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Abstract

In this paper new expressions for the field produced by the
diffraction of a cylindrical wave source by a wedge, whose angle
can be expressed as a rational multiple of m, are given. The solutions
are expressed in terms of source terms and real integrals which represent
the diffracted field. The general result obtained includes as special
cases, Macdonalds solution for diffraction by a half plane, a solution
for Carslawhs problem of diffraction by a wedge of open angle 27/3 , and
a new representation for the solution of the problem of diffraction by

a mixed soft/hard half plane.




1. Introduction

This paper is a sequel to the paper Rawlins (1986), in which the
solution to the problem of the diffraction of a plane wave by a rational
wedge is given in terms of geometrical acoustic terms, and real integrals
representing the diffracted field. Here we shall give an analogous solution
to the problem of diffraction of a cylindrical acoustic wave by a wedge

whose angle can be expressed as a rational multiple of m.

The exact solution of the problem of diffraction by a soft or hard
wedge of any angle, in the two dimensional case of cylindrical acoustic
wave incidence, is due to Macdonald (1902). The solution was given in the
form of a complex contour integral, which was obtained by summing the
Fourier series representation of the Green's function. For the special
case of a wedge which reduces to a half plane, Macdonald showed how the
contour integral could be reduced to an elegant form involving real integrals.
Though the form of Macdonald's solution is extremely simple the method
used in obtaining it required a considerable amount of analysis. The problem
of the diffraction of a line source by a half plane had been solved earlier
by Carslaw (1898) using a method based on that used by Sommerfeld (1896)
in considering diffraction by a plane wave. Carslaw's solution, though
equivalent to Macdonald's solution, was of a different form. Sommerfeld's
method was heuristic, using the physical method of images in various
mathematical Riemann sheets associated with a multivalued function. Although
the hybridism of the mathematical and physical concepts was considered
abstruse it did produce exact solutions to hitherto insuperable problems
in diffraction theory. Carslaw who was an early convert to Sommerfeld's
method later gave up using the idea of Riemann surfaces and instead used

the more modern approach of using periodic Green's functions. Before giving




up the Sommerfeld approach to solve diffraction problems, he espoused the
cause of Sommerfeld by writing some fairly long expository papers on his
method with applications. In particular he gives in Carslaw (1898), a rather
lucid description of Sommerfelds technique by considering the problem of
diffraction by a wedge of open angle 2m/3, when the normal method of images
breaks down. This particular example is often used elsewhere to describe
Sommerfeld's method, see Carslaw (1906), p356, Carslaw and Jaeger (1959)
p279, Baker and Copson (1950) pl24, however nowhere is the explicit solution
given in terms of sources and images and real integrals representing the
diffracted field. We shall give such a solution here as a special case

of a more genmeral result. Our approach avoids Sommerfeld's use of Riemann
surfaces and simply uses the periodic Green's function for an arbitrary
angle wedge. We then consider the special case of a wedge whose angle

can be expressed as a rational multiple of m. It is then shown, by means

of an appropriate integral representation for a Bessel function, that the
Green's function for a cylindrical line source can be derived from the

plane wave Green's function for a rational wedge. This enables us to

obtain a representation for the Green's function for a cylindrical source,
in the form of source and image terms and real integrals which are convenient
for calculations of the diffracted field. We remark that recently there

has been much work done on asymptotics for tﬁe wedge, see Deschamps (1985).
The results presented here offer a new approach, in that a wedge of any
angle can be approximated to any order of accuracy by a rational wedge of
angle pn/q (p and q integers), and the real integrals obtained in this

paper can be asymptotically evaluated without difficulty.




In section 2 we shall give the periodic Green's function for a
cylindrical wave source and a wedge of arbitrary angle. The Green's
function is in the form of a complex contour integral. Some of the
important properties of the Green's function are stated, and appropriate
expression, in terms of this Green's function, are given for various
diffraction problems. In section 3 we shall consider in detail the special
case of evaluating the complex contour integral representation of the Green's
function for a wedge whose angle can be expressed as a rational multiple of 7.
In section 4 we shall give expressions for the Green's function for special
cases of wedge angles. Finally in section 5 we shall give solutions to some
specific problems in diffraction theory which are special cases of the more
general result obtained in section 4. The first problem is the classical
problem of diffraction by soft or hard half plane by a cylindrical source,
whose solution was given the different forms by Carslaw (1899), and
Macdonald (1902), (1915). The second is Carslaw's (1898) didatic problem,
used to describe Sommerfeld's technique of diffraction by an open wedge of
angle 2m/3, no explicit solution has appeared in the literature for this
problem. The last is a new result for the problem of diffraction by a

soft/hard plane by a cylindrical source, see Rawlins (1975).

In order not to disrupt the flow of the arguments in the main text
of the paper, various proofs of results needed have been placed in appendices
at the end of the paper. We remark in particular that in appendix A we
derive a useful integral representation for the Hankel function Héz)(z),
]argz|<ﬂ/2, Rep>-1. This integral is closely related to a result given
by Macdonald (1897), which does not seem to be well known. Macdonalds
derivation does not give precise ranges of validity, and Watson's treatise on

Bessel functions seems to have overlooked this integral representation.




