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Abstract

We consider a random graph process in which, at each time step, a new vertex is
added with m out-neighbours, chosen with probabilities proportional to their degree plus
a strictly positive constant. We show that the expectation of the clustering coefficient
of the graph process is asymptotically proportional to log n

n
. Bollobás and Riordan have

previously shown that when the constant is zero, the same expectation is asymptotically

proportional to (log n)2

n
.
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1 Introduction

Recently there has been a great deal of interest in the structure of real world networks, espe-
cially the internet. Many mathematical models have been proposed: most of these describe
graph processes in which new edges are added by some form of preferential attachment.
There is a vast literature discussing empirical properties of these networks but there is also
a growing body of more rigorous work. A wide-ranging account of empirical properties of
networks can be found in [2]; a good survey of rigorous results can be found in [3] or in the
recent book [7].

In [12] Watts and Strogatz defined ‘small-world’ networks to be those having small path
length and being highly clustered, and discovered that many real world networks are small-
world networks, e.g. the power grid of the western USA and the collaboration graph of film
actors.

There are conflicting definitions of the clustering coefficient appearing in the literature.
See [3] for a discussion of the relationships between them. We define the clustering coefficient,
C(G) of a graph G as follows:

C(G) =
3× number of triangles in G∑

v∈V (G)

(
d(v)
2

) ,

where d(v) is the degree of vertex v.
The reason for the three in the numerator is to ensure that the clustering coefficient of

a complete graph is one. This is the maximum possible value for a simple graph. However
our graphs will not be restricted to simple graphs and so the clustering coefficient can exceed
one. For instance if we take three vertices and join each pair by m edges then the clustering
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coefficient is m2/(2m − 1). Note that the clustering coefficient of a graph with at most m
edges joining any pair of vertices is at most m.

In this paper we establish rigorous results describing the asymptotic behaviour of the
clustering coefficient for one class of model. Our graph theoretic notation is standard. Since
our graphs are growing, we let dt(v) denote the total degree of vertex v at time t. Sometimes
we omit t when the context is clear.

The Barabási–Albert model (BA model) [1] is perhaps the most widely studied graph
process governed by preferential attachment. A new vertex is added to the graph at each time-
step and is joined to m existing vertices of the graph chosen with probabilities proportional to
their degrees. A key observation [1] is that in many large real-world networks, the proportion
of vertices with degree d obeys a power law.

In [4] Bollobás et al. gave a mathematically precise description of the BA model and
showed rigorously that for d ≤ n

1
15 , the proportion of vertices with degree d asymptotically

almost surely obeys a power law.
The most natural generalisation of the BA model is to take the probability of attachment

to v at time t + 1 to be proportional to dt(v) + a, where a is a constant representing the
inherent attractiveness of a vertex. Buckley and Osthus [5] generalised the results in [4]
to the case where the attractiveness is a positive integer. A much more general model was
introduced in [6] and further results extending [4] were obtained. Many more results on these
variations of the basic preferential model can be found in [3].

Bollobás and Riordan showed [3] that the expectation of the clustering coefficient of
the model from [4] is asymptotically proportional to (log n)2/n. Bollobás and Riordan also
considered in [3] a slight variant of the model from [4]. Their results imply that for this
model the expectation of the clustering coefficient is also asymptotically proportional to
(log n)2/n. We work with a model depending on two parameters β, m, which to the best of
our knowledge was first studied rigorously by Móri in [10]. In a sense, that we make precise
in the next section, Bollobás and Riordan’s model is almost the special case of Móri’s model
corresponding to β = 0.

Our main result is to show that for β > 0, asymptotically the expectation of the clustering
coefficient is proportional to log n/n. The main strategy of our proof follows [3] and we use
very similar notation. In Section 2 we give a definition of the model that we use and explain its
relationship with the model studied in [3]. Section 3 contains results that give the probability
of the appearance of a small subgraph. We obtain the expectation of the number of triangles
appearing and of

∑
v

(
d(v)
2

)
in Section 4. These two sections follow [3] quite closely. The

overall aim is to express the expectation of the clustering coefficient as the quotient of the
expectation of the number of triangles and the expectation of

∑
v

(
d(v)
2

)
. We justify doing

this in Section 6 and make use of a concentration result proved in Section 5 using martingale
methods. Bollobás and Riordan [3] used a similar strategy and mentioned that they also
used martingale methods.

2 The model of Móri

We now describe in detail Móri’s generalisation of the BA model [11]. Our definition involves
a finer probability space than was described in [11] but the underlying graph process (Gn

m,β)
is identical. The process depends on two parameters: m the outdegree of each vertex except
the first and β ∈ R such that β > 0. (In [11], Móri imposed the weaker condition that
β > −1).

We first define the process when m = 1. Let G1
1,β consist of a single vertex v1 with no

edges. The graph Gn+1
1,β is formed from Gn

1,β by adding a new vertex vn+1 together with a
single directed edge e. The tail of e is vn+1 and the head is determined by a random variable
fn+1. We diverge slightly from [11] in our description of fn+1.
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Label the edges of Gn
1,β with e2, . . . , en so that ei is the unique edge whose tail is vi. Now

let
Ωn+1 = {(1, v), . . . , (n, v), (2, h), . . . , (n, h), (2, t), . . . , (n, t)}.

