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Abstract

A solution is obtained for the problem of diffraction
of a plane wave sound source by a semi-infinite plane. A
finiﬁ@ region in the vicinity of the edge has an impedance
boundary condition; the remaining part of the half plane
ig rigid.

The Problem which is solved is = mathematicai model for
& rigid barrier with an absorbing edge. It is found that
the absorbing material, that comprises the edge, need only be of
the order of a wavelength long to have approximately the sane
effect on the sound attemuation in the shadow region of the
barrier, as a completely absorben# barrier. Also the softer the
absorbent lining the greater the aﬁ#enuation in the shadow of
the barrier.

In the illuminaﬁed region a reduction in the sound intensity
level can be achieved by a suitable choice of the absorptive
material of the strip and its length. It is found that the effect
of the abgorptive strip is lost if its lengkth is less than two
Wavelengﬁhs long. For a strip length of six wavelengths or more

the system is eguivalent to a wholly absorbing half plane.
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Introduction

Noise from motorways, railways and airports can be shielded by a
barrier which intercepts the line of hearing from the noise source to
the receiver. The acoustic field in the shadow region of a barrier,
{when transmission through the barrier is negligible) is due to diffraction at
the edge alone, For this reason Butler [1] suggested that the region in
the immediate vicinity of the edge should be lined with absorbent material
to reduce the sound level in the shadow region. This technique has
potential applications in engine noise shielding by aircraft wings. A
question of some importance, therefore, is what effect does the absorptive
gquality and length of the absorbent material of the edge have on the sound
attentuation in the shadow region?

The presence of an acoustically absorbing lining on a surface is
usually described by an impedence relationship between the pressure (p)
and the normal veloeity fluctuation on the lining surface, see Morse and
Ingard [?] . This gives rise to a boundary condition on the obsorbing lining
of the form 3p/dn = ikBp, (Re (g) > 0) where the sound wave has harmonic
time variastion e_imt and k = w/c, ¢ is the veloeity of sound, n the normal
pointing into the lining, and 8§ the complex specific admittance of the
acoustic lining. The limiting case when the surface is ideally soft
(pressure fluctuation vanishing on surface) is given by IBI + w,

In a previous paper Rawlins [3:}the situation where the edge region
of a rigid barrier was connected to a soft (|8} + «) strip was analysed.
The analysis showed that the strip need only be the order of a wavelength
long to have the same effect, on the sound attenuation in the shadow region
a8 a soft half plane. By using the concept of a perfectly absorbing strip
it was shown in a qualitative sense that the same was true for an absorbing

strip. in the present work we shall consider the more general and practical

case where B is finite.



T$ the wave length of the sound is much smaller than the
length scale associated with the barrier, the diffraction process
is governed to all intents and purposes by the solution to the
canonical problem of diffraction by a semi-infinite rigid plane with
an absorbent edge. We propose to solve this mixed boundary value
problem.

In section one the canonical houndary'value problem is formulated.
In section two a solution to the ﬁoundary value problem is obtained in
terms of two Fredholm integral equations of the second kind. The
mathemetical method used to obtain these Fredholm integral equations
is Jones' method and the Wiener-Hopf technique, Nobvle 4, In
sections three and four approximate solutions of the integral equations
sre obtained. Section five consists of asymptotic expressions for the
far field which are suitable for plotting graphs. These expressions
are alsé conceptually easily relafed to the physical problem. Sections

six and seven are the graphical results and the econclusions derived from

them respectively.

1. Formulation of the boundary value problem

A semi-infinite plane is assumed to occupy ¥y = 0, x < 0; see fig. 1.
The half plane is assumed to be infinitely thin, and over the interval -4 <«x <0

there / ...



into the lining, and @ the complex specific admittance of the acoustic lining.
The limi;ing case when the surface is ideally soft (pressure fluctuation
vanishing on surface) is given by \p\-*? o,

In a previous paper Rawlins [2] the siﬁuaﬁion vwhere the edge region.of
the barrier was soft (‘]ﬁ\“b‘“3) was analysed. The analysis showed that
in a qualitative sense the absorbing surface need only be the order of a
Wavelengﬁb long to have the same effect, on sound attenuation in the shadow
regiqn, ag a completely absorbing half plane. In the presenﬁ work we shall
cqnsi&er the more general and practical case where @ is finite.

If the wave length of the sound is much smaller than the length scale
associated wi?h ﬁhe barrier, the &iffraction process is governed to all intents
and purposes by the solution to the canonical problem of diffraction by a
semiminfiniﬁe rigid plane wiﬁh an absorbent edge. We propose to solve this
mixed boundary value problem.

In section one the canonical boundary value problem is formulated. In
sectian tWo & soluﬁion to the boundary value problem is obtained in terms
of two Fredholm integral equations of the second kind. The mathematical method
used ﬁo obﬁain these Fredholm integral equations is Jones' method and the
Wiener-Hopf ﬁechnique, Noble [3]. In sections three and four approximate
sqluﬁions of the integral equations are obtained. Section five consists
of asymptotic expressions for the far field which are suitable for plotting
graphs. These expressions are also conceptually easily related to the
physiecal problem. Sectionssix and seven are the graphical results and the

conclusions derived from them respectively.

