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Abstract

We study the problem of maximising expected utility of terminal wealth

over a �nite horizon, with one risky and one riskless asset available, and

with trades in the risky asset subject to proportional transaction costs.
In a discrete time setting, using a utility function with hyperbolic risk

aversion, we prove that the optimal trading strategy is characterised by

a function of time �(t), which represents the ratio of wealth held in the
risky asset to that held in the riskless asset. There is a time varying no

transaction region with boundaries �b(t) < �s(t), such that the portfo-

lio is only rebalanced when �(t) is outside this region. The results are
consistent with similar studies of the in�nite horizon problem with in-

termediate consumption, where the no transaction region has a similar,

but time independent, characterisation. We solve the problem numerically
and compute the boundaries of the no transaction region for typical model

parameters. We show how the results can be used to implement option

pricing models with transaction costs based on utility maximisation over
a �nite horizon.

1 Optimal Portfolios and Transaction Costs

The impact of transaction costs on the trading decisions of investors has been

studied intensively in recent years. The earliest papers looked at the optimal

investment and consumption decisions of an agent seeking to maximise expected

utility of consumption over an in�nite horizon with just two investment instru-

ments: a riskless bank account B and a risky stock S whose price is usually

taken to be a geometric Brownian motion. This problem was �rst tackled in the

absence of transaction costs by Merton (1969, 1971), who was able, in this ideal

setting, to derive a closed-form solution to the stochastic control problem faced

by the agent. Remarkably, this is one of the few nonlinear stochastic control

problems that can be explicitly solved, and it turns out that for utility functions

in the HARA (hyperbolic absolute risk aversion) class the optimal investment

strategy is to keep a constant fraction of total wealth in the risky asset and to

consume at a rate proportional to total wealth (the \Merton strategy").

The introduction of proportional transaction costs to Merton's model was

�rst accomplished by Magill and Constantinides (1976). This yielded the fun-

damental insight that any attempt to apply the Merton strategy in the face of
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transaction costs would be in�nitely costly since it involves incessant trading,

so there must be some no transaction (NT) region inside which the portfolio is

not rebalanced. Further insights were provided by Constantinides (1979, 1986),

who showed that proportional transaction costs have only a second-order e�ect

on the liquidity premium (the amount of increase in the rate of return of the

stock which would be required to compensate the investor for the presence of the

transaction costs), essentially because investors deect the impact of even large

transaction costs by drastically reducing the frequency and volume of trading.

Then, in a landmark paper Davis and Norman (1990) showed (using the tools of

singular stochastic control that were unavailable to Magill and Constantinides in

1976) that in continuous time the NT region is a wedge in (x; y) space, where x; y

represent the wealth in the bond and stock respectively. More recently Shreve

and Soner (1994) have studied this problem using a viscosity solution approach

to Hamilton-Jacobi-Bellman equations of dynamic programming, allowing some

restrictive assumptions of Davis and Norman to be removed.

The work cited above deals with the portfolio choice problem over an in�-

nite horizon with intermediate consumption. The problem of maximising the

expected utility of �nal wealth over a �nite horizon, without consumption, has

received much less attention. It has been studied by Hodges and Neuberger

(1989), Davis, Panas and Zariphopoulou (1993), Davis and Panas (1994) and

Barles and Soner (1998), for the exponential utility function, in the context

of utility maximisation approaches to option pricing with transaction costs.

Cvitani�c and Karatzas (1996) employ a martingale methodology to the �nite

horizon problem with a general utility function, and draw some conclusions on

the link between utility maximisation and the hedging of a contingent claim.

They prove the existence of an optimal trading policy, but they do not analyse

the numerical solution of the problem.

In this paper we study the problem of maximising expected utility of wealth

over a �nite horizon, T , in the presence of proportional transaction costs, for

logarithmic and power utility functions. We obtain numerical results for these

utility functions and also for exponential utility, using a Markov chain approxi-

mation technique pioneered by Kushner (1990). We provide a proof that, for log-

arithmic and power utility, the optimal trading strategies imply a time-varying

no transaction region which is a wedge in (x; y) space, as opposed to the �xed

wedge that one obtains in the in�nite horizon case. We are not aware of any

previous demonstration of this fact. We also indicate how the methods in this

paper can be applied to utility based approaches to option pricing with trans-

action costs, a subject explored in more depth in Monoyios (1998).

Other work on optimal portfolio selection with transaction costs has been

presented by Du�e and Sun (1990), Dumas and Luciano (1991), Taksar, Klass

and Assaf (1988), Morton and Pliska (1995), Akian, Menaldi and Sulem (1996)

and Korn (1998). These models tend to di�er in one or other of their speci-

�cations. For example, Du�e and Sun (1990) consider the case of �xed plus

proportional transaction costs. Morton and Pliska (1995) and Korn (1998) anal-

yse a problem involving �xed costs using impulse control techniques. Taksar,

Klass and Assaf (1988) focus on the problem of maximising the long run growth

rate of the total wealth.

The present paper is organised as follows. In Section 2 we summarise the re-

sults of the no transaction cost problem, for logarithmic, power and exponential

utility functions, so as to give insight into the nature of the optimal policies in
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each case. In Section 3 we introduce transaction costs into the model and give

informal arguments concerning the nature of the optimal policies, as well as the

dynamic programming eqautions (actually a variational inequality) satis�ed by

the value function. In Section 4 we use a discrete time setting to show that, for

logarithmic and power utility, the optimal trading strategy is characterised by

a time varying no transaction region with boundaries �b(t) < �s(t), where �(t)

represents the ratio of wealth held in the stock to that held in the bond at time

t. Then, by discretising the portfolio state space we are able to numerically

solve the utility maximisation problem using a Markov chain approximation.

