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Abstract

An e�cient algorithm is developed to price European options in the pres-

ence of proportional transaction costs, using the optimal portfolio frame-

work of Davis (1997). A fair option price is determined by requiring that

an in�nitesimal diversion of funds into the purchase or sale of options

has a neutral e�ect on achievable utility. This results in a general option

pricing formula, in which option prices are computed from the solution of

the investor's basic portfolio selection problem, without the need to solve
a more complex optimisation problem involving the insertion of the op-

tion payo� into the terminal value function. Option prices are computed

numerically using a Markov chain approximation to the continuous time
singular stochastic optimal control problem, for the case of exponential

utility. Comparisons with approximately replicating strategies are made.

The method results in a uniquely speci�ed option price for every initial
holding of stock, and the price lies within bounds which are tight even as

transaction costs become large. A general de�nition of an option hedg-

ing strategy for a utility maximising investor is developed. This involves
calculating the perturbation to the optimal portfolio strategy when an

option trade is executed.

JEL classi�cation: C61; G11; G13
Keywords: Option pricing; transaction costs; utility maximisation; singular

stochastic control; Markov chain approximation

1 Introduction

The celebrated Black-Scholes (1973) option pricing methodology is not applica-
ble in the presence of transaction costs on trading the underlying stock. This is

�
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helpful comments.
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because it relies on the implementation of a continuously rebalanced portfolio
strategy (to replicate the option payo�) that would be excessively costly in the
face of any market frictions. Since perfect replication is not possible it is nec-
essary to look for alternative criteria to determine fair valued derivative prices
and, if possible, hedging strategies. There is an unavoidable trade-o� between
the transaction costs incurred in portfolio rebalancing and the tightness of the
valuation bounds. Reducing the hedging error generally incurs large transac-
tion costs and results in unrealistically wide valuation bounds. The question
arises as to what is the optimal valuation and hedging policy, consistent with
an investor's risk management objectives.

A number of methods have been suggested to solve this problem. The natural
alternative to continuous hedging policies for options is to introduce a discrete
timescale in which transactions take place. This is the course taken by Leland
(1985) and Boyle and Vorst (1992). Both these models result in Black-Scholes
type formulae for bounds on the value of the option, with an adjusted volatility
which depends directly on the exogenously speci�ed revision frequency. The
hedging error is reduced if portfolio rebalancing occurs more frequently, but
the pricing bounds become much wider. Moreover, restricting the form of the
hedging strategy to portfolio rebalancing at �xed time intervals may not always
be the optimum method of managing the risk from an option trade.

Bensaid, Lesne, Pag�es and Scheinkman (1992), Edirisinghe, Naik and Uppal
(1993) and Boyle and Tan (1994) replaced the replication strategy with a \super-
replicating strategy" in which the hedging portfolio is only required to dominate,
rather than replicate, the option payo� at maturity. In a discrete time setting
it can sometimes be cheaper to dominate a contingent claim than to replicate

it. However, as conjectured by Davis and Clark (1994) and subsequently proven
by Soner, Shreve and Cvitani�c (1995) and Cvitani�c, Pham and Touzi (1999), in
the continuous time limit the cheapest super-replicating strategy for a European
call option is the trivial strategy of buying one share of the underlying stock and
holding it to maturity. This illustrates a fundamental feature of option hedging
under transaction costs, namely that eliminating all risk results in unrealistically
wide valuation bounds.

Hodges and Neuberger (1989) recognised that a valuation method which
incorporates some element of optimality, in the form of the agent's utility max-
imisation objective, is perhaps the most promising path to follow in designing
e�ective option hedging policies. This point was also made by Dumas and
Luciano (1991). By comparing the utility achieved with and without the obli-
gations of an option contract, Hodges and Neuberger speci�ed reservation bid
and asking prices for an option by requiring that the same utility is achieved
whether an option trade has been entered into or not. This approach was fur-
ther developed by Davis, Panas and Zariphopoulou (1993), Clewlow and Hodges
(1997) and Constantinides and Zariphopoulou (1999). Alternative criteria for
determining an option hedging policy include quadratic criteria such as local
risk minimisation, studied by Mercurio and Vorst (1997) and Lamberton, Pham
and Schweizer (1998).

Davis (1997) suggested a utility maximisation approach to valuing options
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in a general situation in which replication is either impossible or unfavourable.
Davis derived a general option pricing formula for a \fair" option value, deter-
mined by balancing the marginal utility from diverting an in�nitesimal fraction
of the initial wealth into the options market with that from refraining from
trading options and instead investing optimally in the underlying asset market.

In this paper we numerically study the optimal pricing procedure suggested
by Davis (1997). We develop an associated de�nition of a hedging strategy
implied by the new method, and compute option prices and hedging strategies
under proportional transaction costs. Davis' formula, which is reminiscent of
a classical representative agent asset pricing formula, has not (until now) been
tested numerically to see what implications it has for option values and hedging
strategies in the presence of market frictions. Karatzas and Kou (1996) have
applied this approach in frictionless markets to the situation in which there
are constraints on the investor's portfolio choices, whereas we consider markets
that are otherwise complete, but option replication is rendered unfavourable by
trading costs.

Our numerical results indicate that the new methodology inherits realistic
and appealing features from the solution of the investor's basic portfolio selection
problem. The presence of frictions in a �nancial market qualitatively changes
the nature of the optimal trading strategy, in that it speci�es a region of the
portfolio state space in which it is optimal not to transact, whilst outside this
region the optimal action is to either buy or sell the risky asset. When the
investor's portfolio holdings lie outside the no transaction region, the derived
option value is either the optimal bid or ask price. Alternatively, if the agent's
stock-bond holdings lie within the no transaction region, then the option value

lies strictly within the bid-ask spread, and is uniquely speci�ed given the initial
portfolio holdings. Trading an option at any price within the optimal bid-ask
interval results in a negligible e�ect on the investor's utility. However, trading
at a price outside the bid-ask interval drastically reduces (or increases, if the
investor is on the favourable side of the trade) the achievable utility compared
with the scenario in which an option is not traded.

We also make comparisons with the replication approach of Leland (1985).

In general, we �nd that the optimal valuation method produces much tighter
bounds on option prices than can be obtained by any strategy which attempts to
eliminate risk by replication, and this e�ect is most marked for large transaction
costs. In essence, the option trader is able to incorporate some risk in his options
portfolio, which is unavoidable in the face of market frictions.