1.. Formulation of the boundary value problem
A semi—infinite plane is assumed to cccupy ¥y = 0, x & 0; see fig 1. The

half plane is assume to be infinitely thin, and over the interval - < x< 0



‘there is an absqrbing substance, i_:he remainder — G -2 of
the half plane is rigid. The per‘;urba‘p:%.czl veloci‘l;y w of the irrotational
sound wave can be expressed in terms of a Velacity potential %(x,y) by

u= grad%(_x,y‘). The resulting pressure (p) in the sound field is given by

p=~f d3U/at , vhere Po is the density of the ambient medivm.

A
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figure 1.

We shall sssume that & glven incident sound source potential field

~id b
?'éafx }3) 2, ig diffracted by the semi-infinite plane. In future work we

shall drop the time harmonic variation factor emlmt’. Then the boundary value problem
pecomes one of solving the wave eguation
> > 2. A -
3 2 L) = O ™
a)Cl 'aﬁl
subject to the boundary conditions
X (x,ct)= O, ( x<-1);

> (2)

(%tbkﬁ)m%w)"’o (~1<x<0); (3)
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where ﬁm (D"C/Z= Re(z)> 0, k =%/c, and c is the yelocity of sound.

()

We shall assume @hat a solubtion can be written in the following form
X(x9) = ix,y)+ Plx,3), (5)
where -‘-%?(X,y) :t'epz'esents the perturbed field due to the presence of the
half plane. For ana,ly‘a?ic convenlence we les R = hﬂ*lﬂ—»kt (kr) hi,} C‘*’)j
in which case for a unigque sc_);l,u‘c_,ion of the boundary value problem (1) to (5),
(see Peters and Stoker [47 we also require the satisfaction of the radiation

condition
) T b
Cfb()cltj)r:; O(/.,_E_,_ )} 0as l“'_:\I(x,2+3a) - 09 ] (6)
g

and also the "edge condition" see Jones [ 5]

Yix,0)=0() s and O (x,0)= O(z%) 28 =0

2>

3y (7)
Yix 0)=O@)  » =2 W(x,0)= Ofxsr) ] » 2 -1
oY

2. Solution of the boundary value problem

We introduce the Fourier transform

@(«,333 b (x,y) 6@3((436.

oo
and its inverse .
i o4 LT .
) - X3¢
‘,é(":,j)::..l_, 3 %’(aﬁ‘j)@ o\o{,J (9)
AT .

‘ et
where K=o +¢? . The transform (8) and its inverse {(9) will exist provided
w\?{_ < < ke : *;his follows from the radiation condition (6).

Applying (8) to the equation (1) gives

Py - Ame ™ , (979, (10)

-
o= Tscb() € (: 23 <C.€BT)}
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where o= J(hlmot’:;) i defined on the cut sheet for which Lm (%) >0

when | T (c{)]«fi kR . Trom the equations (10) and (11) we obtain

e Kt e («, o) + P, («,0%) + P (wo)= Al),
ef"dz b! (¢ 0) + @f(e{d c*) + ﬁ(q; o) = <&AM)
. F_(vo) + B0+ b (¢ 0) = BK),

(12a)

(12b)

. {(13a)
-(’0{ 7 i .

e Zi%(q; o) + @, (aj;o“) 4 %L(g@:-mgw);

{13b)

where

2, = Emcf:—cx,m e
& (q9)= E PH(x, )@W(“‘*z)d | (1)

(4 9)= J  blsgy) €% d

The primes denocte dlfferentlatlon with respect to y, and the * subscripts
denot@ functlons which are regular and analytlc in the upper (..LM(O\)P R¢ )
and lower ( Talat) < ki ) & -plane. Eliminating A(X) from equations
(12a,b), and B} from (13a,b) and using the boundary condi’pion (2) to obtain an

i
expression for %ﬁ (o(j 0) gives the following two equations

S ; ! . —ig] + .
- W’Eﬂ. (« o)+ %: (q/) O:‘:) 4 <£+ («, @) = d i ):Q % é("(‘, oi)‘i'% (r:,; o-—)-i—@z_(o()@)J)
(15a,b)

where

-

l i -
[(x o2
E- (0 = g ?.i@»fx,f:})e( )oLc (16)
Jew 29

Applying the Fourier transform to the boundary condition (3) gives

&' (x, 0% + RRP, (o 0F) = “[E:(oe, o) £Lkp £.,,0] ,

(172,b)



where

@ “ofe /
Ei(."f;‘j)z J‘ q%(’{;ruj)'e’ GL!) E‘(q’ﬂjzi&-’l(“},ﬂ) . (18)
~2

Eliminating E-.:E-"i (o{j oY) from (15a) and (17a) and %'@‘; o”)  from (15b)

and (17b) gives

+ % [ &N F_ (o4 0t) 7§ Bllog02) + (Bl o) 2L RBE, b o))/ (ckR)
£ Prl0)] == €CE () v Bl 0) +BL (4 0) (1%.8)

