : ((X0)
N)⊥ ∩ (H2(R))N → ((X0)

N)⊥ ∩ (L2(R))N .

Moreover, L−1 is bounded.

Proof: This follows from the Fredholm Alternatives Theorem and Lemma

2.4.

�

3. Computation of the small eigenvalues I: preliminary

In the next two sections compute the small eigenvalues of the problem

(2.2). From Section 2 and Lemma 2.4, if λε → λ0 = 0, then

φε,j → φj,

where L0Φ = 0. Hence φj = cjw
′(y) for some cj. This suggests that the first

term in the expansion of φε,j is ajw
′(y) for some constant aj. As we shall

prove, the small eigenvalues are of the order O(ε2). We need to expand the

eigenfunction up to the order O(ε)-term. Let us define

w̃ε,j(x) = χ(x − xj)uε(x), (3.1)

where χ(t) is defined before (2.4). Then it is easy to see that

uε(x) =
N∑

j=1

w̃ε,j(x) + e.s.t. in H2(R). (3.2)

Note that

w̃ε,j ∼ ξ−1
ε w(

x − xj

ε
) in H2

loc(−1, 1)
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and w̃ε,j(x) satisfies

ε2w̃ε,j − w̃ε,j + w̃2
ε,jvε + e.s.t. = 0. (3.3)

Thus w̃
′
ε,j := dw̃ε,j

dx
satisfies{

ε2w̃
′
ε,j − w̃

′
ε,j + 2w̃ε,jvεw̃

′
ε,j + w̃2

ε,jv
′
ε + e.s.t. = 0,

w̃
′
ε,j(±1) = 0.

(3.4)

Let us now decompose

φε = ε
N∑

j=1

aε
jw̃

′
ε,j + φ⊥

ε (3.5)

with complex numbers aε
j, (the factor ε is for scaling), where

φ⊥
ε ⊥ Kε,tε = span {w̃′

ε,j|j = 1, . . . , N} ⊂ H2(−1

ε
,
1

ε
).

Suppose that ‖φε‖H2(Ωε) = 1, where Ωε = (−1
ε
, 1

ε
). Then |aε

j| ≤ C since

‖εw̃′
ε,j‖H2(− 1

ε
, 1
ε
) ≥ C > 0.

Similarly, we can decompose

ψε = ε
N∑

j=1

aε
jψε,j + ψ⊥

ε , (3.6)

where ψε,j satisfies{
Dψ

′′
ε,j − c

ε
ψε,ju

2
ε − 2 c

ε
vεuεw̃

′
ε,j = ελεψε,j

ψ
′
ε,j(±1) = 0

(3.7)

and ψ⊥
ε satisfies {

D∆ψ⊥
ε − c

ε
ψ⊥

ε u2
ε − 2c

ε
vεuεφ

⊥
ε = ελεψ

⊥
ε

(ψ⊥
ε )

′
(±1) = 0.

(3.8)

Substituting the decompositions of φε and ψε into (2.2) and using (3.4) we

have

ε
N∑

j=1

aε
j

(
u2

εψε,j − (w̃ε,j)
2v

′
ε

)

+ε2(φ⊥
ε )

′′ − φ⊥
ε + 2uεvεφ

⊥
ε + u2

εψ
⊥
ε − λεφ

⊥
ε + e.s.t.

= λε

⎛
⎝ε

N∑
j=1

aε
jw̃

′
ε,j

⎞
⎠ . (3.9)
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Let us first compute

I1 := ε
N∑

j=1

aε
j

(
u2

εψε,j − (w̃ε,j)
2v

′
ε

)

= ε
N∑

j=1

aε
j

(
(w̃ε,j)

2(ψε,j − v
′
ε)
)

+ ε
N∑

j=1

aε
j

∑
k �=j

(w̃ε,k)
2ψε,j + e.s.t.

(by (3.2))

= ε
N∑

j=1

aε
j(w̃ε,j)

2(ψε,j − v
′
ε)

+ε
N∑

j=1

∑
k �=j

aε
kψε,k(w̃ε,j)

2.

