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SUMMARY ., .

An.exact solution is obtained for the problem of the diffraction
of a cylindrical sound wave by an absorbent semi-infinite plane. The
rwo faces of the half-plane have different impeddncé boundary conditions.
The problem which is solved is a mathematical model for a noise barrier
whose surface is treated with two different acoustically absorbent
materials.

The usual Wiener-Hopf method (which is the standard technigue for
solving half-plane problems) has to be modified to give a solution to

the present mixed boundary value problem.



1. INTRODUCTION

Unwanted noise from motorways, rallways and airports can be

shielded by a barrier which intercepts the line~of-sight from the
noise source to a receiver. The acoustic field in the shadow region
of a barrier, when transmission througﬁ the barrier is negligible,

is due to the diffraction at the edge alone. The design and perform~
ance of noise barriers,particularly for the reduction of traffic
noise, has received considerable attention in recent years; see the
review article by Kurze [1] .. Noise shielding by barriers (aircraft
wings) also has important applications in aircraft noise reduction;

see the review article by Jones [2] .

An effective way of reducing the noise level in the shadow region
of a harrier is to line one or both faces of the barrier with absorbent
material. The rationale for such a noise barrier design is given in
Rawlins [3] . The presence of an :acoustically absorbing lining on
a surface is described by an impedance relationship between the
acoustic pressure (p) and the normal acoustic velocity fluctuation
on the lining surface (Morse and Ingard [4].. ~ This gives rise to

a boundary condition on the abscrbent lining of the form

g .
<P = ixgp , ReB >0, (*)
ot}

where the sound wave has time harmonic variation e"lwt, and k = w/cy

c is the velocity of sound, n the normal pointing into the lining, and
8 the complex specific admittance of the acoustic lining. An
acoustically hard (or perfectly refleeting) surface has a vanishing
admittance, i.e. f&f,+~0, and an acoustically soft surface (pressure
fluctuation vanishing on surface) is given/py [8] + = .
A

1f the wavelength of the sound is much smaller than the length
scale associated with the barrier, the diffraction process is governed
only byxzthe local conditions at the edge. Hence a rigid noise barrier
with absorbent material on one face can be modelled by a semi-infinite
plane one face of which is absorbent and the other rigid. The solution

of this problem for the special case [B8] + = (i.e. the absorbent

surface boundary condition (®) replaced by a soft boundary condition)



was given by Rawlins {3]. This problem corresponds to the physical
situation of diffraction by a half-plane, one face of which is acoustically
soft and the other face being rigid. A modification of the standard
Wiener-Hopf technique was used to obtain a sclution of the problem. Later,
Williams {5] obtained the same sclution by a much simpler approach. However,
the approach of [3] can be adapted to deal with the more complicated
situation where f 1s finite. A similar approach to that used in

Rawiins [3] and here, was followed by Hurd and PrzeZfdziecki .[6], [7] in
their solution of the problem of plane-wave diffraction by a half-plane with
different face impedances. However, it is shown that the present approach is
more straightforward in that it separates the function-theoretic Wiener-Hopf
factorisation of a matrix, from the boundary value problem analysis. This
is the traditional approach for Wiener-Hopf problems. We shall show that
the usual Jones' method {8] can be used to set up a system of Wiener-Hopf
equations. These equations can be uncoupled if a matrix function can be
factorised. It is shown that this is indeed the case, the factorisation

being reduced to the solution of two standard Eilbert problems.

In Section 2 a boundary value problem is formulated for the diffraction
of a cylindrical sound wave by a half-plane with different face impedances.
To ensure a unique solution an "edge condition” (Jones [%]) is imposed.

This edge condition is the usual one associated with diffraction theory
(i.e, that the sound energy is bounded in a finite region around the edge of

the half-plane).

In Section 3 a solution is obtained for the boundary value problem
set up in Section 2. The method used is the standard Jones' technique of
representing the acoustic potential function as a Fourier transform.
This leads to a coupled system of Wiener—Hopf’équaticns. To uncouple the
equations, and therefore to be able to apply the usual Wiener-Hopf
argument, a matrix function has to be factorised. This is carried out
in Appendix A with the help of results given in Appendix B. In Section 4

the solution, which is in terms of double integrals, is asymptotically



evaluated for source and receiver PDSLtlons well removed from the edge '
of the half—plane. Explicit expredsions are obtalnad for the diffracted

field and the geometrical acoustic field.

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

We shall consider small amplitude sound waves diffracted by a half-
piane. The half-plane is assumed to occupy x < 0, j = 0, and to be
infinitely thin and rigid with its surface treated with acoustically
absorbent material; see Fig. 1. . The upper surface (x < 0, y =0%)
will therefore require the satisfaction of the absorbing boundary
condition p = Zyu, = 0, while on the lower surface (x <0,y =07)

:the boundary condition p + Zyug = 0 applies. Here p 1is the acoustic pressure.
and Yy is the normal component of the perturbationm velocity at a point

on the surface of the half-plane. The acoustic impedance of the upper

(lower) surface is Z3(Z;). We shall restrict our consideration to time

a harmonic time dependence, with the time factor e“iwt being suppressed

throughout.

The perturbation velocity u of the irrotational sound waves can be
expressed in terms of the velocity potential x(x,y) by u = grad x . The
resulting pressure in the sound field is given by p = iwpgx(x,y) where

pp 1s the demsity of the initially undisturbed ambient medium.

The primary source is taken to be a line source, parallel to the
half-plane edge, at a position (xp,yg), yp » 0. The problem we are

considering becomes one of solving the wave equaticn

22y . 82y ¢
TR e ¥ = 8- x) 8 -y) : (1)
9% Iy

e
-

in all space excluding the half-plane; here k = ©/¢ and ¢ is the speed
of sound in the initially undisturbed medium. The effect of the half-

plane is described by the boundary conditions

(g; + iksl) x(x,0 =0 , x<o0, (2)

, x <0, (3)

H
o

(g; - ikSz) x(x,07) =



where 8y = pgc/Zy , Bz = pgc/Zy are the specific admittances of the
absorbent surfaces, and for acoustic absorption Re(83) > 0, Re(g,) > 0,

see Morse and Ingard {47 .