Numerical results are presented in Section 5, and in Section 6 we indicate how

the numerical techniques of the paper can be applied to various option pricing

models with transaction costs. In Section 7 we present our conclusions. In an

Appendix we give details of the proof of the nature of the optimal policies for

power and logarithmic utility.

2 Finite Horizon Utility Maximisation in a Fric-

tionless Market

In this section we study the classical problem of choosing a trading strategy to

maximise utility of wealth over a �nite horizon [0; T ] in a market that is free

from transaction costs, or frictionless. We shall employ results due to Karatzas

(1989).

Consider a market consisting of a bond and a stock whose prices B(t) and

S(t) at time t satisfy

dB(t) = rB(t)dt; B(0) = 1;

dS(t) = S(t)[bdt+ �dW (t)]; S(0) = S: (1)

Here W (t) is a one-dimensional Brownian motion de�ned on a complete prob-

ability space (
;F ;P), with natural �ltration F = fF(t); 0 � t � Tg. The

coe�cients r; b; � will be taken to be constants in this paper, though for the

problem without transaction costs treated in this section they could just as well

be taken to be processes r(t); b(t); �(t), which are bounded and progressively

measurable with respect to F.

We have an investor who can decide at each instant t 2 [0; T ] how much

money �(t) to invest in the stock. If we denote by X�
x (t) � X(t) the wealth

of the agent at time t corresponding to a trading strategy �, when starting at

time zero with initial wealth x, then X(t) � �(t) is the amount invested in the

bond and the wealth process satis�es

dX(t) � dX�
x (t) = (rX(t) + �(t)(b � r))dt+ ��(t)dW (t): (2)

The investor's objective is to maximise expected utility of wealth at a �xed

�nal time T . That is, to �nd a trading strategy � which acieves the supremum

V(x) = sup
�

E[U (X�
x (T ))]; (3)

where U is an increasing, concave utility function. In this paper we shall be

mainly concerned with the functions U (x) = logx, U (x) = x=,  < 1,  6= 0,
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but we shall also give some results in the case of the negative exponential utility

function U (x) = � exp(�x), with constant risk aversion index .

If we introduce the martingale

Z0(t) � exp

�
��W (t) � 1

2
�2t

�
; (4)

where � = (b � r)=�. Then we can de�ne the (equivalent to P) martingale

probability measure P0 by

Z0(t) = E

�
dP0

dP
j F(t)

�
: (5)

The solution to the optimisation problem (3) is given by Karatzas (1989) as

follows. There exists an F(T )-measurable random variable (i.e. a contingent

claim) 	 which is \attained" by the optimal trading strategy �� in the sense

that

X��

x (t) =
1

H0(t)
E [H0(T )	jF(t)] ; (6)

where we have de�ned the positive semimartingale H0(t) � e�rtZ0(t). Further-

more, if we de�ne the function I = (U 0)�1 as the inverse of the gradient of U

then 	 has the representation

	 = I(Y(x)H0(T )); (7)

where Y(x) is the inverse of the function

X (x) = E [H0(T )I(xH0(T ))] : (8)

Applying the above methodology to our optimisation problem for di�erent

utility functions, we obtain the following characterisation of the optimal trading

strategy in a frictionless market. We will make use of these values in constructing

the numerical solution to the problem with costs later in the paper.

Logarithmic utility, U (x) = logx : The optimal strategy is to keep the ratio

�(t) of wealth in the stock to wealth in the bond equal to the constant

value �=(� � �), where � = (b� r)=�.

Power utlity, U (x) = x=,  < 1,  6= 0 : The optimal strategy is to keep

�(t) equal to the constant value �=[(� � �)(1� )].

Expnential utility U (x) = � exp(�x) : The optimal strategy is to keep the

wealth invested in the stock �(t) equal to e�r(T�t)�=(�).

We note the fundamental distinction between the solution for the exponential

utility function compared with that for other forms of utility. Namely that the

exponential utility function has a constant index of risk aversion so that the

relevant variable is the amount of money invested in the stock, and the amount

invested in the bond ceases to matter, whilst it is the ratio of these two quantities

that determines the optimal strategy for logarithmic or power utility functions.
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3 Dynamic Portfolios with Transaction Costs

We now introduce proportional transaction costs into the model of the previous

section. Then the wealth process becomes inherently two dimensional, in that

we consider separately the wealth held in the stock and in the bond.

The investor has wealthXx(t) dollars invested in the bond and Yy(t) invested

in the stock at time t, with initial values x; y respectively. We de�ne a pair

of right-continuous, non-decreasing processes (L(t);M (t)) such that L(t) is the

cumulative wealth transferred into the stock account up to time t andM (t) is the

cumulative wealth transferred out of the stock account, with L(0) = M (0) = 0.

Then the wealth held in the stock is the following stochastic process:

Y (t) � Yy(t) = y +

Z t

0

bY (s)ds +

Z t

0

�Y (s)dW (s) + L(t) �M (t): (9)

We assume that transfers of wealth between stock and bond incur transaction

costs which are proportional to the dollar value of wealth transferred. Thus the

cumulative transfer L(t) of wealth into the stock reduces the wealth in the bond

by (1+�)L(t), where � (0 � � < 1) represents the proportional transaction cost

rate associated with buying stock. Similarly the cumulative transfer M (t) of

wealth out of the stock increases the wealth in the bond by (1� �)M (t), where

� (0 � � < 1) represents the proportional transaction cost rate associated with

selling stock. Then the wealth held in the bond is the process:

X(t) � Xx(t) = x+

Z t

0

rX(s)ds � (1 + �)L(t) + (1 � �)M (t): (10)