The pricing methodology has the desirable feature that one only has to solve
the investor's basic portfolio selection problem to price options. This is in con-
trast to previous attempts to embed the pricing problem in a utility maximisa-
tion framework, which require the solution of a much more di�cult optimisation
problem involving the credit or debit of an option payo� to the investor's port-

folio at the option maturity date. We develop an e�cient algorithm to price
options in our framework using a Markov chain approximation technique of the
type pioneered by Kushner (1990).

The paper is organised as follows. In Section 2 we set up a portfolio selection
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scenario, in which the optimal strategy to maximise expected utility of wealth at
a �nite horizon time is sought. We also formulate the alternative optimisation
problem which results if a small amount of the initial wealth is diverted into
the purchase or sale of European options. We illustrate the various ways that
such stochastic optimal control problems can be used to specify an option price,
and we state Davis' (1997) general option pricing formula. Then we give a
general de�nition of an option hedging strategy for a utility maximising investor
who has the choice of diverting some initial wealth into the options market.
In Section 3 we consider a speci�c market model with transaction costs. We
illustrate the properties of the solution to the portfolio choice problem, and of
Davis' pricing formula. In Section 4 we specialise to the case of an exponential
utility function, and develop an e�cient numerical option pricing algorithm. In
Section 5 we present numerical solutions for option prices and hedging strategies.
Section 6 concludes and suggests directions for further research. An Appendix
contains a derivation of some results used in the implementationof our numerical
algorithm.

2 Portfolio Selection and Option Valuation

We shall utilise a �nite time interval [0; T ], where T will correspond to the ma-
turity of a European option. Consider an investor with concave utility function
U , starting at time t 2 [0; T ] with cash endowment x, and holding y shares of a
stock whose price is S. The investor trades a dynamic portfolio whose value at
time u > t is W �

t;S;x;y
(u) when he or she uses the trading strategy � and starts

in the state (t; S; x; y). The wealth W
�

t;S;x;y
(u) consists of X�

t;S;x;y
(u) dollars in

cash and Y
�

t;S;x;y
(u) shares of stock, whose price at time u is S(u), so that

W
�

t;S;x;y
(u) = X

�

t;S;x;y
(u) + Y

�

t;S;x;y
(u)S(u): (1)

The investor's objective is to maximise expected utility of wealth at time
T . We assume that the investor does not consume any wealth, which is a rea-
sonable assumption for a trader in a �nancial institution. Denote the investor's
maximum utility by

V (t; S; x; y) = sup
�

Et[U (W
�

t;S;x;y
(T ))]; (2)

where Et denotes the expectation operator conditional on the time-t informa-
tion. The supremum in (2) is taken over a suitable set of admissable policies,
to be described in the next section, when we specialise to a market with pro-
portional transaction costs.

Consider the alternative optimisation problemwhich results if a small amount
of the initial wealth is diverted into the purchase or sale of a European option

whose payo� at time T is some non-negative random variable C(S(T )). To be
precise, if the option price at time t is p and an amount of cash � is diverted at
this time into options, we de�ne

V
(o)(t; S; x� �; y; �; p) = sup

�

Et

�
U

�
W

�

t;S;x��;y
(T ) +

�

p

C(S(T ))

��
: (3)
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The \o" superscript denotes that the investor's portfolio at time T incorporates
the option payo�. The value function in (3) is evaluated for the initial cash
endowment x� � to signify that the funds to buy (or sell, if � < 0) the options
have come from (or been credited to) the initial wealth. The value function for
initial cash x is

V
(o)(t; S; x; y; �; p) = sup

�

Et

�
U

�
W

�

t;S;x;y
(T ) +

�

p

C(S(T ))

��
; (4)

namely the maximumutility that is achieved if the investor's account is credited
with the payo� of �=p options at time T , without any corresponding adjustment
to the initial cash position. In (2){(4) the quantities � and p would be measur-
able with respect to the time-t information.

Clearly V
(o)(t; S; x; y; 0; �) = V (t; S; x; y), and the reader will note the de-

pendence in (3) on the volume of option contracts traded. There are a number
of ways that the above optimisation problems can be used to specify valuation
bounds or a price for the option. A reservation writing price pw(t; S; x; y) for
the initial holdings (x; y) is de�ned as the minimum value at which the investor
is prepared to write the claim, and so satis�es

V
(o)(t; S; x+ pw(t; S; x; y); y;�pw(t; S; x; y); pw(t; S; x; y)) = V (t; S; x; y); (5)

since the same utility is achieved when selling the option for pw(t; S; x; y) as is
achieved by not writing the option. We further de�ne the universal reservation
writing price p

w
(t; S) as the maximum of reservation write prices across all

initial holdings (x; y). Therefore p
w
(t; S) satis�es

V
(o)(t; S; x+ p

w
(t; S); y;�p

w
(t; S); p

w
(t; S)) � V (t; S; x; y): (6)

Inequality (6) guarantees that the writer will be willing to write the option
at any price higher than p

w
(t; S), independently of his current portfolio position.

Similarly, a reservation buying price pb(t; S; x; y) for the initial holdings (x; y)
is

V

(o)(t; S; x� pb(t; S; x; y); y; pb(t; S; x; y); pb(t; S; x; y)) = V (t; S; x; y): (7)

The universal reservation buying price p
b
(t; S) is the minimum of reservation

buying prices across all initial holdings, and so satis�es

V
(o)(t; S; x� p

b
(t; S); y; p

b
(t; S); p

b
(t; S)) � V (t; S; x; y): (8)

As pointed out by Constantinides and Zariphopoulou (1999), transaction
prices of the option must lie in the interval [p

b
; p

w
]. For, if an option trader

writes the option for a price p > p
w
then the buyer is acting suboptimally, as he

could have found a willing writer of the option at a price as low as p
w
. Likewise,

if a transaction occurs at a price p < p

b
, then the writer is acting suboptimally.

Hodges and Neuberger (1989) initiated the above approach to �nding option
valuation bounds. They considered the special case of a risk-neutral world where
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the stock return rate is equal to the riskless interest rate. In this case, and in
the absence of any option transaction, the investor would choose not to invest
in the stock at all. Therefore, when an option is written or purchased, the
optimal trading strategy speci�ed by (5) or (7) would consist of the incremental
trades generated by the option transaction, i.e. the option hedging strategy.
Hodges and Neuberger also restricted their model to the case where the agent's
initial holdings in stock and cash are zero. Their method is an ingenious way of
focusing attention on the hedging issue. In this paper we relax their assumptions
to allow for a richer interaction between the hedging strategy and the agent's
initial portfolio. Davis, Panas and Zariphopoulou (1993) and Constantinides
and Zariphopoulou (1999) have also considered the issue of �nding reservation
prices for European options, without the assumption of risk-neutrality, and the
latter derive analytic bounds on option values by embedding the pricing problem
in an in�nite horizon portfolio selection framework.

