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Abstract
The present work gives a mathematical medel for an acoustically
penetrable or electromagnetically dielectric half plane. An approkimate
houndary condition ig derived which depends on the thickness of, and the
material constants which constitutes, the half plane. A solution is
obtained, using the approximate boundary condition, for the problem of a
line source field diffracted by a semi-infinite penetrable/dielectric

half plane. The asymmetry of the approximate boundary condition results

in a matrix Wiener-Hopf problem, which is solved explicitly.

1. Introduction

The present work arose in connection with noise reduction by means
of barriers. Noise reduction by barriers is a common method of reducing
noise pollution in heavily built up areas, Kurzel. Traffic noise from

motorways, railways and airports, and other outdoor noises from heavy



pJ

construction wachinery or stationery installations, such as large
transformers or plants, can be shielded by a barrier which intercepts
thé line-of-gight from source to receiver. Noise in open plan offices
can also be reduced by means of barrier partitions. In most of the
galculations with noise barriers, the field in the shadow region of the
barrier is assumed to be solely due to diffraction at the edge. This
assumption supposes that the barrier is perfectly rigid and therefore
does not transmit sound. However, most practical barriers are made of
wood or plastic and will consequently transmit some of the noise through
the barrier. The object of the present work is to make some allowance
for the transmitted field.

The present work also has applications 1in electromagnetism when
considering diffraction by a dielectric half plane. Where appropriate
the connection with electromagnetism will be outlined.

There have been a number of works™ dealing with a penetrable
barrier, including an earlier model of the authors, see Rawling? where
one can find an outline of the work carried out up to 1977 and a
biblicgraphy. Since that time the only other papers known to the
authors on this subject are by Anderson3, Chakrabarti4 and Volakis and
Senior®. Chakrabarti's work  was subsequently found to be in error, see
Volakis and Senior®. These three authors use a boundary condition which
makes the barrier almost transparent. The present work uses an
alternative boundary condition which results in & matrix Wiener-Hopt
problem. The type of boundary value problem considered here and that of
Rawlins? are special cases of a more general boundary value problem

considered by Speck® and Speck, Hurd, Meister’/.  The work of these

*(It is planned, in a future publication, to give numerical comparisons

between the various mathematical models.}



papers carried out a thoroughly rigorous theoretical analysis of these
type of boundary value problems from a Sobolev space setting. This
analysis shows that the present problem is well posed. Matrix
Wiener-Hopf problems are generally intractable. However, the present
problem can be solved exactly. An interesting feature of the present
golution is that the classical Wiener-Hopf arguments yield an unknown
constant which must be determined from an analysis of the edge field
beha?iour. The edge field behaviour is also interesting in that it
depends on the material constants of the half plane, and is more complex
than the usual singular behaviour associated with a perfectly rigid or
soft half plane in acoustics, or a perfectly conducting half plane in
electromagnetics, see Meister and Speckg.

In section two the approximate boundary condition is derived. This
is achieved by locking at the canonical problem of reflection and
transmission of a plane wave incident upon a penetrable slab which is
assumed to be thin compared with the incident wavelength. A matching
technigque is used to obtain the approximate boundary condition from the
canonical problem. In section three a scalar boundary value problem for
the field diffracted by a penetrable barrier is formulated. The field
being an acoustic potential function, or a component of a polarized
electromagnetic wave. In section four the scalar boundary valué problem
is solved, In section five some asymptotic expressions for the far
field in terms of sources and a diffracted field are given. An appendix
consists of the calculation of the edge field behaviour which it is

necessary to know in order fo carry out the solution in section 4.

