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Abstract

Quantitative models of biochemical networks (signal transduction cas-
cades, metabolic pathways, gene regulatory circuits) are a central com-
ponent of modern systems biology. Building and managing these complex
models is a major challenge that can benefit from the application of formal
methods adopted from theoretical computing science. Here we provide a
general introduction to the field of formal modelling, which emphasizes the
intuitive biochemical basis of the modelling process, but is also accessible
for an audience with a background in computing science and/or model
engineering.

We show how signal transduction cascades can be modelled in a mod-
ular fashion, using both a qualitative approach – Qualitative Petri nets,
and quantitative approaches – Continuous Petri Nets and Ordinary Dif-
ferential Equations. We review the major elementary building blocks of
a cellular signalling model, discuss which critical design decisions have to
be made during model building, and present a number of novel computa-
tional tools that can help to explore alternative modular models in an easy
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and intuitive manner. These tools, which are based on Petri net theory,
offer convenient ways of composing hierarchical ODE models, and permit
a qualitative analysis of their behaviour.

We illustrate the central concepts using signal transduction as our main
example. The ultimate aim is to introduce a general approach that provides
the foundations for a structured formal engineering of large-scale models
of biochemical networks.
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1 Motivation

Quantitative modelling of biological systems ranging from metabolic networks
to signalling pathways has experienced a renaissance in recent years. Biologists
have come to realize that to fully understand (and successfully manipulate) com-
plex interacting systems a quantitative description of their dynamic behaviour
is all but essential. However, they have also noted that a successful model not
only has to reproduce the system behaviour correctly, but also must reflect its
physical structure in a meaningful way. The most popular way to achieve this
is by modelling with ordinary differential equations (ODEs), which have a well-
established biophysical basis and straightforward molecular interpretation (see
[SSP06] for a detailed review). Petri nets are a well established formal descrip-
tive technique from Computer Science for modelling dynamic systems which
have recently been applied to biological networks (see Chaouiya [Cha07] for an
excellent review).

This paper aims to lay the foundations for a more structured approach for
the engineering of large-scale models of biochemical networks, illustrated for
signalling pathways. Our approach exploits both Ordinary Differential Equa-
tions and the method of Petri nets. The integrated discussion of differential
equation modeling, which is familiar to most biologists, and the corresponding
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structured approach enabled by continuous Petri nets, opens new perspectives
that should be of broad relevance for system modelers in many areas of cell and
molecular biology. The illustration of the central concepts are based on familiar
signal transduction pathways and classical enzyme kinetics, in order to ensure
that the relevant concepts are immediately accessible to the widest possible
audience.

Appendix A gives a short explanation of continuous Petri nets in mathe-
matical terms, but for the following discussion only an intuitive understanding
of the main concepts is needed. Basically, Petri nets are bipartite graphs (net-
works) with two types of nodes, one corresponding to molecules (“places”), the
other corresponding to reactions (“transitions”). This structure is very simi-
lar to the familiar representation of biochemical networks, such as the maps
of the Kyoto Encyclopedia of Genes and Genomes (KEGG). The arcs (edges)
connecting the nodes encode information about reaction stoichiometry, and the
places encode the molecular concentration. In the continuous version of Petri
nets, each transition node contains detailed information about the kinetics of
the associated chemical reaction (“firing rate function”). Consequently, each
continuous Petri net corresponds in a unique and well-defined way to a system
of ODEs describing the biological system dynamics. The advantages of this and
other features of Petri nets will be discussed in more detail in the rest of the
tutorial.

When building an ODE model with, e.g., a model building tool such as
Gepasi [Men93], model complexity can rapidly increase to a level that is difficult
to manipulate. Computational tools that allow the modular construction and
visualization of ODE models would be very helpful, see e.g. [GH04]. In addition,
one usually faces a number of non-trivial design choices during model building.
Even for a relatively simple model there may be many ways to describe its
dynamic behaviour. In the present paper we introduce the major elementary
building blocks of a cellular signalling model, discuss some exemplary design
decisions that have to be made during model building, and present a number of
novel computational tools that can help to explore alternative modular models
in an easy and intuitive manner. These tools, which are based on Petri net
theory, offer convenient ways of composing hierarchical ODE models, using a
graphical user interface, and we will discuss their application in some detail.

The basic building block of any biological dynamic system is the enzymatic
reaction: the conversion of a substrate into a product catalysed by an enzyme.
Such enzymatic reactions can be used to describe metabolic conversions, the
activation of signalling molecules and even transport reactions between various
subcellular compartments. The simple enzymatic reaction can be represented in
various ways, and we will use this fundamental example to illustrate our paper.
Modular tools, like the Petri net approach described below, will help to explore
the consequences of alternative designs.
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2 Modelling enzymatic reactions

The simplest chemical reaction in a biochemical system is spontaneous decay,
whereby a substance A decays to produce a substance B:

A → B . (1)

In general, biochemical reactions are reversible (i.e. they have forward and
reverse reaction rates which may be quite similar), and can be illustrated by

A 
 B . (2)

Besides the spontaneous reaction, there is the enzymatic reaction, in which
an enzyme catalyses the conversion of one or more biochemical entities (the
substrates) into others (the products). We can illustrate a simple enzymatic
reaction involving one substrate A, one product B, and an enzyme E by

A
E
−→ B . (3)

Enzymes greatly accelerate reactions in one direction (often by factors of at
least 106), and most reactions in biological systems do not occur at perceptible
rates in the absence of enzymes.

To support the graphical construction of larger models by instantiation and
composition of graph components, we also provide the continuous Petri net
representations for all building blocks. In the Petri net notation, each reaction
is modelled by a transition, where the pre-places are all its substrates and the
post-places all its products. An enzyme establishes a side-condition at the given
abstraction level; therefore its place is connected to the catalysed reaction by
two opposite arcs. Compare Figure 1 for the Petri net representation of the three
basic building blocks according Equations 1–3 as well as for the combination of
Equations 2 and 3, the enzymatic reversible reaction.

A B A B BA

BA

E

A B

E E

BA

k1

k1

k2

k1

k1

k2

(1) (2)

(3)

k1, k2

k1, k2

Figure 1: Building blocks corresponding to Equations 1–3 as Petri net components
for irreversible (first column) and reversible (remaining columns) reactions, without
(upper row) and with (lower row) explicitly modelled enzyme places. In the last
column, the macro transitions, represented by two centric squares, stand for hier-
archical nodes, hiding the two transitions of a reversible reaction on the next lower
hierarchy level. In other words, the last column is just an abbreviation of the middle
one. The labels k1 and k2 may be read as transition (reaction) identifiers, but they
will also be interpreted as the kinetic parameters in the mass-action approach.
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The Michaelis-Menten approach (MM)

In structural terms the reaction described by Equation 3 is particularly simple,
because it does not require a detailed molecular understanding of the enzymatic
reaction mechanism itself. Any kinetics that are just a function of the concen-
trations of A, B and E and some constant parameters will be compatible with
this description. In practice, the Michaelis-Menten equation is commonly used
when modelling enzymatic reactions. It is given in Equation MM

V = Vmax ×
[A]

KM + [A]
(MM)

where V is the reaction velocity, Vmax is the maximum reaction velocity, and
KM , the Michaelis constant , is the concentration of the substrate at which the
reaction rate is half its maximum value. The concentration of the substrate A is
represented by [A] in this rate equation. With the total enzyme concentration
[ET ] and the equation

kcat =
Vmax
[ET ]

(4)

we are able to write the differential equations describing the consumption of
the substrate and production of the product as:

d[A]

dt
= −

d[B]

dt
= −kcat× [ET ]×

[A]

(KM + [A])
(5)

That is exactly the result we get by assigning the Michaelis-Menten kinetics
to the continuous transition labelled with k1 in subfigure (3) of Figure 1.