One way of determining a unique price for an option under market imperfec-
tions was proposed by Davis (1997). Davis suggests that an agent will be willing
to trade the option at a \fair" price p̂, such that there is a neutral e�ect on the
investor's utility if an in�nitesimal fraction of the initial wealth is diverted into
the purchase or sale of the option at price p̂. That is, p̂ is given by the solution
of

@V
(o)

@�

(t; S; x� �; y; �; p̂)

����
�=0

= 0: (9)

This results in the pricing formula

p̂(t; S; x; y) =
Et[U

0(W �
�

t;S;x;y
(T ))C(S(T ))]

Vx(t; S; x; y)
; (10)

where U 0 is the derivative of U , Vx(t; S; x; y) denotes the partial derivative with
respect to x, and �� denotes the trading strategy which maximises the expected
utility in (2). This is the trading strategy which optimises a portfolio without

options, and the formula (10) for p̂ shows no dependence on the optimisation
problems (3) and (4) containing embedded options.

The formula in (10) is the central subject of investigation in this article.
Its form is reminiscent of a classical representative agent asset pricing formula
(see, for example, Du�e (1996)). Our goal is to see how (10) translates into
numerical evaluations of option prices under transaction costs. It is evident
from (10) that, at the price p̂, the investor is balancing the marginal gain from
diverting wealth into options with that from refraining from option trading and
instead investing optimally in the stock market.

We write (10) as

p̂(t; S; x; y) =
F (t; S; x; y)

Vx(t; S; x; y)
; (11)

where the function F (t; S; x; y) is de�ned by

F (t; S; x; y) � Et[U
0(W �

�

t;S;x;y
(T ))C(S(T ))]: (12)
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Because the optimal wealth vector in (12) and (2) are the same, one only needs
to solve the investor's basic portfolio selection problem to calculate F (t; S; x; y)
and p̂(t; S; x; y). When transaction costs are charged on trading the stock this is
a highly nontrivial simpli�cation of the option pricing problem compared to the
\reservation price" approach of (5){(8), because the latter requires the solution
of the optimisation problem with the option payo� for a large range of possible
option prices.

Remark 1 In the absence of transaction costs the prices pw, pb and p̂ all reduce

to the Black-Scholes option price.

2.1 Hedging

As well as �nding sensible derivative prices under transaction costs, any feasible
pricing methodology should say something concerning the risk management of
an option position. In the case of zero transaction costs the answer to this
question is automatic, in that the Black-Scholes methodology sets option prices
by a hedging argument. Such comments also apply to imperfectly replicating
approaches like that of Leland (1985), and to quadratic approaches like the local
risk minimisation approach in Lamberton, Pham and Schweizer (1998).

In the case of a utility maximisation approach to option pricing, the situation
is somewhat di�erent, in that the pricing problem is �rst embedded into the
utility maximisation problem to determine a price according to one of the above
methods. Then one computes the optimal trading strategy in the presence of
the option trade, which will be altered compared to the situation without the
option, with the adjustment measuring the e�ect of the option trade. This
adjustment will correspond to what is usually meant by an \option hedging
strategy".

Suppose � options are written at price p̂ given by(10). Then the investor's
optimal trading strategy will be �y maximising

Et

�
U

�
W

�

t;S;x+�p̂;y(T ) � �C(S(T ))
��
:

In the absence of the option trade, the investor's optimal trading strategy is
�
� to achieve the supremum in (2). Since the option trade has altered the

investor's optimal stock trading strategy, a natural de�nition of the \option
hedging strategy" is the incremental trades generated by the option trade, that
is, the di�erence of the trading strategies �y and �

�. This motivates the de�ni-
tion which follows below.

Let an amount � be paid (or received, for the case when options are written)
to trade options at time t for a given price p. We then write the value function
in (3) as

V
(o)(t; S; x� �; y; �; p) = Et

�
U

�
W

�
y

t;S;x��;y
(T ) +

�

p

C(S(T ))

��
; (13)

which de�nes the optimal trading strategy �y for this utility maximisation prob-
lem. If we compare the optimal portfolio in the presence of the option position
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with that in the absence of the options, we obtain a measure of the additional
holdings brought about by the option trade, which is a natural candidate for
the option hedging strategy.

De�nition 1 The hedging strategy �h for �=p options traded at time t, each at

price p, is one whose holdings X�
h

t;S;x;y
(u), Y �

h

t;S;x;y
(u) at time u 2 [t; T ] satisfy

X
�
h

t;S;x;y
(u) = X

�
y

t;S;x;y
(u)�X

�
�

t;S;x;y
(u); (14)

Y
�
h

t;S;x;y
(u) = Y

�
y

t;S;x;y
(u)� Y

�
�

t;S;x;y
(u): (15)

The hedging strategy can be written as �h = �
y � �

�.

In practice, a utility maximising investor would simply calculate an optimal
trading strategy �y including the option trade, and would not directly calculate

the hedging strategy �
h. Nevertheless, we shall see that the above de�nition

of a hedging strategy is a correct one, when we illustrate its features in our
numerical results.

3 A Market with Transaction Costs

We consider a market consisting of a riskless bond and a risky stock whose prices
B(u) and S(u) at time u 2 [0; T ] satisfy, in continuous time

dB(u) = rB(u)du; (16)

dS(u) = S(u)[bdu+ �dZ(u)]; (17)

where Z = fZ(u); 0 � u � Tg is a one-dimensional standard Brownian motion
de�ned on a complete probability space (
;F ;P). Denote by F = fF(u); 0 �
u � Tg the P-augmentation of the �ltration FZ(T ) = �(Z(u); 0 � u � T )
generated by Z. The constant coe�cients r; b; � represent the riskless interest
rate, stock growth rate, and stock volatility respectively. The stock is assumed
to pay no dividends. Trading in the stock incurs proportional transaction costs,
such that the purchase of � shares of stock at price S reduces the wealth held
in the bond by (1 + �)�S, where � (0 � � < 1) represents the proportional

transaction cost rate associated with buying stock. Similarly, the sale of � shares
of stock increases the wealth in the bond by (1 � �)�S, where � (0 � � < 1)
represents the proportional transaction cost rate associated with selling stock.