2. BApproximate boundary condition
Consider the situation where an infinite slab occupies -» { x < =,
-h < y < h, where the y axis is normal to slab faces. When a plane wave

o~ ik({xcosb +ysinb )~iwt * (*mhe factor e"1wl 311 be dropped in the rest



of the work) is incident upon an infinite penetrable medium of width 2h,
which has a material propagation constant kn=k,, the field above and

below the slab is given by (see Brekhovskikh® p.45, and Rawlins?),

emik(xcosﬁo+ysineo) ~1k{=zcosl -ysind,)

i

u{x,y) + Re y 2 h, (1)

- Te~ik(xcoseo+ysinﬁo)’

y £ -h, (2)

where the reflection cocefficient R is given by

(1-N°)sin2k he T2ENSInG,
R = ‘ , (3)
(1+N2)sin2w‘h+2iNCOSZth

and the transmission coefficient T is given by

.- 2iNe-.12khs3_ne0 )
{1+N2)sin2th+2iNcos2K‘h

-

where k, = k{n®-cos?0,)".

For an acoustically penetrable slab n = cfc,, N = k,p/(kp,sind;)
(where p, ¢ and p,, ¢, are the density and sonic velocity of the media
iyi>h and 1yi<h respectively) and u represents the acoustic pressure.
For a dielectric.slab n = {(E,u1)/(sp)}%, N = k,e/(ke,sind ), (for u=H;
magnetic vector parallel to the z axis), N = K,/ (ku,sing, ) (for u=E,

electric vector parallel to =z-axis) where 4, € and u,, €, are the

i

permeability and permittivity of the media 1yi>h and tyi<h respectively.
We shall now use the results (1) to (4) to obtain an approximate

boundary condition for a penetrable slab whose thickness is small

compared to the incident wave length, 1.e. 2kh<<1. ?rom the equations

{1} and (2) we have

alx,h) e~ikhsin80 . R&i]f;i"xsinﬁo

u(x,mh)m Teikhsineg

= cos2« h+sin2k h/(iN) = 1mziK;h/N+O((kh)2)
(3}



. 3y {(z,h) _ _e“lkhslneo + RelkhSlneo
3u _ma Hhsing

H]

cos2i h-iNsin2« h = 1wi2K$Nh+O{(kh)2).

{6}
Now assuming 2kh<<l then as far as the external field is concerned the
glab is wvery thin and therefore can be modelled by the approximate
boundary conditions

u{x,0%) = ou(x,07),

3u
dy

%,07) =1 %% {%,07).

T = 1—i2K1Nh, g = 1"2iK!h/N .
We must now consider the behaviour of the field u at the edge of such a
thin half plane. We adopt the usual edge condition of diffraction
theory which requires that the energy density of a finite reglon near
the edge should be integrable, that is, that the acoustic energy in any
finite domain of the edge must be bounded. This requires that (see
Joneslo)

lim u(x,y) = 0(1),

=0

1
lim r grad u(x,y) = 0, where r = (*+y* ).
-0

It is shown in the appendix that this in turn requires that near the

edge of the half plane
u{x,0) = O(XA), for x -» O+,
where 0 < Rei £ 3.
3. Formulation of the problem of liine source field diffraction by a
semi-infinite penetrable plane.
We consider the situation where a penetrable half plane occupies
%<0, y=0. The line source is situated at (x,,Y,), ¥,>0. The problem

is solved by finding a solution of the wave equation

2
[ AR I kZ]u(x,y) = §(x-x )6(y-y ), (1yl>h), {8)
axz‘ ayz 4] [+]



subject to the boundary conditions

u{x,0t) = ou(=,07),

®x < 0. {2)
ou . Fu .
‘é“i; (X10+) = T "§"§ (X,O )r
Imeg # 0, Imt # O.
a(x,0%) = u(x,07), 2B x,0%) = 2% u(x,07), x>0 (10)
r r ¥ aY ’ ay ¥ ’ - -

For a wunique solution to the problem we alsc reguire the

gsatisfaction of the radiation condition

o=

[g_ - ik]u =0, (11)

lim r °r

Ty
and the edge condition
lim u(x,0) = O(XA), 0 < Red £ 3.
250} (12)
For the value of A see appendix.

It has already been shown that the above problem is well-posed in a
weak formulation®. There the field u=ujpc + uge is represented by a
linear superposition infc the incident and scattered components ujne and
Ug. respectively. The unknown field ug. is required to be in the energy
space H'(Q) where { denotes the complement of the obstacle; the
transmission conditions (9) have to be wunderstood in the sense of
Dirichlet and Neumann data trace spaces H%(R) or H“%(R), regpectively.