It is critical to note that the Michaelis-Menten equation only holds at the
initial stage of a reaction before the concentration of the product is appreciable,
and makes the following assumptions:

1. The concentration of product is (close to) zero.

2. No product reverts to the initial substrate.

3. The concentration of the enzyme is much less than the concentration of
the substrate, i.e. [E]� [A].

These are reasonable assumptions for enzyme assays in a test tube. However,
assumptions 1 and 2 do not hold for most metabolic pathways in vivo, and none
of the assumptions is correct for cellular signalling pathways. For instance,
the concentration of kinases in a signalling cascade is about the same as the
concentration of its downstream target, which usually is also a kinase. Also,
reversibility and broad changes in substrate, enzyme and product concentration
play an important role in cellular signalling pathways, requiring more detailed
descriptions.



2 MODELLING ENZYMATIC REACTIONS 6

The mass-action approach (MA1)

A more detailed description can be given by taking into account the mechanism
by which the enzyme acts, namely by forming a complex with the substrate,
modifying the substrate to form the product, and a disassociation occurring to
release the product, i.e. A + E 
 AE → B + E. In order to take into account
the kinetic properties of many enzymes, we associate rate constants with each
reaction. Thus the enzyme E can combine with the substrate A to form the
A|E complex with rate constant k1. The A|E complex can dissociate to E and
A with rate constant k2, or form the product B with rate k3:

A + E

k1−→
←−
k2

A|E
k3−→ B + E . (MA1)

E

BA|EA

A A|E B

E

A B

E

k3

k2

k1

k3k1, k2 MA1

Figure 2: Building block MA1 according Equation MA1 as Petri net component in
three versions: flat (top left), 1-hierarchy (bottom left), 2-hierarchy (bottom right).
Each of these building blocks, read as continuous Petri net, defines the system of
differential equations as given in Equation 7.

This simple mass-action model is related to the Michaelis-Menten Equa-
tion MM as described previously by the following constraints:

k2 + k3

k1
= KM (6)

where k3 = kcat = Vmax
[ET ] as in Equation 4.

We can derive a set of differential equations from the mass-action description
given in Equation MA1:

d[A]
dt

= −k1 × [A]× [E] +k2 × [A|E]

d[A|E]
dt

= k1 × [A]× [E] −k2 × [A|E] −k3 × [A|E]

d[B]
dt

= +k3 × [A|E]

d[E]
dt

= −k1 × [A]× [E] +k2 × [A|E] +k3 × [A|E]

(7)

These differential equations are derived in an obvious modular fashion from
the underlying chemical equations, where each arrow connecting to a compound
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corresponds to one term in the sum of the associated differential equation. Like-
wise, these differential equations are uniquely defined by the Petri net structure
as given in Figure 2, if read as a continuous Petri net, compare Appendix. Obvi-
ously, the Petri net notation provides visualisation of the structure (topology),
which is hidden in the ODEs.

The mass-action model described in Equation MA1 and Figure 2 assumes
that almost none of the product reverts back to the original substrate, a con-
dition that holds at the initial stage of a reaction before the concentration of
the product is appreciable. This means that this type of mass-action model is
a direct equivalent of the Michaelis-Menten equation, and will face the same
limitations when applied to in vivo signalling systems. However, as we will show
below, the mass-action description offers much more flexibility and thus can be
easily expanded to cover more general situations.

More detailed mass-action descriptions of enzyme kinetics

The Michaelis-Menten equation and the corresponding mass-action model has
been derived under the explicit assumption that there is no product present. It
only holds for the initial rate of any enzymatic reaction. But almost all dynam-
ical system models are concerned primarily with time-courses and/or steady-
state behaviour. Both of these are clearly outside the range of the Michaelis-
Menten approach and its corresponding mass-action model.

We can address this problem by formulating more detailed descriptions of
enzymatic reactions using mass-action kinetics. Given that both substrate(s)
and product(s) of an enzymatic reaction will bind to the same binding site,
which often has the highest affinity for the transition state that is intermediate
between substrate and product, it is reasonable to assume that the following
extended version MA2 of the reaction equations is a good approximation, see
Figure 3 for the Petri net representation of this building block:

A + E

k1−→
←−
k2

A|E
k′
3−→ B|E

k′
2−→
←−
k′
1

B + E (MA2)

E

B|EA|EA B

BA A|E B|E

E

BA

E

k’3

k2

k1 k’2

k’1

k’3k1, k2 k’2, k’1 MA2

Figure 3: Building block MA2 according Equation MA2 as Petri net component in
three versions: flat (top left), 1-hierarchy (bottom left), 2-hierarchy (bottom right).
Each of these building blocks, read as continuous Petri net, defines the same system
of differential equations (not given).
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The rate constants for the association and disassociation of the complex B|E
to B + E are related to those for the association and disassociation of A|E, i.e.
k1 ' k′

1 and k2 ' k′
2 because in general there will be only one bond change

between the substrate A and the product B, while the overall conformation
of the complexes A|E and B|E is maintained. Of course this assumption is a
simplification, but it is made here without loss of generality. The only challenge
then is to estimate k1 and k2, so that they fulfill the constraints in Equations 6
and 4 above, with the additional constraint that

k3 = kcat =
k2 ∗ k′

3

(k2 + k′
3)

(8)

assuming that the concentration of the enzyme-metabolite complexes is in
steady state.

An even more complete mass-action model is given in Equation MA3, see
Figure 4 for the corresponding Petri net representation of this building block.
In this case the model describes in more detail the way in which the substrate
is modified to form the product. The substrate first associates with the en-
zyme, and is then modified to form the product which is still associated with
the enzyme. Finally the product and enzyme disassociate. All of the stages in
the reaction are modelled as being reversible. An enzymatic reaction that is
described by a certain set of Km/kcat values implies most strongly that its
behaviour is governed in fact by equations MA2 and MA3 above. Any exten-
sion of Michaelis-Menten beyond time point 0 will be fraught with problems,
as discussed earlier.

A + E

k1−→
←−
k2

A|E

k′
3−→
←−
k′
4

B|E

k′
2−→
←−
k′
1

B + E (MA3)

E

B|EA|EA B

BA A|E B|E

E

BA

E

k’3

k2

k1 k’2

k’1k’4

k1, k2 k’2, k’1 MA3k’3, k’4

Figure 4: Building block MA3 according Equation MA3 as Petri net component in
three versions: flat (top left), 1-hierarchy (bottom left), 2-hierarchy (bottom right).
Each of these building blocks, read as continuous Petri net, defines the system of
differential equations (not given).

The differential equations for Equation MA2 and Equation MA3 can again
be derived in an obvious modular fashion as demonstrated above for the mass-
action pattern MA1, or – likewise – be generated out of the continuous interpre-
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tation of the Petri net structures given in Figures 3 and 4 (compare Section 7
for a description of the tools used in our technology).

In Equation 9, based on Equation MA1, we give one description for the
transformation of two substrates A1 and A2 into two corresponding products
by the association first of A1 with the enzyme and then the association of A2

with the the complex formed by the first substrate and the enzyme. We model
the disassociation and conversion into the two products in one step.

A1 + A2 + E

k1A1−−−→
←−−−
k2A1

A1|E + A2

k1A2−−−→
←−−−
k2A2

A1|A2|E
k3−→ B1 + B2 + E (9)

Basic building blocks give us the ability to construct quite complex models,
on a textual level by composing equations, or in a graphical way by composing
Petri net components. Thus, for example the description of the RKIP influenced
ERK signalling pathway is described by Cho et al. [CSK+03] employing an
ODE description based on Equation 9 and two equations of the form given in
Equation MA1. A corresponding Petri net representation is given in [GH04].

The decision of what granularity should be used to describe biochemical
equations will largely be driven by the availability of kinetic data – the high
granularity of mass-action descriptions will often require data on rate constants
which cannot be obtained from the literature or experiments. A Michaelis-
Menten description is often the most pragmatic choice even though it may
yield misleading results in terms of simulation and analysis.