Eliminating CTD (qi o“‘") from {15a) and {17a) and §§f(q, o
. . ’ 4
from {15b) and (17b) gives

,oe(ZE (O( o) bkﬁi‘ (o{ o) — [E (o)t bRﬁE {«, 0)} +§~\-—(ﬁ’ 9,

=+ NE (o) + E o)+ B ] . (e

Subtracting equation {19a) from (19b) and adding the equation (20a) to (20b) gives
on a slight rearrangement of the resulting expressions the following two

eguations:

e Y )+ LG U () + () = St

(21)

_sz\j\/ ) +J(k- od)LCﬁX)‘N (a{)N\Q,(a()_., f\!(vi) (22)

where

1 = [2.60") +E ;0] Y= Erix,0),
Lio-U[E 600 F (]2, sE= E&o)

N0 = ~C ke [ B, 00— B(t, 9] fa, Wolo) = Bl 0) i ki)
N C0=-ckp[ &, 0t) +3, (o0l 2, M= [E /b e g, ] Hter

LEO= (kR4 i) = Ly )l ()

(23)
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Before proceeding further with equations (21) and {(22) it 1s necessary to know
how the various quantiﬁies in (23) grow as Jal-»eo . The edge condi“;iqn
(7) means that the transformed ﬁ‘unctions saﬁisfy the following growth estimates
“as |\« lPoo
& (%,6)vO(I™), Pulxe)~ Olix1™) )
P, ) v O (1) RLEI~OCI™)

P % . .
e ‘ %,(o{,g)«v O( ﬂc{l-‘)) e Z‘%z (4,0) mO([o{["fa)) in Tem(s)> ~ke

in Im(“3>—-h:

‘ - ' - n Te() < K
%IC%C))NO(fX\ i)j i’—"‘ (_o(;@) ‘NO(MU /w,_)) in L C
Using the above asymptotlc estlmates in the expressions (23) gives as %l = o

Y (x)w O(txr‘) W. @Iv OCI™) | 4, («)v OCiel™)
W‘ (d) 'NO(EG“-')J. L” (Q(]JUO( (kﬁ}-y) 2 in Im(,c\’) "‘:l?e.: !
Yo ) OC 1) W) OCixt™), %_{(gc)wc(ioe:“"eméwz)
N (VO ieei"e"wz)j Le)~Ofkg)™") Toalst) >~ k(.

The equations (21) and (22) cannot be split by the standard Wiener-Hopf
a,rgumeni; because of t_;he second 't;erm on the lefﬁ hard side of the eg_uations.
However using the above asymptotic estimates, and the ’;echnique used in
Noble's book [3] pp196-199, these equations can be split and yield Fredholm
integral equations of the second king. Although in the equations (21) =nd
{22) the right hand sides of the equality sign are of a more general form than
“t_'.ha‘; considered by Noble [3] the bagic technigue used[?:] follows through,
mu’;a’;is mutandis, and so we omi’g the exact debtails. Thus for egquation (21),
we obbain, noting that the coefficient of v \ (%) is an even function of of

(see Noble I_3]) sosia

OQ""CL
T G0 o X [S(»L)%Q 5&)] dt g 1 g Sald NG d, (o)
L Cet) Zﬁb_w+£cl:_(t)(t+o<) 1’*‘“1 L ()
LG o4+l Q. (25}
Leo _ 4 [5( e -efseol e L*"-y(e—) At
Lix) 2wt d "L (P (E+ol) 21?1 +L (I E+%)
o L 0Dy

T lof) >=a >~ k¢

Y



where f‘_-d_o(}x Y, ()4 (i,.C‘*"‘) ) j,{_@() = ‘i-&(ﬁ)_‘i, {- o) . (26)

The coefficient of Wi (%) in the equation (22) is not an even Ffunction of &
and therefore the above asymptotic estimates and the technique of Noble [3] yield
the sllghtiy dlfferent expressions

RN L’l c’}o{»{g
No) X LA () di _._i___g NlY) gt

= —, . Y (27)
Laf) 2W¢ N T awed Lo} x-t)
+ —oa e +( ( ) —oFic ) Im(ﬂ)>c>-~k’£;

WHC{LH. o+
A B X feee)  ap _ i & Nl g s
Ji=a)L _ (%) 27 j&—-&) L®-8)  2ni ] ye-f _(D(F-«)

iy
Tne (o) < o< ki
The solution of the equations (24) to (28) uwitimately gives the solution of

the boundary value problem (1) to (5). An exact solution of these integral
equations is too difficult, and therefore spproximaste solutions will be
obtained by asymptotic methods. To be specific we shall assume that the