The investor's holdings (X(t); Y (t)) are constrained to lie in the closed sol-

vency region

S = fX(t); Y (t)) : X(t) + Y (t) � 0g: (11)

A trading policy is a choice of (L(t);M (t)) such that the investor's holdings

remain within S. We denote the set of admissable trading strategies by A(x; y)
and consider an investor who derives utility U (X(T ) + Y (T )) from his terminal

wealth. The investor's optimisation problem is to �nd a pair (L;M ) 2 A(x; y)
that maximizes expected utility from terminal wealth. That is, a policy which

attains the supremum

V (x; y) � sup
(L;M)2A(x;y)

EU (X(T ) + Y (T )): (12)

An alternative expression for the terminal wealth in (12) can be used if it

assumed that the portfolio is converted to cash at the �nal time. Then the

terminal wealth is given by the expression

X(T ) + (1 + �)Y (T ); Y (T ) � 0

X(T ) + (1� �)Y (T ); Y (T ) � 0; (13)

and a similar alternative characterisation of the solvency region S in (11) can

also be de�ned.

5



3.1 Dynamic Programming Equations

The fundamental insight into portfolio selection problems in the presence of

transaction costs was �rst provided by Magill and Constantinides (1976), who

realised that there must be a \no transaction" region in the state space such

that the portfolio is not rebalanced if its holdings reside in this region. This

was proved more rigorously by Davis and Norman (1990) and Shreve and Soner

(1994) in the context of the in�nite horizon problem, and Davis, Panas and

Zariphopoulou (1993) gave arguments to support this notion in the �nite hori-

zon case. Using their insight we can give a sketch of the derivation of the

PDE (which turns out to be a variational inequality with gradient constraints)

satis�ed by the value function of (12). Although we shall not solve the optimi-

sation problem via the PDE, it is useful in describing the nature of the optimal

policies and for motivating the Markov chain approximation for the portfolio

process (X(t); Y (t)) that will be used to compute the optimal trading policy in

the next section.

We de�ne V (t; x; y) as the maximum expected utility of wealth at T , when

starting at time t 2 [0; T ] with holdings (x; y). The state space is divided into

three distinct regions - the BUY, SELL and no transaction (NT) regions, from

which it is optimal to buy stock, sell stock and not to trade, respectively. We

denote the boundaries between the NT region and the BUY (SELL) regions by

@B (@S).

In the BUY region the value function satis�es

V (t; x; y) = V (t; x� (1 + �)�yb; y + �yb) (14)

where �yb, the wealth transferred into the stock, can take any positive value up

to the one required to take the state to @B. Allowing �yb # 0 we have

@V

@y
� (1 + �)

@V

@x
= 0: (15)

Similarly, in the SELL region, the value function satis�es the equations

V (t; x; y) = V (t; x+ (1� �)�ys; y � �ys) (16)

and
@V

@y
� (1� �)

@V

@x
= 0: (17)

In the NT region the process (X(t); Y (t)) becomes an uncontrolled di�usion,

drifting under the inuence of the stock process only, and the value function

satis�es
@V

@t
+ rx

@V

@x
+ by

@V

@y
+

1

2
�2y2

@2V

@y2
= 0: (18)

and the left hand sides of equations (15) and (17) are non-positive and non-

negative respectively.

The above equations can be condensed into the PDE

max

�
@V

@y
� (1 + �)

@V

@x
;�

�
@V

@y
� (1 � �)

@V

@x

�
; (19)

@V

@t
+ rx

@V

@x
+ by

@V

@y
+
1

2
�2y2

@2V

@y2

�
= 0:
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For the case of the negative exponential utility function U (x) = � exp(�x)
the above problem was studied by Davis, Panas and Zariphopoulou (1993) and

also by Whalley and Wilmott (1997), who gave an analytic formula for the

boundaries of the NT region in the limiting case of small transaction costs.

The choice of exponential utility renders the amount of money in the bond

irrelevant and reduces the dimensionality of the problem. For other choices

of utility function, U (x) = logx and U (x) = x=, the relevant quantity is the

ratio Y (t)=X(t) of wealth held in the stock to wealth held in the bond, just as in

the no transaction cost case of the previous section. This has been demonstrated

for the in�nite horizon problem with intermediate consumption by a number of

authors (Constantinides (1979, 1986), Davis and Norman (1990), Shreve and

Soner (1994)). For the �nite horizon case a proof is given in a discrete time

setting in the next section and in the Appendix. We shall assume that the

boundaries @B and @S of the NT region are smooth functions of t, denoted by

�b(t) and �s(t), where �b(t) < �s(t), and these boundaries collapse to a single

constant ��, independent of time, in the frictionless market case, as we saw in

Section 2.

In continuous time one can prove the following properties of the value func-

tion V (t; x; y) for utility functions with hyperbolic risk aversion. We shall prove

these and more properties of the value function in discrete time, later in the

paper.

Proposition 1 For U (x) = logx and U (x) = x=,  2 (0; 1),

1. V (t; x; y) is increasing and concave in x and y;

2. V (t; x; y) has the homotheticity property: for � > 0

V (t; �x; �y) = V (t; x; y) + log� [U (x) = logx];

V (t; �x; �y) = �V (t; x; y) [U (x) = x=]:

Proof

The proof follows Davis and Norman (1990).

1. This is established by considering convex combinations of initial states

(x; y) and control policy (L;M ) and using the linearity of equations (9)

and (10) and concavity of the utility function. This approach appears in

Karatzas and Shreve (1986).