3 Signal transduction cascades

Once we have found the suitable description of the fundamental building blocks
of a cellular system, i.e. the enzymatic reactions, we can combine them into more
complex networks. In this paper we will focus on signal transduction cascades
as an example, to illustrate the important principles of compositionality and
modularity in cellular systems. It should be understood that each individual
step in the cascade can be modelled by any of the basic types of building blocks
introduced above. Hence, hybrid models are allowed and often reasonable, for
example if the information about kinetic parameters is available at different
levels of detail. In the following we give illustrative models in template form
only, i.e. without reference to actual protein and specific rate constants; the
interested reader is referred to [OSV+05] for descriptions of some models of
the receptor tyrosine kinase activated MAPK signalling pathway.

Signal transduction is the mechanism that controls cellular responses to
changes in the environment, including those changes that are generated by the
organism itself, such as changes in hormone or growth factor concentrations.
Extracellular signalling molecules bind to specific trans-membrane proteins (re-
ceptors), changing their conformation. This conformation change leads to a
change in enzymatic activity of the receptor, which in turn affects the concen-
tration of downstream compounds (the substrates and products of the reaction
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enzyme_1 enzyme_2 enzyme_3 enzyme_2

enzyme_1

enzyme_3

k1 k2 k3

k1

k2

k3

Figure 5: The essential structural difference between metabolic networks (left) and
signal transduction networks (right) in terms of Petri net structures.

catalysed by the receptor). The downstream compounds may themselves be en-
zymes that in a cascade of enzymatic reactions ultimately lead to a change in
gene expression or some other major adjustment of cellular physiology. These
events, and the molecules that they involve, are referred to as (intracellular)
“signalling pathways”; they are central to processes such as proliferation, cell
growth, movement, apoptosis, and inter-cellular communication. The effect of
“signalling cascades” which comprise a series of enzymatic reactions in which
the product of one reaction acts as the catalytic enzyme for the next can be
amplification of the original signal. However, in some cases, for example the
MAP kinase cascade, the signal gain is modest [SEJGM02], suggesting that a
main purpose, over and above relaying the signal, is regulation [KCG05] which
may be achieved by positive and negative feedback loops (see below).

The main factor which distinguishes signal transduction pathways from
metabolic networks is that in the former the product of an enzymatic reaction
becomes the enzyme for the next step in the pathway, whereas in the latter the
product of one reaction becomes the substrate for the next, see Figure 5. In
general, it is transient behaviour which is of interest in a signalling pathway,
as opposed to the steady state in a metabolic network. In gene regulatory net-
works, on the other hand, the inputs are proteins such as transcription factors
(produced from signal transduction or metabolic activity), which then influence
the expression of genes – enzymatic activity plays no direct role here. However,
the products of gene regulatory networks can play a part in the transcription
of other proteins, or can act as enzymes in signalling or metabolic pathways.

The first model of the ERK signalling cascade (the prototypical eukaryotic
signal transduction pathway [BH05, WSL03]) was published in 1996 and utilised
standard mass action kinetics (MA1) to represent the activation (phosphoryla-
tion) and deactivation (dephosphorylation) of the protein kinases [HF96]. Al-
though relatively small (11 reactions and 18 species), the model was effectively
used to investigate if the cascade exhibited ultrasensitivity. However, the next
model of the ERK cascade utilised purely Michaelis-Menten type kinetics (MM)
and was used to investigate whether the activation of ERK by MEK was pro-
cessive or distributive [BS97]. Therefore, this shows that the different kinetic
modelling approaches have both been employed from the very beginning of
signal transduction modelling.

Over the past decade, an ever increasing number of models of the ERK
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cascade have been developed, growing in both size and complexity through
the years. Models now routinely incorporate growth factor receptors and the
plethora of adaptor proteins that can bind to them and subsequently acti-
vate the core ERK cascade. However, like their predecessors, these models still
utilise the standard mass action or Michaelis-Menten type kinetics (or a mix-
ture of both) to represent the biochemical reactions of a system. One of the
earliest models of the Epidermal Growth Factor Receptor (EGFR), which ac-
tivates the downstream ERK cascade, utilised a mixture of both kinetic mod-
elling approaches to represent ligand/receptor and receptor/adaptor binding
and activation [KDGH99]; in general, MM kinetics were used to represent de-
phosphorylation reactions whilst MA1 kinetics were used to represent bind-
ing/dissociation and phosphorylation reactions in this model. Similarly, the
model of the EGFR-ERK system developed by [BF03] also utilised both ki-
netic modelling approaches. However, this time MM kinetics were more ex-
tensively employed, representing both phosphorylation and dephosphorylation
reactions, whilst MA1 kinetics were used primarily for binding/dissociation re-
actions. In addition, models composed entirely of mass action kinetics [LBS00,
CSK+03, SEJGM02, IBG+04] or entirely [Koh00] and almost entirely [BHC+04]
of Michaelis-Menten kinetics have also been constructed and successfully applied
to signalling pathways. In some cases, the choice of kinetic modelling approach
is explained [YTY03] and tends to favour the mass action approach due to some
of the assumptions used to derive the Michaelis-Menten equation. However, in
most cases the choice of kinetic modelling approach and its implications is
not discussed, and alternatives are not systematically explored. Exploiting the
modular approach advocated here, such an exploration of model space would
be much easier to implement and could become a natural step of model analysis
strategies.

4 Modelling one step in the cascade

One step in a classical signal transduction cascade comprises the phosphory-
lation of a protein by an enzyme S which is termed a kinase, see Figure 6.
It is the phosphorylated form Rp which can act as an enzyme to catalyse the
phosphorylation of a further component in the cascades, see Figure 9(a).

�

����

Figure 6: Basic enzymatic step; R – signalling protein; Rp – phosphorylated form;
S1 – kinase

We can model this reaction using any of the kinetic patterns introduced
in Section 2; e.g., the Mass Action MA1 pattern as follows, straightforwardly
adapted from Equation MA1 or equally its Petri net component given in Fig-
ure 2, by renaming in Equation 10, where R is a protein and Rp its phospho-
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rylated form, S is a signal enzyme and R|S the complex formed from R and
S:

R + S

k1−→
←−
k2

R|S
k3−→ Rp + S (10)

In order to ensure that such a single step is not a ‘one shot’ affair (i.e. to
ensure that the substrate in the non-phosphorylated form is replenished and
not exhausted), and hence that the signal can be deactivated where necessary,
biological systems employ a phosphatase which is an enzyme promoting the
de-phosphorylation of a phosphorylated protein. This is depicted in Figure 7,
which we are going to model by all four introduced kinetic patterns.

�

�

����

Figure 7: Basic phosphorylation–dephosphorylation step; R – signalling protein;
Rp – phosphorylated form; S1 – kinase; P1 – phosphatase

We start with the mass-action patterns. Using the MA1 pattern (Mass Ac-
tion kinetics 1) we get Equation 11, where P is a phosphatase and kn, krn are
rate constants for the forward and reverse reactions respectively. In many cases
it would also be justified to model the dephosphorylation as an un-catalysed
first-order decay reaction, because detailed knowledge of phosphatase concen-
trations, specificities, and kinetic parameters is still lagging behind our under-
standing of the kinase enzymes.

R + S

k1−→
←−
k2

R|S
k3−→ Rp + S

R + P
kr3←−− R|P

kr1←−−
−−→
kr2

Rp + P

(11)

We can construct a more complex description of the cascade step by utilising
the more detailed formulation in Equation MA2 to give Equation 12 using MA2
(Mass Action kinetics 2):
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R + S

k1−→
←−
k2

R|S
k′
3−→ Rp|S

k′
2−→
←−
k′
1

Rp + S

R + P

kr1←−−
−−→
kr2

R|P
kr′3←−− Rp|P

kr′2←−−
−−→
kr′1

Rp + P

(12)

A complete description in mass-action kinetics can be given by adapting
Equation MA3 to give Equation 13 using MA3 (Mass Action kinetics 3):

R + S

k1−→
←−
k2

R|S

k′
3−→
←−
k′
4

Rp|S

k′
2−→
←−
k′
1

Rp + S

R + P

kr1←−−
−−→
kr2

R|P

kr′3←−−
−−→
kr′4

Rp|P

kr′2←−−
−−→
kr′1

Rp + P

(13)

The Michaelis-Menten description MM for this reaction usually omits ex-
plicit reference to the phosphatase concentration because it is hard to measure;
moreover because it is constant and not involved in any other reaction the term
−kcat×[ET ] can be replaced by a single constant. Thus Equation 14 is modified
for the reverse (dephosphorylation) reaction in Equation 14 to treat [P ] as a
constant that is implicit in the kinetic constant k ′

3:

V = k3 × [S]×
[R]

(KM1 + [R])
− k′

3 ×
[Rp]

(KM2 + [Rp])
(14)

where

• d[Rp]
dt

is the reaction rate V,

• k3 × [S] is Vmax for the forward reaction,

• k′
3 is Vmax for the reverse reaction, and

• KM1 = (k2+k3)
k1

with values from Equation 11.