-~

2. Periodic Green's function for a wedge

The periodic Green's function Ga(r,e,ro,eo;k) for a two dimensional
wedge situated in the space OLr< =, a<6<2n, see fig 1, where
(r,0) are cylindrical polar coordinates has been shown by Carslaw (1919)

to be given by

oy o L (2) sinmz /o
G (r,e,ro,eo,k) T 2ai J Hg [kR(C)]c05ﬂc/a - comﬂe-eb)hxdc’
c
where R(g) = Vr? ro2 - 2rr, cos g, and the square root is defined by

-7/2 < arg R(g) <7/2. The contour of integration c is such that the
starting point is given by iw + ¢, and the termination point is given by
i + Cys where —ﬂ‘<cl<:0, ™ < e, <2m. The contour of integration ¢

1ies below the branch point ¢ = ﬁ = cosﬂﬂ((r2+r;)/2rro) , and does not

intersect the branch cut : Re ¢ =0 é;< Imz <=, see fig 2.
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It has been shown by Carslaw that Gu,(r,e,ro,eo;k) has the following

properties
2 2
. 2,,2 2 _ 0 1 3 1 2
(i) (V7+k°) G = 0, where V' = =5 + = — + — —75 >
o ’ 8r2 r or r? 20°

for all points (r,8) # (r;,8;),

(11) Ga(r,e,ro,eo;k) = Ga(r,6+2a,ro,90;k) s

(iii) Ga(r,e,ro,eo;k) is finite and continuous for all (r,8) # (ro,eo),

(iv) ©,(r,0,70,805k) ~ He)[KR(8-65)1, as (r,0) + (rg,8), (2)

~ 0> as r > o

The Green's function given above enables one to derive solutions
to various diffraction problems in wedge shaped regions. To be specific
we shall discuss acoustic waves. The solution U, or US of the problem of

a cylindrical wave®

U, = HéZ)[kR(e—eo)], (3)

diffracted by a rigid wedge (BUH/BO =0 for € = 0 and & = o) or a soft
wedge (US =0 for ® = 0 and 6 = a) is given by

Uh = Ga(r,e,ro,eo;k) + Gu(r,e,r ,—eo;k), (4)
or

U
s

Ga(rse’r09eo;k) - Ga(r’e’ro’—eo;k)’ (5)

respectively.

The solution US of the problem of a cylindrical wave (3) diffracted

/h
by a wedge whose face 6 = 0 is rigid (BUh/ |36=0) and whose face 6 = a is
8

soft (Uh/S=O) is given by

U GZa(r,e,rO,eo;k) + G2a<r’ e,roreo;k)

h/s
- G2a(r,e,ro,2u~60;k) - GZa(r,e,rO,—2a+eo;k) ) (6)

. . . _— iwt
(*Footnote: The wave is assumed to have time harmonic variation e , but

will not be shown explicitly in the rest of the paper).
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3. Line source Green's function for a rational wedge

If the wedge angle o 1is a rational multiple of i.e.,
o = pr/q where p and ¢ are integers the line source Green's function

(1) becomes

G (r,0,r

by = L (2) g sin (qz/p) dg,
_EE O’GO’k) - JC HO [kR(C)] ‘ (7)
q

2mip cos(zq/p) - cos((e—GO)q/p)

By using the integral representation for the Hankel function, (A.4) of

appendix A with v = 0, we have

. 2 2 2 . 2
0 -i,t+ k“(r +r) ) i krr
Héz)[kR(c)] -2 j éff( T * 0 cestgde (8)

mi t
cotic

where c¢ >0 and the contour of integration is as shown in fig 5.
Substituting the representation (8) into the expression (7), and

interchanging the order of integration (which is permissible since integrals

are uniformly convergent) gives

0 i t+ k2(r2+r,?) 2
1 (P RIAr TTgt K 1, dt
. . = 7 . ==
Gp_‘IT_ (r’e’ro’eo;k) T J e t G_?_Tl (raegeoz'—t—'g-) t ’ (9)
q etic q
where
. _ 1 ikrcos ¢ q sin (qZ/p) dg

QRE(r’e’eo’k) 2mip J € cos(zq/p) = cos ((e—eo)q/p) (10)

q c

is the plane wave Green's function for a rational wedge. 1t has been
shown Rawlins (1986) that the integral (10) can be written in the alternative

form:

q
G (r,8,8 :k) = } ) H[n-|6-8 +2mmp/q+2mpN|]e
pm 0 0
ey meo X

ikrcos(e—60+2ﬁmp/q)




-0

sin(e—60+2ﬂmp/q)sin(ﬂ/p)