In all other respects assume markets are \perfect". Securities are in�nitely
divisible, the volatility � is known, there is no limit on borrowing or lending
at the same riskless rate, and there are no taxes or constraints on short selling
with full use of the proceeds.

We shall also make use of a binomial approximation of the above market
model (using a Cox-Ross-Rubinstein (1979) stock price tree, as modi�ed by He
(1990)), for numerically computing option prices and hedging strategies. The
bond and stock prices follow the discrete time processes

B(u) + �B(u) � B(u + �u) = exp(r:�u)B(u); (18)

S(u) + �S(u) � S(u + �u) = !S(u); (19)
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where ! is a binomial random variable:

! = exp[(b� �
2
=2)�u� �

p
�u]; each with probability q = 1

2 ; (20)

and �u is a small time interval.
De�ne (L(u);M (u)), a pair of F-adapted, right-continuous, non-decreasing

processes, such that L(u) (respectivelyM (u)) is the cumulative number of shares
of stock bought (respectively, sold) up to time u. Then in continuous time
the wealth held in the bond, for an investor who begins trading in the state
(t; S; x; y), evolves as

dX(u) � dX

L;M

t;S;x;y
(u) = rX(u)du�(1+�)S(u)dL(u)+(1��)S(u)dM (u): (21)

The number of shares held follows the process

dY (u) � dY

L;M

t;S;x;y
(u) = dL(u)� dM (u); (22)

and the wealth of the investor is given by

W (u) �W

L;M

t;S;x;y
(u) = X

L;M

t;S;x;y
(u) + Y

L;M

t;S;x;y
(u)S(u): (23)

The pair (L;M ) � f(L(u);M (u)); t � u � Tg constitutes a trading strategy
for an investor in this �nancial market, who seeks to maximise expected utility
of wealth at time T . We introduce the set S, which de�nes the solvency region
in the absence of an option trade, as

S = f(S; x; y) 2 R+ �R2jx+ (1 + �)Sy � 0; x+ (1 � �)Sy � 0g: (24)

A trading strategy (L;M ) is said to be admissable (for the problem without
options) if the corresponding holdings satisfy the solvency constraint

(S(u); XL;M

t;S;x;y
(u); Y L;M

t;S;x;y
(u)) 2 S; almost surely; 8u 2 [t; T ]: (25)

For an investor who trades options at time t and then seeks to maximise

expected utility of wealth the set of admissable trading strategies is altered.
For example, when writing a contingent claim, the work of Soner, Shreve and
Cvitani�c (1995) and Levental and Skorohod (1997) shows that, in order to keep
the wealth of the writer non-negative, it is imperative to keep at least one
share of the stock at all trading times. This issue does not enter our pricing
methodology as it only requires us to solve an optimisation problem without
the derivative security, though for computing hedging strategies this is not the
case.

The value functions V (t; S; x; y), and V (o)(t; S; x; y; �; p) will satisfy the same
dynamic programming equations, but with di�erent terminal boundary con-
ditions. The function F (t; S; x; y) of equation (12) is not necessarily a value
function, but satis�es a similar recursive equation with the choice of control
(the trading strategy) determined from the dynamic programming algorithm
for V (t; S; x; y).
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The boundary equation to be applied at the terminal time T for V (t; S; x; y)
is

V (T; S; x; y) = U (x+ yS); (26)

where it is assumed that there are no transaction costs charged on cashing out
the �nal portfolio (in keeping with much of the existing literature on transaction
costs). Assuming that costs are charged on liquidating the portfolio then (26)
is replaced by

V (T; S; x; y) = U (x+ c(y; S)); (27)

where c(y; S) is the cash value of y shares of stock, each of price S, and is de�ned
by

c(y; S) =

�
(1 + �)yS; if y < 0;
(1� �)yS; if y � 0:

(28)

Our results are not qualitatively altered if there are no costs on liquidation.
The terminal boundary condition for the optimisation problem involving

options is (with the same remarks as above about liquidation costs)

V
(o)(T; S; x; y; �; p) = U

�
x+ yS +

�

p

C(S)

�
; (29)

whilst the terminal boundary condition for F (t; S; x; y) is

F (T; S; x; y) = C(S)U 0(x+ yS): (30)

3.1 Dynamic Programming Equations

The dynamic programming equations satis�ed by the function V (t; S; x; y) in a
market with proportional transaction costs have been derived by Hodges and
Neuberger (1989) and Davis, Panas and Zariphopoulou (1993). We present
these equations below along with a simple (and �nancially intuitive) justi�ca-
tion, and we describe the investor's optimal trading strategy. We highlight how
the characteristics of the value function V (t; S; x; y) and the associated optimal
portfolio strategy impinge on the investor's option valuation and hedging policy.

The investor's optimal strategy at any state (t; S; x; y) is as follows. The
state space (t; S; x; y) is split into three distinct regions: the BUY, SELL and
no transaction (NT) regions, from which it is optimal to buy stock, sell stock and
not to trade, respectively. Moreover, with proportional transaction costs, the
optimal trade when outside the NT region is to transact to the nearest boundary
of the NT region. The optimal strategy can be summarised as minimal trading
to keep the portfolio in the NT region. We denote the boundaries between the
NT region and the BUY and SELL regions by yb and ys, respectively. In general,
yb and ys will be functions of (t; S; x), and will represent the number of shares
held at the NT boundaries. If the state is in the NT region it drifts under
the inuence of the di�usion driving the stock price, on a surface de�ned by
Y (u) =constant. If the state is in the BUY or SELL regions, an immediate
transaction occurs taking the state to the nearest boundary of the NT region.
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In the BUY region the value function remains constant along the path of
the state dictated by the optimal trading strategy, and therefore satis�es

V (t; S; x; y) = V (t; S; x� S(1 + �)�L; y + �L) in BUY; (31)

where �L, the number of shares bought, can take any positive value up to the
one required to take the portfolio to yb. Allowing �L # 0, (31) becomes

@V

@y

(t; S; x; y)� (1 + �)S
@V

@x

(t; S; x; y) = 0 in BUY: (32)

Equation (32) indicates that in the BUY region the marginal utilities of the risky
and riskless assets are in the ratio (1 + �)S, the cost of purchasing one share of
the stock. It de�nes a direction in the state space in which the value function

is constant in the BUY region. Such properties of the value function will carry
over to the investor's option valuation and hedging strategy. Speci�cally, the
general option pricing formula (10) yields an option price which does not vary
with the investor's initial portfolio outside the NT region.