2. From (9) and (10) we see that for any � > 0,

A(�x; �y) = f(�L; �M ) : (L;M ) 2 A(x; y)g: (20)

Therefore, de�ning the optimal portfolio holdings (X�

x(t); Y
�

y (t)) at time

t 2 [0; T ] by

V (x; y) � V (0; x; y) = sup
(L;M)2A(x;y)

EU (Xx(T ) + Yy(T ))

� EU (X�

x(T ) + Y �

y (T ));
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we have from (20) that

(X�

�x(t); Y
�

�y(t)) = �(X�

x (t); Y
�

y (t)) 8t 2 [0; T ]: (21)

In other words the value function satis�es

V (�x; �y) = sup
A(�x;�y)EU (X�x(T ) + Y�y(T )) = EU (X�

�x(T ) + Y �

�y(T ))

= sup
A(x;y)EU (�Xx(T ) + �Yy(T )) = EU (�X�

x (T ) + �Y �

y (T ));

from which the homotheticity of V (x; y) follows. Then since V (t; x; y) inherits

the same properties of V (x; y), the proof is complete.

The homothetic property implies that V (t; x; y) can be re-expressed as a

function of the ratio y=x. Speci�cally, if we de�ne the function  (t; z) by

 (t; z) � V (t; 1; z) then

V (t; x; y) =  (t; y=x) + logx [U (x) = logx]

V (t; x; y) = x (t; y=x) [U (x) = x=]:

The above reduction in dimensionality is very suggestive. It strengthens the as-

sertion made earlier that that the optimal trading strategy can be parametrised

in terms of the ratio �(t) � Y (t)=X(t). It also suggests that one possible way of

solving for the value function V (t; x; y) is to rewrite the variational inequality

(19) in terms of  (t; z) and exploit the resulting reduction in dimensionality.

This is essentially what is done in Davis and Norman (1990) and Shreve and

Soner (1994), in the in�nite horizon (and hence time independent) problem.

The residual time dependence in our case will make this approach perhaps less

powerful, but there remains the possibility of using a technique such as Laplace

transformation to turn the resulting two variable PDE in (t; z) into an ODE in

z. We are currently investigating this method of solution.

The above remarks suggest (and indeed we shall show this in the next sec-

tion) that the optimal trading strategy (X�(t); Y �(t)) is a reected di�usion

in the NT region, such that �b(t) � Y �(t)=X�(t) � �s(t); 8t 2 [0; T ] (except

perhaps at the initial time when the portfolio holdings might lie outside the NT

region). If the state is in NT it drifts under the inuence of the stock price di�u-

sion on a surface de�ned by the number of shares, Y (t)=S(t) = constant. If the

state is in the BUY or SELL regions an immediate transaction occurs taking the

state to @B or @S. Therefore, the optimal trading strategy (L�(t);M�(t)) con-

sists of a pair of \local time" type processes which are non-decreasing, adapted,

right-continuous processes. Moreover, if we can compute the value function in

the NT region along with the boundaries of this region, then we can calculate

its value in the BUY and SELL regions using equations (14) and (16).

4 Discretisation and Numerical Solution of the

Model

In this section we go to a discrete time setting and formally prove various prop-

erties of the value function and of the optimal trading strategy. We shall then

construct a discrete state space of portfolio holdings (X;Y ) so that the process

(X(t); Y (t)) is represented by a discrete time discrete space Markov chain. This

allows for numerical implementation of a dynamic programming algorithm in
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which we represent the function V (t; x; y) by a number for each possible value

of the initial holdings (x; y) in the discrete state space.

4.1 Time Discretisation and Optimal Solution Properties

We approximate the bond and stock processes in (1) by discrete time processes

which generate correspnding discrete time processes for the portfolio holdings

(X(t); Y (t)). In this setting we can prove rigorously that the optimal trading

strategy for logarithmic and power utility is characterised by a NT region whose

boundaries are two distinct values of Y (t)=X(t).

We discretise the time interval [0; T ] into N steps, each of size �t. The asset

prices B(t); S(t) then evolve according to

B(t+ �t) = er�tB(t)

S(t + �t) = "S(t); (22)

where " = exp [(b� �2=2)�t� �
p
�t], each value occurring with probability one

half. If we now take (X(t); Y (t)) to be the discrete time portfolio holdings prior

to a possible transaction at time t, then we have that

X(t + �t) = er�t(X(t) � v(t) � �jv(t)j)
Y (t + �t) = "(Y (t) + v(t)); (23)

where v(t) represents the amount of wealth (if any) transferred into the stock at

time t, and can be positive, negative or zero, and � represents the appropriate

transaction cost parameter. In the notation of the previous section we have the

correspondence

v(t) = �L(t) > 0; if �L(t) worth of stock is bought (� = �),

v(t) = ��M (t) < 0; if �M (t) worth of stock is sold (� = �),

v(t) = 0; if no transaction takes place. (24)

The discrete time dynamic programming equation for V (t; x; y) is, in the

notation of (23)

V (t; x; y) = max
v(t)

E"V (t + �t; er�t(x� v(t) � �jv(t)j); "(y + v(t))); (25)

where E" denotes expectation over the random variable ". The above form of

the dynamic programming algorithm for the portfolio selection problem allows

for a proof of the nature of the optimal policies (although it is not the most

useful for numerical solution of the problem, which will be done using a so-called

Markov chain approximation below). In the Appendix we prove the following.

Theorem 1 1. For utility functions with hyperbolic risk aversion, U (x) =

logx and U (x) = x= there is a no transaction region at time t, denoted

by NT (t) and de�ned by the set of portfolios (X(t); Y (t)) satisfying

NT (t) = f(X(t); Y (t)) : �b(t) � Y (t)=X(t) � �s(t)g; (26)

and �b(t) < �s(t) are the boundaries of the NT region at time t.