#L_ 2 eikrcos(9—-60+2ﬂmp/q)—iﬂ/(2p)
2p 20 sin((6-6,+2mmp/q)/p)

kr
. [ e—1xcos(6—60+2nmp/q) ng)(x)dx

. P
1 q-1 p-2 eikrcos(6—60+2ﬂmp/q)
* 51 nlo el sin((e-60+2ﬂmp/q)/p)
‘ kr
+elmr/(2p)sin((n+l) (9_90+21Tmp/q)/p)sin(nﬂ'/p) J e 1XCOS(9 5] +21Tmp/q) gi) )(X)dX
- p
_ ei(n-i-l)ﬂ/(zp)Sin(n(e_eo.,_z-nmp/q)/p)sin«n+1)'ﬁ/p)
kr
J e—ixcos(6f60+2ﬁmp/q) (2) (x)dx , (11)
(p 1-n)
o p

where the summation over N 1is for all integer values of N which can make

1 x>0
;I x=0

0 x<0

the argument of the Heaviside step function JH[x] = non negative. Thus

on substituting the expression (11) into (9) and interchanging the order of

integrations results in having to evaluate 1ntegrals of the form:
0 i k2 (r +r02) ik? rrocosw k2 rT,
_ (t+ —_ 2
1 2 £ ) t t o~ ixcosy H\f )(x)dx %}

— e e

L 9

o+ic oo

which is shown in appendix B to be equal to

ivm ®
_2 e = J cosh vt H
i

2
cosh t + cosy O( ) [kR(m-it) ldt .

Thus
! (2)
(r,0,14,8,3k) y L Hln-|e-8,+2mmp/q + 2prl] Hy o [kR(6-6 +2mmp/q) ]
% m=0 N

dt

1 q—l sin(6—90+2ﬂmp/q)sin(ﬂ/p) ’r cosh (t/p) Ho(z)[kR(ﬂ—it)]

P ;=g Sin((9“60+2ﬂmp/q)/p) 0 cosh t + cos(e—eo+2ﬂmp/q)
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o

, azl p-2 sin(¢1+1)(6—90+2ﬂmp/q)/p)sin0nV@ J cosh((p—n)t/p)ng)[kR(ﬂ-it)] dt

T =0 n=1 sin((6=64+2mmp/q)/ p) : cosht + cos(6-08,+2mmp/q)
sin(n(6—60+2wmgh)'/p)sin((n+l)ﬂ/p) f)cosh((p-l—n)t/p) Hocz)[kR(ﬂ—it)] ae b,
sin((p-0p+2mmp/q) /p) 0 cosh t + cos(8—0g+2mmp/q)
(12)

where the summation ) is performed for all values of N which satisfy the
N

inequality —ﬂ<6—60+2ﬂmp/q+2ﬂpN<ﬂ .

Thus the solution U(r,8) of the problem of diffraction of the cylindrical

2
source U, = HO( )[kR(e—eo)] by a soft or hard wedge of open angle a = pT/q is
given by
Us(r,e) = Gm(r,ear()’eo;k) = Gﬂ(r’earoy_eogk) s (13)
and 4 d
Uh(r,e) = G (r,e,ro,eo;k) + Gpﬁ(r,e,ro,—eo;k), (14)

bPT 22
q 1

respectively where Gp1T is given by the expression (12). Similarly the solution

q

2
of the problem of diffraction of the line source Uy = H ( )[kR(G—eo)] by a

0

and whose other face 6 = p7n/q is is

wedge whose face 6 = 0 is ,
given by

U./.(r,e) = Gzpﬂ(r,e,ro,eo;k) + Gzp“(r,e,r0,~eo;k)

q

- Gzpﬂ(r,e,ro,-%;zl_meo;k) - Gzpﬂ(r,ﬁ,rO,ZB_[—(ao;k),

q
where G2pn(r’e’r0’ 0}

q

An asymptotic expression for Gpn(r,e,r 8 :k) can be obtained, from the

0 ;k) is given by the expression (12) with p

q

(15)

v q

replaced by 2p.

0, O’

q
expression (20) of Rawlins (1986), by applying the techniques outlined in the

appendix C. Thus for kr + « we have
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q-1
G (r,0,r,,8,5k) = ) H[ﬂ—le—60+2ﬁmp/q+2ﬂpN[]Héz)[kR(9—60+2ﬂmp/q)]

T m=g N
: in(0-04+2mmp/q)sin(n/p) 50
i -1 sin( o F2Tmp q)sin(m/p .
+ —1kR(6-60+2ﬂmp/q)cosh€
mp L sin((6—60+2ﬂmp/q)/p)]cos((e—eo+2wmp/q)/2)[ € de
1 azl p2? 1
* FE'mZO nzl sin((6—60+2ﬂmp/q)/p)|cos((6—60+2ﬂmp/q)/2)l
£(80)
+ Sin((n+l)(9—60+2me/q)/p)sin(nﬂ/p)j e_lkR(e_60+2ﬂmp/q)COShgdg
£(8,)
- sin(n(6-60+2ﬂmp/q)/p)sin((n+l)ﬂ/p)J e~ikR(e_eO+2ﬂmp/q)COShng }
Y2
+ 0( (kR) ) (16)

where
2/;;0!cos(6—60+2ﬂmp/q)/2|

£(8y) = sinh
R(6—60+2ﬂmp/q) (17)