:f_ncz_d_en‘t sound field is given by the plane wave expression

- tkt)i(,ogao"i“\\j SLV\,@’)
Sbc(xg)"“ 5 o< &@ﬁ’f”‘i"’
Hence {16) and (18) become

vkf s 8,
&'’ (xo) =~ kson G0 (o< kws@) ‘e T

Ef (b\; b) ™= {, [h 'e/” ('[A“ - kcﬂsaajﬂ.m i](o(“kcosa'b)_f

ElGpo) = Fsinds Lemlkeosboll 7, keas®a) )

so that

S(w)= ¢ [“3‘”{&“ k%sge)a f]/(*-— kos 8.) >

NGO = ~ kS8 [{V(k 4u) (w-keaso)} | (31



3. Approximate solution of equations (24) and (25) for kI3 1.

REstricting the path of integration in the expression (24} to the band

hl s <A< ‘QL 5 , see figure 2, and theh subs?:itu’ging

the expression for S (o) » siven by (30), into (24) and making the

further substitubion

) iklccst% .
R(‘f’(): Gala) — € - - £ ’ (32)
(o + ks Oo) («¢ —keos®o)
gives
: . cklesE, At
Gols) ¢ L N
La(®) L6 (xrkeos®) |, () (x-kwsBs) 27 L_(e)(e+x)
-5 A ¢
f:kZ(aoS&o%“‘L% +
—_ e
oy R, R
e o \m(b)(t'wt)fé-«kcos@o) 27l A 1_ a-)(qu

kecosBoca<ky |
The first two integrals of the above expression can be evaluated by distorting

the path of integration into the lower half of the t——pl&me. The only poles

ca.ptured will be t=- ® and t = "'kcosgm see figure 2. Thus
614.{0(’) _ L . t el:kzcosﬁo
L - - '
+ (o} L+(i€Los@a) (d-—»kwsga) L (kéoSQO)(oé+kaos @a) (33)
Wia .
+ |

———

cH
ol ¢ ba®éawdr

)
“ouia L(E)(E+w) .
R_A’im(ev) " r, tosTe< @« k;
////\////////////
VA AV A 0 A A A A A A A A A 4 oA
"'hﬁ.&seo
> d >
% > Relt)
-—Oo(
S o -hewsB, | ¢ -
//;-k, ~hi
Figurea
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Equation (25) can be dealt with in a similar manner by substituting S(O() .

given by (30), into (25), where Ricos@o<a < ke , and making
the subst_,itution
. hlosde :
Yo (<) = et} +_L & - —t . (3k)
- (2 4k eos o) (ot _keosBs)
Thus one obbains eventually
o | . klees B,
NEACI € - v €
L) L4 (keos80) (—kios Do) (ot +ResO) L - (keos B) )
35
WAL (¢
— g &L (0) 9o dF
QWL o ool L-(i“)<£-4—9<) g h—i(—oS’So(Q{ké’o

The equations (33) and (35) are too difficult to solve exactly and therefore

an asympﬁo’;ic @echnique, for k11, is employed to obtain approximate solutions.
We use the techniqu@ given by Jones [6] ,» Who considered the problem of
diffraction by a strip.

We may write (33) in the form

Ga0 = § 3,00 + Gule) FL ()

(36)
where . ‘ (, k 2605“ &,
St(ﬂ‘} = L " L <
LilkeosOo)(d-ReosO) L (kipsd) (a+R cos Go) (37)
& e i
7reo= L[ efhiGa® g, ()
21‘\‘{, - U oo L((‘..') ((7“"0()
Substituting (36) into (33) gives
e, |
Ey ()= L J 2 e (39)
HA )= =, L
7 2T Ht«)(wa){ 2 (S0 + g () § AF,
~ W0 oo

kios8oca < R
If the contour of integration in (39) is distorted into the region Im(®X}> =
then the integral can be asymptotically approximated, for k 231, by the

integral with its path of integration wrapped arouand the branch cut t = k.



ST

The part of the integrand of {39) Wi{,him the curly brack@“‘; is regular

and analytic in this region and provided 6&# o, T this tern will
vary slowly in the vicinity of t = k. Thus since the dominant part of the .
in“t.;.egrand comes from ‘g;he region t = k the term in the curly bracket

can be removed from under the integral sign and t cen be replaced by k.

The remaining in‘t;egral can be replaced by the asymptotic approximation given

by (2A) in appendix A. Hence

@ VIR L) S5 1046, 002 W (o
7 (f»-»k“(wk))i R+ GO W0

where (?/ ~I_(k) is obtained by putting &= k in (40) and solving the resulting

equation f‘or‘a/_i.(k).