The unique weak solution is known to satisfy the above problem also
in the classical sense. For practical purposes we have chosen the

classical formulation here.

4. Solution of the boundary value problem
We shall assume, for analytical convenience, that k=k,+ikj, k>0,
k;>0. At the end of the analysis we are interested in the limit case

ky » 0.



Define Uf{a,y), where o is a complex variable by

&0
5

Ua,y) = J u(x,y)eicz

-

*ax. (13)

The radiation condition requires that the phase dependence of u(x,y), as
1xl=, behave like O(Ix!“%éki‘X‘). in view of this it can be seen that
U{a,y) will exist for -kji < Im{a) < kj. Then it follows_from {8) that
U{c,y) satisfies

a’u 2 iox
+ k'Y = e °8(y-y_), y >0 (14)

2

dy
where K = (kzmuz)% is defined to be that branch for which k=k when o=0,
with vertical cuts from ik to infinity in Im o % 0 respectively. Then «
will always have a positive imaginary part in the region iIm(a)! < kj.
A solution of (14) for o in the strip IIm(a)l < ki, which decays as

Iyt=ee, is given by

U(a,y) = AMa)expliky] + exp[i(ax +kiy-y 1)}/(21x), (y>0) (15)
= B{a)exp[-ixy], {y<0). {16}
Let
¥7() = ' [u(x,o+) - u(x,@")]ei“xax, (17)
3 (a) = {m [g%(x,o+) - %% (X,G"}}eiaxdx (18)
WT(&) = IQ[u(x,O+) - Gu(x,O")]eiade {19)
¥ (a) = f [%% (x,0%) = 1 %% (x,o“)]ei“xdx (20)

a
Then @T’Z(a) are analytic for Im{o)<k;, and YT'Z(Q) are analytic for
Im{a)>~ky. Throughout the rest of this work a superscript (or sub-
script) plus or minus sign attached to any function will mean that the
function is analytic in Im{a)>-k; or Im{a}<kj, respectively. Using the
expressions {9),{10},{13),(15) and (16} in the expressions (17) to (20)

gives



27 () = Ale) - B(a) + expli(ox *+xy )1/(2ik), (21)
¢7(0) = ik[A(a) + B(a)] - exp[i(axc+xy;)}/2, (22)
¥H(a) = A(e) - oB(e) + expli(ux +ky )1/(2ik), (23)
¥H(a) = ik[A(e) + tB(a)] - expli(ux +ky )]/2. (24)

Eliminating A{a) and B(a) from (21) to (24) gives the matrix Wiener-

Hopf equation

¥ (o) = R{o)® (o) + D(a) (25)
where
wj(a) 2 (a)
¥ (a) = ;B (a) = . (26)
(o) & (a)
2 zZ
L[ (%) (1~0)/(ix)
R(a) = 5 ] ’ (27)
Lik(1=1) {1+1)
L [ (Trodexplilexytiyy)1/(ik)
D{e) = 3 ] (28)
L ~{1-T)expli(ax +ky )]

The matrix equation (25) constitutes a coupled system of Wiener-Hopf
equations. The standard Wiener-Hopf technique can be applied
straightforwardly if the system (25) can be uncoupled into two separate
Wiener~Hopf equations. But this problem reguires that the matrix
function K{(o) be factorized. This is a nontrivial operation and it is
not always obvious how to carry it out explicitly, at least in the
classical sense, Noblell {where the factors have algebraic behaviour at
infinity). With a recent approach, Lebrel?, Prossdorf and Speck13 it is
now possible to factor certain classes of non rational matrix functions
rigorously. In the present problem K(o) can be written as
K(a) = CG(a) {29)

where

i-o -
ivg O 1 T {ik)
[ ] , G(u) = &) (30)