We define fn+1 to take values in Ωn+1 so that for 1 ≤ i ≤ n,

Pr(fn+1 = (i, v)) =
β

(2 + β)n− 2

and for 2 ≤ i ≤ n,

Pr(fn+1 = (i, h)) = Pr(fn+1 = (i, t)) =
1

(2 + β)n− 2
.

The head of the new edge added to the graph at time n + 1 is called the target vertex of
vn+1 and is determined as follows. If fn+1 = (i, v) then the target vertex is vi and we say
that the choice of target vertex has been made uniformly. If fn+1 = (i, h) then the target
vertex is the head of ei and if fn+1 = (i, t) then the target vertex is the tail of ei, that is
vi. When one of the last two cases occurs, we say that the choice of target vertex has been
made preferentially by copying the head or tail, as appropriate, of ei. Suppose we think of
an edge as being composed of two half-edges so that each half-edge retains one endpoint of
the original edge. Then the target vertex is chosen, either by choosing one of the n vertices
of Gn

1,β uniformly at random or by choosing one of the 2n − 2 half-edges of Gn
1,β uniformly

at random and selecting the vertex to which the half-edge is attached.
The definition implies that for 1 ≤ i ≤ n, the probability that the target vertex of vn+1

is vi is equal to
dn(vi) + β

(2 + β)n− 2
. (2.1)

We might have defined fn+1 to be a random variable denoting the index of the target vertex
of vn+1 and taking probabilities as given in (2.1). Indeed for much of the sequel we will abuse
notation and assume that we did define fn+1 in this way. However it is useful to have the
finer definition when we prove the concentration results in Section 5.

We extend this model to a random graph process (Gn
m,β) for m > 1 as follows: run the

graph process (Gt
1,β) and form Gn

m,β by taking Gnm
1,β and merging the first m vertices to form

v1, the next m vertices to form v2 and so on.
Notice that our definition will not immediately extend to the case β = 0 because when

n = 1, the denominator of the expression in (2.1) is zero and so the process cannot start. One
way to get around this problem is to define G2

1,0 to be the graph with two vertices joined by
a single edge and then let the process carry on from there. A second possibility used in [3],
is to attach an artificial half-edge to v1 at the beginning. This half-edge remains present all
through the process so that the sum of the vertex degrees at time n is 2n − 1 rather than
2n− 2 as in the model we use. However it turns out that the choice of which alternative to
use makes no difference to the asymptotic form of the expectation of the clustering coefficient
and so the results from [3] are directly comparable with ours.

In the following we only consider properties of the underlying undirected graph. However,
it is helpful to have the extra notation and terminology of directed graphs to simplify the
reading of some of the proofs.

3 Subgraphs of Gn
1,β

Let S be a labelled directed forest with no isolated vertices, in which each vertex has either
one or no out-going edge and each directed edge (vi, vj) has i > j. Moreover if v1 belongs
to S then this vertex has no outgoing edge. The restrictions on S are precisely those that
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ensure that S can occur as a subgraph of the evolving Móri tree with m = 1. We call such
an S a possible forest.

In this section we generalise the calculation in [3] to calculate the probability that such
a graph S is a subgraph of Gn

1,β for β > 0. We will follow the method and notation of [3]
closely.

We emphasise that we are not computing the probability that Gn
1,β contains a subgraph

isomorphic to S; the labels of the vertices of S must correspond to the vertex labels of Gn
1,β

for S to be considered to be a subgraph of Gn
1,β .

Denote the vertices of S by vs1 , . . . , vsk
, where sj < sj+1 for 1 ≤ j ≤ k− 1. Furthermore,

let
V − = {vi ∈ V (S) : there is a j > i such that (vj , vi) ∈ E(S)}

and
V + = {vi ∈ V (S) : there is a j < i such that (vi, vj) ∈ E(S)}.

Let din
S (v) (dout

S (v)) denote the in-degree (out-degree) of v in S. In particular, dout
S (v) is either

zero or one. For t ≥ i, let Rt(i) = |{j > t : (vj , vi) ∈ E(S)}|. Observe that Ri(i) = din
S (vi).

Moreover, let cS(i) =
∑i−1

k=1 Ri−1(k). Hence cS(i) is the number of edges in E(S) from
{vi, . . . , vn} to {v1, . . . , vi−1}.

Lemma 3.1 Let β > 0 and S be a possible forest. Then for t ≥ sk the probability that S is
subgraph of Gt

1,β is given by

Pr(S ⊂ Gt
1,β) =

β

β + din
S (v1)

∏
1≤i≤t:

vi∈V −(S)

Γ(1 + β + din
S (vi))

Γ(1 + β)

·
∏

1<i≤t:
vi∈V +

1
(2 + β)(i− 1)− 2

∏
1<i≤t:
vi 6∈V +

(
1 +

cS(i)
(2 + β)(i− 1)− 2

)
.

Proof: The proof is a generalisation of the proof for the analogous result in the case
β = 0 in [3] but we include it for completeness.

Let St be the subgraph of S induced by the vertices {v1, . . . , vt} ∩ V (S). We need to
define the following random variables

Xt =
∏

(vl,vj)∈E(St)

I(vl,vj)∈E(Gt
1,β)

∏
i≤t

Γ(dt(vi) + β + Rt(i))
Γ(dt(vi) + β)

and

Yt =
∏

(vl,vj)∈E(St+1)

I(vl,vj)∈E(Gt+1
1,β )

∏
i≤t

Γ(dt+1(vi) + β + Rt+1(i))
Γ(dt+1(vi) + β)

,

where IA is the indicator of the event A.
Note that dt(vj) for 1 ≤ j ≤ t and Xt are functions of the random variables f2, . . . , ft

while Yt is a function of the random variables f2, . . . , ft+1. However, for all j, Rt(j) is
deterministic.