In order that thé solution to the boundary value problem (1 - 3)
be unique, we shall also féquire that the field be continucus and
that the edge shall not radiate any energy; also that the field should
be radiating outwards at infinity, see Jones [9] . - The condition that
the edge does not behave like a source, and therefore radiate energy,

requires that the field near the edge behave like

x = 0(l) , gradx= O(r %) (%)

’

1 ,
as r = (x2-+y2)2 -0, !61['b<“ s 152, <® .

s ‘
The behaviour of the edge field as given in the above expression is

different to that given in Rawlins [3] where ]81[ > o , é; = 0. We
have here excluded the latter case and also [52| +® . By = 0, The reason

being that the solution obtained is not uniformly continucus in the limit

IBl'“"'m or leI"’m.

3. SOLUTION OF THE BCUNDARY VALUE PROBLEM

We shall assume, for analyticélconvenience, that k = kr + iki s

kr >0, ki > 0 ., At the end of the analysis we can set ki = 0,

Define x{(a,y) 3 where w is a complex variable, by

Lt

;(u,y) = J X(x,y)eiuxdx . {5)

Zw
e

The radiation condition requires that the ;hase dependence of x(x,y) ,

as !x[ + = _ hehave like e”kilxl. In view of this it can be seen that

;(a,y) will exist for = ki < Im(a) < ki: Then it follows from (1)

that g(a,y) satisfies

& iox
P k2x = e U8 (y-yg), vo >0, (6)



1
where Kk = (‘r;z---catz)2 is defined to be that branch forwhich k¥ = k

when a = 0, Then k will always have a positive imaginary part in the
region ]Im(a)]-"*k..‘ A solution of (6) for a in the strip lIm(oc)l(ki,
i ;

which decays as |y|+=,is given by

2(0,y) = Aw) exp [iky] +exp [ifaxy + ¢|y-yo|11/(2ik), (¥ >-0), (7
= B(a) exp [~iey] , (y < 0). - (8)
Let 0 |
$1(a) = { E((x,0+) - x(x,owﬂeiuxdx ’ : (9)
0
8, (a) = J [§§ (x,o*) - g%-(x,o*z}eiaxdx , (10)
+ 2 . -+ iox :
¥y(a) = J [(—égr- + 11{51) ¥ (%,0 )—Je dx (11)
0
¥s(a) = J K«%— - iksz)x (x,o")]ei“"dx . (12)
0

Then @;;z(u) are analytic for Im(o) < k., 3o and ‘PT y2 () ére analytic for
_'__‘Im(a)‘ Througbout this work a . ‘superscript {or: subscrmpt)
plus or minus attached to any function will denote that the

" function is analytic in Im(a) >-ki or Im(a)- Kki, resPectlvely'f. Using

the expressions (2}, (3), (5), (7) and (8) in the expressions (9) to

(12) gives
&1 (@) = Ae) - B(a) + exp [i{axg + xyo}l/(2ik) , (13)
//”
¢, (a) = ic(A{a) + B(a)) =-exp [i{lcmo + kygltl/2 , (14)
w7 (@) = Ae) (ix +ikpy) + (—ik +1ikpy) exp [ifaxy +xyo}1/(2ik), (15)
3 (@) = “B(a) (ix + iky). (16)



Eliminating A(a) and B{a) from (13) to (16) gives the matrix Wiener=—

Hopf equation

¥ (o) = K(a)g () + D@ (17)
where '
O $1 ()
£+(&) = + ’ Q,(u) = - s (18)
: "Pz(u) @2(0(.)

1 i(e +kBy)  (k +kB1)/x
K@ =5 | i(c+kBy) =(x +kBp)/x (19)
(RBE"K%'exp[i{uXO'FKYO}}/(ZK)

R(a) = . (20)
~(k8y +x) exp [i{uxy +kyp}l/(2¢)

The expression (17) constitutes a coupled system of Wiener—Hopf
equations. The standard Wiener-Hopf technique can only be applied if

the system (17) can be uncoupled into two separate Wiener-Hopf equations.
This requires that the matrix functicnlﬁ(u) can be factorized. This is
not a trivial operation and it is not always obvious that ome can in
fact factorise the matrix. In the present problem it is shown, in

sppendix A, that the matrix K(a) can be factorised such that

K@) = Y@t (21)
where
foy@ U IO IR IIONS
Ula) = y Lo) = S (22)
ugy(e)  upp(w) o~ U21(@ 2p2()
The elements of U(a) are given, see Appendix A, by o
oy () = -1 CCEFal s ARG (T ke v By () m[; f Q(u)du] (23)
(Vrea '+ EBE,(W) (VR tal + &32(*)') - _



. . , o @
(VEra + B (1)) (Y k+a + VkBy(=))|*
uz1e) = | (VEK+a + &B, () (Y kra + Ae ()] P : J Qu}du |, (24)

(@) = kretuyge) (25)
upp (@) = ~(k so)tugy (@) (26)
where -1 cos™1(~/T~ 87 ) cos™1(Y 1-8%)
Q(u) = + +

etk am(uik/ 1-85)  2r(u-k/ 1-3)

cos™1(-Y'1-8% ) cos”i(/ 1-85 )
2n{u +kf"f_:"§§__') ' 2n(u~ky¥ 1~-B3")

_ kBp. cosTi(u/k): { 1 - 1 }
2 Y k2 -u? u+kJ7fT§? u~-ky/1-82
- kB ‘“005“1(uii? { 1-w_mw‘ . 1 _ }, 27
2m k? - u? u+kﬂ—s§ u—kmsg
and
By,o(#) =12/ 1-p3,2 . (28)

The elements of H(o): uij’i’j = 1,2 , are analytic in Im(a) > wki.
The elements of L{a) are analytic in Im(ajic‘ki and are given in terms

of the expressions (23) and (24) by

_ _uiyfa) usq {a)
2’11(0’-) = 1k *kBl) * i(il'i‘sz) ) (29)
ull(u) (k‘*’O‘.}% . UZJ.(O:)(k“I“G)%
Lipla) = s (30)

i(c +KBy) i (x +KBy)

b (@) uyy (ede _ uy g (a)K an
21 81 s -t - »
K +k81 K +k82



i 1
uyp{adek +a)” upp(adkk +a)?
Lop(a) = + - . (32)
‘ K +kBq IS +§;§2

Having factorised K(a)explicitly, we substitute (21) into (17) giving
vtle) ¥, (@ =L Me) B_ (@ + U R@ , (33

since U(a) and L(e) are non-singular matrices, By carryving out the

matrix multiplication in equation (33) we obtain the two equations

g + + - = -
(Det U)~LGugy ¥7 ~ujp ¥2) = (Pet L) Y(fgp 01 = %12 @) + Gy, (34)