The integrals appearing in the above expression (16) can be further
expressed in terms of Fresnel integrals, whose properties are well known,

for details see Jones.(1986), p558.
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Special cases of wedge angles.

p =1
| _ 5 (2)
Gﬂ(r,e Ty o,k) ) H[ﬂ—le—60+2ﬂm/q+2ﬂNl]Ho [kR(6—60+2ﬂm/q)]. (18)
— m=0Q N
p
q=1

Gpﬂ(r, sTys8g3k) = % H[n-|6-0 +2pr|] H, (2)[kR(G 6,) ]

1 sin(e—eo)sin(ﬂ/p) Jw cosh(t/p) Ho(z)[kR(ﬂ-it)] de
0

£ sin((6-69)/p) cosht + cos(6-6g)

| pe2 [sin((n+1) (98 ) /p)sin(an/p) J°°cosh((p—n)t/p)a(f”[kR(w—it)] i
Eg.n=1 sin((e—eo)/p) 0 cosht + cos(0-6,)
) sin(n(e—eo)/p)sin((n+l)ﬂ/p) j’cosh((p—l—n)t/p) HO(Z)[kR(ﬁ—it)] de (19)
sin((e—eo)/p) 0 cosh t + cos(e—eo)
[p =2]
-1
G, (r,6,r ,6 3k) = ) ) H[m-|6-6 +4ﬂm/q+4ﬂNl] H (2)[kR(6—6 +4mm/q) ]
A - °
q
1%, (8-0g+4n/q) f cosh(£/2) By P TR(r-i0)] 4 209
T m=0 2 . cosht:+cos(6—eo+4ﬂm/q)
The last expression (20) can be put in an alternative form by using
the results of appendix D. Thus
q-1
Gzﬂ(r,e,ro, 0,k) ) H[w—|e—60+4ﬂm/q+4ﬂN{] HéZ)[kR(6—60+4ﬂm/dﬂ
q m=) N
q- ACE
%- Z gn[cos{(6—60+4ﬂm/q)/2}] J e’lkR(6—90+4ﬂm/Q)COShEdE’ (21)

0

- - !
where g(eo) - sinh 1 2¢rr0|cos(6 60+4ﬂm/q)/2|

R(6—60+4ﬂm/q)
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4. Some Specific problems in diffraction theory

Macdonald's Solution for a half plane.

In terms of the Green's function, the solution for the problem of

diffraction of a cylindrical wave Uo(r,ﬁ) HO(Z)[kR(e-GO)] by a soft, or

hard half plane is given by

U (r,8,7,8 ) 0

0580) = € (rs0,1,053k) G (r,8,70,~0g5k)

(22)

Us(r,e,ro,e )

0 sz(r,e,r0,60;k)

Gz,n.(r9esr0,—eo;k’) 5

respectively.
Putting q = 1 in the expression (21) gives

Gzﬂ(r,e,ro,eo;k) = % H[n—je—eo+4nN|]HO(Z)[kR(e-eO)]

_ lee )| _.
. %-sgn[cos((e—ﬁo)/Z)] [ oot ikR(6-6,)coshE 4, (23)

co

where g(eo) = sijlh_l‘ ( 2 rrocos(e—eo)/Z . (24)

R(e—eo)

Now for 0<By<2m , and 0<0<2w, then |6—60|<2ﬂ, so that the argument of
the Heaviside step function in (23) can only be positive if N = 0. Hence

6, (r,0,1,,005K) = H[ﬂ—]e—eol]Ho(z)[kR(6—60)]

i
+ — sgn |—cos s

<9‘90)} J‘E(eo)Ie—ikR(S—eo)COShgdg
2 o

(8-0,) Jlg(eo)le—ikR(S—eo)coshgdg .

= H{cos SE:EQiJ HO(Z)[kR(e-SO)] +-% sgn[Fos - }

2

1f cos((e—eo)/2>0 then
(2) i £(%)
Gzﬂ(r,e,ro,eo;k) = HO [kR(e—eo)] = J e
9

—ikR(e—eo)coshEdg.
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Now using the fact that

b

HO(Z)[RR(S—GO)] = %—J o TLKR(0-6 Jcosht 4,

=00

we can write

O G5
G (r,8,r ,0 ;k) = = J + J L ikR (6 eO)COShEdg,
2m =
. (5(0) _.
- I J 0 e—lkR(G—eo)coshng. (25
i

-0

If cos(@-ﬁo)/2)<0 then

Gz,n_(rsearoseo;k) = ?T_ dg ,

-1 J—g(eo)e—ikR(e—eo)coshE

[e0)

. E(6,) .
i J Oe‘lkR(e_eo)COShgdg. (26) |

=

Hence for any sign of cos(e—eo)/Z we have

. (E(8 ) _. _
G, (,0,r,,83k) = = J 07 ;mikR(0-6 ) coshE, (27)

=00

The expression for Gzﬂ(r,e,ro,—eo;k) can be found in exactly the same

manner for 0<0+6,<4m, i.e.