We can rewrite I1 as follows

I1 = ε
N∑

j=1

N∑
k=1

aε
kw̃

2
ε,j

(
ψε,k − v

′
εδjk

)
+ e.s.t.. (3.10)

Let us also put

L̃εφ
⊥
ε := ε2∆φ⊥

ε − φ⊥
ε + 2uεvεφ

⊥
ε + u2

εψ
⊥
ε (3.11)

and

aε := (aε
1, ..., a

ε
N)T . (3.12)

Multiplying both sides of (3.9) by w̃
′
ε,l and integrating over (−1, 1), we

obtain

r.h.s. = ελε

N∑
j=1

aε
j

∫ 1

−1
w̃

′
ε,jw̃

′
ε,l

= λεa
ε
l ξ̂

−2
l

∫
R
(w

′
(y))2 dy (1 + O(ε)) + O(λεε|aε|) (3.13)

and

l.h.s. =

⎛
⎝ε

N∑
j=1

N∑
k=1

aε
k

∫ 1

−1
w̃2

ε,j

(
ψε,k − v

′
εδjk

)
w̃

′
ε,l

−
∫ 1

−1
w̃2

ε,lv
′
εφ

⊥
ε +

∫ 1

−1
ψ⊥

ε u2
εw

′
ε,l

⎞
⎠(1 + o(1))

= (J1,l + J2,l + J3,l)(1 + o(1)),

where Ji,l, i = 1, 2, 3 are defined by the last equality.
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We define the vectors

Ji = (Ji,1, ..., Ji,N )T , i = 1, 2, 3. (3.14)

It remains to compute J1,J2, and J3. To this end, we need to introduce

several matrices.

Let GD(x, z) be Green’s function of{
DG

′′
D(x, z) + 1

2
− δz = 0 in (−1, 1),∫ 1

−1 GG(x, z) dx = 0, G
′
D(−1, z) = G

′
D(1, z) = 0.

(3.15)

We can decompose GD(x, z) as follows

GD(x, z) =
1

2D
|x − z| + HD(x, z) (3.16)

where HD(x, z) is the regular part of GD.

We define

GD = (GD(xi, xj)), (3.17)

Let us denote ∂
∂xi

as ∇xi
. When i �= j, we can define ∇xi

GD(xi, xj) in the

classical way. When i = j, we define

∇xi
GD(xi, xi) :=

∂

∂x
|x=xi

H(x, xi).

Now the derivative of G are defined as follows:

∇GD := (∇xi
GD(xi, xj)). (3.18)

Finally the key matrix M is defined as

M := − N

2D
I − γ∇GD(I + γGD)−1(∇GD)T . (3.19)

Then we have the following key lemma.

Lemma 3.1. For ε sufficiently small, we have

J1 = c1ε
2
[
− N

2D
I + γ∇GD(I − γGD)−1(∇GD)T

]
aε + o(ε2),

(3.20)

J2 = o(ε2), (3.21)
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and

J3 = c1ε
2

[
− 2γ∇GD(I − γGD)−1(I + γGD)−1(∇GD)T +

]
aε + o(ε2),

(3.22)

where c1 is given by

c1 :=
c
∫

w2
∫

w3

3ξ4
0

> 0 (3.23)

and γ is given by (2.9).

The proof of Lemma 3.1 is delayed to the next section.

Let us now use it to study the small eigenvalues. In fact, note that

J1 + J2 + J3

= c1ε
2
[
− N

2D
I − γGD(I − γGD)−1(2(I + γGD)−1 − I)(∇GD)T

]
aε + o(ε2)

= c1ε
2
[
− N

2D
I − γ∇GD(I + γGD)−1(∇GD)T

]
aε + o(ε2).

(3.24)

Now we use l.h.s. to obtain that

l.h.s. = c1ε
2 1

ξ2
ε

Maε + o(ε2), (3.25)

where M is given by (3.19). Comparing with r.h.s., we have

c1ε
2 1

ξ2
ε

Maε + o(ε2) = λε
1

ξ2
ε

aε

∫
R
(w′(y))2 dy + O(ελε|aε|).

(3.26)

Equation (3.26) shows that the small eigenvalues λε of (2.2) are

λε ∼ ε2c2σ(M), (3.27)

where

c2 =
c1∫

(w′)2
< 0 (3.28)

and σ(M) is the spectrum of M. Therefore all that remains is to compute

the eigenvalues of M. They are difficult to compute and we delay these

calculations to Appendix C.

By Appendix C, we have the following lemma on the eigenvalues of M.
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Lemma 3.2. The eigenvalues of M are given by

m1 = − N

2D
,mj =

N

2D

tan2 θj

2
(1 − γ

2DN
)

tan2 θj

2
− γ

2DN
sec2 θj

2

, j = 2, ..., N
(3.29)

where θj = π(j−1)
N

, j = 2, ..., N .

From Lemma (3.2), we obtain the following main result of this section.

Proposition 3.3. The small eigenvalues of (2.2) are given by

λε,j = ε2c1mj, j = 1, ..., N, (3.30)

where c1 and mj are given by (3.23) and (3.29), respectively.

Now combining Proposition 2.3 and Proposition 3.3, we can finish the

proof of Theorem 1.2.