I

- + + - " -
(Det 0! (~u,, ¥y +ugy ¥2) = (Det L) L2517 &1 + 231 20 + G2, (35)

where
"Gy (o) = (Det 1) Mugp () (kB —x) + urz(e) (kB +x)}exp [1{dxy +xyg}l/(2¢) , (36)
Gy(a) = (Det W)™ H=uz3(a) (kBy —k) = upjfe) (kb +x)}exp [i{axg +kypll/(2¢) , (37)

Det U (a) = uyy(a) upyla) - 1y, (@)u,, (@), Det L (a) ﬁ”gli(a)gzz(u) ",212{“}221(Qb

By means of Cauchy's integral theorem, see Noble [10]}, we can let

6(8) = €T + GI() , Gyl = GH@) F GI) (38)

where

Gi(a) = :t«i-]n?«- ' Gr(e) (39)



...]_o....

dt , 0 <1, <k, . (40)
i

The representations (39) and (40) with the upper (lower) sign are valid
when Im(a) > - 73 (Im(a) < T3) and define GI’Z(u)(G;’z(u)) as analytic
functions in Im(a) >~ 11 (Im(a) <:t3). . We note that in the limiting
case of 11 = ki = O the sbove integrands have an integrable singularity at
t = -k, This follows from the results (a47) of Asppendix A, which show that
G () =0(1) , G(t) = D((k-rt)_%). Standard asymptotics also shows that

+ -
Gl,z(u) = 0(a"%) , as lu! + @, (41)
in their regions of regularity.
We may now write (34) and (35), by means of (38),in the standard
Wiener~Hopf forms: '
- + _ + + - - - -
(Det H) 1(&22 Wl - ul2 ?2) - Gl = (Det k) 1(£22 ®1—%12 @2) + Gl » (42)

+ + - - -
(Det H)”l(‘uzi Wl + Uy Wz) - GE = (Det L)ﬂl(—221 ¢y + 211 @2) + Gy . (43)

In order to be able to apply the novmal Wiener-Hopf argument to (42) and
(43) we shall require some knowledge of the behaviour of the functions

as o] + = .

The edge condition (4) requires that the transformed functions must

behave like e

-

il
il
Pt

57(a) = 0(a™Y) , 93(0) = 0@@™?) for Im(a) < kg, [a] + =3

(44)

[H
il

+ -1 -1
¥y (o) ofa *)y |, w;(a) 0fa #) for Im(a) > “ki_, la] + = .
By using the above results in conjunction with (41) and the asymptotic

growth estimates (A45) and (a46) of jppendix A we find that:



- 11 -

For Im(a)- > ~k, as la| + =,

: ) b ) . - N
(Det W7 lugy ¥ = 0(™%) , (et P7luyp ¥p = 07,

GHw= oY , Ghe@) = o@D r (45)
et m~liyy ¥; = 0@™Y) , et Hluy; ¥ = 0l .
For Im(a) <k, as o] » =
(Det L) 1oy &; = 0(1) (Det )71, By = O(a—%) )

61(a) = 0”1 , G2(a) = 0@ Y , : (46)

- 1 -
(Det L) Yip, 8 = 0(e72) , (Det L)712y; 8 = 0™ .

The results (45) and (46) show that the left-hand side and rightuhand
side of the equation (43) are analytic and asymptotic to o{l) as

|u| + » in Im(a) :Hmki and Im{a) -<ki,respectively. Similarly the
left~hand side of equation (42) is analytic and gsymg;ptigan 9(}) in
Im{a) > ~k; as la| _wﬁereas the right-hand side?is |
analytic and asymptotic to O(1) as Ial + o in Im{ow) ‘:ki'

Thus by Licuville's theorem the analytic function which is a contin-
uation of both sides of these equations in the entire a-plane is a

constant; the constant being zero. Hence

.+.
U“1WmG=G1=w = UG
LS ) ot Rt
2 ”
or
+ +. +
¥) = Gugy + Gp uyp (47)

+ + +
¥p = Gugyy + Gouzp (48)
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By substituting (47) and (48) into (13) and (16) we have

Ala) ﬂ“i(K+k81)”1(G;u11+83u12)-+(K—k81)(K+k51)“1 exp [i{ax0+myo}]/(2ix),

- + (49)
B{w) =i{|<+k62) 1(G1u21+{;2U22) s
which on substitutirng into (7) and (8) and using the inverse Fourler
transform of (5) gives
wdiT [r . }
‘ + + ‘ L10XGFRYD . .
. AG K~k e -
—~otlT }_(K"{‘kBl) (K"‘kBI)ZiK
1
+ 2 BV - x) 2+ (5 -y)2D) > 0), (50)
o] T
+ +
[G +Go 1y oy e .
_ l‘f jUp3TYzUa s o lox 1Ky'da, (v <0) , (51)

2T wméiTi “i(K+kSZ%
~ki <=1y < T < ki’

as the solution to the original boundary value problem. As a check,if
we allow 83 = Bz = 0 the expressions {50) and (51) reduce to the known

result (see Noble [10,p.87]) . for the diffraction of a line source field
by a rigid half-plane. g
|
The physical interpretation of the solution given.by (50) and (51)
is made more apparent by asymptotically evaluating the integrals for the
receiver point (x,y) such that k(xz-ky2)2/4fm This corresponds to the
ohserver at (x,y) being in the far field. In practice if the lime source
at (xo,yg) and the recelver at (x,y) are more than two wavelengths from :

the edge (0,0} of the barrler then to a good approximation we can assume that

we are in the far field, and the incident field is a plane wave.
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4. ASYMPTOTIC EXPRESSIONS FOR THE FAR FIELD

The asymptotic methods though straightforward are tedious. We shall
merely outline the calculations, more details of the techniques can be
found in Noble [10] .. Consider first G1 ,(u) as given by (39) and
(40); let k be real, then 1) = 0 and the sntegration path along the real
axis is indented below the point t = a. Substitute xg = rg cos9p,
yo = rp sinbg, 0 <8p <w ; t =kcosg, 0 < Re £ < n, then the integrand
has a saddle point at £ = 8y. The integratioﬁ path is now deformed into
the steepest~descent path $(8g) described by Relcos (£~ 6g) 1 = 1,

Imfcos (E—~ 8g)] = 0. In the deformation the pole at-k eos & = o is
jntercepted if o < k cos 8g. The integral along $(6g) is asymptotically

expanded as krg + @ by means of the saddle point method.