Similarly we mey write (35) in the form

8%(“)* {SQCW)WL?,;‘C@)}L»L(N) (1)
where : , t‘kz wsgo
Sz CO()‘J-"" t —_ ¢ 2 ,
i (keosOe) (- keos®e)  L_(keosO)(@rkeoso) (42)
wnd ‘ﬁ/f"” = j LU 9+ () b (k3)

2W ¢ el Y LU:’J C&“"*“'c’{)
Subsgtituting (41) into (35) and using an argument similar to that of the

last paragraph, in conjuction with the result (24) of appendix A gives

(‘?/-i— (01)::. \[E;‘?L?:;.(’Q) {Sz(‘e)—-—t‘. (K) W("(Ja (ltli)
(i =N (x+kD) )%b }

\.9/+(.k} can be determined by letting = k in the expression (k4) and solving
fora%_(k). Using the expressions (26), (32), (34), {36) (40), (41) and

(4k) and some simple manipulation we obtain

Y, 6) = =< (:.-_ Lt ()
(A = lecosea) L«t_('hbcsee)
(45)

+ [ Lick)L..,c«)zrs

3 (].._/\2 (d+k}) l(k)”sz(k)+§/+(k)+o?4_(k)} N(«.)u
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vkl s B,
g..._.(ﬁ(): ¢ € «©s (;_,. L () \)
(- ks | (keosOo)

& L ) (he)
T (;%k(i)) §S,(k)+ Sa(R) +G4lk) - u%(i")}\f\[(mq) |

L. Approximate solutlon of equations (27) and (28) for k]l => 1

The method of obtaining an approximate solution for the equations
(27) and (28) is siightly different from the method used in the last section.

Substituting the plane wave expression for N(X), given by (31), into the

expressions {27) and (28) gives o0+ ¢
' %+CQ | LL’Z
\N'%-C“) kaun B, Ar j' \A’ (&) G“-
L+(°(} ‘2“_ mwl;jc'(k)\i(h‘kk)(b‘ kwse@')(‘*’ t‘) 2Tl (E-' od)l—-«f-a")
IMCM)C':»wk;)? (57)
so+udd L
W"“ («) - k Sun Do Qf o+
V(kE-&) L - () 2wl L (B (& ) (b= Ro38) (k2 )
~ 0oLk
R RN
1 . (48)
- e Wil
2w =~ ot

~pQ 4

ol L_ (WV(k-&) (- &) g Tm(u)<d< kicos 8,
The first integral of the expression {47) can be evaluated by distorting the
path Qf in’;egration ir:d;o the upper half t-plane. Since Im(x)x ¢ ;-k‘:
then the pole t = % _ and t = Rwos B will give rise to residue

contributions, see figure 2. Hence

W@ - —lesinb v fr(- cos80))
et (2 L+(“)\l(k+d)(&“‘<"‘>5&) -+(kms@o)(d~km3®a)
i g L @W-0} db, (o)
z"ﬂ'b J e CL *d)\!(}{ E'.') L—C&') ’M(d))"{f?"k;

The evaluatlon of the fzrs‘t integral in the expression (48) is bes*b achieved
by distorting the path of integration into the upper half of the t-plane.

However this requires a knowledge of the singularities of L (%) in Im(t)> k. .
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It can be shown, by & method used in Rawiins f 6] , that the only singularities
of L(t) are the branch points at © = +k; no poles occur in the cut plane.
Hence moving the path of integration vertically until it crosses the pole

t = kcos Qo , see figure 2, but not the branch point t = k gives

N-’ C‘”{) _ 60‘&2‘:0590

v
i

V{k-¢) L - (x) L _ (keos@o) (o~ keos &)

oo £1d

+ J\ Revn®ol 4 (H)
) Ui e VL (0] %

e G e

L"Z ! (50)
L{EW(-E) (b -a)

kicos Ocsd< k|
For k] 3> 1, the dominant contribution of the integral (L9) comes from the

regiqn T = -k and in the :'Lntegra,i (50) from the region t = k. Provided

o f)é O the term in the curly bracket of the integrands of (49) and
(50) are slowly varying in the vicinity of © = #k. We can therefore replace
t by -k in this part of the integrand of (49) and remove it from under the
in‘gegral sign. Similarly we can veplace t by k in the curly part of the
integrand of {50) and remove it from under the integral sign. The integrals
remaining can be replaced by the asymptotic approximations given by (6A)

and (8A) in appendix A, Thus

W) —ksinbo + Wk(i= cos00))
Li()  Vlketo) st —keosOo) Ly (keosGe)(x— keosGr)

FNZRL (R (1- 3R ea0) ().

(51)

vk G
W_ (%) - 0 Lees® xR L k)] sia 8o N
= -+ -+(i€i;N@q?
Jlk=)L () L _(keos8o) & ~keosOe) (| }(r—aJlV2K (RN

(52)

The constants \I\M_ (ﬁ k) are obtained by putting & =k in (51) and

& = -k in (52) and solving the resulting two equations for the two

unknowns Wﬂ: G: k) .
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The expressions (45), (46), (51) and (52} in conjuction with the
expressions (23) will now give e}:plicit expressions for §2+(a/, o) »

%.:.Ca’/o) s %.._ (v, o) and a_;’__( QSO“‘) . A(¥¢) and B(x) can now be
given in ‘germs of these known quan‘i;ities. For example multiply the eqguation
(12a) throughout by ikﬁ and adding the resulting expression to (12b) and
using the equations (16) and (18a) gives an explicit expression for Ala).
Similarly an explici‘{_; expression for B() is obtained by multipiying the
equation {13a) throughout by ikﬁ and subtracting the resulting expression
from {13b) and using the expressions (16) and (18b). Thus in carrying oud

the above 1t is not difficult to show that
' ' ‘ ' —C - kesb)l
Ax) = "