9



2. If Y (t)=X(t) < �b(t) then the portfolio lies in the BUY region and shares

are bought so as to take the portfolio to the boundary �b(t). The optimal

wealth transferred into the stock, v�(t) = �L(t) > 0, then satis�es

Y (t) + �L(t)

X(t) � (1 + �)�L(t)
= �b(t): (27)

3. Similarly, if Y (t)=X(t) > �s(t) then the portfolio lies in the SELL and the

amount of wealth transferred into the stock is vy(t) = ��M (t) < 0 and

satis�es

Y (t)� �M (t)

X(t) + (1� �)�M (t)
= �s(t): (28)

Following Constantinides (1986) we refer to such trading policies as simple.

Proof

See the Appendix

4.2 A Markov Chain Approximation

We now set out to numerically compute the optimal trading strategies, and in

particular the boundaries of the NT region. At �rst sight one is tempted to try

and directly solve the Bellman equation (25), but this presents many di�culties.

The equation cannot be solved analytically, and the presence of transaction

costs makes the discrete time processes of (23) path dependent. This means

that the binomial process for the stock price will generate an exponentially

growing number of paths for the portfolio (X(t); Y (t)) as the number N = T=�t

of time steps is increased. This makes a direct numerical solution of the Bellman

equation computationally intensive.

A more promising approach is to construct a discrete grid in (X;Y ) space

to represent possible values that the portfolio (X(t); Y (t)) might reach, and to

approximate the processes X(t), Y (t) by discrete time, discrete state Markov

chains, along the lines pioneered by Kushner (see, for example, Kushner and

Dupuis (1992)). The stochastic control problem is then solved for the discrete

Markov chain, and the solution of the discrete problem can be shown to converge

to the solution of the continuous time model. The success of this approach

ultimately lies in the fact that, although the discrete state space may contain

merely tens of thousands of points (much less than the billions of paths of the

portfolio process), many of the paths will pass through (or close to) the same

values. We exploit this fact along with our knowledge of the nature of the

optimal policies to make the numerical solution tractable.

A similar technique has been employed by Davis and Panas (1994) for ex-

ponential utillty. We employ a di�erent state space to them and describe a

modi�ed algorithm below. It should be noted that there are, in general, many

Markov chain approximations that will work for a particular problem, and we

construct one which adequately reects the structure and supposed properties

of the original problem. The optimisation problem that we are facing here is

one of singular control, in which the control processes are not continuous (see

Kushner and Martins (1991) for the original application of the Markov chain

technique to a singular control problem).
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Figure 1: Discrete state space for Markov chain approximation

We discretise the time interval [0; T ] into N steps, each of size �t. We also

discretise the portfolio state space (X;Y ) into discretisation steps hX ; hY , as

shown schematically in Figure 1. The quantities change in steps, indexed by

an integer n, which are either \di�usion" steps (no trading occurs) or \control"

steps, where shares are either bought or sold. We de�ne a number of increments,

reecting changes in t;X; Y . The time increment is �t(n) = �t for a di�usion

step and zero for a control step, which takes place instantaneously.

The main requirement of the Markov chain approximation method is to con-

struct chains which \respect" (to order �t) the original features of the problem,

in the sense that the changes �X(n), �Y (n) should have �rst and second mo-

ments which approximate those of the continuous time processes of (10) and (9),

which constitute a reected di�usion in the NT region. This \local consistency"

requirement for the process Y (n), for example, is that in a di�usion step

En [�Y (n)] = bY (n)�t(n) (29)

and

En

h
[�Y (n) �E(�Y (n))]

2
i
= �2Y (n)�t(n); (30)

where En denotes expectation at n over the next time step. In satisfying lo-

cal consistency, however, we must also ensure that in a transition the Markov

chain (X(n); Y (n)) moves from one point in the grid of Figure 1 to another.

We shall be solving the Bellman equation for the value function V (t; x; y) by

approximating it by a numerical value for each point (x; y) in the state space

grid.

The increment describing the change in Y over a di�usion step is

�Y (n) = ("� 1)Y (n) + � ~Y (n) (31)

where � ~Y (n) is a random process constructed to ensure that the increment in

Y is an integral multiple of hY , taking the state to another one of the points on

our discrete grid. This process is given by

� ~Y (n) =

� �qhY with probability 1� q

(1 � q)hY with probability q,
(32)

where q = R(("� 1)Y (n); hY ), and the function R(a; b) is the remainder of a=b.

We also de�ne two increments �L(n), �M (n), which describe the changes in

Y when shares are bought or sold, and are a�ected only by control steps. They

11



are given by

�L(n) = hY ; if hY worth of stock is bought

�M (n) = hY ; if hY worth of stock is sold (33)

with �L(n) = �M (n) = 0 in a di�usion step. The above increments allow us to

write the increment in Y during a control step as

�Y (n) = �L(n) � �M (n); n a control step: (34)

Finally, the increment describing the change in X is given by

�X(n) = (er�t � 1)X(n) + � ~X(n); n a di�usion step; (35)

where � ~X(n) is constructed in a similar manner to � ~Y (n) and

�X(n) = �(1 + �)�L(n); n a \buy" step;

�X(n) = (1� �)�M (n); n a \sell" step: (36)

The increments can be used to create discrete time processes �(n) de�ned

by

�(n) =

n�1X
i=0

��(i) (37)

where �(n) is any of t(n), X(n), Y (n), L(n), M (n), � ~X(n), � ~Y (n). The value

function V (t; x; y) that we are interested in has a discrete analogue, which we

also denote by V (t; x; y), when starting at time t = t(n) with initial holdings

X(n) = x and Y (n) = y. In the next section we shall give an algorithm for

computing this value function and the boundaries of the NT region.