1~1y. .
0 1+T {m] 1K I



The matrix G{o) given by (30) is of a special form which can be

factorized immediately, (see Danielel? and RawlinsiS), to glve

6(a) = G,(@)6_() (31)
where
cosh x{w}) é sinh x{a)
G, (o) = /1e? , Y . (32)
- % sinh (o) cosh x{a)
where
G_(m) = G (-0),
§ = E(1+'f)(1~0)/{(1+0)(1“T)}]%, € = [(1—'E){1“6)/{(1+T)(1+0)}]%
(33)
v = (aF-K%), x(@) = [5=]anl(a+e)/(1-e) anl v+ (oK) /(v-(a-k)) ],

and the logarithms take values on the principle branch &n(l) = 0,
- < arg{ ) £ 7.

In order to be able to apply the usual Wiener-Hopf method we shall
need some asymptotic growth estimates for the elements appearing in the

matrices Gi(a). It is not difficult to show that

x(a) = i/(2men[(1+e)/(1-e)}en(2a/k) + O(a "), as iai-we, Ima>-k;i, (34)

~ 1 l1+e
Rex{o) T arg[IrE]En!al,
and hence
coshy{a) = O(ak) ; sinhx(a) = O(mk), (35)
where
1 1+e X
- i < Ll
Rex 2wlarg[1us]l, 0 < Rer £ 5 - {36)

Similarly it can be shown that
ccoshy(~-a} = O(ak), sinhyx{-a) = O(ak), for tot-w, Imu>—ki. {(37)

By using results (29) and (31) in eguation (25) we have

?+(m) = CG(a)® (o) + D{a}
= (C6,)G_(2)@_(a) + D(a), (38)
where
 /ieE {1+g)coshy(a) (l+o)% sinhx{a)
CG+(0') - ] ’

{1+T)% sinhy(a) (1+1)coshy{a)



10
is non singular since ¢ # -1 and v # -1. Thus CG;(u) has an inverse and

we can multiply across equation (38) by (C64(a))”' to give

H (0)¥, (0) = 3 (0)8_(a) + A(a) (39)
where

{1+t)coshy (o) ~(1+0)% sinhy{a)}

1
H_ (u} e ————— r (40)
+ (14T){1+o}) »(1+T)% sinhy{a) (1l+o)coshy)(a)
& .
_ X , coshy (~a) 7 sinhy(-w)
J (o) =35 (1-e7) ‘ ’ (41)
% sinhx(-o) coshy(-a)

{1+1){1-o)coshx{a) _ (l+o){l-t)dsinhx(a)
A, (o) axp[i(ux0+xyo)} ik ik
]_ 2(1+1) (1+0)

A(m)={

A, {a)

ilizgié:g)sinhx(m) - (1+0)(1—T)cosbx(a)

L
(42}

We can now express (42), by means of the Cauchy integral theorem, see

Ncble[9], as

Mu) = A (a) + A_{a), (43)

2 (a)

where A (o) = [ N ] ’
- a7 (a)
"‘i‘ P 2
N 1 wFic Al(t) N 1 REQ Az(t)dt
Ai(a) = % o5 dt, Az(a) = & 5= - (44)
“wiic  (t-o) —wFic

The representations (44) with the upper (lower) sign are valid when
Im{a)>-c{Im(a)<c) and define Af’z(a}(AT’Z(u)) as analytic functions in
Im{a)>-c{Im{ax)<c). The exponential term in A,’z(a) ensures that the
integrands of (44) are exponentially bounded as t-i= aﬁd therefore that
the integrals exist. .Standard asymptotics also show that

,.}. —
AT 2(oa) = O{o ) as taloe {45)
r
in their regions of regularity. We may now write (23} in terms of
Ag{a) as

H (0)¥, () - A (a) = T (@)8_(a) + A_() (46)

or written out in terms of elements of the matrices



i1

coshy(a) . dsinhx{a) N N
“W ‘}:'.‘((1) - W IP‘(('JL) o Al(CL}
= % (1*@2){coshx(~u)®j(a) + % sinhx(-a)@;(u)} + A:(a) . (47)
'Y ' N coshy{a) . .
- TT:&;@SJHhX(&}W‘(&) + _TEI;TMM WZ(&} - Az(&)
- % (1wg2){% sinhx(-a)® (o) + coshx(—a)ég{m)} + 07 (0). (48)

The edge condition (12) requires that the transformed functions must

have the following asymptotic behaviour

O(aﬂk), for Im(a)<k,, tal>e;

R
I
2
S
i

(43}
¥ (o) = o(a™M 1y, (o) = o(e™), for mm(a)>-k, , toiwe.