Observe that

Xt+1 =
Γ(dt+1(vt+1) + β + Rt+1(t + 1))

Γ(dt+1(vt+1) + β)
Yt =

Γ(1 + β + Rt+1(t + 1))
Γ(1 + β)

Yt.

First, assume that there is no r ≤ t such that (vt+1, vr) ∈ E(S) and so the new edge
added at time t + 1 cannot belong to S. This implies that for i ≤ t, Rt(i) = Rt+1(i) and
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∏
(vl,vj)∈E(St)

I(vl,vj)∈E(Gt
1,β) =

∏
(vl,vj)∈E(St+1)

I(vl,vj)∈E(Gt+1
1,β ). Furthermore for all i ≤ t

with i 6= ft+1, we have dt+1(vi) = dt(vi). We also have dt+1(vft+1) = dt(vft+1) + 1.
For the moment fix f2, . . . , ft so that Xt is completely determined. Now,

Yt =
(

1 +
Rt(ft+1)

dt(vft+1) + β

)
Xt.

Thus

E [Yt −Xt|f2, . . . , ft] =
t∑

r=1

Rt(r)
dt(vr) + β

Pr(ft+1 = r)Xt

=
∑t

r=1 Rt(r)
(2 + β)t− 2

Xt.

By taking expectation with respect to f2, . . . , ft we obtain

E [Yt] =

(
1 +

∑t
r=1 Rt(r)

(2 + β)t− 2

)
E [Xt] =

(
1 +

cS(t + 1)
(2 + β)t− 2

)
E [Xt]

and

E [Xt+1] =
Γ(1 + β + Rt+1(t + 1))

Γ(1 + β)

(
1 +

cS(t + 1)
(2 + β)t− 2

)
E [Xt] . (3.2)

Now suppose (vt+1, vr) is an edge of S for some r < t+1. If ft+1 6= r then Xt+1 = 0 so we
will suppose that ft+1 = r. Then for all i ≤ t with i 6= r, dt+1(vi) = dt(vi), and dt+1(vr) =
dt(vr) + 1. Furthermore for all i ≤ t, i 6= r Rt+1(i) = Rt(i), but Rt+1(r) = Rt(r)− 1.

Hence providing ft+1 = vr, we have

Yt =
1

dt(vr) + β
Xt.

So

E [Yt|f2, . . . , ft] =
dt(vr) + β

(2 + β)t− 2
Xt

dt(vr) + β
=

Xt

(2 + β)t− 2
.

Thus

E [Xt+1|f2, . . . , ft] =
1

(2 + β)t− 2
Γ(1 + β + Rt+1(t + 1))

Γ(1 + β)
Xt.

So by taking expectation with respect to f2, . . . , ft,

E [Xt+1] =
1

(2 + β)t− 2
Γ(1 + β + Rt+1(t + 1))

Γ(1 + β)
E[Xt]. (3.3)

Note that X1 = Γ(β+R1(1))
Γ(β) and that for t ≥ sk, we have Pr(S ⊂ Gt

1,β) = E [Xt]. Us-
ing (3.2) and (3.3) and noting that Ri(i) = 0 for vi 6∈ V −, we have for t ≥ sk

Pr(S ⊂ Gt
1,β) =

Γ(β + R1(1))
Γ(β)

∏
1<i≤t:
vi∈V −

Γ(1 + β + Ri(i))
Γ(1 + β)

·
∏

1<i≤t:
vi∈V +

1
(2 + β)(i− 1)− 2

∏
1<i≤t:
vi 6∈V +

(
1 +

cS(i)
(2 + β)(i− 1)− 2

)
.

This is easily seen to be equivalent to the expression in the statement of the lemma. 2

We now provide a more convenient form for the probability given in Lemma 3.1. This
calculation is almost identical to the analogous one in [3] so we omit the proof.
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Lemma 3.4 Let β > 0 and S be a possible forest. Then for t ≥ sk the probability that S is
a subgraph of Gt

1,β is given by

Pr(S ⊂ Gt
1,β)

=
β

din
S (v1) + β

∏
i:vi∈V −

Γ(1 + din
S (vi) + β)

Γ(1 + β)

·
∏

(vi,vj)∈E(S):i>j

1
(2 + β)(i1+βj)1/(2+β)

exp

O

 k∑
j=2

cS(sj)2/(j − 1)

 .

4 Calculation of Expectations

Recall that the clustering coefficient C(G) of a graph G is given by

C(G) =
3× number of triangles in G∑

v∈V (G)

(
d(v)
2

) .

In this section we calculate the expectations of the numerator and denominator of this ex-
pression.

