
INVESTIGATING GRID COMPUTING TECHNOLOGIES FOR USE WITH 

COMMERCIAL SIMULATION PACKAGES 

 
Navonil Mustafee  

The Health Care Research Group 

Warwick Business School, University of Warwick 

Coventry, CV4 7AL, UK 

navonil.mustafee@wbs.ac.uk 
 

Simon J E Taylor 

Centre for Applied Simulation Modelling 

School of Information Systems, Computing & Maths, Brunel University 

Uxbridge, Middlesex, UB8 3PH, UK. 

simon.taylor@brunel.ac.uk 

 
ABSTRACT: 

As simulation experimentation in industry become more 

computationally demanding, grid computing can be seen as 

a promising technology that has the potential to bind 

together the computational resources needed to quickly 

execute such simulations. To investigate how this might be 

possible, this paper reviews the grid technologies that can 

be used together with commercial-off-the-shelf simulation 

packages (CSPs) used in industry. The paper identifies two 

specific forms of grid computing (Public Resource 

Computing and Enterprise-wide Desktop Grid Computing) 

and the middleware associated with them (BOINC and 

Condor) as being suitable for grid-enabling existing CSPs. 

It further proposes three different CSP-grid integration 

approaches and identifies one of them to be the most 

appropriate. It is hoped that this research will encourage 

simulation practitioners to consider grid computing as a 

technologically viable means of executing CSP-based 

experiments faster.  
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1. INTRODUCTION AND MOTIVATIONS 

 

Grid computing has the potential to provide users on-

demand access to large amounts of computing power, just 

as power grids provide users with consistent, pervasive, 

dependable and transparent access to electricity, 

irrespective of its source (Baker et al., 2002).  It has been 

identified that simulation modelling can potentially benefit 

from this as computing power can be an issue in the time 

taken to get results from a simulation (Robinson, 2005; 

Taylor and Robinson, 2006). Furthermore, development in 

simulation has been closely allied to the advances in the 

field of computing (Robinson, 2005) and it is expected that 

it will continue to rely on the latest advances in computing 

to support increasingly large and complex simulations 

(Pidd and Carvalho, 2006). Grid computing is a significant 

advancement in the field of distributed computing and it is 

possible that, like previous beneficial developments in 

computing adopted by simulation users, this technology 

may provide an opportunity to further improve the use of 

simulation in industry.  This is supported by the 

observation that the use of grid computing in scientific 

simulation has certainly proved beneficial.  For example, 

the role it plays to reduce the time taken to produce results 

(and therefore the opportunity to do more!) is certainly true 

in disciplines such as particle physics, climatology, 

astrophysics and medicine, among others.  The question is 

can the same benefits be passed on to the use of simulation 

modelling as practiced in industry? 

 

Another issue is the relatively low adoption rate of grid 

computing outside of academic and research domains. At 

present a major proportion of grid users comprise of 

researchers (physicists, biologists, climatologists, etc. who 

are the primary stakeholders of the applications running on 

the grid) and computer specialists with programming skills 

(the providers of IT support to the stakeholders). This is not 

unexpected as the majority of applications using grid 

computing are research applications. The widespread 

adoption of grid computing technologies by employees in 

industry has so far been relatively little. One important 

reason for this is that although the employees are experts in 

their own discipline they generally do not have the 

necessary technical skills that are required to work with 

present generation grid technologies. A possible means to 

increase adoption is to incorporate grid support in software 

applications that require non-trivial amounts of 

computation power and which are used by the end-users to 

perform their day-to-day jobs. The commercial simulation 

packages used in industry are an ideal candidate for such 

type of integration. Figure 1 summarises the motivations of 

this research (we shall return to this figure in the 

conclusions). 