Similarly, in the SELL region, the value function satis�es

V (t; S; x; y) = V (t; S; x+ S(1 � �)�M; y � �M ) in SELL; (33)

where �M represents the number of shares sold. Letting �M # 0, (33) becomes

@V

@y

(t; S; x; y)� (1� �)S
@V

@x

(t; S; x; y) = 0 in SELL: (34)

Equations (32) and (34) are the well known \value matching" conditions
satis�ed by the value function of (2). (See, for example, Dixit (1991), Dumas
(1991,1992), Dumas and Luciano (1991), or the exposition by Harrison (1985)

of the theory of optimally regulated Brownian motion.) They hold throughout
the BUY and SELL regions, and (of course) at the boundaries yb, ys, regardless
of whether these are chosen optimally or not.

Finally, in the NT region, since it is sub-optimal to carry out any stock
trades, for any stock purchase �L or sale �M :

V (t; S; x; y) � V (t; S; x� S(1 + �)�L; y + �L) in NT (35)

and
V (t; S; x; y) � V (t; S; x+ S(1 � �)�M; y � �M ); in NT; (36)

which on expansion imply that the left hand sides of (32) and (34) are non-
positive and non-negative respectively in NT. Bellman's optimality principle
for dynamic programming gives the value function at time t in terms of its
counterpart at time t+ �t as

V (t; S; x; y) = E�tV (t + �t; S + �S; x+ �x; y) in NT; (37)

where E�t denotes expectation over the time interval �t. In the limit �t! 0, �S
and �x are given by (17) and (21) respectively (with dL = dM = 0 since we are
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in the NT region). Applying Ito's lemma yields the Hamilton-Jacobi-Bellman
equation for the value function in the NT region:

Vt + rxVx + bSVS +
1

2
�
2
S
2
VSS = 0 in NT; (38)

where the arguments of the value function have been omitted for brevity.
These equations can be condensed into the PDE

max

�
Vy � (1 + �)SVx;�(Vy � (1� �)SVx; Vt + rxVx + bSVS +

1

2
�

2
S

2
VSS

�
= 0:

(39)
The solution of the optimisation problem is obtained by observing that if we

can compute the value function in the NT region along with the boundaries of
this region, then we can calculate its value in the BUY and SELL regions using

(31) and (33).
A closed form solution for the value function V (t; S; x; y) is elusive. This fea-

ture is (notoriously) common to models with transaction costs. Constantinides
(1986), Davis and Norman (1990), Dumas and Luciano (1991) and Shreve and
Soner (1994) do �nd, in the in�nite horizon (and hence, time independent) case,
for HARA utility functions, an analytic form for the value function. However,
the boundaries of the NT region must still be located numerically. We shall,
therefore, in our �nite horizon problem, go directly to the development of a
numerical dynamic programming algorithm to obtain option prices and hedging
strategies.

We use the equations (31), (33) and (37), and augment them with the spe-
ci�c properties of the optimal trading strategy to create a backward recursive
dynamic programming algorithm. This yields the value function at time t, pro-
vided it is known at time t+ �t, along with the location of the NT boundaries.
Assume that the stock and bond prices evolve in discrete time according to
(18)-(20). Then the discrete dynamic programming equation is

V (t; S; x; y) = max
(�L;�M)

[E�tV (t + �t; !S;R(x� S(1 + �)�L); y + �L) ;

E�tV (t+ �t; !S;Rx; y);

E�tV (t+ �t; !S;R(x+ S(1 � �)�M ); y � �M )] ; (40)

where R � exp(r:�t) and the maximum is achieved by the �rst, second or third
terms in (40) when the state (t; S; x; y) is in the BUY, NT and SELL regions,
respectively.

Equation (40) expresses the value function at time t in terms of its coun-
terpart at t+ �t by comparing the three possibilities: (i) buying �L shares and
allowing the stock to di�use or (ii) not trading and allowing the stock to di�use
or (iii) selling �M shares and allowing the stock to di�use.

The algorithm is an example of the Markov chain approximation technique
for the numerical solution of continuous time stochastic control problems, pio-
neered by Kushner (1990); see also Kushner (1997) for a review of applications
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in �nance. The state variables and controls are approximated by discrete time,
discrete state Markov chains, in such a manner that the solution to the dis-
crete problem converges to the solution of the continuous time problem. The
application here is to a singular control problem, along the lines of Kushner and
Martins (1991). For the optimal portfolio problem studied here, the necessary
proofs of convergence of the discrete time problem to the continuous one are
supplied by Davis, Panas and Zariphopoulou (1993), who proved that the value
function V (t; S; x; y) is a viscosity solution of the variational inequality (39).

To implement the above algorithm we specialise to the case of exponential
utility in the next section.

4 Option Prices and Hedging Strategies Under

Exponential Utility

Following Hodges and Neuberger (1989) and Davis, Panas and Zariphopoulou
(1993) we set the investor's utility function to be the negative exponential:

U (W ) = � exp(��W ); (41)

with constant risk aversion parameter �. With this choice the investor's op-
timal trading strategy becomes independent of the wealth held in the riskless
asset. The assumption of exponential utility is made primarily to reduce the
dimensionality of the optimisation problems that we must solve, as our goal
is to compute numerical estimates of the option prices and hedging strategies
implied by the general option pricing formula (10). We defer to a later article
the comparison of option prices generated by alternative choices of the utility
function. For example, with HARA utility functions, such as logarithmic or
power utility, the optimal trading strategy is characterised by a time varying no
transaction region with boundaries �b(t) < �s(t), where �(t) represents the ratio
of wealth held in the stock to that held in the bond at time t. We hypothesise
that the results for option prices will be similar to those we present below for
exponential utility, but the relevant state space variable will be �(t), instead of
the amount of money invested in the stock.

Below we show how the optimisationproblem for V (t; S; x; y) simpli�es under
exponential utility.

De�ne
H(t; S; y) � V (t; S; 0; y); (42)

then since, with exponential utility, the optimal portfolio through time is inde-
pendent of the wealth held in the bond, we have that

V (t; S; x; y) = H(t; S; y) exp
�
��xer(T�t)

�
: (43)

The resulting reduction in dimensionality means that the discrete dynamic
programming algorithm (40) reduces to
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H(t; S; y) = max
(�L;�M)

[E�tH(t+ �t; !S; y + �L) exp(�S(1 + �)�L:�(t)) ;

E�tH(t+ �t; !S; y);

E�tH(t + �t; !S; y � �M ); exp(��S(1 � �)�M:�(t)] ;

(44)

where �(t) = exp(r(T � t)).
For exponential utility, the boundaries of the NT region become functions

of t and S only. Denote them by yb(t; S) and ys(t; S), with yb(t; S) � ys(t; S),
and equality holding only in the case where � = � = 0.