Ry using the above asymptotic estimates (35),(37),(45) and (49) it can
be shown that the left hand side of the egquation (47) is regular,
analytic and asymptotic to 0{a™') as lal-»o in Ima>-kj. Similarly the
right hand side is regular, analytic and asymptotic to o{a™!') as tal-e
in Ima<k;. Hence by Liouville's theorem the analytic continuation of
both sides in the entire complex plane is the constant zerc. Hence

coshy (o) + Ssinhy (o) + +
_—TiigT“ T‘(G) - -;YTI;y“““ Yz(&) o A‘(&) = 0. (50)

Dealing with the equation {48) in a similar fashion it can be shown that
the right and left hand side of this equation is asymptotic to 0{1) =a

constant in their respective regions of analycity. Hence by Liouville's

theorem we have

vysinhy{o) coshy(a)

27 ()

+ +
= reys LW Ty (e b (e = e, (51)

where a 1is an unknown constant.
Q

From {50) and (51) we have

v (o) = (1+o){coshx(a)af(u) 5 Gsinhx{u)(aj(a)+ao)/5}, (52)

wj(u) = (1+T){y$inhx(a)Aj(a}/é * coshx(a)(a:(a)+ao)}. (53)
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From the equations (23) an (24) we have therefore

Ala)y = [{T(1+c)coshx(a)—c(l+1)sinhx(u)/6}ﬁj(u)

{o+1)

+ {T(1+0)&Sinhx(a) - c(1+T}coshx(a)}(aj(&)+ao}/y]

(o-1)
(o+1)

expliox +ky )]/ (210), (54)

T [{(1+0)coshx(u) * (1+T)sinhx(a)/a}af(a)
+ {(l+c)§sinhx(u) ¥ (1+T)cashx(a)}(A:(a)+a0}/y]

+ exp[i(ox +ey )]/ ((osT)i). (55)

Hence we have solved the problem completely once we know the constant
a,. To determine this constant we analyse the edge field behaviour of

the solution. We know from the appendix that the field near the edge

behaves like u{x,0) = O(XK) as x-07 where Re) = %Elarg[%;z]l. Hence we
know that the transformed quantities A(a) and B{a) should behave not
greater than O(a“x”‘), as lal-xe, Letting tal-x in the-expressions (54)

and (53) gives

X(8T(1+a)~o(1+TIEY (A 1 4L L
MM=%E][ — a7 w0, (56)
2{o+1) J AL °)
Af(1ro)8e(1t)E) (o \
B(a) = - %[%] [ L+ ga ot o[a“*“‘], (57)
2(0+1) Js °
where .
- 1+€ ~4 ) + -1 ¢
g = wsgn[I:g], A‘ = lim aﬁi(u = 5oT I A (t)dt.
00 e

If we exclude the trivial or non physical situations: o=t=0; o=1, and
t=-1: o=1 and 1=-1; o=-1, T=1; we must choose for the correct edge field

behaviour

a == Eaf/a, (58)
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Hence the solution to the boundary value problem is given by

( 1 J@+ié{[T(0+1) b ( _o(l+T) sinh )]A+
ulx,¥) = 5o Joria WTE:ET coshy{a) ETEI¥T inhy (o !(a)

+ [T(l+c)

+ ﬁﬂ'.;, . .
{o+1) 8sinhx(a) - Eiltz)coshx(u)] (A (a) - 55,/5)}e—1mx+lxyda

(o+r) Y

() } 1
DB om0 o)) g ) o)t )Y

y > 0. (59)

crid( _
- - %E Im+id{[%%§%% coshx{a) + %%f%%g sinhx(a}]&j(a)
+ -
O YR
({52 ssamhx(e) + {gig coshu(m)] — - ‘ }e HE Y g,
.2 iﬁ§1) wlts—x V2 + (y-v )° : <0 60
i i C G RNl y < 0. {60)