4.3 The Discrete Dynamic Programming Algorithm

We apply a dynamic programming algorithm which relates the value function

V (t; x; y) to its counterpart at the next time step. This expresses V (t; x; y) as

the maximumof the choices available to the investor at each time - namely, buy

some shares, sell some shares or do not trade. The discrete Bellman equation

that we shall use is

V (t; x; y) = maxfEn[V (t+ �t;XB(t+ �t); YB(t + �t))];

En[V (t+ �t;XS(t+ �t); YS(t + �t))];

En[V (t + �t;XNT (t+ �t); YNT (t+ �t))]g : (38)

where

XB(t + �t) = er�t(x� (1 + �)�L(n)) + � ~XL(n)

YB(t + �t) = "(y + �L(n)) + � ~YL(n)

XS(t + �t) = er�t(x+ (1� �)�M (n)) + � ~XM (n)

YS(t + �t) = "(y � �M (n)) + � ~YM (n)

XNT (t + �t) = er�tx+ � ~XNT (n)

YNT (n+ 1) = "y + � ~YNT (n); (39)

12



and the processes � ~XL(n), � ~YL(n), � ~XM (n), � ~YM (n), � ~XNT (n), � ~YNT (n) are

constructed in the same manner as (32). For example

� ~XL(n) =

� �qhX with probability 1� q

(1� q)hX with probability q,
(40)

with q = R(er�t(x� (1 + �)�L(n)) � x; hX).

The boundary condition at the �nal time T for the above value function is

V (T; x; y) = U (x+ y).

The above equations thus determine the value function by comparing: (i)

buying hY worth of shares and allowing the stock to di�use or (ii) selling hY
worth of shares and allowing the stock to di�use or (iii) allowing the stock

to di�use only. To implement the above algorithm the following sequence of

steps is performed. Suppose we know the value function V (t + �t; x; y) for all

points x; y in the discrete state space. Starting from values x; y which are in the

optimal proportions for the problem without transaction costs (e.g. y=x = ��)

as at the end of Section 2), we compare the second and third terms in the

maximisation operator of (38) for increasing values of y in steps of hY , until the

former is greater than the latter, at say ys, which we assume satis�es ys = �s(t)x,

marking the boundary between the NT and SELL regions at time n. We repeat

this procedure in decreasing steps of hY to locate the boundary �b(t). Having

located the boundaries of the NT region at time n, the value function at all

points outside this region is determined by assuming the investor transacts to

its boundaries (i.e. applying equations (14) and (16)), whilst the function in the

NT region is found by assuming the investor does not transact, and applying

V (t; x; y) = En[V (t+ �t;XNT (t + �t); YNT (t + �t))]; (41)

for all (x; y) in the NT region at time t. Of course, we recognise the right hand

side of (41) as the third term in the maximisation of (38).

5 Numerical Results

The algorithm described in the previous section was implemented to compute

the optimal trading strategies and boundaries of the NT region for typical model

parameters. The main results we can report are:

� The NT region becomes wider as the time di�erence T�t becomes smaller,

as the transaction costs outweigh the bene�ts of rebalancing the portfolio.

� The NT region becomes wider as the transaction costs increase, with the

lower boundary �b(t) being more sensitive than �s(t).

We shall report detailed numerical results in a future version of this paper.

6 Application to Option Pricing with Transac-

tion Costs

The utility maximisation problem analysed in this paper can be used to imple-

ment option pricing models with transaction costs, as described in Monoyios

13



(1998). With transaction costs the perfect replication policy of Black and Sc-

holes (1973) becomes in�nitely costly, and a number of authors have suggested

ways around this problem, with none of them being totally satisfactory. One

promising technique is to examine the e�ect of buying or selling an option on an

investor's achievable utility, when it is assumed that the investor is trading to

maximise utility at the option expiration time T . Hodges and Neuberger (1989)

pioneered this approach, and they de�ned a value for an option as one which

results in the investor achieving the same utility as when not trading the option.

Given the utility maximisation problem (3), we ask the question of whether this

maximum utility can be increased by the purchase (or short-selling) of a Euro-

pean option whose cash value at time T is some non-negative random variable

�, the purchase price at time zero being p. To be precise, if an amount of cash

� is diverted into options, we de�ne

Q(�; p; x) = sup
�

E

�
U (X�

x��(T ) +
�

p
�)

�
: (42)

Clearly Q(0; p; x) coincides with V(x).
Hodges and Neuberger (1989) de�ne the reservation selling price Ps of an

option with transaction costs as the solution to the equation

V(0) = Q(�Ps; Ps; 0); (43)

with the same notation as in (3) and (42). The reasoning behind (43) is clearly

that Ps is the money received for the option by an investor with zero initial

endowment, who then trades optimally and sets the terminal wealth against the

option liability, and which results in the investor achieving the same utility as

when not trading the option. (A similar de�nition of the reservation buying price

can also be made.) Because the terminal wealth cannot, in general, replicate the

option payo�, we have that X�
Ps
(T )+� can be negative. This precluded Hodges

and Neuberger from using common utility functions such as U (x) = logx, so

they specialised their model to the negative exponential function.

An alternative approach, �rst suggested by Davis (1997) and examined in

detail in Monoyios (2000) is to use a \marginal rate of substitution" argument:

p is de�ned as a fair price for the option if diverting an in�nitesimal amount

of the initial wealth into it at time zero has a neutral e�ect on the investor's

achievable utility. Thus the fair option price is de�ned as the solution (if one

exists) p̂ of the equation
@Q

@�
(0; p; x) = 0: (44)

This results in the pricing formula

p̂ =
E[U 0(X��

x (T ))�]

V0(x) ; (45)

where the prime denotes di�erentiation and �� denotes the trading strategy

which maximises the expected utility in (3). We note that this is the trading

strategy which optimises a portfolio without options.