! :
% L(a()[ ( be) 2L @é — Y(k(1-co s (Rl L&)

(.x‘n-k:,osea) Lt (keos®o) L _ (eosBe) kFgL (keosBe)

uc {
L cr)l (‘o(){ f Lo(D(s.(k)+5, () +6, (k) C?(,,(k))-.(.\fz_g/\(s»nao
(1N (k- «)) 2K (1-cosd)

+ \l\/+(k))}w(.«) - J}"'Liaen_m»

_< (k) + 6 s |
Z T ) {S;(k) S.(k)+ }4(&)4'%(’?)}3/\/(0{)

+ V2R Ly 00 L (D Ve W € R) W(M)}
{"Qﬁ (1—2%(Rke))

(53)
By = [ . Ly (%) J
IAS (k(i - cos®@NW(kot) L
KL | (w-keasOe (L_ - + o) La(x)
-w(L ( o308 \ Ly (keons) B L+ (Reosl) _
+€ Ly(RIL_(x)
(i‘-—,\?”(k,o() {FL{JIQ)(S (k+S, (k)+ %@{k)m “3/4,[‘?))4—1,\]2&/\ <inbe

r.‘{' C'G$®e)

+ \/\H-(K)) Wl-o)4 [E Le(RLs )¢
f o o | L AL AN )

o VAR L (R) Ly (o Ykt W R) W)
bkp (i~ X"(kw{))

(5k)
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The solution to the boundary value problem is now known and is given by
; e : ot ‘ _ ‘

_ ~Cx+eKY
Xix,y)= ?!%Cx»,j) o E Alx) € da  (y>o) (55)
o DDA T
st o (56)
_ ] ‘J_ _ »wdxwoﬂy
</%(l,j) +2#J‘ R} € a{at) (4<o),
— Uy

-ki< v< ke O,
5, Asymptotic expressions for the far field, kr 2> 1 '

For the purposes of plotting the polar diagram of the scattered far field
the expressions (55) and (56) are approximated asymptotically for kr.yoo .

This is achieved by using the result

oo+ -l x—ivi)
L[ gwe o ks [ g1l Fan) ] k)
2.1'(; uc;%(g(-kﬂ@ﬁ-ga) ’Q\J( k ) ' €

&0 4 C aw f (éO;SQDﬂFCGSSé%D

—ck el
+ 3 (cesBe) H [—- cosBo (Lo 38+ os @)] £ (Ikwsf};) e (Xeos Os -IY[ 2inbs)
kisin e {(57)

asg kf»-«%m H

where

X=pews® | Y=Psa® , o< @<,

Eln) =< f e olf) IN):_\/B#’ /Cos®+ccs:9¢
ini = Sin @
The above result is obtained by the saddle point method, modified slightly

because of the presence of the pole % = Rlcs®e , see Rawlins [T] .
When N is large the above result (57) can be simplified by using the asymplotic

expansion for the Fresnel integral, viz

(58)

[

Fia)~ ‘:/(liNﬂ) +O<INVS) as  INl-> oo
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The expression (58) can be used in (57} if no pole occurs abt &= KReosGo
in the integrand.
Thus using the result (57) and (58), for 0L Bo< W , the

expression (55} and (56) yield

xX(re) = 1 + RF + Iy , (W’90<7}<’7T)J
=T +RF, + D, |
Sl , (F<m-0.<8),
“Te ) (o< ®<m-08.),
_D 1’ (90“W<8'{O))
=) (—-7?"4 &« 90"""“—);
(59)
where x = rcosf , vy = rsin@ , ~mgPsT R
T= -tk Cos (§-6) o
RE, ot Rrees(6+05)
. R (61)
RF; T - (‘3‘“ lsmehl)(gqngsiweoi)—le:t o S{ G+ Bs)
D, - C(fer:."rrn,_) (62)
T - 2NQ{FCIQ] y2 ™!
Jwkr) (coso ) '{L‘*"(k““‘%)} | _ .
‘ S +~CO.S&0) RL+(kng‘) - (!“WS'SB)J(I"COS@*)"
+ @ “ kRt A
—— . Q] chlces B
VienkRy (@) | 2 g™s?
Q osaditos) ki (keos @)L - (kReosat)
4 (lL(kFgﬁWPJ ’(
L G’ ¢ i?l?-?'l"/q_)
Vo k) (0,8) +~ e G, (20,) (63)
‘ V(2rkR) 2
Dz e, QLCkr-}rﬂF)
—_—— e 210
\’(27('!@3-) FM o ‘;L-f-(‘?wsé‘ )}‘f o
OSPtCoeBa) ol 1 V(i-tosh.) () -
: RL (ke |2¢c58)
¢ (ke =0) 8
+ e i)
—— 62 o t‘:(k’R_"ﬁ"/ (6k)
\/(zvrkr) (6,6.) + £ “