G, (r,0,10,-6, k) = H[w—le+60|]HO(Z)[kR(6+60)]

Jlﬂ%90)|e_ikR(e+eo)cosh£

+ H[ﬂ~|6+60—4ﬂ[]H0(2)[kR(e+60)] + %sgn[cos((6+80)/2)] dg ,
o (28)
where £(-8,) = sinh ™’ 2/rr cos ((8+0,) /21 (29)

R(e+eo)
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Hence
Gzﬁ(r,e,ro ,-60;k) = H[cos((6+eo)/2) ]HO(Z) [kR(6+60)]

. £(-6) .
+.% sgn[cos((6+60)/2)] J 0", 1kR(6+60)coshEdg

. E(—eo)_.
=_% j o 1kR(6+60)cosh€d€. (30)
Thus the solution of the problem of diffraction of a cylindrical wave
by a hard or soft half plane is given by substituting the expressions
(27) and (30) into (22) giving
£(0,) _. . 8(=0,)_.
_ i 0/ —=ikR(6-8 )coshg 1 0/ -ikR(6+8 )coshg
Uh(r,e,ro,eo) == J e 0 dg + o e 0 d¢ ,
—-00 —00 (31)
. &(8.) . _ . o E(-0.) _.
Us(f,e’ro’eo;k) - % J 0 o 1kR(6 eo)coshgdg _.% J 0 o 1kR(e+GO)cosh£d£,

where E(ig) are given by (24) and (29) respectively. This result agrees

with that of Macdonald (1915).
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Solution of Carslaw's problem for a wedge angle a = 27/3.

The solution for the problem of diffraction of a cylindrical wave
Uo(r,e,ro,eo) = HO(Z)[kR(e—GO)] by a soft or hard wedge of open angle
a = 2n/3 is given by

US(r’e’rO’eo) = G_Z_Tl(r’e’ro’eo;k) - G_zl(r,e’ra ’_eo;k)s

3 3
(32)

Up (58,0 ,80) 6, (£,0,7,8)3k) + ) (r,0,x,,=0 5k,

3 3

where, from the expression (21) with q = 3,

02 8g3K) = ) H[w—|e—60+4ﬂN1[]HO(Z)[kR(S—eo)]

- N
3 1

Gzﬂ(r,e,r 8

+ H[w—l6—60+4ﬂ/3+4ﬂN2|]Ho(z)[kR(6—60+4ﬂ/3)]
N
2

+ ) H[ﬂ—|6—90+8ﬁ/3+4wN3|]HO(Z)[kR(e—60+8ﬂ/3)]

N
3

. sinh—l[Z/;;_lcos((e-e )/2|] » _

+ %—sgn[cos((e—eo)/Z)] J 0 0 e ikR(0 eO)COShng
. sinh '[2/Fr. cos((6-8 +4m/3)/2)]]

+-% sgn[cos((e—eo+&ﬂ/3)/2)] f 0 °

oo

. e—1kR(9—60+4ﬂ/3)cosh£dg

-+
!

sinh_l[2/;;;|cos((e-90+8ﬁ/3)/2l]
; sgn[cos((e—60+8ﬂ/3V2)] I

<o

_ e—ikR(6—60+8ﬂ/3)cosh£d€ ' (33)

It is not difficult to show that for ~2ﬂ/3<6-80<2n/3 then N1 =0, N =0,

‘N3 = -1, Hence

Gzﬂ(r,e,ro,eo;k) = HO(Z)[kR(S—eo)]

E
+ H[ﬂ—|6—60+4ﬂ/3|]HO(Z)[kR(G—eo+4n/3)]

+ Hln-[o-0,~4n/3 | 1) [kR(8-0 -47/3) ]
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. -1
j sinh [2Vrr0lcos((6-80)/2)l]e_ikR(e_eO)coShgdg

+ ;Tl- sgnlcos((6-6,)/2)]

fee]

: Sinh—l[2/;;;|COS((6—90+4ﬁ/3)/2‘]
+ = sgn[cos((e—eo+4ﬂ/3)/2)] J .

[o]

) e—lkR(6—60+4ﬂ/3)coshEdE

; Sin571&Vrr0|cos((8—60—4ﬂ/3)/2)|]
+ E{sgn COS((9“90—4N/3)/21‘[

—SLR(O—0 -
e ikR{6 60 41r/3)cosh£dg ) (34)

We also have from the expression (21),

Gzﬂ(r,e,ro,—eo;k) = Z H[w—|e+eo+4an|]H0(2)[kR(e+eo)]
3 Ny
+ H[ﬂ—le+60+4ﬂ/3+4ﬂN2|]H0(2>[kR(6+60+4ﬂ/3)]

Ny

+ ) H[Tr—|6+80+8ﬂ/3+41rN3|]HO(Z)[kR(e+60+8n/3)]
N
3
. sinh '[2/rT |cos((6+6)/2) |1_.
+ % Sgn[cos((6+90)/2)] J 0 0 Ie_lkR(e+90)COSh€dE

o

; sinh_l[ZVrro|cos((6+60+4ﬂ/3)/2|]
+ = sgn [cos((6+60+4n/3)/2)] J

) e—1kR(6+eo+4ﬂ/3)coshgdg

. sin_l[ZVrrO[cos(6+eo+8ﬂ/3)/2|]
+ %—sgn[cos((6+90+8w/3)/2)] J

o

) e—ikR(9+60+8ﬂ/3)cosh£dE ‘ (35)