4.1 Expected Number of Triangles

We adapt the methods used in [3] to the case β > 0. For fixed a < b < c, we first calculate the
expected number of triangles in Gn

m,β on vertices va, vb, vc. Let Gmn
1,β be the underlying tree

used to form Gn
m,β . Label the vertices of the tree v′1, . . . , v

′
mn. A triangle on va, vb, vc arises

if there are vertices v′a1
, v′a2

with (a − 1)m + 1 ≤ a1, a2 ≤ am, v′b1 , v
′
b2

with (b − 1)m + 1 ≤
b1, b2 ≤ bm and v′c1

, v′c2
with (c−1)m+1 ≤ c1, c2 ≤ cm such that v′b1 sends its outgoing edge

to v′a1
, v′c1

sends its outgoing edge to v′a2
and v′c2

sends its outgoing edge to v′b2 . For this to
be possible, we need c1 6= c2. Let S be the graph with vertices v′a1

, v′a2
, v′b1 , v

′
b2

, v′c1
, v′c2

and
edges (v′b1 , v

′
a1

), (v′c1
, v′a2

) and (v′c2
, v′b2). Write a1 = am − l1, a2 = am − l2, b1 = bm − l3,

b2 = bm − l4, c1 = cm − l5 and c2 = cm − l6. The cases where a1 = a2 and a1 6= a2 are
slightly different. We concentrate on the former to begin with.

We have din
S (va1) = 2, din

S (vb2) = 1 and otherwise din
S (v) = 0. Suppose that a1 > 1. Then

applying Lemma 3.4 we see that

Pr(S ⊆ Gmn
1,β )

=
Γ(3 + β)Γ(2 + β)

(Γ(1 + β))2
1

(2 + β)3

(
1

a1a2b2(b1c1c2)1+β

)1/(2+β)

exp(O(1/a)).
(4.1)

The same expression holds when a1 = 1 because the extra multiplicative term of β/(2 + β)
may be absorbed into the error term. Note that for −1 ≤ x ≤ 1, we have ex = 1 + O(x).
Furthermore 1/ai = 1/(am)(1 + O(1/a)), 1/bi = 1/(bm)(1 + O(1/a)) and 1/ci = 1/(cm)(1 +
O(1/a)). So we may rewrite (4.1) as follows:

Pr(S ⊆ Gmn
1,β ) =

(1 + β)2

(2 + β)2
1

m3

(
1

a2b2+βc2+2β

)1/(2+β)

(1 + O(1/a)).

In this case where a1 = a2, there are m4(m − 1) ways to choose a1, a2, b1, b2, c1, c2 so that
there is a corresponding triangle on va, vb, vc in Gn

m,β .
Now we suppose that a1 6= a2. We have din

S (va1) = din
S (va2) = din

S (vb2) = 1 and otherwise
din

S (v) = 0. Applying Lemma 3.4 and carrying out similar calculations to those above we
obtain

Pr(S ⊆ Gmn
1,β ) =

(1 + β)3

(2 + β)3
1

m3

(
1

a2b2+βc2+2β

)1/(2+β)

(1 + O(1/a)).
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In this case there are m4(m− 1)2 ways to choose a1, a2, b1, b2, c1, c2.
Let Na,b,c denote the number of triangles on va, vb, vc in Gn

m,β . From the calculations
above, we see that

E [Na,b,c] =
(

m(m− 1)
(1 + β)2

(2 + β)2
+ m(m− 1)2

(1 + β)3

(2 + β)3

)(
1

a2b2+βc2+2β

)1/(2+β)

· (1 + O(1/a)).

(4.2)

Now let N be the number of triangles in Gn
m,β . Then to calculate E [N ] we merely sum

(4.2) over all a, b, c with a < b < c. If we estimate this sum by integrating, we obtain the
following.

Proposition 4.3 For β > 0, the expected number of triangles in Gn
m,β is(

m(m− 1)
(1 + β)2

β2
+ m(m− 1)2

(1 + β)3

β2(2 + β)

)
log n + O(1).

This result is very different from that obtained in [3] where it is shown that when β = 0 the
expected number of triangles is Θ((log n)3).

4.2 Expectation of
∑

v∈V(G)

(
d(v)
2

)
We begin by noting that if we regard each edge in the graph as consisting of two half-edges,
with each half-edge retaining one endpoint of an edge then

∑
v∈V (Gn

m,β)

(
dn(v)

2

)
is the number

of pairs of half-edges with the same endpoint. We say such a pair of half-edges is adjacent.
Suppose that e1 and e2 are half-edges with endpoint v. If e1 and e2 form respectively half
of edges vu and vw with u, v, w pairwise distinct then we say that e1 and e2 form a non-
degenerate pair of adjacent half-edges. Otherwise we say that they are degenerate.

Calculating the expected number of pairs of adjacent half-edges is slightly more compli-
cated than calculating the expected number of triangles because there is less symmetry. We
begin by counting the number of non-degenerate pairs of adjacent half-edges. Let a < b < c.
We first calculate the expected number of pairs (vb, va), (vc, va) of adjacent half-edges in
Gn

m,β for β > 0. Just as in the previous section, there are two cases to consider, and similar
calculations, using Lemma 3.4, to those above show that the number of such pairs of adjacent
half-edges is(

m
1 + β

2 + β
+ m(m− 1)

(1 + β)2

(2 + β)2

)(
1

a2b1+βc1+β

)1/(2+β)

(1 + O(1/a)).

By integrating, we see that the total number of pairs of adjacent half-edges in Gn
m,β for which

the common vertex has the smallest index is(
m

2 + β

β
+ m(m− 1)

1 + β

β

)
n + O(n2/(2+β)).

Now the expected number of pairs (vb, va), (vc, vb) of adjacent half-edges is

m2 (1 + β)2

(2 + β)2

(
1

ab2+βc1+β

)1/(2+β)

(1 + O(1/a)).