The physical interpretation of the solution given by {59) and {(60)
is made more apparent by asymptotically evaluating the integrals for the
receiver point (x,v) such that k(x2+y2)% > ®- This corresponds to the
observer at (x,y) being in the far field. 1In practical applications if
the line source at (%,,Y,) and the receiver at (%,y) are more than two
wavelengths from the edge (0,0) of the barrier then to a good
approximation we can assume that we are in the far field, and the

incident field is a plane wave.

5. Asymptotic expressions for the far field

The asymptotic methods though straiqﬁtforward are tedious. We shall
merely give an outline of the calculations, more details of the
techniques can be found in Noblel. cConsider first AT,Z{G) as given by
(44); let k be real, then c=0 and the integration path along the real
axis 1s indented below the point t=o. Substitute x, = r,cosb,,
Vo, = rysinb,, 0 < 8, < w; t = kcosé, 0 < Ref < w, then the integrand has

a saddle point at & = 6 . The integration path is now deformed into the
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steepest descent-path $(8,) described by Refcos{&-8,)}1=1, Im[cos(£-8,)]
> 0. In performing the deformation the pole at kcosf=u is intercepted
if a < kecosB,. The integral along S(8,) is asymptotically expanded as

kr,»» by means of the saddle point method. Thus it is found that

A
AT'2(m) ~ ?Egggéj%§)+ D, ,(a)H[keos® ~ajexpli(ax +cy )], (61)
where
{(1~0)(1+T}coshx(kcos80) - (1+0)(1-7)8sinhx{kcos )}
Am‘“‘ e}
‘ 4n(1+1){1+o)
27 3 .
[krol exp[l(kromv/é)] .
{(1+T)(1—0)sinhx(kcoseo) - 5(1+0)(l—t)coshx(kcoseo)}
A =
: AMi{1+T)(1+0)8
-k sin@o[%%:] exp[i(kroww/4)] ,
{(lwo)(l+f)coshx(u) - (l+G)(1“T)5SinhX(u)}
D (a) =
‘ 2ik{1+1)(1+0)
{(1+T)(1w0)sinhx{a) - 5(1+0)(1—T)coshx(a)}
D {(a) =

2{1+1)(1+0)é

and where H[x] =1 for x>0, Bix] =0 for =x <0 (Heaviside step
function); the results are walid for kr,», -k < a <k; the term
involving the functions D, , arise from the residue contribution.

We can deal in a similar manner with Kf, the only difference being

that here there is no pole contribution to worry about. Thus

{(1~0)(1+T)coshx+(kcosao) - (l+0)(l—1)65inhx+(kcoseo)}

Ag(i+t)(1l+o)

i
2

- [i; ] exp[i(krevﬁ/4)] = -A . {62)

0
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The results {61) and (62) for Afrz(u} and ET when inserted into (59) and

{60) give
u(x,y) = ug(x,y) + ug{x,y) (63)
where
ot+id
_ T{c¥l) _ 0( Ty .
L 2Tl S {l (orry oSPx(®) = Figary sinhx (o) ] (kcost -a)
+ 1 [Eiiigl Ssinhyx(e) - alltr) cosh (u)] [ % + A’E}}
Yy L{c+t} X {(o+1) X (kcoseomu) 8
. expl-iax+ikylde, vy > 0, (b4}
oo+ 3.4 . B
-1 {(1+0) {1+1) . I
T Zn + {[(a+T) coshx(a) + {o+1)8 81nhx(a)] {kcost® ~-o)
=00+ 14 o
+ 1 [(1$0) dsinhy(a) + {ir) cosh (u)] [ " +-A1€]}
v L{ott) X {a+T1) X (kcosﬁﬂﬂu) §
. expl-iox-ikylda, v < 0; {65)
and
1 (O (or) o(1+t) . .
u (x,y) = 5%»£;+ié{[ (o) coshx(®) - Froy lnhx(m)]Dt(u)H[kcoseoma]