For the range of values O<9+60<4W/3 it is not difficult to show that

N1 =0, N2 takes no values, N3 = -1, so that

6,y (F20,578,51) = iin-|ove [Ju ) rcore )]

3

+ H[W—]6+60—4ﬂ/3l]HO(Z)[kR(6+GO—4ﬂ/3)]

) sinh_l[ZVErOlcos((8+80)/2)[]
+ %—sgn[cos((6+60)/2)] J

oo

. e—-1kR(6+8O)cosh€dE




-18~

: sinh—l[ZVrrO|cos((9+60+4ﬂ/3)/2)l]
+ }-sgn[cos((e+eo+4n/3)/2)] J

0

e—1kR(6+60+4ﬂ/3)coshEdg

3.

sinh” ! [2/7r |cos ((8+8=4m/3)/2) |]
sgn[cos((6+00—4ﬂ/3)/2)] [

e—ikR(e+60—4ﬂ/3)cosh£dE ) (36)

Substituting the expressions (34) and (36) into (32) gives the solution
W avg

to the problem of diffraction of the cylindricalAUO(r,e,ro,eo) by a

soft or hard wedge of open angle 2m/3.
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Diffraction by a hard/soft half plane

In terms of the Green's function the solution for the problem
. . . 2
of the diffraction of the line source Uo(r,e,ro,eo) = HO( )[kR(e—eo)]
by a hard/soft half plane is given by

Uh/s(r,e,ro,eo) ='Guﬂ(r,6,r sk) + G, (r,e,ro,—e 1k)

0”70’ 0’

- Gqﬂ(r,e,ro,4ﬂ—eo;k) - Guﬂ(r,e,ro,—4ﬂ+60;k)~. (37)
By putting p = 4 in the expression (19) we obtain

Gqﬁ(r,e,ro,eogk) = g H[ﬂ—|6—90+8ﬂN|]HO(2)[kR(e—eo)]

1. sin(e—eo) ¢ cosh(t/4)H0(2)[kR(ﬂ—it)] de
B 4v2 sin((@—eo)/4) L cosht + cos(e—eo)
1 sin((e—eo)/Z) cosh(3t/4)H0(2)[kR(ﬂ-it)] dt

by /Esin((e—eo)/4) 0 cosht + cos(e—eo)

o]

COSh(t/Z)HO(Z)[kR(ﬂ—it)] dt

0 cosht + cos(@—eo)

b sin((6-0 )/4)

1 sin(3(6—6 )/4) T COSh(t/Z)HO(z)[kR(ﬂ—it)] dt

cosht + cos(e—e )

(38)

sin((e—eo)/Z) f) cosh(t/&)H (2)[kR(n it)] de
o cosht + cos (6-90 )

/Esin((e—eo)/A)

For —2ﬁ<6—60<2w the only value of N which satisfies —ﬂ<6—60+8ﬂN<ﬂ is

N = 0. Hence

Gqﬂ(r,e,ro,eo;k) = H[n—le—eol]ﬂo(z)[kR(e—eo)]

4 ——

4\ sin((0-6,)/4)

1 G— sin(3(9—60)/4)> r’ cosh(t/Z)HO(z)[kR(ﬁ—it)] dt

cosht + cos(e—GO)
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. cosh(3t/4)H0(2)[kR(w—it)] dt

4§ cos ((0-6,) /4) J
0

V2
d —

4

- Hin|o- (2) -
= H[r-|6 60|]H0 [kR(6-6 )]

3 cos((e—eo)/Z) J
0

2
e cos((G—eo)/4) L

cos((e—eo)/A)(1—2cos((6—60)/2)) J
0

cosht + cos(e—GO)

> cosh(t/4)H0(2)[kR(ﬂ"it)] dt , (39)

cosht + cos(e—eo)

COSh(t/Z)HO(Z)[kR(W—it)] de

cosht + cos(e—eo)

cosh (3e/6)H, P IkR(r-i0) ],

cosht + cos(e—eo)

© cosh(e/0)B, P IR(r-10) 1,

+ %z cos((6-0_)/4) (1-2cos((6-6 )/2)) J - (40)
m 0 0 0 cosht + cos(e—eo)
In a similar manner it is not difficult to show that
¢ (r,0,r.,-0 3;k) = H[r—|o+6 |IH (2) [ r(e+0 )]
[, A 0? 0 0 0
1 Fa cosh(t/Z)HO(Z)[kR(w~it)] e
- — cos((6+6 )/2) J
2m 0 0 cosht + cos(6+60)
/3 cosh(Bt/4)H0(2)[kR(TT—it)] de
- == cos((8+0 )/4) r
b 0 0 cosht + cos(8+60)
(2) .
cosh(t/4)H [kR(w-it)]
+ ﬁz cos((6+60)/4)(1—2cos((9+60)/2)) { 0 dt'(41)
cosht + cos(e+60)