Again we integrate to derive that the total number of pairs of adjacent half-edges in Gn
m,β for

which the common vertex has the middle index is m2n + O(n2/(2+β)). This is not surprising
because it can be shown that very few vertices either have loops or do not have m distinct
out-neighbours. Each loopless vertex with m distinct loopless out-neighbours, that each have
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m distinct out-neighbours, is the vertex with greatest index in m2 pairs of adjacent half-edges
of this form.

Finally the expected number of pairs (vc, va), (vc, vb) of adjacent half-edges is

m(m− 1)
(1 + β)2

(2 + β)2

(
1

abc2+2β

)1/(2+β)

(1 + O(1/a)).

So the total number of pairs of adjacent half-edges in Gn
m,β for which the common vertex has

the largest index is m(m − 1)/2n + O(n1/(2+β)). Again this is not surprising because each
loopless vertex with m distinct out-neighbours is the vertex of greatest index in

(
m
2

)
pairs of

adjacent half-edges of this form.
By carrying out similar calculations to those above, it can be shown that the number of

degenerate pairs of adjacent half-edges is O(n1/(2+β)).
Summing over all the possibilities we obtain the following result.

Proposition 4.4 For β > 0, the expectation of
∑

v∈V (G)

(
d(v)
2

)
in Gn

m,β is(
2 + 5β

2β
m2 +

2− β

2β
m

)
n + O(n2/(2+β)).

Again the result is different from that obtained in [3] where it was shown that for the case
β = 0 the expected number of pairs of adjacent edges is Θ(n log n).

5 Concentration of
∑

v∈V(G)

(d(v)
2

)
In this section we show that the number of pairs of adjacent half-edges in Gn

m,β is concen-
trated about its mean. This justifies obtaining the clustering coefficient by taking three times
the quotient of the expected number of triangles and the expected number of pairs of adja-
cent half-edges. The main strategy is to apply a variant of the Azuma-Hoeffding inequality
from [9], by making use of Móri’s results [11] on the evolution of the maximum degree of
Gn

m,β . (It is mentioned in [3] that martingale methods were used.) A key notion in the proof
is to consider the mechanism by which edges incident with a fixed vertex are added.

Before we continue, we explain briefly why we follow this approach rather than the more
elementary second moment method. It is possible to apply the second moment method to
obtain some form of concentration. Certainly Lemma 3.1 may be applied to show the leading
order terms cancel in the usual way. However the concentration result that may be obtained is
not tight enough to obtain our final result without a considerable sharpening of the analysis in
Section 6. It is far from clear whether this is possible. Furthermore the number of cases that
need to be considered makes calculating the variance a gruesome proposition and therefore
unlikely to be much shorter to describe than our approach.

Fix β and m. Let (Ht) be the graph process defined as follows. Run (Gt
1,β) and take

Hn to be the graph formed from Gn
1,β by merging groups of m consecutive vertices together

until there are at most m left and finally merging the remaining unmerged vertices together.
Note that Hn has dn/me vertices, which we denote by v1, . . . , vdn/me in the obvious way, and
n − 1 edges. Furthermore, if m|n and the graphs Hn and G

n/m
m,β are formed from the same

instance of the process (Gt
1,β), then Hn and G

n/m
m,β are the same graph.

Let vk be a vertex of Hs such that km ≤ s. For t ≥ s, we define a partition Πk,s(t) of the
half-edges incident with vk. The partition always has ds(vk) + 1 blocks. When t = s, each
block of the partition except for one contains one of the ds(vk) half-edges incident with vk;
with a slight abuse of nomenclature the other block, which we call the base block, is initially
empty. It follows that if vk has a loop at time s then the two half-edges forming the loop
are in separate blocks of Πk,s(s). As t increases and more edges are added to H, any newly
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added half-edge incident with vk is added to the partition. If at time t > s the target vertex
of the newly added edge is not vk then Πk,s(t) = Πk,s(t− 1). Suppose that at time t > s the
target vertex of the newly added edge f is vk: if vk is chosen preferentially by copying the
half-edge e ∈ A, where A is a block of Πk,s(t− 1), then we form Πk,s(t) from Πk,s(t− 1) by
adding the half-edge of f incident with vk to A; if vk is chosen uniformly then the half-edge
of f incident with vk is added to the base block.

Suppose that vl is a vertex of Hs distinct from vk such that lm ≤ s. Suppose further that
we choose two distinct blocks from Πk,s(t) and Πl,s(t), such that neither is a base block. The
joint distribution of the sizes of the two blocks is the same for any choice of blocks, whether
they are both chosen from Πk,s(t), Πl,s(t) or one from each. Furthermore if we choose either
base block from Πk,s(t) or Πl,s(t) and one other block that is not a base block, then again
the joint distribution of the sizes of the blocks does not depend on our choice.

Lemma 5.1 Let vj and vk be distinct vertices of Hs such that max{jm, km} ≤ s. Let A
(B) be respectively a block of Πj,s(t) (Πk,s(t)) such that neither is a base block. Then

E [|A||B|] ≤ E [|A|]E [|B|] ≤ (t/s)2/(2+β)(1 + O(1/s)).

Proof:
Let e1, e2 be half-edges so that at time s, e1 is incident with vk and e2 is incident with

vl. Then let at denote the size, at time t, of the block of Πk,s(t) containing e1 and let bt be
defined similarly with respect to Πl,s(t) and e2. We first establish the second inequality. We
have E [as] = 1 and for t ≥ s,

E [at+1|at] = at

(
1 +

1
(2 + β)t− 2

)
. (5.2)

Hence

E [at+1] =
t− 1/(2 + β)
t− 2/(2 + β)

E [at] .