The optimal values of �L and �M , �L� and �M
�, satisfy

y + �L

� = yb(t; S) and �M

� = 0; if y < yb(t; S)

�L
� = �M

� = 0; if yb(t; S) � y � ys(t; S)

�L
� = 0 and y � �M

� = ys(t; S); if y > ys(t; S): (45)

Applying (45) and (43) to equations (31), (33) and (37), we also obtain the
following representation for H(t; S; y) in the BUY, SELL and NT regions.

If y < yb(t; S), then

H(t; S; y) = H(t; S; yb(t; S)) exp(�S(1 + �)(yb(t; S)� y)�(t)): (46)

If y > ys(t; S), then

H(t; S; y) = H(t; S; ys(t; S)) exp(��S(1 � �)(y � ys(t; S))�(t)): (47)

If yb(t; S) � y � ys(t; S), then

H(t; S; y) = E�tH(t+ �t; !S; y): (48)

Equations (46)-(48) give the value function H(t; S; y) in the BUY, NT and
SELL regions, provided we knowH(t; S; y) at and within the boundaries yb(t; S)

and ys(t; S), along with the location of these boundaries. These are located by
implementing the algorithm in (44) in the manner described below.

We create a large vector to represent possible values of y at each node of the
stock price tree, with discretisation step hy. The range of this vector must be
large enough to locate yb(t; S) and ys(t; S) for all (t; S) on the binomial stock
price tree. This can be accomplished by deriving analytically the NT boundaries
at T � �t (see the Appendix for this derivation), and noting that the NT region
is wider at this time than at any preceding time. Then the following sequence
of steps is performed.

1. Suppose we know the value function at t + �t for all stock prices on the
binomial tree at this time, and for all values of y in our discrete vector.
Then starting at a time-t node of the stock price tree, (t; S) say, and from
the minimum value of y in this vector, we compare the �rst and second
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terms in the maximisation operator of (44) for increasing values of y in
steps of hy, until the latter is greater than or equal to the former, at say
y
b, which we assume satis�es yb = yb(t; S), the boundary between the NT
and BUY regions at the node (t; S).

2. We continue, comparing the second and third terms in the maximisation
operator of (44) for increasing values of y in steps of hy, until the latter is
greater than or equal to the former, at say y

s, which we assume satis�es
y
s = ys(t; S), the boundary between the NT and SELL regions at the
node (t; S).

3. Having located the boundaries of the NT region at the node (t; S), the
value function at all points outside this region is determined by assuming
the investor transacts to its boundaries (i.e. applying equations (46) and
(47)), whilst the function in the NT region is found by assuming the
investor does not transact, and applying equation (48).

We further enhance the speed of the above algorithm for V (t; S; x; y) because,
for exponential utility, the NT boundaries at any time are characterised by the
wealth held in the stock being constant. (This was con�rmed by solving the
problem without this assumption.) Therefore, having located the boundaries at
a single node of the binomial tree at time t, the boundaries at all other time-
t nodes are given easily. This property is not satis�ed by the value function
V
(o)(t; S; x; y; �; p).
The other noteworthy feature of our algorithm is the fact that the y-vector

we use is bounded to the interval [yb(T��t; S); ys(T��t; S)], the NT boundaries

one period prior to the option expiry. This allows us to restrict the state space
over which we carry out the search for the NT boundaries at all earlier times,
and makes for fast, accurate computation. These features can be exploited for
option pricing because the \fair" pricing methodology only requires the solution
of the investor's optimal portfolio problem in the absence of options.

4.1 Option Prices

To calculate option prices, under exponential utility, the fair pricing formula
(11) becomes

p̂(t; S; y) = e
�r(T�t) G(t; S; y)

H(t; S; y)
; (49)

where
G(t; S; y) � Et[U (W

�
�

t;S;0;y(T ))C(S(T ))]; (50)

using the fact that U 0(w) = ��U (w).

4.2 E�ect of Option Trading on Utility

To compare the investor's maximum utility with and without the diversion
of funds into an option trade, we must compare, in general, the quantities
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V
(o)(t; S; x� �; y; �; p) with V (t; S; x; y). With exponential utility this becomes

a comparison of

H
(o)(t; S; y; �; p) exp(���(t)) with H(t; S; y); (51)

where H(o)(t; S; y; �; p) is de�ned by

H
(o)(t; S; y; �; p) � V

(o)(t; S; 0; y; �; p): (52)

5 Numerical Results

For our numerical results we used the following parameters as a base case:
T = 1year, r = 0:1, b = 0:15, � = 0:25, � = 0:1, and we took the transaction
cost rates for buying and selling stock to be equal (� = �). We used a stock price
tree with at least 50 timesteps. First we con�rmed some stylised facts about the
investor's optimal trading strategy without options, which we summarise below,
and which verify the robustness of our numerical algorithm. The optimal trading
strategy has the following properties.

1. The boundaries of the NT region lie either side of the optimal portfolio
without transaction costs, and the NT region widens with the transaction
costs.

2. The NT region boundaries show a hyperbolic dependence versus the stock
price, just as in the frictionless markets case, indicating that with expo-
nential utility, and at a �xed time, the wealth in the stock is constant at
the boundaries of the NT region.

3. As we approach the horizon time T the NT region widens considerably.
This is as expected, indicating that portfolio rebalancing becomes less
advantageous as the time to expiry lessens. This feature carries over to
the hedging strategy for an option position.

4. An increase in risk aversion narrows the region of no transactions and
shifts it to lower values of the stock holding.

Figure 1 shows at-the-money call option prices given by the general option
pricing formula (49), plotted at time zero versus the investor's initial stock
holding, y, for transaction cost parameters � = 0:005 and � = 0:01. The graphs
are at outside a certain range of y, which corresponds exactly with the width
of the NT region for the particular transaction cost parameter. We see the
widening of the option pricing bounds as the transaction costs are increased.
The fair option price is higher when the investor's stock inventory is in the
BUY region for the basic portfolio selection problem, then falls as we enter

the NT region, and is at its lowest when the current inventory position is in
the investor's SELL region. This is intuitively correct, since a buyer of shares
will value a call option more highly than someone who wishes to sell stock. Of
course, the opposite pattern is obtained for put options.
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Figure 1: At-the-money call option prices versus initial stock holding. The
parameters are T = 1year, r = 0:1, b = 0:15, � = 0:25, � = 0:1, S = K = 15,
� = 0:01 and 0:005.