Proof of Theorem 1.2:

We first consider the case N = 1. In this case, b1 = 1 and thus the large

eigenvalue is always stable. For the small eigenvalues, m1 = − 1
2D

< 0. So

the small eigenvalue is stable, too.

Next we assume that N ≥ 2. Since if D > D1
N , we have instability of large

eigenvalues, we may consider the case D < D1
N . In this case, it is easy to see

that

tan2 θ

2
− γ

2DN
sec2 θ

2
< 0.

By Proposition 3.3, we conclude:

If 1− γ
2DN

< 0, we have stability, while if 1− γ
2DN

> 0, we have instability.

It is easy to compute that 1 − γ
2DN

= 0 if and only if

D =
1

2N3c
∫

w2
:= D2

N .

Since D1
N > D2

N , we see that we have the stability of both large and small

eigenvalues if and only if D < D2
N . This finishes the proof of Theorem 1.2.

�
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4. Computation of the small eigenvalues II: Proof of Lemma

3.1

In this section, we prove Lemma 3.1.

We remark that ∫ 1

−1
w̃2

ε,j(ψε,k − v
′
εδjk)w̃

′
ε,l

=
∫ 1

−1
w̃2

ε,l(ψε,k − v
′
εδlk)w̃ε,l + e.s.t.

So we need to study the asymptotic behavior of ψε,k near xl. Since ψε,k

satisfies (3.7), we have that

ψε,k(x) − ψε,k =
c

ε

∫ 1

−1
GD(x, z)[ψε,ku

2
ε + 2vεuεw̃

′
ε,j] dz. (4.1)

where ψε,k = 1
2

∫ 1
−1 ψε,k. Hence we have

ψε,j(xk) − ψε,k =
c
∫

w2

ξ2
ε

N∑
m=1

GD(xk, xm)ψε,j(xm)

− c
∫

w2

ξε

N∑
m=1

∇xmGD(xk, xm) + O(ε2). (4.2)

On the other hand, integrating (3.7), we obtain

c
∫

w2

ξ2
ε

N∑
m=1

ψε,k(xm) = O(ε). (4.3)

Note that by Appendix C we have

N∑
k=1

∇xk
GD(xk, xm) = 0,

N∑
k=1

GD(xk, xm) = λ1,

where λ1 is a constant independent of m. (4.2) and (4.3) imply that

ψε,j = O(ε). (4.4)

Hence

Ψε,j =

⎛
⎜⎜⎝

ψε,j(x1)
...

ψε,j(xN)

⎞
⎟⎟⎠ = −(I − γGD)−1(∇GD)T c

∫
w2

ξε

+ O(ε2).
(4.5)

From (4.2) we also see that for l �= k

ψε,k(xl + εy) − ψε,k(xl)
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=
(

c
∫

w2

ξ2
ε

N∑
m=1

∇xl
GD(xl, xm)ψε,k(xm)

−c
∫

w2

ξε

∇xl
∇xmGD(xk, xm)

)
εy + O(ε2)

=
c
∫

w2

ξ2
ε

N∑
m=1

∇xl
GD(xk, xm)ψε,k(xm)εy + O(y2) (4.6)

since

∇xl
∇xmGD(xk, xm) = 0.

At l = k, v
′
ε satisfies⎧⎨

⎩
D(v

′
ε)

′′ − c
ε
u2

εv
′
ε − 2c

ε
uεvεw̃

′
ε,l = 0,

v
′
ε(xl − 1

N
) = v

′
ε(xl + 1

N
) = 0.

(4.7)

Since the Green’s function for Du
′′

= δz,− 1
N

< x < 1
N

, u(− 1
N

) = u( 1
N

) is
1

2D
|x−z|+ N

2D
(xz− 1

N2 ), we have that v
′
ε(x) satisfies for x = xlε+y, z = xl+εz̄

v
′
ε(xl + εy) =

c

ε

∫ 1
N

− 1
N

(
1

2D
|x − z| + N

2D
(xz − 1

N2
)
)

(u2
εv

′
ε + 2uεvεw̃

′
ε,l) dz

=
c

ε

∫ 1
Nε

− 1
Nε

(
1

2D
ε|y − z̄| + N

2D
(ε2yz̄)

)
(u2

εv
′
ε + 2uεvεw̃

′
ε,l)ε dz̄

=
2c

ξε

∫ 1
Nε

− 1
Nε

|y − z̄|ww
′
+

Nc

2D
εy
∫ ∞

−∞
2ww

′
z̄

ξε

dz̄ + O(ε2). (4.8)

Similarly

ψε,l(xl + εy) − ψε,l(xl)