Thus it is found that

X , 1
+, .. 1 {(By-sin 6oluy,(kcos Bp) + u ) (kcos By) (Bp +sin 000} (27 ikrg-im/4
G1(w ™ 701 ¢

Det U(k cos 85) (cos 8p — a/k) krg

+ £ (kB MK,)lu‘?"z(w M (EBZ ML PN .H[k cos B¢ — a]ei{axn”‘“KYO} ;) (52)
2¢ Det (o)
& ) _1 {(By~sinBy)uy (k cos 8p) + (By +sin §y) uy 1 Ck cos 83) ) }..Z"fr' ikrp-ix/b
- — e
z 4mi Det Uk cos 8g) (cos 85~ a/k) kxg

{(kgy ~)ugy (@) + (kBy +xIuy{ad}t e
_ 1 21 2 TKITIING H[K cos 8, - MIRACC TR Y, (53)
2k Det E(a) ’

where H[x] = 1 for x.> 0, H[%] = 0 for X < 0 (Heaviside step function);
the result is valid for kry + =, -k < a < k"3 the second terms arise from ]
the residue contributions. ' T
|
I . .
The results (52) and (53) for Gl’?_(a), when ingerted inte (50) and
(51),give

x(%,5) = xp(x:¥) + XGA(X,Y) s (54)



where

o) = S Hhroin/h
XY kr, 4wl 27

w+iT
X J [(B,~sin Bg)u,,(kcos 8Juy,(a) + (8, +sin6ydu,,(kcos 8y)uy, (a)

....(;;..g.i.r

~[8,~ sin By)u,, (kcos 8 )u, ,(a) - (8, +sin 8y )u,, (kcos 8y)u,, ()]

[Det gl(kcos 8,)(cas 64— a/k)i(x+k81)}“151GX+leda,(y > D)) (55)
} ngij elkrn—lﬁ/4 4
krg Arl 27
Tt
X [(B,- sinBg)u,,(kcos Byluyy (a) + (B, +8in 8y)u,,(k cos 6g)u,, (a)
o1 T

-(B,~sinBy)u,; (kcos Bylu,,(a) - (B, +sin8;)u,,(kcos Bylu,,(a)]

[Det U (kcos 85)(cos 8, - afk) (1) (x # ksz)]"léiéxmiKydu,(y,< 0) (56)

Ka Gy = gy B 0 =m0+ &=y *D

wtiT

1 [kﬁl - K e“"i(l(xmxgl). +ik (y+yg)
E \W) {Hlk cos 6o —al™l) : do L0y > ) (s7)
2 +i 1 2ix
—t1T
1 FRAT e e-ia(xﬂxbjl+”iﬂ{yg“Y) _
T [k cos 8, = al 5Ty do, (y < 0). (58)
SetiT

The integrals in the expressioné (55) and (56) can be asymptotically
expanded for kr + = by the saddle point method following the usual
steps: substitute x=1 cos®, y=rsinb, -1 < 8 < 7wy a=kcosk,
O < Re £ <7 , then the integrand has a saddle point at £ = 7 ~ 8 and
£ = w + 6, respectively; deform the path of integration into S(w ~98) and

S{r +6), respectively; apply the saddle point formula. This gives
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. . ik
XD(r cos &, rsing) ~ 2.; ?r:lc—fz"(; otKT0 _—HMD(S,GO)?; i (59)
X - T
where -~k cos B
D(6,80) =- eiﬁﬂ’ﬂ_:‘ eXPI_—%Jk cos %,‘Q(“)d”]
2VZnk (cos 6 +cos 8,) cos (84/2)
) | sin 6] { | sing| -8, >%"€/z"sina/2+/—Bl‘(+))(Ji‘sine/z+/glc—)) t

{(sin B8 +B1) {sin 6 - B2) 15N | sin6| + 8y / [(VZsin6/2 + VB2 () (V2 sin 6/2 + VB2 ()

MH—

[(¥Zcos 8p/2 + VB (+)) (Y2 cos 85/2 + VB3 (=)) |
(VZcos 06/2 + VB1(9) (/Z cos 89/2 +VBI(-))

X{(Bl—'sin BO)ICSin%?‘cos %O) _

. 6o . o |(/Zcos /2 + ET(H)) (T cos 89/2 + /51 () |
+(Bg+smeo)(cos—2— sm?z-u.)
W(¥YZ2cos 8p/2+ ¥Ba (%)) (Y2 cos 89/2 + VB2 (~))

Kol
S
w

kr + «, kry + =, O'<80'<1T, -1 < 8 < W, cos 8+ coseg¥0.

Tn a similar fashion the integrals appearing in the expressions(57)
and {(58) can be asympotically evaluated by the saddle g-)oint method., In
the integrand of the expression (57) let x-xp = Ry cos 8o _,,.
y+yg =Rp sinBy , 0 < 8y < 7, a=kcos, O < Ref < 'm; ar;d in the ex-
pression (58) let x-xp =Rjcos8) , y-yo = ~Rysin 8y, 0 < '6.1' <,

o = kcosE s, 0 <Re g < 73 see Fig., 1. 1 'T‘he saddle polnt of (57) and (58)
is then glven by E=m ~62 and E=w-—081, respectlvely ;_Deformlng the path
ot "Integration into ${w - 8z) and S{w-8&;1), respectlvellﬁ%',‘:'at{a .applying the

b—gaddle point-formula-gives: oo ] ._ R,

: . ' in
. 1 /9 1kR 11T/4 1 :l.kR —lTF/’ B1~sim b2
'x i~ ——— l
GA(r cos B,r sin © &1 V $kR; - 4 ?TkRz By +sin 8y

e e e ¥ e i i

X{H{(cos Bp + cos 82) —1} > 0 < 8 <m, kRy + = 3

T £’H§<_R1 1" H(ccs 9§+ cos @1) —v< 8 <0, k31 .~>m .