\/(274-*{#%) 8 ).
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In the above expressions for D, and D, the various quantities appearing are

1 2
given by
~ . _ ;
Q = k' (o504 cos 8o , Q'= [kR l(t;oS/}-{——C-o.S@‘
S ® 2. - ?
St 1

R*= p24o1%+ 27l oo @ )

He san(&) coq™! ((24-1":.9519)/"3))

92(6,62) = £ 50 B] 13 (R)]_(keos) |
(1= 2(1-cos0)p2) {S'C'@’"S-zik)*Cg@(h)w%ae)}wamse)

+ kY2 ISL‘« Blla() L _¢ hwse)\ulfc,cs@) \/\/,_(m
vB(1— 2(1-cos8)3™)

<) W (~ Rios@) (e53)

Gy (5 6e) = K= [sied Ly (R La(keosn®) ) /s
’ ‘ Z Ly (RS, ().
(i— 2¢ ,,J‘_Losﬂ})ﬁ"- ) ()g\/fz- + k)( i(#a)J—S:aCk)JL-%_Ue)mo%(k))

+ 20 sa® k2
. (=] - k N
PR (- oty e EW(R('@M})J

(66)

where the upper sign corresponds to the subscript 1 and the lower sign to the
subscripﬁ 2. The expression for the total acoustic far field, given by the
expressions (59) to (66), together with figure 2 give a picture of the physical
fields., I represents the incident plane wave, The terms D1 and D2 represent

the fields diffracted from the edges x = 0 and x = wz. The terms involving

M and © represenﬁ the contribution to the diffracted field from the edge

i

x = 0. The terms involving R andﬁjlgive the field diffracted by the joint

x fZ. The terms RF1 and RF2 represent the reflected field from the rigid
part and the absorbing strip of the half plane respectively. These reflected

fields will only exist in certain angular regions, which are defined in (59).
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6. Graphical resulbs

The expressions (59) were used ‘po give praphical polar diagrams qf the
modulus of the far field, i.e. l?{(r;@)l , for kr = 10W The values of kil
iihat were chosen were 0, 5%, 15T, and &0 . The case for which k'l, = O
and k] =90 correspond to the . | hard and sbsorbing
half plane sqlu’;ions respecﬁively. The . hard half plane diagrams were
o’btaimed from the known solution for this situation, Rawlins [T] . In the

numerical calculation of D the last two terms involving G were

1,2

dropped. This was done because of the considerable amount of numerical

1,2

calceulation required for these terms, which have a negligible effect on
the far field for k1> 1, see Rawlins Lol .
For an absorbing material the following values of specific impedance
Zz §+L/‘Z(_f= !/ﬁ)seem to be .of practical importance:
fibrous sheet g: O*S} R L 3)
perforated s*i;eel oL g < 2_} — ) 7{ 3.
Values of specific impedance which fall in the above range were used for
the graphical plots. These polar diagrams are given in graphs (1) to (i)
for (9; = 900,;% = 1, ?Z = 0.5; and in graphs (5) to (8) for Q.: 352, § = 1.5,
OZ = 0. Graphs (9) to (11) give the at“t;enuation of the sound field, i.e.
20 log_lO l?{(g&)l , in ‘f_,he shadow region Qf’ the screen for (9u= 90-0, ki = O(hard Scre-@h)
k'l::21f , and various values of ? .
From the graphs (9) to (11) it can be seen that the level o.f attenuatiqn,
compared to a hard half plane, in the shadow region is gread;er' the larger lﬁ'(-: H?’]“‘)
is. It bas already been shown in [_2] that provided kR> 1 the
field in the shadow of the screen is to all in‘geni;s and purposes the same as
for k{ =90,
The sound field level and orieﬂtation onn the illuminated side of the

screen are more acutely affected by the magnitude of x{ . However it
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can be seen from graphs (3), (4) and (7), (8) that provided k &> 15

the sound field level in this region is approximately the same as that for klL=>e0

7. Coneclusions

From the graphical resuﬁts we conclude that the sound attenuation in ihe
shadow region increases as lﬁi increases, i.e. the softer the absorbent
maﬁerial becomes, which makes up the edge, the greater the aﬁéenuation. It is
iny necessary tq apply @he absorbent materiél to Wiﬁhin a wavelength of the
edge Qf the regid screen ?Q have ﬁhe sane effect, on the sound aétenuatiqn
in the ghadow regiqn, as a screen covered completely with abgorbent material.
Experimenﬁal quk by Butler [Ei] would seem to fully support the above
cqnclusiQns.

The radiated sound intensity in the illuminated region o<Bew
is due to the coﬁstructive/destructive interference between the incident wave;
the diffracted felds from the edge(0,0), and the joint (0,~1) bebtween the
absorp@ive strip and rigid region of the screen; and the reflected waves
from the absorpﬁive and rigid regions of the screen. For a given value
of 9a > & value of the absorp“l;ive parameter given by ﬁ = lSi:h@ul
can make the reflected field RF2 vanish identically in the region 1}E<Wﬂ-85<18,
This will reduce the maximum inﬁensity qf sqund in this regiqn. This choice
of g(: i S\?\p\@on will also make the first term of Dy> given by (63),
vanish a‘p 9:"— w- O » thus further reducing the interference effect
between the inci&em‘:'and diffrac“t_:ed fields in o© < & <77 .