=
c

ε

∫ 1

−1
[GD(xl + εy, z) − GD(xl, z)](ψε,lu

2
ε + 2vεuεw̃

′
ε,l) dz

=
c

ε

∫ 1

−1

[
1

2D
(|xl + εy − z| − |xl − z|) − (xl + εy)2 − x2

l

4D

]
(ψε,lu

2
ε+2vεuεw̃

′
ε,l) dz

=
c

2D
ε
∫ 1

ε

− 1
ε

(|y − z̄| − |z̄|)ψε,j(xl)
w2

ξ2
ε

dz̄

−cεxly

2D
ψε,l(xl)

∫
w2

ξ2
ε

+
2c

ξε

∫ ∞

−∞
|y − z̄|w(z̄)w

′
(z̄) dz̄. (4.9)

Hence

ψε,l(xl + εy) − ψε,l(xl) − (v
′
ε(xl + εy))

=
c

2D
ε
∫ 1

ε

− 1
ε

(|y − z̄| − |z̄|)w
2(z̄)

ξ2
ε

ψε,j(xl) dz̄ + εy∇xl
GD(xl, xl)ψε,l(xl)

c
∫

w2

ξ2
ε
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+
N

2D
εy

c
∫

w2

ξε

+ O(ε2). (4.10)

Combining (4.6) and (4.10), we have

(ψε,k − v
′
εδlk)(xl + εy) − (ψε,k − v

′
εδlk)(xl)

=
c

2D
ε
∫ 1

ε

− 1
ε

(|y − z̄| − |z̄|)w
2

ξ2
ε

ψε,j(xl)δlk

+
c
∫

w2

ξ2
ε

N∑
m=1

∇xl
GD(xk, xm)ψε,j(xm)εy

+
N

2D
εy

c
∫

w2

ξε

δlk + O(ε2). (4.11)

Substituting (4.11) into the computation of J1, we obtain that

J1 = ε2 1

ξ3
ε

c
∫ ∞

∞
yw2(y)w

′
(y) dy

[
N

2D

c
∫∞
−∞ w2

ξε

I − c
∫

w2

ξ2
ε

∇GD(I + γGD)−1(∇GD)T c
∫

w2

ξε

+ O(ε)

]
aε

= ε2 1

ξ3
ε

(−1

3

∫ ∞

−∞
w3)

[
N

2D
I − γ∇GD(I − γGD)−1(∇GD)T + O(ε)

]
c
∫

w2

ξε

a

= −cε2
∫

w3
∫

w2

3ξ4
ε

[
N

2D
I − γ∇GD(I − γGD)−1(∇GD)T + O(ε)

]
aε

= c1ε
2
[
∇2GD + γ∇GD(I − γGD)−1(∇GD)T + O(ε)

]
aε

which proves the asymptotic expansion for J1.

Next we compute J2 and J3. To this end, we need to study the asymptotic

behavior of φ⊥
ε . Let

φ̃⊥
ε,j =

1

ε
φ⊥

ε χ(x − xj). (4.12)

Then it is easy to see that

φ⊥
ε = ε

N∑
j=1

φ̃⊥
ε,j + O(ε2) in H2(Ωε). (4.13)

Set

Φ̃⊥
ε =

⎛
⎜⎜⎝

φ̃⊥
ε,1
...

φ̃⊥
ε,N

⎞
⎟⎟⎠ .
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By the equation for ψ⊥
ε :

D∆ψ⊥
ε − c

ε
u2

εψ
⊥
ε − 2c

ε
uεvεψ

⊥
ε = ελεψ

⊥
ε (4.14)

we see that

ψ⊥
ε (xi) − ψ⊥

ε =
c
∫

w2

ξ2
ε

N∑
m=1

GD(xi, xm)ψ⊥
ε (xm) + 2cε

N∑
m=1

GD(xi, xm)
∫

wφ⊥
ε,m.

(4.15)

Hence

Ψ⊥
ε =

⎛
⎜⎜⎝

ψ⊥
ε (x1)

...
ψ⊥

ε (xN)

⎞
⎟⎟⎠ = (I − γGD)−1(2cεGD

∫
wφ̃⊥

ε + e ψ⊥
ε ),

where

e =

⎛
⎜⎜⎝

1
...
1

⎞
⎟⎟⎠ .

Note that

γψ⊥
ε + 2cε

N∑
m=1

∫
wφ̃⊥

ε,m = 0.

Let

E =

⎛
⎜⎜⎜⎜⎝

1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1

⎞
⎟⎟⎟⎟⎠ .