0

e) = _ _ (2)
Ghﬂ(r,6,4n—60,k) = Hln |e+e0 4ﬂ|]HO [kR(6+eo)]

i COSh(t/Z)HO(Z)[kR(ﬂ—it)] de

1
T cos((6+60)/2) f
0

cosht + cos(6+60)
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= o cosh(3t/4)H0(2)[kR(ﬂ—it)]

+ {%-cos((e+eo>/4) J

dt

5 cosht + cos(6+8;)

(2) .
cosh(t/4)H [kR(w—-it)]
0 dt. (42)

_ 2 cos((6+0 )/4) (1-2cos ((6+6 )/2)) f
4 0 0 A cosht + cos(0+90)

cosh (t/2)H ) (kR (n-it) ] "

- - L _
Gqﬂ(r,e,ro,—4ﬂ+eo,k) = o cos ((0 60)/2)J ot 4 cos(e—eo)
. (2) .
, cosh(3t/4)H [kR(w-it)]
+ éz cos ((6-6 )/A)J 0 de
il 0 o cosht + cos(e—eo)

J5 I cosh(t/4)H0(2)[kR(ﬂ—it)]dt.

- ZE-cos((e—GO)/4)(1—2cos((6—60)/2)) J (43)
p cost + cos(e—eo)

By substituting the expressions (40) to (43) into (37) gives the

solution for diffraction by a hard/soft half plame as :
U, (r,8,r ,0 ) = H[r—|e-6 |IH (2) [ r(e-0. )] + HIn-|o+6 |1 (2) [xr(o+6 )]
h/s > ’7770’ 0 0o'"0 0 0’0 0

- H[ﬂ—|e+60—4wl]H0(2)[kR(Q+90)]

e (2) .
cosh(3t/4)H [kR(m-it) ]
- L cos((9—60)/4)J 0 dt

V2w cosht + cos(e—eo)
® cosh(3t/4)ﬁo(2)[kR(n—it)]dt
- —— cos{(6+8 )/4)J
Vo 0 o cosht + cos (6+68)

®© cosh(t/é)Ho(Z)[kR(ﬂ‘it)] dt

1 ‘ _ _
+ = cos((0 60)/4)(1 2cos ((8 60)/2)) O coant + cos(6-6)

(2) ,
osh(t/4)H [kR(m-it) ]
cos 0 dte (4

¢ —E cos((8+0 )/4) (1-2c08((6+6)/2))

Vor y cosht + cos(6+60)
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Appendix A,

Here we derive a contour integral representation for Hv(z)(z) for
v>~1, -w/2 < argz < w/2, namely
. i(argz-n/2)
ivm oe . 2
Hv(z)(z) =z’ 2 Q&-J e i(t+z"/bt) _de_ . (A.1)

L t\)+‘1
otic

From Watson (1944) p 179 we have the integral representation

we™ 1T o1
Z (u—
n Dy - - —LJ eFlumu ) du o ea <2, (A.2)
v 1 i0 uvtl!
0
© I u-plane
fau
The contour of integration :
for the integral (A.2) Fig. 3.
where the contour of integration is shown in fig 3. Let zu = 2te_1ﬂ/2
then
v ivr ooe{(argz—ﬂ/z) )
2 1 -i g
i - JE) e“z"'-—}-J , ci(erzt/ue) dt (A.3)
v \2 TL Oe1(argz+ﬂ/2) £Vl

Since -m/2 < argz < m/2, then -7 < argz -m/2<0 and O < argz + /2 < T,
which means that the upper limit of integration lies in the lower half

t - plane, and the lower limit of integration lies in the upper half t-plane.

Provided Re v > -1 we can apply Jordan's lemma

to distort the path of integration to run along

a path parallel to the real axis at a distance
|

c >0as t»w» , see Jeffreys and Jeffreys (1966) %

p 392. Thus 0ei(argz+1r/2) S S
P =<_z_>\’e_l,>’l ‘l"J i(erg?/ne) de
v 2 t\)+l i
The contour of
integration for the
integral (A.3)

Fig. 4.
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0ei(argz+ﬂ/2)
ivm _1i 2
- Ve L o p(tvz®/t) _dt (A.4)
Tl gv+l
otic
- m/2 < argz < w/2, ¢ > 0, Re v >-1.
AN - *IMC s s
AN a\'at t—PQQkﬂ-
\\\ < I\c
Rt
The contour of integration for the
integral (A.4).
Fig. 5.
Appendix B

Here we derive an alternative representation for the double

integral
0 : ik?rr,cos
: J - den? (Pax By | HeEEeSo
= - e 0 e t
Ti
otic
k?rr;
R 2
t o 1xcos¢Hv( )(x)dx %}_, 0<v<1l. (B.1)
ikzrrocosw K?rr .
Let Il e f_—f_a e—lxcosw Hv(Z)(x)dx : (B.2)