 

This paper therefore investigates the use of grid computing 

technologies to support simulation modelling by 



 
Figure 1: Research motivations 

investigating how these technologies can be integrated with 

Commercial Off-The-Shelf (COTS) Simulation Packages 

(CSPs). This paper is structured as follows. This section 

has described the motivations for this research. Section 2 

presents an overview of CSPs and discusses operating 

system support for them. This is followed by a review of 

grid computing which highlights the opportunities and 

barriers to using this technology together with the CSPs 

(section 3). This leads to a discussion of grid technologies 

for integration with CSPs (section 4 and 5). Three different 

integration approaches to using CSPs together with desktop 

grid middleware are presented and one approach is 

identified as most the appropriate (section 6).  Finally, 

section 7 concludes the paper with a discussion on the 

challenges facing the wider adopting of this technology for 

simulation modelling with CSPs.  

 

2. COTS SIMULATION PACKAGES 

 

In the context of simulation practice in industry, discrete 

event simulation is arguably the most frequently used 

classical OR technique that is applied across a range of 

industries like manufacturing, travel, finance and 

healthcare, among others (Hollocks, 2006). Commercially 

available discrete-event simulation packages like 

Simul8™, Witness™ and AnyLogic™ are generally used 

to model such simulations (Taylor et al., 2005). Monte 

Carlo simulation is yet another OR technique that is 

extensively used in application areas like finance and 

insurance (Herzog and Lord, 2002). Commercially 

available spreadsheet applications (Microsoft Excel™, 

Lotus 1-2-3™, etc.), spreadsheet add-ins (Crystal Ball™, 

@Risk™, etc.) and Monte Carlo simulation packages 

(Analytica™, Analytics™, etc.) are often used for 

modelling Monte Carlo simulations in industry (Swain, 

2007). We use the term Commercial Off-The-Shelf (COTS) 

Simulation Packages (CSPs) to collectively refer to these. 

 

Swain (2005) has made a comprehensive survey of 

commercially available simulation tools based on the 

information provided by vendors in response to a 

questionnaire requesting product information. This list 

presently consists of 56 CSPs and features the most well 

known CSP vendors and their products (Swain, 2007). Of 

these, a total 45 CSPs have been identified by Mustafee 

(2007) to be either discrete event or Monte Carlo 

simulation packages. The 45 CSPs are all supported in the 

Windows platform, 15.56% (approx.) are supported in 

UNIX and Linux platforms, and only 13.33% (approx.) are 

supported under the Apple Macintosh Operating System 

(Mustafee, 2007). As will be discussed later in this paper, 

platform support for CSPs is important when considering 

different grid technologies that can be potentially used with 

existing CSPs.  

 

3. GRID COMPUTING: DEFINITION, 

OPPORTUNITIES AND BARRIERS 

 

Grid computing (or Grids) was first defined by Ian Foster 

and Carl Kesselman in their book “The Grid: The 
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Blueprint for a New Computing Infrastructure” as a 

hardware and software infrastructure that provides access 

to high-end computational resources (Foster and 

Kesselman, 1998). It was further stated that this access 

should be dependable, consistent, pervasive and 

inexpensive. This definition of grid computing has since 

been modified twice by the grid veterans; once by Foster, 

Kesselman and Tuecke in their paper titled “Anatomy of 

the Grid” (Foster et al., 2001), and again by Foster and 

Kesselman with the publication of the second edition of 

their book “The Grid: The Blueprint for a New Computing 

Infrastructure” (Foster and Kesselman, 2004). 

 

The re-definition of the term “grid computing” twice over 

the period of nearly 6-7 years suggests that this is still an 

evolving field. However, all the three definitions are 

consistent in terms of their focus on large-scale computing. 