Then

Ψ⊥
ε = (I − γGD)−1(2cεGD − 2cε

γ
E)
∫

R
wΦ̃⊥

ε (4.16)

and

ψ⊥
ε (xl + εy) − ψ⊥

ε (xl)

= εyγ
N∑

m=1

∇xl
GD(xl, xm)ψ⊥

ε (xm) + ε2y2c
N∑

m=1

∇xl
GD(xl, xm)

∫
wφ⊥

ε,m.
(4.17)

By (4.5) we see that as ε → 0

φ̃ε,j → φ̃⊥
ε,j.
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We introduce the notation

Φ̃⊥ =

⎛
⎜⎜⎝

φ̃⊥
1
...

φ̃⊥
N

⎞
⎟⎟⎠ ,

where Φ̃⊥ satisfies⎧⎨
⎩ (Φ̃⊥)

′′ − Φ̃⊥ + 2wΦ̃⊥ − 2
∫

wBΦ̃⊥∫
w2 w2 + (I − γGD)−1(∇GD)Ta0 c

∫
w2

ξ0
= 0,

Φ̃⊥ ⊥ (X0)
N ,

with

B = −
∫

w2

ξ0

(I − γGD)−1(cGD − c

γ
E)

= −(I − γGD)−1(γGD − E)

lim
ε→0

aε = a0.

Hence

Φ̃⊥ = −(I − 2B)−1(I − γGD)−1(∇GD)Ta0 c
∫

w2

ξ0

w,

Ψ⊥
ε = (I − γGD)−1(2cεGD − 2cε

γ
E)
∫

R
wΦ̃⊥

ε

= −(I − γGD)−1(2cεGD − 2cε

γ
E)
∫

w2(I − 2B)−1(I − γGD)−1(∇GD)T c
∫

w2

ξ0

and so we have

J3 = ε2

∫
R yw2w

′

ξ3
ε

[
γ∇GDψ⊥

ε + 2c∇GD

∫
R

wΦ̃⊥
]

= ε2

∫
yw2w

′

ξ3
ε

c
∫

w2

ξ0

[
γ∇GD(I − γGD)−1(2cGD − 2c

γ
E) + 2c∇GD

] ∫
wΦ̃⊥

= ε2c1

[
∇GD(I − γGD)−1(2I − 2

γ
E)

−(I − 2B)−1(I − γGD)−1(∇GD)T
]
a0.

Note that

B = (I − γGD)−1(γGD − E),

I − 2B = I + 2(I − γGD)−1(γGD − E)

= (I − γGD)−1(I + γGD − 2E),

(I − 2B)−1 = (I + γGD − 2E)−1(I − γGD).
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So

∇GD(I − γGD)−1(I − E

γ
)(−(I − 2B)−1(I − γGD)−1)(∇GD)T

= −∇GD(I − γGD)−1(I − E

γ
)(I + γGD − 2E)−1(∇GD)T .

Note that E(∇GD)T = 0 and EGD = GDE. Hence

(I + γGD − 2E)−1(∇GD)T = (I + γGD)−1∇GD

and

J3 = c1ε
2
[
−2∇GD(I − γGD)−1(I + γGD)−1(∇GD)T

]
aε = o(ε2),

which proves (3.22).

5. Numerical Simulations

We have performed some numerical simulations to verify our results. In

all our computations, we take c = 1 and work with the rescaled equation

(1.5). By Theorem 1.2, we have

DN =
1

2c
∫
R w2N3

.

Since
∫
R w2 = 6, we can compute

DN =
1

12N3
. (5.1)

Let us first consider the dynamics of one-peaked solution first. It is well-

known that the single-interior spike solution is unstable when D = +∞.

(See [23].) However, if we take D < +∞, the one-peak solution can become

stable. We have computed the dynamics of one-peaked solution when D = 5

and ε = 0.05. Figure 2 contains the trajectories of u at different times:

t = 50, t = 2500, t = 50000.

The trajectory of the center of the spike is given by Figure 3. We see that

the trajectory converges to the center.

Next we consider the stability of two-peaked solutions. We start with

D = 1, ε = 0.006. By our theory, the critical thereshold for the stability of

two-peaked solution is D2 = 1
96

∼ 0.01. So it should be unstable and our

numerical computation confirms that. See Figure 4.
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Finally, we decrease D to be D = 0.008 < D2. By Theorem 1.2, the

two-peaked solution should be stable. Figure 5 confirms that.

Figure 6 shows that the trajectories of the centers of the two-peaked so-

lution converge to the stationary two-peaked location.

6. Appendix A. Existence of N-peaked solutions

We prove Theorem 1.1 in this appendix. Since this is similar to that of

[17], we shall give a sketch only. The main idea is that we restrict the solution

to be symmetric and then apply the implicit function theorem.