The criterion that the reflected wave should vanish means physically that
the strip absorbs all the enersy imcident upon it and does not reflect any.
The dominant effect of RF, can be seen in the graphs (3) and (4) where

2

RF 1+ 10.5, fi:m 900. For the graphs (7) and (8)

2

RF2 = 0.03 where

0,23, for

fl

1.5 + i0, @ = 45°. The interference effects
give greater sound intensity levels in graphs (3) and (%) than in graphs (7)

and (8). It can also be seen from the graphs (1) to (8) that for kfz 15
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the absorpi_:ive S‘{:rip has the same effect on the sound level intensity in

OLE <1 as a completely absorbent screen (k Z:-.:p). The
e:ﬁ'fectiveness of the absoz‘ptive strip ig lost for xl= 5%, in the illumina%;ed
region.

The above conclusions suggest a pos_sible design f‘qr a practical barrier
which would reduce nqise bQ’ph in the illumina‘_ced and shadow region. The
1@ngths and absorptive proper*‘;ies of the s’;rip would need to be c’ziff@rent for
’;he lining on the illuminated and shadow side of the barrier. On %;he iliuminai;ed
surface of the barrier we choose #he length 131 1_:0 fall in the range

S < kl: < 157 ; and on the shadow side of the barrier we choose
the length o such ﬁhat kfs N 2T . The impedance ?s of the lining
on the shadow side of the screen is chosen to give the softess lining
mechanically possible. The qdmlH&m@@; of the lining on the illuminated
gide of the screen is chosen, for a given angle of incidence t9a. . “to minimise

the reflection coefficient l (@ : “""’Si:b\g‘ol)( ﬁ‘: + Iscn Bel )...‘ ’ .

The author was in receipt of an SRC Research Fellowship grant while this

work was carried out.
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Appendix
Consider the integral
' ~adlos b
' (14)

2wl —on 4o oL L (t)(E + )

Tmlx)> -~ BLcosFeca < ke,

From the way A has been defined it has been shqwn, see Rawlins [6] that for
Re(F,)> 0, L{£) has no poles or zeros in the cut plane. Thus in the regiqn
In(®) > a the only singvlari’;y is a branch cut at t = k. Dis‘;orti_ng the
path of in‘;egration in (1A) in‘;c_) the upper t-plane un‘t_:il i1; runs around the
branch cu"p t =k, gee figure 2, gives <
. okt .
T i {_egke“’l\nt _p)dF *,;,g < -Rdr % ,
2 (b0 (FNE-R) i (e (4 (E-R)

where ) =2k’ /( Rﬁg) is obtained by replacing the smoothly varying function

“
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\! (4ot} Dby Jz k' . Making an obvious change of variable we cbtain

T,= 2k ¢ S Mty v }om
(1= Ntk L utkes gy

= 28 e [dteean]~ Wo[WiAL) = SEE NG
(i ~=A"(ota RY) (1= A¥{et+k) )

WO can be expressed in terms of the Fresnel int__egra,l "{z), see (57), (58), vy
, R+ .
NMINED B { [+ 20Vl ’F(JET)}

it

(34)
150 , lamg@]| <.
We also note the asymptgﬁic expansiQn, see {58)
¢ (RT=T/+)
Woe [ Vz1U ~ ~- £ : GrA)

2n"2 )32 7



22

Congilder the integral

_ AR |
Iy = € dt (52)
2wid LCé—)\j(k E) (- ) >

Tm () <d < k¢
Antici@ating ;hat the majqr contribuﬁion frqm the smooth functions under
the inﬁegral slgn occursat t = k, we obtain on distorting the path of integration
round the hranch cu*; t =k

. oo l2 .
ey o M
2wt L J (= ial(e-r)) (ko) ) (v inde- HICEY

k] oo - .
_aERe Sef”zw"?—{. a 1 }&\k

: k-a U+ N
(H—-)\z(ﬁl-'k)) At -+ A

c ABE W[t )] = W TR = AR W)
( 1+A"’(o<—faﬂ{ [t G-l L A?( (HA*(x~R) (64)

>0, I‘*‘B(fewot))'i'“‘”) lﬂ-rﬂ('.k") [ <7

ansider ﬁhe in?egral
i 1 Y S
-
1ay= EL“ € Jr (7A)
"ﬁ’\; 9041.:,.;;,1‘(6')‘]“9-"&7)07"‘“{) Tmls} =>c = ki

Let t be replaced by (~t), ¢ by (-a), and using the fact that L(ét) = Ltt),

Viket) o V2R gives

oﬂ"éwxc\
_ _ (84)
SRSINETY __mﬂ‘;u‘) (ot}
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