(60)




By using the fact that

H(cos 8p%cos 8p) — 1= ~H[6+8p - 7], H{cos 5 + cos 51) =H[6 - 8¢ + w]H[-8]

for 0 < 8, , < m, 0 < B, <m, we can rewrite the above expression for
2

XGA a8

i 1 f2 ikR,-in/4 .
XA (r cos 6, r sin 8) 7T Wlee Hie-8,+7]

- . B,~sin @
1 /2 ikRp-in/4 ( 1 2y
- e i [ B+ B W (61
41 YrkR, 8, +sin_92} [ o=l s )

-n1 <8 <m, kR » =, kR, + = .

1f the expressions (59) and (61) are substituted into (54) we have

finally the expression for the far field

. . sin B2 —81‘
%(r cos 6, rsing) = g7 HEP) (kR)H[B -8, + 7] +Zi-Hél?(kaz}(gggji:zzg_/H[e,feo -7
(1 ikr
. j% o ) (kro)D(8,8,)% (62)
T

kr +® , krg * @ , -1 <08 <71, 0< 8 <7, 0 # £ (n ~9,),where
B(6,9,) is given by (60} and we have replaced the asymptotic term
(2/?12)é exp [iz~in/4] by the Hankel function Hgl) (z) ; it is understood

that its asymptotic form is uvsed -in (62).

The physical interpretation of the result (62) in conjunction with
Fig. 1t is now obvious. The first term represents the incident eylindrical
wave due to a line source at (x¢,vVe). The second term is the wave
reflected from the upper impedance face of’the half-plane. This
reflected wave appears to radiate from aﬁfimage line source at (xg,~¥yo).
The reflection coefficient (sin 8z - By /(sin 82 + 1) occurring in the
second term, is the same as for reflection of a plane wave incident
at an angle 7 -8; on an infinite absorbent plane. The first two Terms
of the expression (62) represent the geometrical acoustic field and
they will not exist everywhere. The regions where they are present are
governed by the Heaviside step functioms which multiply the Hankel
functions. Physically these regions correspond to the shadow and

insonified regions. On the boundary between these regions the arguments



of the Heaviside step functions vanish. The last term of the expression
(62) represents the diffracted field, which is a cylindrical wave which
appears to radiate from the edge of the half plane, to all points in

space.
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Appendix A N

In this appendix we shall factorise the matrix K(a) given by the
expression (19) of the main text. In order to simplify the formulae of
this appendix we shall assume k is real, i.e; ki = 0, There is no loss
of genmerality in this assumption. The end results are analytic functions
of k which will be valid for ki z 0 by analytic continuatioﬁ. We shall
reduce the problem of factorisation to the solution of a set of Hilbert
problems. These Hilbert problems are then solved by Muskhelishvili's

theory [11}. Some asymptotic growth estimates conclude this appendix.“

Reduction of the matrix factorisation preblem to Hilbert proLlems

We assume a factorisation of the form

k(o) = U}l () , (a1).

exists where

' ERIOEITION :
L{a) s L . {A2)
L L2ae) fap@)

[(uy3(@) upa(e)
{ upife)  upp(o) J

[

U(a)

Lo (A3).

The elements ﬁij,(i,j_= 1,2) of L{o) aré aségmed to be.agalytic in the cut
a-plane [ arg (k~a) f.< m, The eleménts uij(ij = 1,2) of U(a) are assumed
to be apalytic in the cut, a-plane I arg(k +o) 1A< 7. This means that L{a)
is analytic everywhere except along the branch cut k = o < o Im(a) = O;
and U{e) is analytic everywhere except alon%ﬁﬁhe branch cut = = <a< -k ,

Im{a) = O.

We note from the expression (19), that
Det K(a) = ~i{k +kB8;) (k +kB8o)/(2¢) #0 , (AL)

in the cut c-plahe, since-‘%~€ arg(K)4<%:“and Re(kB1) 2 0, Re(kBy) & O.
Hence X(a), and consequent ly U(e) andf&"l(a) are non-singular matrices in
the cut plame. We now analytically continue the left-hand side, and

consequently the right-hand side of (41) about the branch cut at & = -k,
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This gives

1

K'(g) =0 (&) 1D

- @< £ < -k

K () =U (8) L"H®)

where in this appendix only we use the notation F+(E) = F(fEIeiﬂ) to

. denote values of F on the upper side of the cut, and Fm(g) = F(]g[e*iﬁ) to
denote values of ¥ on the lower side of the cut. We remark that in (A5)

L‘l(a) does not jump in value on crossing this cut because it is analytic

at @ = f, = » < £ £ -k, Eliminating L-1(g) in the expression (A5) gives

U@ =k @KTOITTE , ~e<E< k.

We note that on the cut a-plane

K o= * i(§2~'k2)%= + iirl for o = ~£eilﬁ , ~ ® <& < -k

and therefore

. ) (-} +ikBy)  =(=|k] +ikBy) /e ]
K (&) = 5 '
~ (-]x] +1ikBp) (-lx] +ik82) /|k]|
_ (el +ikspp=1 (x| "'“ikﬁz)ml
K&yl = “
~ le] (et +ikg~ho=]e] (x| +ikB2) 71
so that f"[K[‘*ikBI“
+ - 0 (~]KJ'*ik82:
K ) Ik-1E)] = .
~ ~ "]Kl + ikBy
— 0
k] + 1k,

Substituting ( A10:) into (A6) gives

- + ik -
NG =(_E_Kl;ﬁi)u21(g) ,
le| +ik8,

»

(AS)

0)

(A7)

(48)

(A9)

(A10)

(413 )



The egua

for ujp and uzy.
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it

11;1(5) (M)u'il(g) , ( a12)

be| +ik8;

+ =f"‘*<|+ik81)— :
uyp (8) \"Te |+ ikE2 upo (8) (A13)

~{k| +ikBp\ -
ugp(E) = (w)ulg(‘é) » — o < E < =k, (A14)

cions (A11) and (A12) form a coupled system of Hilbert problems
Similarly equations (.413.) and (A14) form a coupled

system.of Hilbert problems for ujp and uog.