Thus, Foster and Kesselman (1998) mention “access to 

high-end computational resources”, Foster et al. (2001) 

refer to “large-scale resource sharing” and, finally, Foster 

and Kesselman (2004) highlight “delivery of nontrivial 

Quality of Service”. This focus on large scale computing 

makes grid computing an enabling technology for eScience 

(Hey and Trefethen, 2002). e-Science is large scale science 

that is increasingly being carried out through global 

collaborations, and which requires access to very large data 

sets and computing resources distributed across a wide 

geographical area (National e-Science Centre, 2001). Some 

of the e-Science projects using grid technology include 

CERN’s Large Hadron Collider (LHC) project that is 

devoted to studying particle physics under conditions well 

beyond any other previous experiment (Lamanna, 2004); 

the Network for Earthquake Engineering Simulation 

(NEES) e-science project that inks earthquake researchers 

across the U.S. with leading-edge computing resources and 

research equipment like supercomputers, data storage, 

networks, visualization displays and sensors (Spencer et al., 

2004) and the Earth System Grid (ESG) project where 

global climate models are used to simulate climate, and 

experiments are executed on an array of distributed 

supercomputers (Bernholdt et al., 2005).  

 

Thus it is clear that grid computing presents immense 

opportunities for e-Science projects that require large scale 

collaborative use of computing resources. Consequently, 

the majority of grid users comprise of researchers and 

computer specialists who are associated with such e-

Science projects and have the technical knowledge to work 

with the present generation grids. This is because the 

creation of an application that can benefit from grid 

computing (faster execution speed, linking of 

geographically separated resources, interoperation of 

software, etc.) typically requires the installation of complex 

supporting software and an in-depth knowledge of how this 

complex supporting software works (Jaesun and Daeyeon, 

2003). This software is commonly referred to as grid 

middleware. A grid middleware is a distributed computing 

software that integrates network-connected computing 

resources (computer clusters, data servers, standalone PCs, 

sensor networks, etc.), that may span multiple 

administrative domains, with the objective of making the 

combined resource pool available to user applications for 

number crunching, remote data access, remote application 

access, among others. A grid middleware is what makes 

grid computing achievable.  

 

Globus™, arguably the most recognized grid middleware, 

is an open source set of services and software libraries 

which supports grids and grid applications (Foster et al., 

2002). Examples of other grid middleware include gLite 

(Berlich et al., 2005), VDT (Virtual Data Toolkit, 2007), 

European Data Grid (EDG) middleware (Berlich et al., 

2005), OMII middleware (OMII, 2006), LCG-2 (Peris et 

al., 2005), etc. The middleware mentioned above are all 

geared towards dedicated, centralized, high performance 

clusters (such as Beowulf clusters (Beowulf.org, 2007)) 

and supercomputers running on UNIX and Linux flavour 

operating systems. Currently, the only exception appears to 

be Globus™, which allows certain components to be 

installed in Windows™ computers. These middleware are 

hence forth referred to as cluster-based grid middleware. 

The operating system support for grid middleware is 

important when considering the adoption of grid 

technologies by the end-users at their workplace.   

 

It is common knowledge that most desktop computers run 

on the different variants of the Windows™ operating 

system. As such, most of the end-user applications are also 

supported under the Windows™ platform. Let us take the 

example of CSPs. The CSPs are typically standalone 

packages that run on a single desktop PC on the Windows 

operating system. The users of CSPs tend to be skilled in 

simulation modelling and not computer science (as many 

users of grid computing are).  Grid support for CSPs must 

therefore take into account that these packages are 

windows-based, their users are specialists in simulation 

modelling and not computing and any technological 

solution must be developed with little or no change to the 

CSP. However, the barrier here is that most of the grid 

middleware designed for large scale computing are either 

based on UNIX and Linux operating systems or provide 

only partial functionality on Windows™ based system.  

 

4. SOLUTION: DESKTOP GRID COMPUTING 

 

The discussion on grid computing, until this point, has 

shown that grid middleware and applications have 

traditionally been geared towards large scale projects that 

use cluster computers running on UNIX and Linux 

operating systems. Cluster-based grid computing can be 

contrasted with desktop-based grid computing which refers 

to the aggregation of non-dedicated, de-centralized, 



commodity PCs connected through a network and running 

(mostly) the Microsoft Windows operating system. 