Figure 8 summarizes the corresponding Petri net models for these four ver-
sions of the basic phosphorylation-dephosphorylation step.
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RpR
R|S Rp|S

S

RpR

S

PP

Rp|PR|P

RpR

P

Rp
R|P

R

P

SS

R|S

Rp|PR|P

P P

S

R Rp

S

Rp|SR|S
R Rp

S

R Rp RpR

S

kr3

k3

kr'3

k'3

k3

k'3

(MA1)

(MA2)

(MM)

(MA3)

k1, k2 k'2, k'1
MA3

k'3, k'4

kr1, kr2 kr'2, kr'1
MA3

kr'3, kr'4

k1, k2
MA1

kr1, kr2
MA1

k1, k2 k'2, k'1
MA2

kr'1, kr'2kr2, kr1
MA2

MM

MM

Figure 8: The Petri net representations (top hierarchy levels only) for Equations 11–
14, re-using the components introduced in Figures 1–4. Each system is given in two
versions. The right column provides the 2-hierarchy versions of the left column; i.e.,
both columns generate the same ODEs.
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5 Composing kinase cascades using building blocks

Once we have defined the building blocks, we can compose them by chaining
together basic phosphorylation–dephosphorylation steps.

Vertical and horizontal composition

Composition can be performed vertically as in Figure 9(a) to form a signalling
cascade, where the signalling protein in the second stage is labelled RR and
its phosphorylated form is labelled RRp. Horizontal composition is illustrated
in Figure 9(b) where a double phosphorylation step is described; the double
phosphorylated form of a protein is subscripted by pp.
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Figure 9: (a) Vertical composition: Cascade formed by chaining two basic
phosphorylation-dephosphorylation steps. (b) Horizontal composition: One stage
cascade with a single to double phosphorylation step.

We can again use any of the kinetic patterns that were previously introduced
in order to derive the models. For example, using MA1 we can represent a two-
stage cascade illustrated in Figure 9(a) by the following mass-action equations,
ignoring for the sake of simplicity the dephosphorylation steps in the textual
representation. The rate constants associated with the second stage are labelled
kkn. We would not expect the dephosphorylation rate constants to be related
to the phosphorylation rate constants.

R + S1

k1−→
←−
k2

R|S1
k3−→ Rp + S1

RR + Rp

kk1−−→
←−−
kk2

RR|Rp
kk3−−→ RRp + Rp

(15)

The complete two-stage cascade using the mass-action equation pattern
MA1 gives rise to the ODEs given in Equation 16.
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d[R]
dt

= −k1 × [R]× [S1] + k2 × [R|S1]

d[R|S1]
dt

= k1 × [R]× [S1]− k2 × [R|S1]− k3 × [R|S1]

d[Rp]
dt

= k3 × [R|S1]

d[S1]
dt

= −k1 × [R]× [S1] + k2 × [R|S1] + k3 × [R|S1]

d[RR]
dt

= −kk1 × [RR]× [Rp] + kk2 × [RR|Rp]

d[RR|Rp]
dt

= kk1 × [RR]× [Rp]− kk2 × [RR|Rp]− kk3 × [RR|Rp]

d[RRp]
dt

= kk3 × [RR|Rp]

d[Rp]
dt

= −kk1 × [RR]× [Rp] + kk2 × [RR|Rp] + kk3 × [RR|Rp]

(16)

The Michaelis-Menten description for this two-stage cascade is more com-
pact than the ODE version above, and is given by Equation 17:

d[Rp]
dt

= k3 × [S1]×
[R]

(KM1+[R]) − k′
3 ×

[Rp]
(KM2+[Rp])

d[RRp]
dt

= kk3 × [Rp]×
[RR]

(KMM1+[RR]) − kk′
3 ×

[RRp]
(KMM2+[RRp])

(17)

The ODEs given in Equations 16 and 17 are defined by the continuous Petri
nets given in Figure 10(b), using appropriately chosen kinetic patterns for the
macro transitions.

The addition of a double phosphorylation step to a cascade layer is given
in Figure 9(b), where both the single and double phosphorylation steps are
catalysed by the same enzyme S; likewise, the two dephosphorylation steps are
usually catalysed by the same phosphatase P . This system component can be
described by Equation 18, if we apply the mass-action kinetics MA1 and ignore
again for the sake of simplicity the dephosphorylation steps in the textual rep-
resentation. The rate constants associated with the double phosphorylation are
labelled kpn. Often, we can assume that the rate constants for the two steps of
the double phosphorylation are similar to those for the single phosphorylation.

R + S

k1−→
←−
k2

R|S
k3−→ Rp + S

Rp + S

kp1
−−→
←−−
kp2

Rp|S
kp3
−−→ Rpp + S

(18)

The ODEs for the double phosphorylation can be generated by the contin-
uous Petri net given in Figure 10(c), where the kinetic patterns for the macro
transitions have to be adjusted appropriately.
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Rp
R

S

Rpp

S1

P1

R Rp

P2

RR RRp

Rpp

S1

P1

R

Rp

RRppRR

RRp

RpR

P

S

P

P2

(a) (b)

(c)

(d)

Figure 10: Starting from the building block (a) for the basic phosphorylation-
dephosphorylation step (as defined in four versions in Figure 8), we can do vertical
composition forming signalling cascades, as given in (b), and horizontal composi-
tion, resulting in the structure (c) for the double phosphorylation. Applying both
composition principles yields the two-stage double phosphorylation cascade as given
in (d).
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Negative and positive feedback

Feedback in a signalling network can be achieved in several ways. For example,
negative feedback can be implemented at the molecular level by sequestration
of the input signal S1 by the product of the second stage RRp. This system
is sketched in Figure 11(a), and can be achieved by combining equations 15
and 19. See Figure 12(a) for the continuous Petri net, from which the ODEs
can be derived; of course, these need to be completed by the dephosphorylation
equations (this is equally true for all the structures discussed in the following).

Similarly, positive feedback can also be achieved by the sequestration of
the input signal S1 by the product of the second stage, under the additional
condition that the resulting S1|RRp complex is a more active enzyme than S1

alone. In this case we add Equation 20 to equations 15 and 19. The system is
sketched in Figure 11(b), and the continuous Petri net is given in Figure 12(b),
from which the ODEs can be derived.

S1 + RRp

i1−→
←−
i2

S1|RRp (19)

R + S1|RRp

kp1
−−→
←−−
kp2

R|S1|RRp
kp3
−−→ Rp + S1|RRp (20)

Many other molecular mechanisms can be envisaged and are in fact observed
in biological systems. All of these can be represented using the same basic
formalism. For example, we can model an influence of RRp on the phosphatase
P1, in which case the effects of positive and negative feedback are reversed,
i.e. sequestration of P1 by RRp can cause positive feedback – see Figure 11(c).
This can be achieved with Equations 15 and 21. Alternatively the situation
where the P1|RRp complex is more active than P1 will cause negative feedback,
Figure 11(d), and can be described by adding Equation 22 to Equations 15 and
21.