To this end, it is enough to consider the following problem⎧⎪⎨
⎪⎩

ε2u
′′ − u + vu2 = 0 in (−l, l),

Dv
′′

+ 1
2
− c

ε
vu2 = 0 in (−l, l),

u
′
(±l) = v

′
(±l) = 0,

(6.1)

where l = 1
N

. We construct symmetric single-peaked solutions to (6.1). Then

by pasting N of these solutions together we obtain a symmetric N -peaked

solution in (−1, 1).

Let

H2
s (− l

ε
,
l

ε
) =

{
u ∈ H2(− l

ε
,
l

ε
)

∣∣∣∣∣u(y) = u(−y), u
′
(±ε

l
) = 0

}
.

Fix u ∈ H2
s . We can solve for v first: Let v = T [u] be the unique solution of{

Dv
′′

+ 1
2
− c

ε
vu2 = 0 in (−l, l),

v
′
(±l) = 0.

Then problem (6.1) can be re-written as a single non-local equation¿{
∆yu − u + T [u]u2 = 0 in (− l

ε
, l

ε
), y = x

ε
,

u ∈ H2
r (− l

ε
, l

ε
).

Recall that

ξ0 = cN
∫ ∞

∞
w2

and define

wε(x) =
1

ξ0

w(
x

ε
)χ(x),

where χ is defined before (2.4). Set u = wε + φε. Then we have

ε2φ
′′
ε − φε + 2T [wε]wεφε + T

′
[wε](φε)w

2
ε
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+ T [wε]w
2
ε −

1

ξ0

w2
ε + e.s.t. + N [φε] = 0 (6.2)

in H2(−l, l), where N [φ] represents all quadratic and higher-order terms in

φε. Let

Sε[φε] = φ
′′
ε − φε + 2T [wε]wεφε + T

′
[wε](φε)w

2
ε .

As ε → 0, we can compute easily that

Sε → S0 = ∆φ − φ + 2wφ − 2
∫

wφ∫
w2

w2.

We now have

Lemma 6.1. For ε small,

Sε : H2
s (− l

ε
,
l

ε
) → L2

s(−
l

ε
,
l

ε
)

is one-to-one, onto, and thus invertible.

Proof: This follows from the fact that the operator S0 is invertible in the

space

H2
s (R) = {u ∈ H2(R)|u(y) = u(−y)}.

�
From Lemma 6.1 and the fact that

T [wε](0) = (1 + O(ε))
1

ξ0

we see that (6.2) is solvable for ‖φε‖H2(− l
ε
, l
ε
) small, by the contraction map-

ping principle.

7. Appendix B. Computation of the matrix B
In this appendix we prove Proposition 2.1.

We first analyze problem (2.8) in this section. We use an indirect approach.

For −1 < x < x1, ψ
′′
0 = 0. Hence

ψ0(x) = ψ0(x1) = η1. (7.1)

Similary, for xi−1 < x < xi, i = 2, . . . , N

ψ0(x) = ηi−1
xi − x

xi − xi−1

+ ηi
x − xi−1

xi − xi−1

. (7.2)
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Hence

ψ
′
=

N

2
(ηi − ηi−1) for xi−1 < x < xi. (7.3)

Finally, for xN < x < 1, we have

ψ
′
0(x) = 0, ψ0(x) = ηN . (7.4)

At xi, i = 1, . . . , N , we have

D[ψ
′
]xi

− γηi − 2c
∫

wφi = 0, (7.5)

where [ψ
′
]xi

denotes the jump of ψ
′
at xi. So at x1, we have

DN

2
[η2 − η1] = γη1 + 2c

∫
wφ1. (7.6)

At xi, i = 2, . . . , N − 1 we have

DN

2
[ηi+1 − 2ηi + ηi−1] = γηi + 2c

∫
wφi. (7.7)

At xN , we have

DN

2
[0 − (ηN − ηN−1)] = γηN + 2c

∫
wφN . (7.8)

From (7.6), (7.7), and (7.8), we arrive at

η =
(

DN

2
K − γI

)−1

2c
∫

wΦ,

which is exactly (2.12), where the matrix K is given by (2.11) .

Hence

B = γ
(

DN

2
K − γI

)−1

.

Since K is a symmetric tridiagonal matrix, its eigenvalues of K can be com-

puted easily (see [9]):

kj = 2

(
cos

π(j − 1)

N
− 1

)
, j = 1, . . . , N

and the eigenvectors of K are

q1 =
1√
N

(1, . . . , 1)T ,

q = (ql,1, . . . , ql,N), l = 2, . . . , N,

ql,j =
1√
N

cos

(
π(j − 1)

N
(l − 1

2
)

)
, j = 2, . . . , N, l = 1, . . . , N.
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Hence the eigenvalues of B are

bj = γ
(

DN

2
kj − γ

)−1

, j = 1, . . . , N.