T{1+o) o{i+T1)
+ [--W——j- 581!’11'1)((&) W

coshx(a}] D H{kcoseo~a}}
. exp[~ia(x—xo}+ix(y+yo)]da + %E Hi!){k{(X*xo)z + (y-yc)g}%]

Lomt) -l fiefex )? ¢ <y+y0>2}%], y >0,

41(051)
.. 1 cotid (1+o) h L T oh ]D V[ kcos® -]
= -5 Im+id{[ (o77) coshy (o) T677)8 sinhy(e) i(Ot [kecos o

& % [ (179) ssinny(o) + E +T; coshx(a)]D (o) Hkcosb —a}}

. exp[—ia(x—xo)+iK(yomy)]da,

k3

v 2/(0+T)(1/41)Hi')[k{(me?)2+(y-yo)2}2] , y < 0. (66)

The above expressions (66) can be considerably simplified to give

wtid
H[kcos@ -~ajexpl-ia(x-x )+ic(y+y, )]*”
+1d

_ . __lo-1)
g (YD) = = mrtery S
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% Hii){k{(x—xo}%(yuyo)z}%] " ey i Hc(:f)[k{(x—xo)zﬂywo)z} }r

{a+T) 41
¥y > 0, (e7)
wotid
o é%T§%%§ll;m+idH[kcoseo~a]exp[mi&(XnXo}+iK(yB~y)}%%
b b o)) v co

The integrals in the expressions (64) and (65) can be asymptotically
expanded for kr-e by the saddle point method following the usual steps:

Substitute x = rcos®, y=rsin®, -m<B<w; a~kcosf, O<Refé<m, then the
integrand has a saddle point at &=m-8 and &=m+8, respectively; deform
the path of integration into S{m-0) and S{w+8), respectively; apply the

saddle point formula. This gives

1
3

; ~ f2T ikr
u,(rcoss, rsing) [EE] D(6,6 )eF , (69)
where
D(B,6 ) = e [T(c+l)coshx(~kcose) -2 (1+T)sinhx(~kcose}]
o 2r{o+T) )

A1sin8

T (coseo+cose)

. . AZ A! €
+ 1[1(1+0)831nhx(wkcose)~o(1+T)coshx(~kcose)] [k(cosﬁ +cosB) ¥ 8 ]}'
O
0 <9 <m, {(70)

A sinb

_ 1 {1+1) .
= §ETE:?T {[(1+0)coshx(—kcose) Al 51nhx(—kcose)] ?EBE§—1§6§§)

8

+ . Az AI €
- 1[(1+0)531nhx(~kcose) + (1+T)coshx(-kcos6)}{k(cosB +gose) + 3 )},
- < H <0 . (71)
In a similar fashion the integrals appearing in the expressions (67) and
(68) can be asymptotically evaluated by the saddle point method. In the
integrand of the expression (67) let x-x,=R,cosb,, y+y,sR,sinb,, 0<0,<m,

a=kcosf, 0<Ref<w; and in the expression (68) let x-x,=R cos8,,
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y-y,="R,sind,, 0<0 dw, =kcosé, O<Refdw, (see fig 1). The saddle point
of (67) and (68) is then given by &=w-6, and éuﬁwe, respectively.
Deforming the path of integration into §(u-8,) and 8(%-0, )},

respectively, and applying the saddle point formula gives

. ~ ft-oy 1 {(+) _
ug(rcose,r51n8) (ovt) i1 .HO (kRz){H{coseo+cosae] 1}
1 () '
+ == H {kR 3}, 0<8<m, kR o, KR -»;
431 7o ] : 2
w20
e Hﬂ (kR;)H[coseo+cosei}

2 1 400 { - -

oy 7 - By (R ) {Blcosd +oose ] 1}, T<B<O, KR+ KR o,
- 1

where we have used the asymptotic expression Hii)(Z)"(Z/ﬁz)zexp[i(Z“ﬂ/4)}

aslzl->e, By using the fact that

H[coseo+cosez} -1 = ~H[8+60—ﬁ]