Solving this recurrence, we obtain

E [at] =
Γ
(
t− 1

2+β

)
Γ
(
s− 2

2+β

)
Γ
(
t− 2

2+β

)
Γ
(
s− 1

2+β

) .

A standard result on the ratio of gamma functions [8] states that if a, b are fixed members
of R then for all x > max{|a|, |b|},

Γ(x + b)
Γ(x + a)

= xb−a(1 + O(1/x)).

Using this result, we obtain

E [at] ≤ (t/s)1/(2+β)(1 + O(1/s)).

Since |A| and |B| are identically distributed, the second inequality in the lemma follows. We
prove the first inequality by using induction on t. Observe that (at+1, bt+1) can take the
values (at + 1, bt), (at, bt + 1) and (at, bt) with probabilities respectively at/((2 + β)t − 2),
bt/((2 + β)t− 2) and 1− (at + bt)/((2 + β)t− 2). Therefore

E [at+1bt+1|atbt] = atbt +
2atbt

(2 + β)t− 2

and from (5.2) we get

E [at+1]E [bt+1] = E [at]E [bt]
(

1 +
1

(2 + β)t− 2

)2

.
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So

E [at+1bt+1]−E [at+1]E [bt+1] ≤
(

1 +
2

(2 + β)t− 2

)
(E [atbt]−E [at]E [bt])

and hence the result follows by induction. 2

When the maximum degree of Ht becomes unusually large and the target vertex is chosen
to be a vertex of maximum degree, the number of pairs of adjacent edges increases by an
unusually large amount. The next result enables us to show that the probability of this
happening is extremely small. Let ∆(G) denote the maximum degree of G. The following is
a very slight reformulation of what Móri proves in [11, Theorem 3.1].

Theorem 5.3 For any positive integer k, there exists M̃k ∈ R, such that for all n,

E

[(∆(Gn
1,β) + β

n1/(2+β)

)k
]
≤ M̃k.

The following corollary is straightforward.

Corollary 5.4 For any positive integers k,m, there exists Mk,m ∈ R such that for all positive
integers i1, . . . , ik,

E
[

∆(Hmi1)
(mi1)1/(2+β)

· · · ∆(Hmik
)

(mik)1/(2+β)

]
≤ Mk,m.

Proof: Since ∆(Hmi1), . . . ,∆(Hmik
) are all positive we have

∆(Hmi1)
(mi1)1/(2+β)

· · · ∆(Hmik
)

(mik)1/(2+β)
≤

k∑
j=1

(
∆(Hmij

)
(mij)1/(2+β)

)k

and so

E
[

∆(Hmi1)
(mi1)1/(2+β)

· · · ∆(Hmik
)

(mik)1/(2+β)

]
≤

k∑
j=1

E

[(
∆(Hmij )

(mij)1/(2+β)

)k
]

.

Recall that Hmi is formed by merging together blocks of m consecutive vertices in an instance
of Gmi

1,β . So we have E
[
(∆(Hmi))k

]
≤ E

[
(m∆(Gmi

1,β))k
]
. Hence

k∑
j=1

E

[(
∆(Hmij

)
(mij)1/(2+β)

)k
]
≤ mk

k∑
j=1

E

( ∆(Gmij

1,β )

(mij)1/(2+β)

)k
 ≤ kmkM̃k.

The result follows by taking Mk,m = kmkM̃k. 2

Before we can state the large deviation result that we use, we need some more definitions.
Recall that fi is a random variable which determines the index of the target vertex of vi and
that the values taken by f2, f3, . . . , ft together determine Ht. Furthermore the set of values
that fi can take is denoted by Ωi and f2, . . . , ft are independent. Let Ω =

∏t
i=2 Ωi.

Let X = (f2, . . . , ft). We let Ht(X) be the instance of Ht determined by the random
variables f2, . . . , ft. We will also use this notation both for other random variables associated
with Ht and when some or all of the fi’s are set to a particular value. The meaning should
be clear from the context but we will generally use ωi for a member of Ωi and fi for a random
variable taking values in Ωi.

Let D(X) =
∑

v∈V (Ht(X))

(
dt(v)

2

)
and let F (X) = D(X)t−2/(2+β). Now let g :

∏s
i=2 Ωi →

R such that
(ω2, . . . , ωs) 7→ E [F (ω2, . . . , ωs, fs+1, . . . , ft)]

and let ran :
∏s−1

i=2 Ωi → R such that

(ω2, . . . , ωs−1) 7→ sup {|g(ω2, . . . , ωs−1, x)− g(ω2, . . . , ωs−1, y)| : x, y ∈ Ωs}.
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So ran(ω2, . . . , ωs−1) measures the maximum amount that the expected value of F (X) changes
when the value of fs is changed.

For ω ∈ Ω, let

R2(ω) =
t∑

k=2

ran(ω2, . . . , ωk−1)2.

Our aim is to bound R2(ω) as ω runs over all members of Ω with the possible exception of
those belonging to some ‘bad’ subset B which we hope to have small probability. We specify
B below but for the moment let B be any subset of Ω. Let

r2 = sup{R2(ω) : ω ∈ Ω \ B}.

Then Theorem 3.7 in [9] yields the following inequality. For all x > 0,

Pr(|F (X)−E [F (X)] | ≥ x) ≤ 2(e−2x2/r2
+ Pr(X ∈ B)).