8. Appendix C: Computation of the eigenvalues of M
First, let us compute GD(x, z) – Green’s function –{

DG
′′
D(x, z) + 1

2
− δz = 0 in (−1, 1),∫ 1

−1 GD(x, z) dx = 0, G
′
D(−1, z) = G

′
D(1, z) = 0,

which was introduced in (3.15). It is easy to calculate that

GD(x, z) =

⎧⎪⎨
⎪⎩

1
D

[
1
3
− (x+1)2

4
− (1−z)2

4

]
, −1 < x ≤ z,

1
D

[
1
3
− (z+1)2

4
− (1−x)2

4

]
, z ≤ x < 1.

(8.1)

We decompose

GD(x, z) =
1

2D
|x − z| + HD(x, z). (8.2)

By simple computations,

HD(x, z) =
1

2D

[
−1

3
− x2

2
− z2

2

]
. (8.3)

For x �= z we calculate

∇x∇zGD(x, z) = 0, ∇xGD(x, z) =

⎧⎨
⎩

−x+1
2D

if x ≤ z

−x−1
2D

if z ≤ x. (8.4)

We further have

∇xGD(x, z)|x=z = ∇xHD(x, z)|x=z = − z

2D
(8.5)

Let xj = −1 + 2j−1
N

. So we obtain

∇GD = (cij)(− 1

2D
), (8.6)

where

cij =

⎧⎪⎨
⎪⎩

x1 + 1 i < j,
xi − 1 i > j,

xi i = j.

We need to compute the eigenvalues of

M = − N

2D
I − γ∇GD(I + γGD)−1(∇GD)T
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= − N

2D
I − γ(

1

2D
)2C(I + γGD)−1CT . (8.7)

To this end, we introduce two matrices which will play very important

roles. First, let us denote

P = (q1, . . . ,qN),

where ⎧⎪⎪⎨
⎪⎪⎩

q1 = 1√
N

(1, . . . , 1),

ql = (ql,1, . . . , ql,N , l = 2, . . . , N

ql,j =
√

2
N

cos
(

π(j−1)
N

(l − 1
2
)
)
, j = 2, . . . , N.

(8.8)

(Note that P consists of the eigenvectors of K in Appendix B.)

Similarly, we define

Q = (v1, . . . ,vN),

where ⎧⎪⎪⎨
⎪⎪⎩

v1 = 1√
N

(1,−1, 1, . . . , (−1)N+1),

vl = (vl,1, . . . , vl,N , l = 2, . . . , N

vl,j =
√

2
N

sin
(

π(j−1)
N

(l − 1
2
)
)
, j = 2, . . . , N.

(8.9)

We now make a few claims:

Claim I:

P−1GDP =

⎛
⎜⎜⎝

λ1

. . .
λN

⎞
⎟⎟⎠ , (8.10)

where

λ1 = − 1

6DN
, λj = − 1

2DN sin2(π(j−1)
2N

)
, j = 2, ..., N.

(8.11)

Claim II:

Q∇GDP =

⎛
⎜⎜⎝

ν1

. . .
νN

⎞
⎟⎟⎠ , (8.12)

where

ν1 = 0, νj =
1

2D tan π(j−1)
2N

, j = 2, . . . , N. (8.13)
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We shall verify these two claims at the end of the appendix. Let us suppose

the above two claims are true. Then the eigenvalues of M are given by

mj = − N

2D
− γν2

j (1 + γλj)
−1.

So m1 = − N
2D

and for j = 2, ..., N,

mj = − N

2D
− γ(

1

2D
)2 1

tan2 θj

2

⎛
⎝1 − γ

2DN sin2 θj

2

⎞
⎠

−1

,

which proves Lemma 3.2.

Finally we prove Claim I and Claim II.

Proof of Claim I: Let θ �= 0. We recall the following formulas:

N∑
l=1

cos θ(l − 1

2
) =

sin θN

2 sin θ
2

,

N∑
l=1

(l − 1

2
) cos θ(l − 1

2
) =

N sin θ
2
sin Nθ − 1

2
(1 − cos θN) cos θ

2

2 sin2 θ
2

,

N∑
l=1

(l − 1

2
)2 cos θ(l − 1

2
) = −N

2

(
cos Nθ

sin θ
2

)
θ

+

(
cos θ

2
sinNθ

4 sin2 θ
2

)
θ

.