H[cos60+cosel} = H[G—Gg+ﬁ}H[—ﬂ}
for 0<85’Z<ﬂ, 0<8,<m we can rewrite the above expression for Uy as

£ Hi')(kRi)H[9m80+w]

ug(rcose,r31n8) ~ I

+ %— -H( Y (kR O[S urese -m) - 13 a0 kR )[ }{2-ure-s _+n1},

-m<BLm, leﬁm, kRzem . (72)

If the expressions (63) and (72) are substituted into (63) we have
finally the expression for the far field

uf{rcosh,rsind) = %3 H(')(kRi)H[6—90+ﬁ]

e D [E5)uiere -m + T Hil)(kR!)[6%¥] H[T-0+8 ]
e l“/4 (0,6_) B’ )(kr)

koo, kroam, -n<O<w, O<80<w, eﬁé(ﬁ—eo), {73}
where the diffraction coefficient D(6,8,) is given by (70) and (71) and
the Hankel functions in (73) are understood to represent thelr
asymptotic form.

The physical interpretation of the result (73) in conjunction with

Fig 1. 1s now obvious. The first term represents the incident
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cylindrical wave due to a line source at (X,,¥,)- The sgecond term is
the wave reflected from the upper face of the half plane. This
reflected wave appears to radiate from an image line source at (x,,-y,),
the reflection coefficient being {ofx)/(0+1). The third term represents
a wave transmitted through the barrier. This wave appears to eminate
from the line source at (%,,y,); however its transmission coefficient is
not unity, but 2/{c+t). The first three terms represent the geometrical
acoustic field and they will not exist everywhere. The regions where
they are present are governed by the Heaviside step functions which
multiply the Hankel functions. Physically these regions correspond to
the shadow region behind the screen, and the insonified regions. On the
boundary between these regions the arguments of the Heaviside step
functions wvanish..  The last term of the expression (73) represents the
diffracted field, which is a c¢ylindrical wave which appears to radiate

from the edge of the half plane, to all points of space.
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Appendix

Here we derive the behaviour of the field near the edge of the
transmissive half plane. We use the technigue of Meixneri{l2] in
agssuming a series expansion in r for the low frequency situation kr-0.
The dominant term in the series satisfies Laplace's equation. Thus the

problem can be posed as:

Given 3
u{r,8) = C(8) + F{6¥r , ReAx0. {1}



1o

Find the smallest value of ReA such that

i 2
Viar,8) =0, v =i D) L0 (2)
r or ar r? 90*
- - su e 20
ul{r,nw) = ou{r,~v}, 58 {(r,m} = T 6 {r,-n), (3
Imos = O, Imt # 0.
substituting (1) into (2) gives on equating powers of r to zero
() = 0, = C{B) = AB+B (4)
FH(B)+AF(D) = 0, = T(B8) = CcosAB+DsinAb
Hence w{r,0) = AB+B+(CCOSAB+DsinAB}rA {5)
Substituting (5) into the boundary conditions {(3) give
{ w(1+o) (1*0)] [ A [ (1-o)cosATw {1+0)sinkﬂ] [ C ] 3
+ r = 0.
{i-1) g B -(1l+T)sinAv (l~t)cosivw D
This equation can only be satisfied by
{i1-g)}{1l-t) = 0 or BA=HB=0 {6)
and
tan’Am = -e° or C =D = 0. {7)

Since Ims = O and Imt # 0, the only possible solution for (6) is the

trivial case A = B = 0. For non trivial solutions to {7) we must have

A= % —lr n [iiE]

27l I-€
_ 1 1+e
Hence ReA = i‘2“ arg [1mE]
and since ReA>0 we have
i Yre l+e
= - _— =t <
A T Qn[l_g] for 0 < arg [l—s] £ W,
i e 1—e
= h fuiniii - i Sy
T zn[l_gl for -v < arg [l—s} £ 0.

rex = | 35 a5 | <3
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