P1 + RRp

i1−→
←−
i2

P1|RRp (21)

Rp + P1|RRp

kr′1−−→
←−−
kr′2

Rp|P1|RRp

kr′3−−→ R + P1|RRp (22)
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(b)

R Rp

P1

RR RRp

P2

S1(a)

R Rp

P1

RR RRp

P2

S1

(d)

R Rp

P1

RR RRp

P2

S1

R Rp

P1

RR RRp

P2

S1(c)

Figure 11: Two-stage cascade with (a) negative feedback, (b) positive feedback;
alternative two-stage cascade with (c) negative feedback, (d) positive feedback.
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S1|RRp

RRp

P2

Rp

RR

R

S1

P1

R|S1|RRp S1|RRp

RRp

P2

Rp

RR

R

S1

P1

Rp|P1|RRp

P1|RRp

RRp

P2

Rp

RR

R

S1

P1

P1|RRp

RRp

P2

Rp

RR

R

S1

P1

kp3

kr'3

(a) (b)

(c) (d)

i1, i2 i1, i2

kp1, kp2

kr'1, kr'2

i1, i2 i1, i2

Figure 12: Petri nets, corresponding to Figure 11, for a two-stage cascade with
(a) negative feedback, (b) positive feedback (the reaction sequence i1, kp1, kp3

contributes to the phosphorylation); alternative two-stage cascade with (c) negative
feedback (the reaction sequence i1, kr′1, kr′3 contributes to the dephosphorylation),
(d) positive feedback.
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6 Analysing the behaviour of the models

Clearly the construction of models of a biochemical system has to be done with
some purpose in mind. Overall, the main motivation will often be to provide
some guidance to biochemists regarding the way in which they could carry
out the exploration, modification or (re-)construction of a biological system of
interest. Such advice could contribute towards the optimisation of resources
(human, fiscal) and time in terms of the choice and temporal ordering of what
assays to perform. The usefulness of the models will depend on their ability to
provide an unambiguous representation of the knowledge about the biochemical
system, obtained from interviewing the biologists, searching the literature as
well as experimental data from biochemical experiments. Thus a major task
in model construction is interaction with biologists in order to ensure that the
correct model is built.

Models should be able to provide biochemists with a foil against which
to test their understanding of a biological system – initially the components
and how they interact (network topology), and then regarding aspects of the
behaviour of the system. In the first instance, the explanatory power of a model
is related to its ability to represent and explain everything that is known about
the biological system, under various conditions. Furthermore, the usefulness of
the explanatory power of a model is often linked to its capability to correctly
predict the behaviour of a system under new (as yet unseen) conditions which
will be achieved by new biological assays.

The first check that should be carried out on a model of a biochemical net-
work is whether it correctly describes the components and their relationships
at an adequate level of detail. This should be done with biochemists who will
often represent the system of interest in some diagram with more or less for-
mality and internal consistency. The initial task for the modeller is thus to
create an abstract, qualitative representation of a biochemical network, mini-
mally described by its topology, usually as a bipartite directed graph with nodes
representing biochemical entities or reactions, or in Petri net terminology places
and transitions. Arcs can be annotated with stoichiometric information.

The qualitative description can be further enhanced by the abstract repre-
sentation of discrete quantities of species, achieved in Petri nets by the use of
tokens at places. These can represent the number of molecules, or the discrete
level of concentration, of a species. A particular arrangement of tokens over
a network is called a marking . The firing rule brings the tokens to life. Their
motion through the network (token animation) can be visualized by playing
the token game, which allows to experience model behaviour. The standard se-
mantics for these qualitative Petri nets (QPN) does not associate a time with
transitions or the sojourn of tokens at places, and thus these descriptions are
time-free. The qualitative analysis considers, however, all possible types of be-
haviour of the system under any timing. The behaviour of such a net forms a
discrete state space, which can be analysed in the bounded case, for example,
by a branching time temporal logic, one instance of which is Computational
Tree Logic (CTL); see [CGP01] and the Model Checking Kit [SSE03] for collec-
tions of suitable model checkers. Qualitative analyses may also be made using
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classical Petri net theory, as provided, e.g., by the Integrated Net Analyser INA
[SR99]. The partial order behaviour as provided by qualitative Petri nets can
contribute to deeper insights into the signal-response behaviour of signalling
networks, as demonstrated in [GHL07].

Timed information can be added to the qualitative description in two ways
– stochastic and continuous. [GH04], [GHL07] provide case studies, demonstrat-
ing the complementary application of qualitative as well as quantitative models
to a common biological system. It should be borne in mind that time assump-
tions generally impose constraints on behaviour. Thus qualitative models con-
sider all possible behaviours under any timing, whereas continuous models are
constrained by their inherent determinism to consider a subset. This may be
too restrictive when modelling biochemical systems, which by their very nature
exhibit variability in their behaviour and a stochastic approach may be more
suitable. However, in this paper for reasons of space we ignore the stochastic
view, and refer the reader to [GHL07] for a description of stochastic Petri nets
and their relationship to qualitative and continuous models.

The continuous model replaces the discrete values of species with continuous
values, and hence is not able to describe the behaviour of species at the level
of individual molecules, but only the overall behaviour via concentrations. We
can regard the discrete description of concentration levels as abstracting over
the continuous description of concentrations. Timed information is introduced
by the association of a particular deterministic rate information with each tran-
sition, permitting the continuous (Petri net) model to be represented as a set
of ordinary differential equations (ODEs). The concentration of a particular
species in such a deterministic model will have the same value at each point of
time for repeated computational simulations.

(Qualitative) Petri nets and ODEs do share some concepts, as e.g. the no-
tions of P-invariants and T-invariants, see [Mur89], which are known in the
continuous world under the terms mass conservation or stationary flux, ele-
mentary mode, extreme pathway, respectively, see [Pal06]. Because qualitative
and quantitative models share the structure, it is likely that they share some
behaviour, too. Thus, [ADLS07] presents a qualitative Petri net approach to
persistence analysis in (continuous) chemical reaction networks.

Systems of ODEs are often non-linear, and not amenable to analytical solu-
tion methods, thus numerical methods must be used. In addition, the ODEs can
describe a stiff system and stiff ODE solvers need to be used. Such solutions
give traces of the deterministic behaviour of the concentrations of biochemical
species over time, from which for example input–output (signal–response) be-
haviour can be computed. One common task is to fit the behaviour of a model
to the observed data, essentially undertaking system identification which can be
done both in terms of the qualitative as well as quantitative aspects. The latter
can be achieved in a semi-manual manner by parameter scanning or by more
automatic methods based on optimisation. However, laboratory data is often
sparse in terms of time points, does not contain the results of many repeated
experiments, and is highly variable. This presents a particular challenge to mod-
elling, and it is an ongoing area of research to develop appropriate data-fitting
techniques. The automated performance of qualitative model identification (i.e.
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the choice of suitable topologies to describe a system), in conjunction with the
derivation of kinetic data is a difficult task.

The state space of such models is continuous and linear and can be analysed,
for example, by Linear Temporal Logic with constraints (LTLc) as provided by
the Biocham tool [CCRFS06]. Besides the numerical evaluation of ODEs, the
qualitative analysis of their solutions are often of interest, as analysis of (the
existence of) equilibria and stability, oscillation, persistency, sensitivity and
bifurcation [Gle94]. ODEs are also commonly used in the classical metabolic
control analysis [HS96], which aims at a quantification in terms of control coef-
ficients to determine the extent to which different enzymes limit the flux under
particular conditions.

7 Tools

Several tools are available which permit the construction of qualitative biochem-
ical pathway models using kinetic descriptions and their simulation and analy-
sis; these often read and write in SBML [HFS+03] format which is one de-facto
standard for the description of quantitative models of biochemical pathways.
Such tools include BioNessie [Bio], and Copasi [HSG+06]. MATLAB [SR97] is
a high-level language and interactive environment which contains a large num-
ber of ODE solvers which can be used to numerically solve and analyse ODEs.
The SimBiology toolbox extends MATLAB with tools for modelling, simulat-
ing, and analyzing biochemical pathways, and has an interface which can read
and write SBML. The Systems Biology Workbench (SBW) [BS06], is a soft-
ware framework that includes Jarnac, a fast simulator of reaction networks,
permitting time course simulation (ODE or stochastic), steady state analysis,
basic structural properties of networks, dynamic properties like the Jacobian,
elasticities, sensitivities, and eigenvalues, and JDesigner, a friendly GUI front
end to an SBW compatible simulator. Bifurcation analysis can be performed
conveniently using Xppaut [Erm02].