To prove Claim I, all we need to check is

N∑
l=1

GD(xi, xl)ql,j = λjqi,j. (8.14)

When j = 1, we have that

2D
N∑

l=1

GD(xi, xl) = (−1

3
− x2

i

2
− 1

2
)N +

2

N

N∑
l=1

(l − 1

2
)

− 2

N2

N∑
l=1

(l − 1

2
)2 +

1

2D

2

N

N∑
l=1

|l − i|

= (−1

3
− x2

i

2
)N +

N∑
l=1

|l − i| 2

N
− 1

2

N∑
l=1

x2
l

= 2Dλ1,

where λ1 is given by (8.11).

For j = 2, . . . , N , we need to check that

N∑
l=1

GD(xi, xl) cos(θj(l − 1

2
)) = λj cos(θj(i − 1

2
)), (8.15)
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where

θj =
π(j − 1)

N
.

Note that

2DGD(xi, xl) = |xi − xl| − 1

3
− x2

i

2
− x2

l

2

= −1

3
− x2

i

2
− 1

2
+

2(l − 1
2
)

N
− 2(l − 1

2
)2

N2
+ |xi − xl|.

Since
N∑

l=1

cos θj(l − 1

2
) =

sin Nθj

2 sin θj

2

= 0,

we have that

2D
N∑

l=1

GD(xi, xl) cos(θj(l − 1

2
))

=
2

N

N∑
l=1

(l − 1

2
) cos(θj(l − 1

2
)) − 2

N2

N∑
l=1

(l − 1

2
)2 cos θj(l − 1

2
)

+
2

N

N∑
l=1

(l − i) cos θj(l − 1

2
) +

4

N

i∑
l=1

(i − l) cos θj(l − 1

2
)

=
4

N

⎛
⎝(cos Nθj − 1) cos θj

2

4 sin2 θj

2

⎞
⎠

− 2

N2

⎛
⎝−N

4

− cos Nθj cos θj

2

sin2 θj

2

+
N cos θj

2
cos Nθj sin2 θj

2

4 sin4 θj

2

⎞
⎠

+
4

N

(
(i − 1

2
)

i∑
l=1

cos θj(l − 1

2
) −

i∑
l=1

(l − 1

2
) cos θj(l − 1

2
)

)

=
4

N

⎡
⎣(i − 1

2
)

sin θji

2 sin θj

2

− i sin θj

2
sin θji − (1 − cos θji)

1
2
cos θj

2

2 sin2 θj

2

⎤
⎦− cos θj

2

N sin2 θj

2

= −cos θj(i − 1
2
)

N sin2 θj

2

.

Therefore we obtain that

λj = − 1

2DN sin2 π(j−1)
2N

, j = 2, . . . , N, (8.16)

which proves Claim I.

�
Next we prove Claim II.
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Proof of Claim II:

We need to show that

(− 1

2D
)

N∑
l=1

cil cos

(
π(j − 1)

N
(l − 1

2
)

)
= νj sin

(
π(j − 1)

N
(i − 1

2
)

)
.

For j = 1 we calculate
N∑

l=1

cil =
N∑

l=1

xi + (N − i) = xiN + N − 2i − 1 = 0.

So we get

ν1 = 0.

For j ≥ 2, we consider
N∑

l=1

cil cos

(
π(j − 1)

N
(l − 1

2
)

)

=
N∑

l=1

xi cos

(
π(j − 1)

N
(l − 1

2
)

)

+
i−1∑
l=1

cos
(
θj(l − 1

2
)
)

+
N∑

l=i+1

cos
(
θj(l − 1

2
)
)

= −sin θj(i − 1)

2 sin θj

2

+
1

2 sin θj

2

(sin Nθj − sin iθj)

= −sin θj(i − 1) + sin iθj

2 sin θj

2

= −2 sin θj(i − 1
2
) cos θj

2

2 sin θj

2

= − 1

tan θj

2

sin θj(i − 1

2
).

Claim II is thus proved.

�
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Figure 2. Dynamics of one-spike solutions. Here D = 5, ε =
0.05 and the trajectories are at t=50,t=2500 and t=50000.
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Figure 3. Trajectory of the center x0(t).
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Figure 4. Unstable two-peaked solution above D2. Here D =
1 > D2, ε = 0.06 and the trajectory is taken at t = 100.
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Figure 5. Stable two-peaked solution below D2. Here D =
0.08 < D2, ε = 0.06 and the trajectories are taken at t =
10, 100 and 1000.
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Figure 6. Trajectories of the two centers. Here D = 0.008 <
D2, ε = 0.06.
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