The methods described above show promise in that they yield approximate

hedging strategies in which the hedging portfolio is only rebalanced at �nite

intervals, which are optimally chosen by embedding the pricing problem in a

utility maximisation framework.
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7 Conclusions and Extensions

The main conclusion of this paper is that stochastic control theory provides a

promising framework in which to study transaction costs, and that the Markov

chain approximation is a powerful technique for solving the computationally

challenging portfolio optimisation problem. Transaction costs are a major im-

pediment to the implementation of dynamic hedging strategies and their study

is therefore crucial to determining the true nature of risk management policies.

At the moment, these are often based on the notions of frictionless markets,

where any risk can, by suitable trading, be covered. It is hoped that the study

in this paper shows that a more careful analysis of risk management strategies

is required, and that this might lead to a reduction in the highly geard positions

that investors take in primary assets as well as in derivatives.

There are a number of directions in which this work could be extended, for

example, the inclusion of di�erent transaction cost structures and di�erent stock

price processes. These would render analytic methods even more obsolete, and

numerical methods such as the ones described in this paper would become even

more necessary.

Appendix

We prove that the optimal trading strategy is simple for U (x) = x= (the proof

for U (x) = logx follows similar reasoning).

We write the Bellman equation (25) as

V (t; x; y) = max
v(t)

�(t; v(t); x; y); (46)

where

�(t; v(t); x; y) = E"V (t + �t; er�t(x� v(t) � �jv(t)j); "(y + v(t)));

� E"Vt+�t(xt+�t; yt+�t);

and we have written V (t + �t; �; �) = Vt+�t(�; �), as well as de�ning xt+�t; yt+�t
according to (23):

xt+�t = er�t(x � v(t) � �jv(t)j);
yt+�t = "(y + v(t)): (47)

Then the no transaction region (26) is the set of portfolios (X(t); Y (t)) = (x; y)

for which �(t; v(t); x; y) � �(t; 0; x; y).

To prove Theorem 1 we analyse the function �(t; v(t); x; y), via a series

of lemmas. We restrict the analysis to non-negative values of x and y, but

the generalisation to the case where borrowing and short-selling is allowed is

straightforward (see, for example, Constantinides (1979,1986)).

Lemma 1 �(t; v(t); x; y) is a homogeneous function of degree  with respect to

v(t), x and y.
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Proof

This follows easily from the de�nition provided that V (t + �t; x; y) is homoge-

neous, and this itself is guaranteed since at the �nal time V (T; x; y) = (x+y)=,

so that the value function at all earlier times is homogeneous.

Lemma 2 �(t; v(t); x; y) is concave with respect to v(t).

Proof

We �rst show that �(t; v(t); x; y) is concave with respect to v(t) provided that

Vt+�t(x; y) is also concave with respect to x and y. In that case �(t; v(t); x; y)

is clearly concave for v(t) 6= 0. For v(t) = 0 we have that the right derivative

@(r)�=@v(t) is given by

@(r)�

@v(t)
(t; 0; x; y) = lim

v(t)#0
E"

�
@Vt+�t

@xt+�t

@xt+�t

@v(t)
+
@Vt+�t

@yt+�t

@yt+�t

@v(t)

�
: (48)

Now, for v(t) > 0, we have that @xt+�t=@v(t) = �er�t(1+�) and @yt+�t=@v(t) =
". Hence

@(r)�

@v(t)
(t; 0; x; y) = �er�t(1 + �)E"

@Vt+�t

@xt+�t
(er�tx; "y) (49)

+ E"" � @Vt+�t
@yt+�t

(er�tx; "y);

where the dot (�) denotes the inner product in the two-dimensional Euclidean

space of the random variable ".

Similarly the left derivative @(`)�=@v(t) at v(t) = 0 is given by

@(`)�

@v(t)
(t; 0; x; y) = �er�t(1� �)E"

@Vt+�t

@xt+�t
(er�tx; "y) (50)

+ E"" � @Vt+�t
@yt+�t

(er�tx; "y);

from which we see that

@(`)�

@v(t)
(t; 0; x; y) � @(r)�

@v(t)
(t; 0; x; y): (51)

Therefore, �(t; v(t); x; y) is concave with respect to v(t) everywhere, provided

V (t + �t; x; y) is concave in x and y. Moreover, since V (T; x; y) = U (x + y) is

certainly concave, we have that V (t; x; y) is concave for all t < T , and the proof

is complete.

The concavity with respect to v(t) implies that any local maximum of

�(t; v(t); x; y) with respect to v(t) will also be a global maximum. Hence an

initial portfolio (X(t); Y (t)) � (x; y) at time t will lie in the NT region if and

only if v(t) = 0 is a maximum of �(t; v(t); x; y) with respect to v(t). Equiva-

lently,

(x; y) 2 NT (t) i�
@(`)�

@v(t)
(t; 0; x; y) � 0 and

@(r)�

@v(t)
(t; 0; x; y) � 0: (52)
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Lemma 3

NT (t) =
n
(x; y) : �b(t) �

y

x
� �s(t)

o
;

where �b(t) and �s(t) are de�ned by

�b(t) � min

�
y :

@(`)�

@v(t)
(t; 0; 1; y) � 0;

@(r)�

@v(t)
(t; 0; 1; y) � 0

�
;

�s(t) � max

�
y :

@(`)�

@v(t)
(t; 0; 1; y) � 0;

@(r)�

@v(t)
(t; 0; 1; y) � 0

�
:

Proof

Suppose we are given a portfolio (x; y) 2 NT (t). Then from (52) and the

homogeneity of �(t; v(t); x; y) we obtain

@(`)�

@v(t)
(t; 0; 1; y=x) = x1�

@(`)�

@v(t)
(t; 0; x; y) � 0:

Similarly we can show that

@(r)�

@v(t)
(t; 0; 1; y=x) � 0:

Hence we see that the portfolio (x; y) 2 NT (t) satis�es �b(t) � y=x � �s(t).