[e0)

then by using the integral representation, Lebedev (1965) pll7-118
ivm

' Yl
HV(2>(Z) = —2§% [ e lXCOShucoshvudu, Imz<0, lRe\ﬂ < 1, (B.3)
-0

. . . k2
the expression (B.2) can be written (since Im(__EEQ\ <0)
t

as

2e 2 0 T e—ix(cosw+coshu)

Vi e ikZry kzrro
L e |

dx\coshvudu ,

o«

o
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, o 2
VTL o _ ik rrocoshu
__2e Z e t hou d (B.4)
T opi . (coshu+cosy) coshvu du .
0

Substituting the last expression (B.4) into (B.1) and interchanging

the order of integration gives

'\)'ﬂ'i 00, 0 . 2 2 2
_ -2e?2 coshvu 1 . %_(t+k (r +rn:2rr0c03hu))
T 0 coshu+cosy| mi "
wtic
C4t | g,
t
Vi
2
- -2 costvu___ (2)[k/r +ry Zyorr ocoshul du ,
i ) coshutcosy
LLi R
2e 2 coshvu ( )
T 05T B.
m J coshu+cosw [kR(m-iu)] du. (B.5)
Appendix C

Here we evaluate the integral

0 CCe+k2 (22412) /t) ik? kv2rr /t‘cosw/2|
1 J _%_( (x ro)/ ) 1% rr,cosy 0 —iv2. dt (1.0)
I == e t e dv —
Tl - t
o +ic
We can rewrite this as (v = kV2rr /t|cos¢/2|u)
1 . 2
0 i (e+k?(e? +r, 2 orr cosw)/t) 12k%rr cosZ ($/2)u
-7 - 0
I = J e ? |cos—1k¢2rr J —F
co+1C o
dt
. du —372
t
1 0 i (t+k2(R2(w)+4rr cosz(q)/Z)uz)/t,)(1 du
- ¥ -7 dat ’
= k/er |cos 2| j J e /
© 00+ic

(2)[k(R (p) + 4rr cos (¢/2) );]
k/izzglcos %} [ _lﬂ/a du .

k (R () + brrycos 2(p/2)u )“
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1
Lo,
But since H,(z)(z) = ifjé) ¢ % then we get
2 \’lT Z
1
1 e—ik(Rz(lp)+4rr0cos2(w/2)u2)2

. Y
I= el“/42 -——9icos%I [ T
T (Rz(w)+4rr0cosz(¢/2)u2)2

N

Now let 2/rr0lcosw/2|u = R(Y)sinhg , then

in/4 (& _s
1. J 0 -ikR(y)coshEy (2.0)
'z
_y |2Vrr |cosy/2|
where go = sginh 0 (3.0)

R(Y)

Appendix D.

We shall here give an alternative representation for the integral

_ “ cosh t/2 (2) 2. 2
1= J “oohi + cosu HO [k (r +r0+2rr0cosht)] dt ,

o H0<2)[k/(r2+r§+2rrocosht)] d
I (sinht/2) dt .

=2

0 cosht + cosy

Let v = 2¢rr0 sinh(t/2) then since cosht = 1 + 2 sinhzt/z we get

1y Ol 1 e ®.1)

0 V2+4rr0cosz(w/2)

I = 2Vrr

0

We now use the representation, see appendix A,

0 2
1[0 ety
Ti t °

c—1»

Ho(z)(x)

in the expression (D.1) giving
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0 2 L2 2 2
1=k (r+r 2t -
I = #%— J e? ( 0) / 2/;;; e kv /thv dt
c—im 0v2+4rr0cosz(w/2) t
R ©® 5 © 9 0 ® 2 *® 2
Now J ez dg =-J -ou d [ ~(uT+A )tdt = { e_A tdt f e—(t+a)u du
o0 u” +A 0 0 0 0

© 2 2 © 2 ‘00 _
_ KE I o A“t dt = %? eA o J ATx g§ - /o eA o I oW dw
2 ) Vera |4
A
Hence
o 22 2 2 «
o kv /2t dv Ve keAk rr,cos (p/2)/2 —k2w2/2t
2/rrn 5 > = ” e dw
TV +4rr0cos (w7§7 2 tilcosw/Zl / ’
2Vrrolcosw/2[
so that
*© 0
l(t-kz{r2+r2—2rr cosw+w2}/t) dt  du
e? 0 0 32
t

T k 1
If//::;]coslp/ﬂ J » i
2¢rrolcosw/2| c-iw

o (2) 2.2 2
N Kk J H% {kV/(r +r“-2rr jcostw )} dw,
Vo 2 |cos¥/2 b2, 2 2%

| | 2/t lcosp/a| KTy TREECOSYT)

Thus

00

(See appendix A).
. 2 2 2
e-lk/(r +r —2rr0cosw+w ) dw

i

I = ——
: 2
|cosv/2] 2Vrr0!cosw/2|

/(r2+r02—2rr0cosw+w2)

In the last integral we make the change of variable w = R(y) sinhf so that

o0

Lo i J o~LER(p) coshE ;. ’
2
lcosy/2] 3
ZVrrOtcosw/2|
]

R(Y)

where £ = sinh = [
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Fig. 1.

Geometry of the wedge diffraction problem.
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