Clearly if we can solve the coupled Hilbert problems

then we can

o = —-——]—rikgl “ 1<l (815 )
1 ik82 + i u,?. Hd AIS
- = < § < -k,
ikBo - _
u;(&) = (»E-_E——iﬂ'ﬂ)ul-(ﬁ) R (A16))
ikgy + |x]

solve equations (At1) to (A14 ).

Solution of the Hilbert problems (A15) and (A16)

We solve (A15) and (A16 ) by first uﬁcoupling them,

by taking logarithms of (A15) and (At16) and then adding and subtracting

the resulting equations.

o~

This is achieved

This gives the two uncoupled eguations

- ikBy - ik8 -
(1og v(0)1*- Dog ¥ T =10z (35 ;E}Xikgz ] (A17)



DT

- ‘“ 2 4+ k2p2
{1ogW(E)}+-ﬁ[logW(£)} ="Tog JKI e y - @ < < =k (418)
IK}z-%kzsz
where
V(E) =uy(E)up (&) Ca19)
W(E) =uy(E) fup (E). 420)

. + - i
By using the result [V kK+a']™ =% ifk+£|® in the equation (A18), we

can write {( A17) and { A18) in the form

LogV(£)1" - bel -1k || - ke -
[1ogV{E)}] “[logV(£)] xlog(IiK[~+ik81)(ﬂyr:jﬁaiiﬂ (421)

-w < E < -k ,

10;{‘9\?(&) J‘F . {1@2W(E) ]* _ -3 . J } 2 11.2p2
v .,"'_ = -—-——-wm - g !D;g 7 .K + K B (

" These are standard Hilbert problems whose solution is given (see {11}) by

-k
_ 1 k] = ikBa V|| - ik, Y] dt
vee = EXPE?TJI-‘)%KIKI +iksz)(me—z)]?7"] ’ 423)
1 ~k . -
} ke’ 1 C e ]? + k%827 de
W(a) eXpl: BT J mﬁﬁlog[lﬁiz"*kzgé]t"oj > (A24)

Obviously the exponents of V(&) and W(z), and consequently V(o) and W(a),
are apalytic in larg(k + )| < n ; furthermore V{a) # 0 and W{a) # 0 in
larg (k + )| < 7. The expressions (A23) and {A24) can be reduced to
simpler form by carrying out the integrations, see Appendix B. In

particular it is shown there that
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0(1) and V{a)}

H]
fl

W) 0(l) as |a] + = ,|arg (k+o)|<T 3

and

il

Wla) 6(1) and V(o) O¢k +a)"%) as a » -k, Re(gl,z) > 0.

[}

Thus particular solutions of (A15) and (A16) are given, from (A19) and

(A20)
o (@ = -Vt
b = V1% W@l
where
V() 1% = explbd(@]
Ew(a)l% - [F#fk+a + fkgl(+))(t@k+a + VkBy (- ))J%
ke o+ /k82(+§)(/.k*a‘ + vYkpo (-}
J(a) is given by the expression (B13) of ‘Appendix B, The - choice

of sign, on taking the square roots, for u;(u) and uz\a) in (A27) to (ABO)

is justified as follows. With the signs given by (A27) :to (A30) we have

+ + )
uy (£) =_(v (5))ﬁ LDV
= ) ()W (E))

By means of Plewmelj's formula [11,817], (A23) gives -+

Vi _ glel-ikeyy IKI-1sz mw<E<-k
V(g (]K{ +iksy J\ || +1k83)

and from (A30)

WEW ()

i

{(]k+ £l +kBl(+))(]k+g| @ksi(—})]%
(|k+&] +kB, (\N(|k + E] +kB, (=)

] {'gE -k2 +%2p ] . [Ue] +ikp1) (|« |-1k81))
£Z ~kZ + k262 \ (|| +ik85) (|| = ikB2)

(a25)

(A26)

(a27)

(A28)

(A29)

(A30)

< E < - k.
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Hence

- ) (E) % + - i ikgl ""‘IKI
VI WHE) ) A,
(vk(g)) CMOLROILEE

and therefore

uj(e) _ ikBi= k| |
uz(g)  ikgz + k]’

which is clearly consistent with {A15 7).

It is emphasized that the above result  for uj{a) and up(a) is just a
particular solution, and not the general solution. To obtain the general
solution we must impose further conditions on the functions uj(a) and

u; (o) that we are interested in. First it is required that
81 %*52
) = C((k+a) Y} , us(a) = 0((k+a) ), as a » -k , (A32) .

for some 87, » =1, in order to guarantee the convergence of the integrals
(39) and (40), the singularity at t = -k being integrable. Secondly, it
is customary for the Hilbert problem to reguire that uj(a) and up(a) have
finite degree at infinity, that is, uj(a) and u,{w) have polynomial growth

as | o] +w .

To determine the general solution for uj;{o) and up(a) under these

conditions, substitute
i L& 1 -1 %
up{o) = -[v(@) 1P IW(@ IPuy(a), up(e) = [V(@) ]*[W(a)] 2up(a) , (A33)
into the equations (A15) and (A16), 1eadingﬁto the vector Hilbert problem
E + * - E + * - . .
[ui(e) ] = lup(8)l s [up(E)] = [u(8)] , - = <g<=k
under the conditions

e = 001 i) = 0+ 2tY, as a >k,
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* * - - - - -
and uj(a), up(a) have Iinite degree at infinity.

The Hilbert problem is

THORE G

il

uf(e) + uf @) , —=<f< -k,

wf(g) = of@ | _ luke) - wF@ | , @< E <k .