In this paper, the (continuous) Petri net models have been designed using
Snoopy [Sno], a tool to design and animate hierarchical graphs, especially Petri
nets. Snoopy supports qualitative as well as quantitative Petri nets, among them
continuous Petri nets. Snoopy’s export feature opens the door to various analysis
tools, comprising tools devoted to standard Petri net theory, e.g. INA [SR99],
as well as a variety of model checkers, e.g. the Model Checking Kit [SSE03].
There is also an export to SBML [HFS+03], allowing access to other tools for
more detailed evaluations of continuous Petri nets in addition to the standard
algorithms of ODE solvers provided by Snoopy. Moreover, the ODEs defined
by a continuous Petri net can be generated in LATEX style, see Appendix B
for examples.

All the continuous Petri nets introduced in this paper, and by this way all
the ODEs defined by them, are available at

www-dssz.informatik.tu-cottbus.de/examples/ode tutorial .
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8 Summary

In this paper we have shown how signal transduction cascades can be modelled
in a modular fashion, using Qualitative and Continuous Petri Nets, and Ordi-
nary Differential Equations. We have reviewed the major elementary building
blocks of a cellular signalling model, described some basic network topologies,
and discussed which critical design decisions have to be made during model
building. We have also presented a number of novel computational tools that
can help to explore alternative modular models in an easy and intuitive man-
ner. These tools, which are based on Petri net theory, offer convenient ways of
composing hierarchical ODE models, and permit a qualitative analysis of their
behaviour.

With these tools and the concepts introduced in this paper, readers should
be able to start their journey into the exciting area of formal computational sys-
tems biology. We hope to have shown that there are many interesting challenges
yet to be solved, and that a structured principled approach will be essential for
tackling them.

Our longer-term goal is that the concepts described in this paper will con-
tribute to a general approach that provides the foundations for a structured
formal engineering of large-scale models of biochemical networks.
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Appendix A: Continuous Petri Nets

Continuous Petri nets are a quantified version of the standard notion of qualita-
tive Petri nets, see e.g. [Mur89]. Like their ancestor, they are weighted, directed,
bipartite graphs with the following basic ingredients.

• There are two types of nodes, which are called (continuous) places P =
{p1, . . . , pm}, in the figures represented by circles, and (continuous) tran-
sitions T = {t1, . . . , tn}, in the figures represented by rectangles. Places
usually model passive system components like species, while transitions
stand for active system components like reactions.

• The directed arcs connect always nodes of different type.

• Arcs are weighted by non-negative real numbers, whereby the arc weight
may be read as the multiplicity of the arc. The arc weight 1 is the default
value and is usually not given explicitly.

• Each place gets a non-negative real number, called token value, which we
interpret as the concentration of a given species. The token values of all
places establish the marking of the net, which represents the current state
of the system.

To be precise we give the following definition.

Definition 8.1 (Continuous Petri net ) A continuous Petri net is a quin-
tuple CON = 〈P, T, f, v,m0〉, where

• P and T are finite, non empty, and disjoint sets. P is the set of continuous
places. T is the set of continuous transitions.

• f : ((P × T ) ∪ (T × P )) → R+
0 defines the set of directed arcs, weighted

by non-negative real numbers.

• v : T → H assigns to each transition a firing rate function, whereby
H :=

⋃

t∈T

{

ht|ht : R|•t| → R
}

is the set of all firing rate functions, and
v(t) = ht for all transitions t ∈ T .

• m0 : P → R+
0 gives the initial marking.

The function v(t) defines the marking-dependent transition rate for the
transition t. The domain of v(t) is restricted to the set of pre-places of t, i.e.
•t := {p ∈ P |f (p, t) 6= 0}, to enforce a close relation between network struc-
ture and transition rate functions. Therefore v(t) actually depends only on a
sub-marking. Technically, any mathematical function in compliance with this
restriction is allowed for v(t). However, often special kinetic patterns are ap-
plied, whereby Michaelis-Menten and mass-action kinetics seem to be the most
popular ones.

The behaviour of a continuous Petri net is defined by the following. A con-
tinuous transition t is enabled at m, iff ∀p ∈ •t : m(p) > 0. Due to the influence
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of time, a continuous transition is forced to fire as soon as possible. The instan-
taneous firing of a transition is carried out like a continuous flow, whereby the
strength of the flow is determined by the firing rate function.

Altogether, the semantics of a continuous Petri net is defined by a system
of ordinary differential equations (ODEs), where one equation describes the
continuous change over time on the token value of a given place by the con-
tinuous increase of its pre-transitions’ flow and the continuous decrease of its
post-transitions’ flow, i.e., each place p subject to changes gets its own equation:

m (p)

dt
=

∑

t∈ •p

f (t, p) v (t)−
∑

t∈ p •

f (p, t) v (t) .

The notation •p specifies the set of pre-transitions of p, i.e. all reactions
producing the species p: •p := {t ∈ T |f (t, p) 6= 0},
and p• specifies the set of post-transitions of p, i.e. all reactions consuming the
species p: p• := {t ∈ T |f (p, t) 6= 0}.

The notation m(p) refers to the current token value of place p, and corre-
sponds to the more popular notation [p]. To simplify the notation in the gen-
erated ODEs, places are usually interpreted as (non-negative) real variables,
which allows to write, e.g., v(A,B) instead of v(m(A),m(B)) or v([A], [B]).

Each equation corresponds basically to a line in the incidence matrix (stoi-
chiometric matrix), whereby now the matrix elements consist of the rate func-
tions multiplied by the arc weight, if any. Moreover, as soon as there are transi-
tions with more than one pre-place, we get typically a non-linear system, which
calls for a numerical treatment of the system on hand.

With other words, the continuous Petri net becomes the structured descrip-
tion of the corresponding ODEs. Due to the explicit structure we expect to get
descriptions which are less error prone compared to those ones created manu-
ally in a textual notation from the scratch. For more details see [GH04], and
for a family of related models see [DA05].
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Appendix B: Complete Example Nets

In the following we give six models of a three-stage signalling cascade, demon-
strating the composition principle using building blocks. First, the basic models
for in vivo and in vitro cascades are given, each extended afterwards by negative
feedback (according to the pattern given in Figure 12(a)) and drug inhibition.

The given Petri nets may be read as discrete as well as continuous ones. The
essential analysis results of the discrete Petri nets are given directly below the
net in the style of the two-column result vector as produced by the Integrated
Net Analyser INA [SR99]. By assigning rate functions, the Petri nets turn into
continuous ones, describing ODEs. Please note, here we read the place names
as real variables, which allows to skip the bracket notation, which is usually
used to indicate that the species’ concentration is meant and not the species
itself. All ODEs are given as produced by Snoopy [Sno], a tool to design and
animate hierarchical graphs, especially Petri nets.
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Figure 13: Three-stage in vivo cascade (MA1).
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ODEs generated by the continuous Petri net given in Figure 13