5.1 The E�ect on Utility of Trading Options

We analyse the case of the investor writing a call option at price pw, the max-
imum price in Figure 1, which we label the \fair asking price". If we compare
H

(o)(t; S; n;�pw; pw) exp(��pw�(t)) with H(t; S; y) (making the comparison in
(51) with � = �pw and p = pw), we �nd that the investor's utility is virtually
unchanged by the option sale. However, trading an option at a price outside
the bid-ask spread always results in a reduction in utility (if one buys above the
asking price or sells below the bid price) or an increase in utility (if one sells
above the asking price or buys below the bid price).

To quantify the above points, in Figure 2 (upper graph) we have plotted
the di�erence between the investor's maximum utility when selling one call
option at the fair asking price and the maximum utility in the absence of the
option sale. If the investor starts out with a low stock inventory (i.e. he would,
acting optimally, buy shares) then selling a call option reduces his utility (albeit
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Figure 2: The upper graph shows the di�erence between the investor's maximum
utility when selling a call option at the \fair" asking price and the maximum
utility without selling the option. The lower graph plots the utility with the
option sale as a fraction of the utility without the option sale. The parameters
are T = 1year, r = 0:1, b = 0:15, � = 0:25, � = 0:1, S = K = 15, � = 0:005
and p̂ = pw = 2:2864.

by a small amount). At some value, y�, of the initial stock holding y, the
investor �nds his utility is unchanged by the diversion of funds into the option
transaction, and for y > y

� the utility is increased by the sale of the option. The
increase in utility reaches a maximum, then tails o� toward zero for large values
of y, reecting the fact that when the investor wishes to sell large amounts of
stock, selling a call option increases utility, but this e�ect diminishes as the
initial stock holding increases. For all values of y, the percentage change in
utility is bounded and small, as shown in the lower graph. Similar observations
hold for any trade of an option within the \fair" bid-ask spread.

To summarise, the fair price given by the general option pricing formula
is essentially a reservation price. A nice feature of the pricing method used
in this paper is that the option pricing bounds can be found by solving the
investor's basic portfolio selection problem, and without having to solve the
more complicated problem involving the purchase or sale of options.
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Figure 3: Call option prices for di�erent risk aversion parameters. The param-
eters are T = 1year, r = 0:1, b = 0:15, � = 0:25, S = K = 10, � = 0:01, � = 0:5
and � = 0:1.

Figure 3 shows at the money call option prices for two di�erent risk aversion
parameters. The bid-ask spread is independent of risk aversion, but the range of
values of the initial stock holding for which the fair price lies within the bid-ask
spread becomes narrower and is shifted to a lower value, as the risk aversion
increases.

In Table 1 we present call option prices for various strikes and transaction
cost parameters, and for comparison we show the bid and ask prices generated
by Leland's (1985) approximately replicating strategy, with a revision interval
of �t = 0:02, which corresponds to approximately weekly portfolio rebalancing.
A number of points are worth emphasising. First, in general, the optimal pric-
ing approach places tighter bounds on the option price, particularly for large
transaction costs. The intuition behind this feature is natural: Leland's strategy
insists on portfolio rebalancing (thus incurring transaction costs) in situations
where the optimal pricing procedure may not. We used a binomial tree with the
same time step as the Leland revision interval to generate the prices in Table 1,
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� = 0:005, NT Region=[0.3866,0.5780]

Strike Ask Price Bid Price Leland Ask Leland Bid

10 6.0471 5.8980 5.9940 5.9610
13 3.5841 3.4503 3.6190 3.4348
15 2.2864 2.1775 2.3869 2.0915
17 1.3419 1.2641 1.4878 1.1481

20 0.5423 0.5048 0.6724 0.3949

� = 0:01, NT Region=[0.3499,0.6197]

Strike Ask Price Bid Price Leland Ask Leland Bid

10 6.1199 5.8248 6.0187 5.9537
13 3.6476 3.3837 3.7088 3.3458
15 2.3376 2.1212 2.5164 1.9171
17 1.3788 1.2210 1.6336 0.9398
20 0.5613 0.4805 0.8010 0.2470

� = 0:02, NT Region=[0.2702,0.7196]

Strike Ask Price Bid Price Leland Ask Leland Bid

10 6.2675 5.6716 6.0775 5.9516
13 3.7798 3.2463 3.8807 3.2374
15 2.4475 2.0073 2.7502 1.4800
17 1.4612 1.1361 1.8940 0.3057
20 0.6063 0.4348 1.0401 0.0034

� = 0:03, NT Region=[0.1813,0.8243]

Strike Ask Price Bid Price Leland Ask Leland Bid

10 6.4068 5.5242 6.1450 -
13 3.9070 3.1159 4.0421 -

15 2.5556 1.9012 2.9590 -
17 1.5445 1.0589 2.1242 -
20 0.6537 0.3948 1.2592 -

Table 1: Call bid and ask prices. The parameters are T = 1year, r = 0:1,
b = 0:15, � = 0:25, � = 0:1, S = 15. For � = 0:03 the Leland bid price is
unde�ned for a revision interval of �t = 0:02.

20



which means that the investor has the opportunity to rehedge as frequently as
the Leland strategy, but chooses not to do so.

The implication of these results is that the investor is prepared to bear more
risk than the Leland strategy allows, and the size of this risk is determined by the
utility function. The only exception to this feature is for options which are deep
in the money. In this case Leland's bounds are tighter. The intuition here is as
follows: for a deep in the money option, with very high probability of exercise,
the optimal policy is to be (almost) fully hedged, and this is in accordance with
Leland's strategy, which is designed to eliminate risk in a Black-Scholes type
manner. Therefore, in these situations, Leland's strategy is optimal and falls
within the spread given by utility maximisation.

For very large transaction costs Leland's strategy fails to produce a bid price
for the option, as the e�ective volatility is no longer a real number. This point
has also been made by Avellaneda and Par�as (1994), who provided a solution to
this problem using the notion of imperfectly dominating policies. The optimal
pricing procedure never fails to produce a sensible option price, regardless of
the level of transaction costs.