Middleware for cluster-based grid computing severely 

limits the ability to effectively utilize the vast majority of 

Windows-based resources that are common place in both 

enterprise and home environments, and therefore 

development of middleware for desktop-based grid 

computing is important with the growing industry interest 

in grids (Luther et al., 2005).   

 

Desktop grid computing or desktop grids addresses the 

potential of harvesting the idle computing resources of 

desktop PCs for processing of parallel, multi-parameter 

applications which consist of a lot of instances of the same 

computation with its own input parameters (Choi et al., 

2004). The desktop grid resources can be part of the same 

local area network (LAN) or can be geographically 

dispersed and connected via a global network such as the 

Internet. Studies have shown that desktop PCs can be under 

utilized by as much as 75% of the time (Mutka, 1992). This 

coupled with the widespread availability of desktop 

computers and the fact that the power of network, storage 

and computing resources is projected to double every 9, 12, 

and 18 months respectively (Casanova, 2002), represents 

an enormous computing resource. In this paper the use of a 

desktop grid within the enterprise is termed as Enterprise-

wide Desktop Grid Computing (EDGC). Thus, EDGC 

refers to a grid infrastructure that is confined to an 

institutional boundary, where the spare processing 

capacities of an enterprise’s desktop PCs are used to 

support the execution of the enterprise’s applications 

(Chien et al., 2003).  User participation in such a grid is not 

usually voluntary and is governed by enterprise policy. 

Applications like Condor (Litzkow et al., 1988), Platform 

LSF (Zhou, 1992), Entropia DCGrid (Kondo et al., 2004), 

United Devices GridMP  (United Devices, 2007) and 

Digipede Network (Digipede Technologies, 2006) are all 

examples of EDGC. 

 

Like EDGC, Internet computing seeks to provide resource 

virtualization through the aggregation of idle CPU cycles 

of desktop PCs. But unlike EDGC, where the desktop 

resources are generally connected to the corporate LAN 

and used to process enterprise applications, Internet 

computing infrastructure consists of volunteer resources 

connected over the Internet and is used either for scientific 

computation or for the execution of applications from 

which the user can derive some benefit (for example, 

sharing music files). This research distinguishes between 

two forms of Internet computing - Public Resource 

Computing (PRC) and Peer-to-Peer Computing (P2P) - 

based on whether the underlying desktop grid infrastructure 

is used for solving scientific problems or for deriving some 

user benefit respectively. The different forms of grid 

computing are shown in figure 2. PRC and P2P computing 

are described next. 

 
Figure 2: Forms of grid computing (Mustafee, 2007) 

 

PRC refers to the utilization of millions of desktop 

computers primarily to do scientific research (Anderson, 

2004). The participants of PRC projects are volunteers who 

contribute their PCs to science-oriented projects like 

SETI@home (Anderson et al., 2002) and 

Climateprediction.net (Christensen et al., 2005). Berkeley 

Open Infrastructure for Network Computing (BOINC) 

(BOINC, 2007b) is arguably the most widely used PRC 

middleware that enables the project participants to 

download work units from BOINC servers, process them 

and upload the results back to the servers. The majority of 

the PRC middleware is supported on Windows. This is not 

unexpected as PRC projects depend on volunteer 

computing resources, and the bulk of these resources 

presently run on the Windows operating system. The 

participants of a PRC project are unable to use the 

underlying desktop grid infrastructure, of which they 

themselves are part of, to perform their own computations.  