Conversely, suppose that we have a portfolio (x; y) which is such that �b(t) �
� = y=x � �s(t). Then we can show that this portfolio lies in the NT region.

De�ne

~v(t) =
� � �s(t)

1 + (1� �)�
< 0 (53)

and

� =
�(1 + (1� �)�s(t))

y(1 + (1� �)�)
> 0: (54)

Since the derivative of �(t; v(t); x; y) with respect to v(t) is homogeneous of

degree  � 1, we have that

��1
@(`)�

@v(t)
(t; 0; x; y) =

@(`)�

@v(t)
(t; 0; �x; �y): (55)

Using (55) and (50) we �nd that

��1
@(`)�

@v(t)
(t; 0; x; y) = �er�t(1� �)E"

@Vt+�t

@xt+�t
(�er�tx; �"y)

+ E"" �
@Vt+�t

@yt+�t
(�er�tx; �"y)

= �er�t(1� �)E"

@Vt+�t

@xt+�t
(er�t(1� (1� �)~v(t)); "(�s(t) + ~v(t)))

+ E"" � @Vt+�t
@yt+�t

(er�t(1� (1� �)~v(t)); "(�s(t) + ~v(t)))

=
@�

@v(t)
(t; ~v(t); 1; �s(t)) � @(`)�

@v(t)
(t; 0; 1; �s(t)) � 0:
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Hence

@(`)�

@v(t)
(t; 0; x; y) � 0;

and by a similar suitable choice of ~v(t) and � we can show that, also

@(r)�

@v(t)
(t; 0; x; y) � 0;

so that (x; y) 2 NT (t) and the proof is complete.

Lemma 4 The boundaries of the NT region satisfy

@(r)�

@v(t)
(t; 0; 1; �b(t)) = 0;

@(`)�

@v(t)
(t; 0; 1; �s(t)) = 0:

Proof

Consider the �rst statement, which we shall prove by contradiction. Suppose

that (@(r)�=@v(t))(t; 0; 1; �b(t)) < 0 (we know it cannot be positive from the

de�nition of �b(t)). Then since �(t; v(t); x; y) is continuous there exists y < �b(t)

such that (@(r)�=@v(t))(t; 0; 1; y) � 0. But from the proof of Lemma 3 we know

that there exist ~v(t) < 0 and � > 0 (obtained by replacing � and �s(t) in (53)

and (54) by y and �b(t)), such that

@(`)�

@v(t)
(t; 0; 1; y) = �1�

@�

@v(t)
(t; ~v(t); 1; �b(t)) � �1�

@(`)�

@v(t)
(t; 0; 1; �b(t)) � 0:

Thus we have that

@(r)�

@v(t)
(t; 0; 1; y) � 0;

@(`)�

@v(t)
(t; 0; 1; y) � 0; (56)

so that �b(t) is not the minimum value of the stock wealth for which (56) holds,

which is a contradiction, so the �rst part of the lemma is proved. By a similar

argument the second part of the lemma can also be shown to be true.

Lemma 5 If (y=x) < �b(t) then

V (t; x; y) = max
v(t)

�(t; v(t); x; y) = �(t; v�(t); x; y) = �(t; 0; �x; �y); (57)

where

v�(t) =
�b(t)x� y

1 + (1 + �)�b(t)
(58)

�x = x� (1 + �)v�(t)

�y = y + v�(t);

with (�x; �y) 2 NT (t) and �y=�x = �b(t).

If (y=x) > �s(t) then

V (t; x; y) = max
v(t)

�(t; v(t); x; y) = �(t; vy(t); x; y) = �(t; 0; ~x; ~y); (59)
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where

vy(t) =
�s(t)x � y

1 + (1� �)�s(t)
(60)

~x = x� (1� �)vy(t)

~y = y + vy(t);

with (~x; ~y) 2 NT (t) and ~y=~x = �s(t).

Proof

We shall prove the �rst half of the lemma. The proof of the second half follows

exactly the same reasoning.

It is easy to see that v�(t) > 0, �y=�x = �b(t), so that (�x; �y) 2 NT (t) and

�(t; v�(t); x; y) = �(t; 0; �x; �y), by de�nition. Then we only need to show that

v�(t) achieves a maximum of �(t; v(t); x; y). To do this it su�ces to show that

@�

@v(t)
(t; v�(t); x; y) = 0;

since v�(t) > 0. Now,

@�

@v(t)
(t; v�(t); x; y)

= �er�t(1 + �)E"

@Vt+�t

@xt+�t
(er�t(x� (1 + �)v�(t)); "(y + v�(t))

+ E"" � @Vt+�t
@yt+�t

(er�t(x� (1 + �)v�(t)); "(y + v�(t))

= (x� (1 + �)v�(t))�1
�
�er�t(1 + �)E"

@Vt+�t

@xt+�t
(er�t; "�b(t))

+ E"

@Vt+�t

@yt+�t
(er�t; "�b(t))

�

= (x� (1 + �)v�(t))�1
@(r)�

@v(t)
(t; 0; 1; �b(t));

which equals zero, by Lemma 4, and the proof is complete.

Proof of Theorem 1

With the identi�cation v�(t) = �L(t) > 0 and vy(t) = ��M (t) < 0 we that

Lemmas 3 and 5 are equivalent to Theorem 1.
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