V' k+E v k+E

| . s + L 1
where the second equation was divided by [Y k+Z ]7 = % 1£k'+ 512' Thus

. % * * * .
the functions uj(a) + up(a) and ful{a)-"uz(u)]ff k +0o are contilpnuous across

the branch cut, hence by a well-known thecrem [11, p.36]

these functions are analytic in the entire a-plane except possibly at

@ = -k. Such a possibility is ruled out by the requirement &;,, » =1, which
ensures that there can be no pole singularity at o = -k. In conclusion,
u?(a)-+u§(a) and [ut(a)-—ug(a)if/wiﬁrau are entire functions. The second re~

* * . P . .
quirement of uj(a),up(a) having finite degree at infinity, combined with

Liouville's theorem then yields

ul (o) = uj(®)

afe) *upe) = 281(0) , —memee = 2R2(®)

) =Py R @V ETE . ur ()

where P1{a), P»{a) are arbitrary polynomials.

for u;(a) and u, (o)

]

uy (o)

i

ap ()

is given by (a33)  and '(a34) - as

(o P 1Hp @) P @V E S ),

[V(a)ié{W(a)lmé{Pl(a)-‘Pz(a)v K+a}

Solution of the equations (411) to (A14) -

¥rom the solutions (435) and (A36) ¢ the matrix elements uij(a), which

satisfy equations (a11) to (414) , are given by

upgfe)

up 3 (a)

i

SV 1P 1R 1 () +P21 (@) VKT ),

7)1 () T72{Py 1 (@) ~Poy @V kg ),

P]_(OL) ~Po(a)v N

Finally the -general solution

uncoupled through addition and subtraction, yiz,

(434)

(A35)

(A36)
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il

wp (@ = -V @ 1HE 2 (@) +P20@)Y ETa b,

bpp (@) = [V(@) 1200 () 172{R , (0) ~Pop @)/ EFa )

where Pij(a) (1,5 =1,2) are as yet arbitrary polynomials. The matrix U(a)

can be written more compactly as

UG =gl @e@ ,

where |

o IV VW) 1 —{vcan%{wcwﬁgkmﬁl
U920 = v P 17 ~IV(@) 1) 1T E(k +a) ?

Finally we must ensure that Ufo) and L{a) are non- singular in the cut

a~plane. This puts some restrictions on the Pij' The exact restrictions

are determined by looking at Pet U(a) and Det L(o). Thus

1
et §(0) Det P = 2V(a) (k +a)? Det B

Det U =
_ -1 - 2ik i
Det L = Det K™ Det U VKB (T RES) 2V(a) (k +a) *Det P

Therefore U and. L 'will be non singular in the cut a-plane if

Det P # 0O fg: all a. Since Det P is a polynomial, one must have Det [ =
constant, i,e. a polynomial of zero degree. The matrix factorisation is
_not unique, and it is desirable that the polynomials Pij(a) have lowest

possible degree, in order that the two sides of the split equations (42)
and {43) also have lowest possible degree at infinity. Then the best

choice for P(a) is

;3((1) = ( g_} (::L) )/0”'

Thus we have chosen the factorisation

v im@ i,

uyje) =
uy@ = @ IEm@T
(@) =~V W@ k+a)?

WO W] Pk,

il

ug5 (o)

(A37)

(A38)

(A39)

(AL0)
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L L
where [V{e)]1? and [W(a)1l? are given by (a29) and (a30).  The corresponding
matrix L(a) is obtained by substituting the above expressions (A37) to
(A40) ~ into
Lio) = K 1))

or

211 %12 i +RBDTY =i +kB) T (upr w2

fg1 a2 k(e +kBpTH —k(c +kB82) "1 lupy upz

giving

v e 1t v w17

.Q.}_l = K+k81,'_ - ‘K*ksz 3 (AM) '
1 1 H 1 ~% 1
V@I W@ Pk +e)? | ilV(@) )P [W(a)] Tk to)” ,
fiz = K +KB1 d % TkBy ’ (a42)
v@lmwl | <@l m@i
_ K o Wid _ klVia W(a
o1 = K + kB i +k821 ‘ y (A43)
1 1 i L . 1
k@) ) W) 3 k+a)? | k[V(a) 1 [W()] "k +a)?
#22 = PESTRY! * (x kB2 : (a44)
Asymptotic growth estimates
From the expressions (a37)  to (A44) -, and the results B15)., (B17)
of Appendix B, we obtain the following growth estimates for large Ial s
up1(e) = 0(1), o () = 0Gd)
. (445)
u21(3) = 0(1) > - e u22(u) = 0{a®) ,
Det U(a) = O(a%) , a8 [al + @ in [arg {k-#a)l < T o
-l
211(a) = 0((1“"1) » Lyo(a) = O(e %) .
- (446)
) . 13
£51(e) = 0(1) , £o0(a) = 0(a?) ,

L
Det L(o) = O(a %), as 1&! + = in |arg (k-+a)| < 1o,
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Tn the situation when & = —k the expressions (A37). to (A44) in

conjunction with the results (1g) and (813) of Appendix B give

o1) .,

-k

urp (@) = 0((k+a) “) U;;(d) =

) - (447)
Uzl(ﬂv) = O((k“!'o’-)ma} 3 UZZ(G) = 0(1) »
Det E(u) = O((k-+a)*%) :
par(a) = O(Gk+0) D Pyp(a) = 01 |

] {AL8)

Lo1(0) = 0(1) , foo(a) = 0((k+w)?)

Det L(w) = 0(1) 3

<
*

as o + -k , Re By » 0 , Re Bo ?



APPENDIX B

In this appendix we shall give explicit expressions for integrals

which appear in Appendix A, namely

I(DL) = "2“;' e — —a »

" "1J“k 1 1 [[K12+k23§ dat
T ieg
o R¥E[?

x| 282

and

T

w0

~k k| -ikg. \/lc]-ike
J(a) "2""7}?{} Tog ( 1)( 2) td_,i;
|| +ikg, /M k| +iks,

H]

where IK] Y{t2-k2) for - = < t < - k .

Evaluation of I(a)

I(g)can be written as

L Jm{xogz.t&-wl—-e%n ~logle?-k?(1-67) 1} de
27

He) (tk) 2(t+a)

k

il

: 1
;L.[m{log[t+k(1—32)%] +loglt~k(1~82) %]
2T 1 1
k

1
:log{t+k(1"32)%] —1b%£tﬂk(1m5§)2]}l?ET§§¥z;:f)
7 O o

=-§; fw{log[t+kal(+)] +1oglt+kB,; (-} ]
0

~loglt+kB, (+)] "lbg[t+kﬁé(—)]} mywég~»*~

£2 (t+k+a)

where B, ,(%) = 1%V 1-8] .

1?2

We now use the result [12, form. 14.2(27)].

6:3))

(B2)
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o

k¥iﬁi§l dt = ZL10H + /D),
0 e*(t+y) Y

larg ¥ < , larg 8] < 7 ;

giving

¢/ Kvo . + ¢kBI(+))(/ k+q + kai("}) X (83).