Fix δ > 0. We let

Bδ =

{
X ∈ Ω :

n∑
i=1

(
∆(Hmi(X))
(mi)2/(2+β)

)2

≥ n
β

2+β +δ

}
.

Then we have the following.

Lemma 5.5 For any δ > 0 and γ > 0, there exists L such that Pr(Bδ) ≤ L 1
nγ , where L is a

constant depending on δ, γ, β, m but not on n.

Proof: For any positive integer k, Markov’s inequality gives

Pr(Bδ) ≤
E

[(∑n
i=1

(
∆(Hmi(X))
(mi)2/(2+β)

)2
)k
]

n
βk
2+β +kδ

.

The numerator of this fraction is equal to

E

[
n∑

i1=1

· · ·
n∑

ik=1

(
∆(Hmi1(x))
(mi1)1/(2+β)

)2

· · ·
(

∆(Hmik
(x))

(mik)1/(2+β)

)2 1
(mki1 · · · ik)2/(2+β)

]
.

Using Corollary 5.4 this is at most

M2k,m

n∑
i1=1

· · ·
n∑

ik=1

(
1

(mki1 · · · ik)2/(2+β)

)
= M2k,m

(
n∑

i=1

1

(mi)
2

2+β

)k

≤ M2k,m

(
2 + β

β

n
β

2+β

m
2

2+β

)k

.

Hence

Pr(Bδ) ≤
M2k,m

(
2+β

β
1

m
2

2+β

)k

nkδ

and so letting k = dγ/δe gives the result. 2

We can now state the main result of this section concerning the concentration of the
number of pairs of adjacent half-edges around its expectation.
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Theorem 5.6 Let β > 0. For any ε > 0, the number D of pairs of adjacent half-edges in
Gn

m,β is concentrated within O(n(4+β)/(4+2β)+ε) about its expected value. More precisely, for
any ε > 0 and γ > 0 there exists n∗ such that for all n ≥ n∗

Pr
(
|D −E [D] | ≥ n

4+β
4+2β +ε

)
≤ 1

nγ
.

Proof: Let t = nm, and fix s ≤ t. Let s′ = mds/me, so we have s′ ≤ t. Now let

ωx = (ω2, . . . , ωs−1, x, ωs+1, . . . , ωt) and ωy = (ω2, . . . , ωs−1, y, ωs+1, . . . , ωt),

where ωi ∈ Ωi and x, y ∈ Ωs. For z ∈ {x, y}, let dz
t (v) denote the total degree of v at time

t in Ht(ωz) and let e denote the edge added at time s. Suppose that in Ht(ωx) the target
vertex of e is vk1 and in Ht(ωy) the target vertex of e is vk2 . Note that at any time, for every
vertex v other than vk1 or vk2 , the degree of v is the same in Ht(ωx) and Ht(ωy). Therefore
F (ωx)− F (ωy) depends only on the degrees of vk1 and vk2 and is given by

F (ωx)− F (ωy)

= t−2/(2+β)

((
dx

t (vk1)
2

)
+
(

dx
t (vk2)

2

)
−
(

dy
t (vk1)

2

)
−
(

dy
t (vk2)

2

))
.

(5.7)

From now on we will assume that k1 6= k2, because otherwise F (ωx)− F (ωy) = 0. Consider
the changes that occur to Hs′ if we replace ωy by ωx. First the head of e is moved from vk2

to vk1 . Second it is possible that each of the at most m− 1 edges that are added in the time
interval [s+1, s′] also have an endpoint moved from vk2 to vk1 : this will happen if the target
vertex of an edge added in the interval [s + 1, s′] is chosen by preferentially copying the head
of an edge which has been moved from vk2 to vk1 , in particular if the target vertex is chosen
by preferentially copying the head of e. Consequently we have

dy
s′(vk1) + 1 ≤ dx

s′(vk1) ≤ dy
s′(vk1) + m

and furthermore
dx

s′(vk1) + dx
s′(vk2) = dy

s′(vk1) + dy
s′(vk2).

Let d = dx
s′(vk1) − dy

s′(vk1), d1 = dy
s′(vk1) and d2 = dx

s′(vk2). Note that both d1 and d2 and
consequently also |d1 − d2| are at most ∆(Hs−1(ω1, . . . , ωs−1)) + m.

Now let A0, A1, . . . , Ad1 , (B0, B1, . . . , Bd2) denote the blocks of the partition Πk1,s′(t) in
Ht(ωy) (Πk2,s′(t) in Ht(ωx)) with A0 (B0) denoting the base block. The partition Πk1,s′(t) in
Ht(ωx) contains the blocks A0, . . . , Ad1 but also d further blocks which we label C1, . . . , Cd.
Then the partition Πk2,s′(t) in Ht(ωy) contains the blocks B0, . . . , Bd2 , C1, . . . , Cd. So us-
ing (5.7), we have

F (ωx)− F (ωy) = t−2/(2+β)

 d1∑
i=0

d∑
j=1

|Ai||Cj | −
d2∑

i=0

d∑
j=1

|Bi||Cj |

 . (5.8)

Now let

ωx = (ω2, . . . , ωs−1, x, ωs+1, . . . , ωs′ , fs′+1, . . . , ft)

and

ωy = (ω2, . . . , ωs−1, y, ωs+1, . . . , ωs′ , fs′+1, . . . , ft).