dP1
dt = kr3 ∗ Rp|P1 + kr2 ∗ Rp|P1− kr1 ∗ Rp ∗ P1

dP2
dt = kkr3 ∗ RRp|P2 + kkr2 ∗ RRp|P2− kkr1 ∗ RRp ∗ P2

dP3
dt = kkkr3 ∗ RRRp|P3 + kkkr2 ∗ RRRp|P3− kkkr1 ∗ RRRp ∗ P3

dR
dt = kr3 ∗ Rp|P1 + k2 ∗ R|S1− k1 ∗ R ∗ S1

dRR
dt = kkr3 ∗ RRp|P2 + kk2 ∗RR|Rp− kk1 ∗RR ∗ Rp

dRRR
dt = kkkr3 ∗ RRRp|P3 + kkk2 ∗RRR|RRp− kkk1 ∗ RRR ∗ RRp

dRRRp
dt = kkk3 ∗RRR|RRp + kkkr2 ∗ RRRp|P3− kkkr1 ∗ RRRp ∗ P3

dRRRp|P3
dt = kkkr1 ∗ RRRp ∗ P3− kkkr3 ∗RRRp|P3− kkkr2 ∗RRRp|P3

dRRR|RRp
dt = kkk1 ∗RRR ∗ RRp− kkk3 ∗ RRR|RRp− kkk2 ∗ RRR|RRp

dRRp
dt = kk3 ∗RR|Rp + kkk3 ∗RRR|RRp + kkr2 ∗ RRp|P2 +

kkk2 ∗RRR|RRp− kkr1 ∗ RRp ∗ P2− kkk1 ∗ RRR ∗RRp

dRRp|P2
dt = kkr1 ∗ RRp ∗ P2− kkr3 ∗ RRp|P2− kkr2 ∗ RRp|P2

dRR|Rp
dt = kk1 ∗RR ∗Rp− kk3 ∗ RR|Rp− kk2 ∗ RR|Rp

dRp
dt = k3 ∗ R|S1 + kk3 ∗ RR|Rp + kr2 ∗ Rp|P1 + kk2 ∗ RR|Rp −

kr1 ∗ Rp ∗ P1− kk1 ∗ RR ∗ Rp

dRp|P1
dt = kr1 ∗ Rp ∗ P1− kr3 ∗ Rp|P1− kr2 ∗ Rp|P1

dR|S1
dt = k1 ∗ R ∗ S1− k3 ∗ R|S1− k2 ∗R|S1

dS1
dt = k3 ∗ R|S1 + k2 ∗ R|S1− k1 ∗ R ∗ S1
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Figure 14: Three-stage in vitro cascade (MA1).
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ODEs generated by the continuous Petri net given in Figure 14

dR
dt = k2 ∗ R|S1− k1 ∗ R ∗ S1

dRR
dt = kk2 ∗ RR|Rp− kk1 ∗ RR ∗ Rp

dRRR
dt = kkk2 ∗ RRR|RRp− kkk1 ∗ RRR ∗RRp

dRRRp
dt = kkk3 ∗ RRR|RRp

dRRR|RRp
dt = kkk1 ∗ RRR ∗ RRp− kkk3 ∗RRR|RRp− kkk2 ∗ RRR|RRp

dRRp
dt = kk3 ∗ RR|Rp + kkk3 ∗ RRR|RRp + kkk2 ∗ RRR|RRp −

kkk1 ∗ RRR ∗ RRp

dRR|Rp
dt = kk1 ∗ RR ∗ Rp− kk3 ∗ RR|Rp− kk2 ∗ RR|Rp

dRp
dt = k3 ∗ R|S1 + kk3 ∗ RR|Rp + kk2 ∗ RR|Rp− kk1 ∗RR ∗ Rp

dR|S1
dt = k1 ∗ R ∗ S1− k3 ∗R|S1− k2 ∗ R|S1

dS1
dt = k3 ∗ R|S1 + k2 ∗ R|S1− k1 ∗R ∗ S1
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Figure 15: Three-stage in vivo cascade with negative feedback (MA1).
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ODEs generated by the continuous Petri net given in Figure 15

dP1
dt = kr3 ∗ Rp|P1 + kr2 ∗ Rp|P1− kr1 ∗ Rp ∗ P1

dP2
dt = kkr3 ∗ RRp|P2 + kkr2 ∗ RRp|P2− kkr1 ∗ RRp ∗ P2

dP3
dt = kkkr3 ∗ RRRp|P3 + kkkr2 ∗ RRRp|P3− kkkr1 ∗ RRRp ∗ P3

dR
dt = kr3 ∗ Rp|P1 + k2 ∗ R|S1− k1 ∗ R ∗ S1

dRR
dt = kkr3 ∗ RRp|P2 + kk2 ∗RR|Rp− kk1 ∗RR ∗ Rp

dRRR
dt = kkkr3 ∗ RRRp|P3 + kkk2 ∗RRR|RRp− kkk1 ∗ RRR ∗ RRp

dRRRp
dt = kkk3 ∗RRR|RRp + kkkr2 ∗ RRRp|P3 + i2 ∗ S1|RRRp −

kkkr1 ∗ RRRp ∗ P3− i1 ∗ S1 ∗ RRRp

dRRRp|P3
dt = kkkr1 ∗ RRRp ∗ P3− kkkr3 ∗RRRp|P3− kkkr2 ∗RRRp|P3

dRRR|RRp
dt = kkk1 ∗RRR ∗ RRp− kkk3 ∗ RRR|RRp− kkk2 ∗ RRR|RRp

dRRp
dt = kk3 ∗RR|Rp + kkk3 ∗RRR|RRp + kkr2 ∗ RRp|P2 +

kkk2 ∗RRR|RRp− kkr1 ∗ RRp ∗ P2− kkk1 ∗ RRR ∗RRp

dRRp|P2
dt = kkr1 ∗ RRp ∗ P2− kkr3 ∗ RRp|P2− kkr2 ∗ RRp|P2

dRR|Rp
dt = kk1 ∗RR ∗Rp− kk3 ∗ RR|Rp− kk2 ∗ RR|Rp

dRp
dt = k3 ∗ R|S1 + kk3 ∗ RR|Rp + kr2 ∗ Rp|P1 + kk2 ∗ RR|Rp −

kr1 ∗ Rp ∗ P1− kk1 ∗ RR ∗ Rp

dRp|P1
dt = kr1 ∗ Rp ∗ P1− kr3 ∗ Rp|P1− kr2 ∗ Rp|P1

dR|S1
dt = k1 ∗ R ∗ S1− k3 ∗ R|S1− k2 ∗R|S1

dS1
dt = k3 ∗ R|S1 + k2 ∗ R|S1 + i2 ∗ S1|RRRp− k1 ∗ R ∗ S1 −

i1 ∗ S1 ∗ RRRp

dS1|RRRp
dt = i1 ∗ S1 ∗ RRRp− i2 ∗ S1|RRRp
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Figure 16: Three-stage in vitro cascade with negative feedback (MA1).
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ODEs generated by the continuous Petri net given in Figure 16

dR
dt = k2 ∗ R|S1− k1 ∗ R ∗ S1

dRR
dt = kk2 ∗ RR|Rp− kk1 ∗ RR ∗ Rp

dRRR
dt = kkk2 ∗ RRR|RRp− kkk1 ∗ RRR ∗RRp

dRRRp
dt = kkk3 ∗ RRR|RRp + i2 ∗ S1|RRRp− i1 ∗ S1 ∗ RRRp

dRRR|RRp
dt = kkk1 ∗ RRR ∗ RRp− kkk3 ∗RRR|RRp− kkk2 ∗ RRR|RRp

dRRp
dt = kk3 ∗ RR|Rp + kkk3 ∗ RRR|RRp + kkk2 ∗ RRR|RRp −

kkk1 ∗ RRR ∗ RRp

dRR|Rp
dt = kk1 ∗ RR ∗ Rp− kk3 ∗ RR|Rp− kk2 ∗ RR|Rp

dRp
dt = k3 ∗ R|S1 + kk3 ∗ RR|Rp + kk2 ∗ RR|Rp− kk1 ∗RR ∗ Rp

dR|S1
dt = k1 ∗ R ∗ S1− k3 ∗R|S1− k2 ∗ R|S1

dS1
dt = k3 ∗ R|S1 + k2 ∗ R|S1 + i2 ∗ S1|RRRp− k1 ∗R ∗ S1 −

i1 ∗ S1 ∗RRRp

dS1|RRRp
dt = i1 ∗ S1 ∗RRRp− i2 ∗ S1|RRRp
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Figure 17: Three-stage in vivo cascade with negative feedback and drug inhibition
(MA1). The nodes given in gray indicate logical nodes (also called fusion nodes).
Logical nodes with identical names are from a structural point of view identical;
they are used to increase readability in larger net structures by connecting logically
remote net parts.
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ODEs generated by the continuous Petri net given in Figure 17