I(a) = (k+u)_%;

(Vk+a o+ ¥k32(+))(¥fk+a~‘+.kaZC‘))
targ (k+a)|< 1, Re By >0, Reg,>0.

Evaluation of J{u)

J(a) given by the expression (#2) can be written as

J(a) = ju 1 J_k 'z.]lklfikglx lg]—ikﬁzT dt du (B4)
- o ag
AR [K[-ﬁ*ikﬁl} ].<;+i1<52J (t-w)?
= Jye e (35)
where
ey e [<|-ikg,} 4 |
e Juk Ie|-ikg, ) 4.
J = — 1 q . 7
Z(u) i [Zﬂl ! o8 lKl+1k821(t_u}2 duJ ®7)

We shall now evaluate Jl(u); By carrying out an

integration by parts, Jl(a) can be written as

-

_ - [ -
o ! L1 k a4 X ]Kl“lkﬁll at ;
2(u+k) 271 at |*° [K’+ikB}J t—ul oY

wlXy

Jl(a) =

g ey

Q
I

) 1
I Ql(u{} s 58)

where



.31

where 4 g('l'(l*ik.f-”l }
1 Hﬁ{ﬂ.k x;+ik81
Q) = 5r ' dt
t+u
k
e
Y t _ _t dt
Zni ) Tel{Jxl-ik€3) J(fej+ikBy); € +u

k
_ kBy [ t dt
T ) V e2ok? {e2-k2 (1-82) } (t+u)

t dt

Expanding the integrand of the last expression into partial fractions

gives

KB

v e-k? (t-kv 1-B§ )(t+kf'1w8§)(t+u)

Qy(w) = ST

—— §

kBl

" b R
[{twkﬁ,l—ﬁgn- e+ky 1-p¢

1 1 } dt

H

1 1 1
T 2w utky 1n8§ Atk 1~B§ tu
k

R 1 1 o1 dt
u-kv 1-B% . t+kV“1"B§; t+u /v té~k4:
We now use the result
~1
at _cos"(8/k -
J Jt2<kZ (t+8) ¥ kz—a2x? , |arg(rd) | < 7w, cos™H(O) =

k

in the expression (B9), giving

Qru) = k1

2a {utky 1—3§ )

|

cos’i(—rjl-sf-)_ cos™! (u/k) }
VRZ-kZ(1-82) . kZu?

x
2

(t+u) ¥ £2-K2

>

(39)
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(R10)

Zn(u-kd ToE ) | VRS AAED) . T Tieea?

0 < Re cos"l(u/k) £ 7w , Re(fsz~u2_} z2 0, Re{By) > 0, f arg(k+u) ] < T,

In {B10) both the functions cos“i(u/k) andl’“kzmuzf have branch cuts at
~®w<yu<-k and k <u < =, The quotient cos“l(u/k)/f‘kzmuz igs however
comtinuous across k € u < » , hence, this branch cut can be omitted. Then
Qi{u) is indeed analytic in l arg(k+u)z < 1 with a single branch cut

~® < u < ~k. We also note that Qi{u) is analytic at u = # k/éirggf .

since the singularities cancel. Substituting (B10) into (BB) gives

o

Ji(a) = e . kB y cos™1 (_,/ .-1"8% ) cos~ ! (u/k)
1 2 (utk) 21 (u+ky 1~8% ) KE) -

+ {(811)

kg, {COS—I(Vl"B%J cas™ ! (u/k) ]
it s -1 du.
2n (u~kv 1-8% ) kB4 Y kZ-u?

From the expressions (B6)and (B7) it can be seen that the corresponding

result - for Jo(a) can be obtained from (B11).by replacing the subscript

1 by 2. Thus

ol ' | ;
-1 kB, . cos” (- 11“52@ cos™(u/k)
o] [ =4

+ e o
2 (utk)  2n(utky 1-85 ) kB, Y ké-u?

e

KBy S[ COS"I(Y'I“BE“}= cos™ 1 (u/k)
e B T (B12)
k8, A K2u? ? )

ZH(U“RJ 1—8% )]

-

Combining (B11) and {B12) into (B5) ' gives

o
I(a) n—-j Q) du
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where

P S cos“l(-vkl*ﬁ§:)+'¢03*1( ,1‘8§-)

Qfu) = ,
o 2n(ui/ 1083 ) 2mGu-k/ 161 )
cos;z(“v,1~B§ ) N cos™1(/ 1-8% )
+ —

27 (utk? - 1-85 ) 20 (u-kv 1-B% )

_ ke cos'lcu/k)[ LN S
on VkZ-u? utky .1—3'2'1 u~ky 1-B%-

_ kB, cos™t (u/k) : 1 —L
7 Vi lww/ 18wk (13)
We note in particular that
Tk ST b
V(o) = explI(e] = [0TRIITRy Jlark/io6; )
ot k ‘
. awk(?-Bi cos"%(?1—8§}/2ﬂ [‘a*k/q:ggm cos"l(J?—Bg)/Zw
a+kv1~85 l_ a+kv1-82
kB, * cos™ (u/k) ( 1 1 1.7
Xexp | - o7 VA s+ - 3 du
- a8 ak/1-e2 | |
. " o J ( _
| “(u/k) 1 1
Xexp | - —2 [ cos — + d Bt4
n o2y 2 t@+k%1“8§ Gk/1-8% u {(B14)

= 0(1), as |ofe, Re(Bl’z) > 0, |arg (k+e)| < 71 . (B15)
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Also that

W) = exp[(k+a)%1(a)]

L Ukba + VKB, (#)) (V k¥a” + vkB; (-)) (B16)

(Vxra + kB (F)) (V ke + YkBy (=)

0(1) as Ial + o , Re(By1,2) » 0, [arg(k+a)i‘< T . (B317)

Furthermore as o =+ -k,

C(1) , Re(By,2) > 0O, (B18)

1

W(a)

V(a) = 0((k+a)~1) , Re(By,2) > 0 - (819)

The result (519) follows from (see {11,§ 16])

1 ( l“|"ik31)(|’<|-'-ik52):{ dt :
e 1 —— = ~log(k+a) + bounded function
271 J 8 [ [k T+ikB1/\ |« |+ikB2 t-o o

as a + =k .

—a
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