So both Ht(ωx) and Ht(ωy) evolve deterministically until time s′ but randomly thereafter.
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Recall that d ≤ m and that |d1 − d2| is at most ∆(Hs−1(ω2, . . . , ωs−1)) + m. Hence
from (5.8), Lemma 5.1 and the remarks immediately preceding the lemma, we see that

|E [F (ωx)− F (ωy)] | ≤ (∆(Hs−1(ω2, . . . , ωs−1)) + m)m(1/s′)2/(2+β)(1 + O(1/s′)).

Notice that this expression does not depend on x or y and holds for all ωs+1, . . . , ωs′ . Con-
sequently

ran(ω2, . . . , ωs−1) ≤ (∆(Hs−1(ω2, . . . , ωs−1)) + m)m(1/s′)2/(2+β)(1 + O(1/s′)).

Now let ω ∈ Ω \ Bδ. Then

R2(ω) =
nm∑
s=2

(∆(Hs−1(ω2, . . . , ωs−1)) + m)2m2(1/s′)4/(2+β)(1 + O(1/s′))

≤ m2
nm∑
s=2

(
2∆(Hs′(ω2, . . . , ωs′))

s′2/2+β

)2

(1 + O(1/s′))

≤ 4m3
n∑

i=1

(
∆(Hmi(ω2, . . . , ωmi))

(mi)2/2+β

)2

(1 + O(1/i′))

≤ cn
β

2+β +δ,

where c is a constant.
Hence

Pr
(
|D(X)−E [D(X)] | ≥ n

4+β
4+2β +ε

)
= Pr

(
|F (X)−E [F (X)] | ≥ n

β
4+2β +ε

)
≤ 2 exp

(
−2n

β
2+β +2ε

cn
β

2+β +δ

)
+ 2 Pr(Bδ).

If we choose δ = ε then the first term is at most 1
2nγ for any γ > 0 and sufficiently large

n. Applying Lemma 5.5 with any γ∗ > γ we see that for sufficiently large n we also have
2 Pr(Bε) ≤ 1

2nγ . Hence the result follows. 2

6 Expected clustering coefficient

In this section we finally state and prove our main result.

Theorem 6.1 For any β > 0, the expected clustering coefficient of Gn
m,β is given by

E[C(Gn
m,β)] =

3c1 log n

c2n
+ O(1/n),

where

c1 = m(m− 1)
(1 + β)2

β2
+ m(m− 1)2

(1 + β)3

β2(2 + β)

and
c2 =

2 + 5β

2β
m2 +

2− β

2β
m.

Proof: Recall that N = N(Gn
m,β), D = D(Gn

m,β) denote respectively the number of
triangles and pair of adjacent edges in Gn

m,β . The expected clustering coefficient is given by

E
[
C(Gn

m,β)
]

= E [3N/D].
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Choose ε so that 0 < ε < β
4+2β and let η = ε + 4+β

4+2β < 1. Let I denote the interval
[E [D]− nη,E [D] + nη]. From Proposition 4.4 we have E [D]− nη = c2n− (1 + o(1))nη and
E [D]+nη = c2n+(1+ o(1))nη. Let n ≥ n∗, the minimum value of n such that Theorem 5.6
may be applied with γ = 4. Since C(Gn

m,β) ≤ m, an upper bound for E
[
C(Gn

m,β)
]

may be
obtained as follows.

E
[
C(Gn

m,β)
]
≤

∞∑
j=1

∑
i∈I

3j

i
Pr(N = j,D = i) + m Pr(D 6∈ I)

≤
∞∑

j=1

3j

c2n− (1 + o(1))nη
Pr(N = j) + m Pr(D 6∈ I).

Applying Theorem 5.6 with γ = 1 and then Proposition 4.3, we obtain

E
[
C(Gn

m,β)
]
≤

∞∑
j=1

3j

c2n− (1 + o(1))nη
Pr(N = j) +

m

n

=
3c1 log n

c2n
(1 + (1/c2 + o(1))nη−1) +

m

n

=
3c1 log n

c2n
+ O(1/n).

A lower bound for E(C(Gn
m,β)) may be obtained as follows.

E
[
C(Gn

m,β)
]
≥

∞∑
j=1

∑
i∈I

3j

i
Pr(N = j,D = i)

≥
∞∑

j=1

∑
i∈I

3j

c2n + (1 + o(1))nη
Pr(N = j, D = i)

=
3E [N ]

c2n + (1 + o(1))nη

−
∞∑

j=1

∑
i 6∈I

3j

c2n + (1 + o(1))nη
Pr(N = j, D = i).

Now since there are at most n3m3 triangles in Gn
m,β

∞∑
j=1

∑
i 6∈I

3j

c2n + (1 + o(1))nη
Pr(N = j, D = i) ≤ 3n3m3

c2n + (1 + o(1))nη
Pr(D 6∈ I).

Applying Theorem 5.6 with γ = 4 shows that this is O (1/n). Finally

3E [N ]
c2n + (1 + o(1))nη

=
3c1 log n

c2n
(1− (1/c2 + o(1))nη−1) =

3c1 log n

c2n
+ O(1/n).

2

7 Conclusion

Our main result shows that for β > 0 the expectation of the clustering coefficient of the Móri
graph is asymptotically proportional to log n/n and consequently that the Móri graphs do not
have the small-worlds property. Bollobás and Riordan showed for an almost identical model
that when β = 0, the expectation of the clustering coefficient is asymptotically proportional
to (log n)2/n. An unexpected consequence, for which we do not yet have a good explanation,
is that the clustering coefficient has a discontinuity at β = 0.
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