dP1

dt
= kr3 ∗ Rp|P1 + kr2 ∗ Rp|P1 − kr1 ∗ Rp ∗ P1

dP2

dt
= kkr3 ∗ RRp|P2 + kkr2 ∗ RRp|P2 + kkr3u ∗ RRp|P2|U +

kkr2u ∗ RRp|P2|U − kkr1 ∗ RRp ∗ P2 − kkr1u ∗ RRp|U ∗ P2

dP3

dt
= kkkr3 ∗ RRRp|P3 + kkkr2 ∗ RRRp|P3 − kkkr1 ∗ RRRp ∗ P3

dR

dt
= kr3 ∗ Rp|P1 + k2 ∗ R|S1 − k1 ∗ R ∗ S1

dRR

dt
= kkr3 ∗ RRp|P2 + kk2 ∗ RR|Rp + u1u ∗ RR|U− kk1 ∗ RR ∗ Rp −

b1u ∗ RR ∗ U

dRRR

dt
= kkkr3 ∗ RRRp|P3 + kkk2 ∗ RRR|RRp− kkk1 ∗ RRR ∗ RRp

dRRRp

dt
= kkk3 ∗ RRR|RRp + kkkr2 ∗ RRRp|P3 + i2 ∗ S1|RRRp −

kkkr1 ∗ RRRp ∗ P3 − i1 ∗ S1 ∗ RRRp

dRRRp|P3

dt
= kkkr1 ∗ RRRp ∗ P3 − kkkr3 ∗ RRRp|P3− kkkr2 ∗ RRRp|P3

dRRR|RRp

dt
= kkk1 ∗ RRR ∗ RRp− kkk3 ∗ RRR|RRp− kkk2 ∗ RRR|RRp

dRRp

dt
= kk3 ∗ RR|Rp + kkk3 ∗ RRR|RRp + kkr2 ∗ RRp|P2 + kkk2 ∗ RRR|RRp +

u2u ∗ RRp|U− kkr1 ∗ RRp ∗ P2 − kkk1 ∗ RRR ∗ RRp− b2u ∗ RRp ∗ U

dRRp|P2

dt
= kkr1 ∗ RRp ∗ P2 − kkr3 ∗ RRp|P2 − kkr2 ∗ RRp|P2

dRRp|P2|U
dt

= kkr1u ∗ RRp|U ∗ P2 − kkr3u ∗ RRp|P2|U − kkr2u ∗ RRp|P2|U

dRRp|U
dt

= kk3u ∗ RR|Rp|U + b2u ∗ RRp ∗ U + kkr2u ∗ RRp|P2|U − u2u ∗ RRp|U −
kkr1u ∗ RRp|U ∗ P2

dRR|Rp

dt
= kk1 ∗ RR ∗ Rp− kk3 ∗ RR|Rp− kk2 ∗ RR|Rp

dRR|Rp|U
dt

= kk1u ∗ RR|U ∗ Rp − kk3u ∗ RR|Rp|U− kk2u ∗ RR|Rp|U

dRR|U
dt

= b1u ∗ RR ∗ U + kkr3u ∗ RRp|P2|U + kk2u ∗ RR|Rp|U− u1u ∗ RR|U −
kk1u ∗ RR|U ∗ Rp

dRp

dt
= k3 ∗ R|S1 + kk3 ∗ RR|Rp + kr2 ∗ Rp|P1 + kk2 ∗ RR|Rp +

kk2u ∗ RR|Rp|U + kk3u ∗ RR|Rp|U− kr1 ∗ Rp ∗ P1 − kk1 ∗ RR ∗ Rp −
kk1u ∗ RR|U ∗ Rp

dRp|P1

dt
= kr1 ∗ Rp ∗ P1 − kr3 ∗ Rp|P1 − kr2 ∗ Rp|P1

dR|S1

dt
= k1 ∗ R ∗ S1 − k3 ∗ R|S1 − k2 ∗ R|S1

dS1

dt
= k3 ∗ R|S1 + k2 ∗ R|S1 + i2 ∗ S1|RRRp− k1 ∗ R ∗ S1 − i1 ∗ S1 ∗ RRRp

dS1|RRRp

dt
= i1 ∗ S1 ∗ RRRp− i2 ∗ S1|RRRp

dU

dt
= u1u ∗ RR|U + u2u ∗ RRp|U− b1u ∗ RR ∗ U − b2u ∗ RRp ∗ U



REFERENCES 42

R|S1

S1
1

R 1

RRp
RR 1

RR|Rp

RRRpRRR 1
RRR|RRp

S1|RRRp

RR|U

U 1 U1

RR|Rp|U
RRp|U

Rp

Rp

k3

kk3

kkk3

i1

i2

b1u

u1u u2u
b2u

kk3u

�������������� ��"!�#���$�%�&'%�$�(�$����'%�$ (�)�*�)�(�*�(�+�*�+�(�*,��- %�� (�$ .�(�$�.�%
/ / / / � � / / � � � � � � � � �
��0�!�%���$�%�����%���1'$�!�2�$�0�2  %� ��.�&"��%�)� �%�)���0�3���$�( 4 4�&"4�5�%
� / � � / � / / � � 6 � � � � �
7�7�7�7�7�7�7�7�7�7�787�7�7�7�7�7�7�7�7�7�7�787�7�7�7�7�7�7�7�7�7�7�7�787�7�7�7�7�7�79 + 7�:�;�<�= 3 :�=>; )�?@ )�3 :�<�:�=�A ) 7�:�;�<�= 3 :�=�; )�?3�B�CED 9 ?�) = )8F�?�G�H�D = 3�I�?�G,J�?�I�I�KL?

k1, k2

kk1, kk2

kkk1, kkk2

kk1u, kk2u

Figure 18: Three-stage in vitro cascade with negative feedback and drug inhibition
(MA1).
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ODEs generated by the continuous Petri net given in Figure 18

dR
dt = k2 ∗R|S1− k1 ∗ R ∗ S1

dRR
dt = kk2 ∗ RR|Rp + u1u ∗ RR|U− kk1 ∗ RR ∗Rp− b1u ∗RR ∗ U

dRRR
dt = kkk2 ∗ RRR|RRp− kkk1 ∗ RRR ∗RRp

dRRRp
dt = kkk3 ∗ RRR|RRp + i2 ∗ S1|RRRp− i1 ∗ S1 ∗ RRRp

dRRR|RRp
dt = kkk1 ∗ RRR ∗ RRp− kkk3 ∗RRR|RRp− kkk2 ∗RRR|RRp

dRRp
dt = kk3 ∗ RR|Rp + kkk3 ∗ RRR|RRp + kkk2 ∗ RRR|RRp +

u2u ∗RRp|U− kkk1 ∗RRR ∗ RRp− b2u ∗ RRp ∗ U

dRRp|U
dt = kk3u ∗ RR|Rp|U + b2u ∗ RRp ∗U− u2u ∗ RRp|U

dRR|Rp
dt = kk1 ∗ RR ∗ Rp− kk3 ∗ RR|Rp− kk2 ∗ RR|Rp

dRR|Rp|U
dt = kk1u ∗ RR|U ∗ Rp− kk3u ∗ RR|Rp|U− kk2u ∗ RR|Rp|U

dRR|U
dt = b1u ∗RR ∗ U + kk2u ∗ RR|Rp|U− u1u ∗RR|U −

kk1u ∗ RR|U ∗ Rp

dRp
dt = k3 ∗R|S1 + kk3 ∗ RR|Rp + kk2 ∗ RR|Rp + kk2u ∗ RR|Rp|U +

kk3u ∗ RR|Rp|U− kk1 ∗ RR ∗ Rp− kk1u ∗ RR|U ∗ Rp

dR|S1
dt = k1 ∗R ∗ S1− k3 ∗R|S1− k2 ∗ R|S1

dS1
dt = k3 ∗R|S1 + k2 ∗ R|S1 + i2 ∗ S1|RRRp− k1 ∗R ∗ S1 −

i1 ∗ S1 ∗RRRp

dS1|RRRp
dt = i1 ∗ S1 ∗RRRp− i2 ∗ S1|RRRp

dU
dt = u1u ∗RR|U + u2u ∗ RRp|U− b1u ∗ RR ∗ U− b2u ∗RRp ∗ U