Figure 4 shows a plot of the call bid-ask spread speci�ed by the optimal
pricing formula, versus the stock price. We have also shown Leland's bid-ask
spread with a revision interval �t = 0:02, equal to the time step of the binomial
tree, and the Black-Scholes call values. We see how the optimal pricing proce-
dure places tighter bounds on the option prices, except for the cases where the
option is deep in the money, as before.

In Figure 5 we plot the hedging strategy for a short call position versus the
initial stock price, produced using De�nition 1. The dashed curves indicate the

region in which the hedging portfolio is not rebalanced, whilst the solid curve is
the Black-Scholes delta hedging strategy. The replacement of the unique Black-
Scholes delta by a hedging bandwidth is in accordance with intuition and with
previous results on optimal hedging under transaction costs, such as Hodges and
Neuberger (1989) and (for the limiting case of small transaction costs) Whalley
and Wilmott (1997).

6 Conclusions and Suggestions

This paper has developed a procedure for optimally valuing options in the pres-

ence of proportional transaction costs. The method involves treating an option
transaction as an alternative investment to optimally trading the underlying
stock. Option prices are determined by requiring that, at the margin, the di-
version of funds into an option trade has no e�ect on an investor's achievable
utility. Thus, the option trade is treated as a small perturbation on the investor's
initial portfolio of assets. The methodology can therefore be extended to situa-
tions in which the basic portfolio contains many assets, including possibly other
derivatives.

Option prices are computed by solving a singular stochastic optimal con-
trol problem via an e�cient algorithm. We only need to solve the investor's
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Figure 4: Call option bid-ask values versus stock price. The parameters are
T = 1year, r = 0:1, b = 0:15, � = 0:25, � = 0:1, K = 15, � = 0:02.

fundamental portfolio selection problem to derive option prices, as opposed to
other optimal procedures which require the solution of an optimisation problem
containing an embedded option. The method is therefore a relatively tractable
way of producing optimal pricing bounds.

The method places tight bounds on option prices and generates prices which

can lie anywhere within these bounds, depending on the investor's initial holding
of stock. The investor's utility is hardly a�ected when trading options at the
optimal prices, whereas trading outside the bounds can lead to a drastic loss in
utility.

The �nal conclusion is that a general approach to option pricing in the
presence of transaction costs should be based on an optimal portfolio approach.
Approximate replication schemes work well for small levels of transaction costs
and are useful because they can lead to closed form approximate solutions, but
they cannot cope with larger values of transaction costs. In these cases the
optimal models outperform them as the frequency of trading is reduced.

22



6 8 10 12 14 16 18 20 22 24 26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Short Call Hedging Bandwidth

Stock Price

N
um

be
r 

of
 S

ha
re

s

Figure 5: Short call option hedging strategies versus stock price. The call was
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region in which portfolio rebalancing does not take place, whilst the solid curve
is the Black-Scholes delta.

There are a number of directions in which this work could be extended:

American Options The pricing of American options with transaction costs
presents some interesting problems because one not only has to compute
an optimal hedging strategy, but also an optimal exercise policy. This will
involve a problem in singular control with optimal stopping, which has
been studied by Davis and Zervos (1994). There is a further complication
for the writer of an option in that it is not he, but the buyer of the option,
who controls the exercise policy. Some preliminary ideas on this topic
have been provided by Davis and Zariphopoulou (1995).

Equilibrium The option pricing method described in this paper selects a \fair"
price within a closed interval provided by the reservation buying and sell-
ing prices. It therefore gives some hope of providing a framework in which
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the buyer and seller of an option might agree on a price.

Di�erent Preferences An analysis of how the risk preferences of the investor
a�ect option prices would be interesting. Optimal portfolios for HARA
utility functions are usually determined by selecting an optimal ratio of
wealth in the risky and riskless assets, as opposed to the exponential func-
tion used in this paper, in which the wealth held in the risky asset is the
important variable. We hypothesise that such patterns would transfer to
the option valuation problem. One could also consider quadratic pref-
erences, such as risk minimisation, as in Mercurio and Vorst (1997) or
Lamberton, Pham and Schweizer (1998). Whilst this can be criticised on
the grounds that it gives the same weighting to downside and upside risk,
this approach does merit further study. Another possibility is to consider
\coherent" measures of risk, introduced by Artzner, Delbaen, Eber and
Heath (1999), and extended to a dynamic setting by and Cvitani�c and
Karatzas (1999).

Appendix

We derive analytic formulae for the value functionH(T��t; S; y) and the bound-
aries of the NT region yb(T � �t; S), ys(T � �t; S), one time period prior to the
�nal time T , under exponential utility.

In the BUY region (y < yb(T � �t; S)) the Bellman equation (44) for the
value function H(T � �t; S; y) reduces to

H(T ��t; S; y) = max
�L

E�tH(T; !S; y+�L) exp(�RS(1+�)�L); in BUY (53)

where R = exp(r:�t) and H(T; S; y) = � exp(��yS).
We write out the above expectation explicitly, di�erentiate with respect to

�L, and set the result to zero. This yields, after some tedious algebra, that the
optimal number of shares to buy, �L�, satis�es

y + �L
� � yb(T � �t; S) =

1

�S(!u � !d)
log

�
q(1� q+)

(1� q)q+

�
; (54)

where !u and !d are the two possible realisations of the binomial random vari-
able ! given in (20), (so that q = 1

2 ), and the pseudo-probability q+ is given
by

q+ =
R(1 + �) � !d

!u � !d

: (55)

Inserting the expression for �L� into (53) gives the following representation
for H(T � �t; S; y) in the BUY region:

H(T � �t; S; y) = � exp(��yRS(1 + �))

�
q

q+

�q+
�

1� q

1� q+

�(1�q+)

; in BUY:

(56)
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A similar analysis in the SELL region gives the optimal number of shares to
sell, �M�, as

y � �M
� = ys(T � �t; S) =

1

�S(!u � !d)
log

�
q(1� q�)

(1� q)q�

�
; (57)

where the pseudo-probability q� is given by

q� =
R(1� �)� !d

!u � !d

; (58)

so that the value function in the SELL region is

H(T � �t; S; y) = � exp(��yRS(1 � �))

�
q

q�

�q�
�

1� q

1� q�

�(1�q�)

; in SELL:

(59)
Finally, in the NT region, the value function is given analytically by

H(T � �t; S; y) = �[q exp(��yS!u) + (1� q) exp(��yS!d)]: in NT: (60)
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