 

P2P computing refers to a non-centralized infrastructure for 

file sharing over the Internet. P2P networks are created 

with the resources of the volunteer users (peers) who derive 

benefit from such networks as it allows them to download 

files that are shared by other peers.  As P2P computing is 

voluntary, the middleware for such systems should ideally 

have mechanisms to organize the ad-hoc and dynamic 

peers in such a way that they can co-operate to provide file 

sharing services to the P2P community; for example, the 

P2P middleware should have mechanisms to quickly and 

efficiently locate files that are distributed among peers 

(Saroiu et al., 2002). Some of the popular P2P file sharing 

systems are Gnutella (Sun et al., 2006), KaZaA (Good and 

Krekelberg, 2003) and in the past, Napster (Giesler and 

Pohlmann, 2003). They are all supported under the 

Windows operating system. 

5. DESKTOP GRID MIDDLEWARE 

This section of this paper presents an overview of two 

different middleware which has relevance to CSP-based 

simulation, namely, PRC middleware BOINC and EDGC 

middleware Condor. P2P computing is not investigated 
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further because it generally supports only file sharing and 

as such P2P networks cannot be used to execute programs 

(like CSPs) on the peer resources. From this point on, the 

terms “desktop grid computing”, “desktop grids”, “grid 

computing” and “grids” will be used synonymously to refer 

to only PRC and EDGC, unless explicitly stated. 

5.1 PRC MIDDLEWARE BOINC 

The BOINC system (figure 3, adapted from (Anderson, 

2006) and (Perez, 2005)) contains several server-side 

components, which may execute on separate machines if 

required. Most of the server side components can only be 

installed over a UNIX or Linux flavour operating system. 

The database holds all the metadata associated with the 

project and lifecycle information for each work unit. A 

client’s command channel operates via the scheduling 

server, using an XML-based protocol. Results are 

transferred using HTTP via the data servers. In addition to 

work units and results, other files may be transferred 

between server and client, including application 

executables and any other interim data the application may 

require during the operation. The database also has a web-

based front-end that is used for displaying project 

information specific to volunteers, for example, how many 

computers have been contributed by the user, the number 

of work units processed, etc. On the client side, the BOINC 

core client manages interaction with the server, while 

optional components (like screensaver and manager) 

provide graphical control and display elements for the 

benefit of the user. The core client can be installed in the 

Windows™ operating system. The BOINC client API 

provides the interface between the user-created application 

client and the BOINC core client. The API is a set of C++ 

functions and the application client is compiled with it. All 

communication between the BOINC core client and the 

BOINC project servers take place through HTTP on port 

80. The BOINC core client can therefore operate behind 

firewalls and proxies. 

 

Although BOINC was originally designed to support PRC, 

lately there has been a realization that the same software 

can be reconfigured to support desktop grid computing 

(BOINC, 2007a). The widespread availability of desktop 

PCs in organizations makes the deployment of such an 

enterprise-wide BOINC infrastructure an even more 

attractive option. Thus, it may be possible to implement 

and deploy BOINC-based projects for use exclusively 

within an enterprise, such that it is geared up to support the 

execution of the enterprises’ applications. The participants 

of such an enterprise-wide BOINC setup can be the 

employees of the organization who contribute their work 

PCs. The participation in such projects may not be 

voluntary and can be governed by the policy of the 

organization. The computations being performed by the 

BOINC clients will be in line with the needs of the 

enterprise, and unlike PRC where volunteers are 

encouraged to contribute their resources, only employees 

and other trusted sources will be allowed to participate in 

the enterprise-wide BOINC projects. BOINC features that 

are necessary in the PRC context but may not be required 

in an enterprise grid (for e.g., user rewards system, anti-

cheating measures, mechanisms to deal with client failure 

or extended network non-connectivity, etc.) can be 

disabled. 
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Figure 3: The BOINC system 

5.2 EDGC MIDDLEWARE CONDOR 

The Condor project was born in the University of 

Wisconsin-Madison in 1988. Condor is an opportunistic 

job scheduling system that is designed to maximize the 

utilization of workstations through identification of idle 

resources and scheduling background jobs on them 

(Litzkow et al., 1988). A collection of such workstations is 

referred to as a Condor pool. When Condor was first 

introduced in 1988 it was unique because it was arguably 

the only production system that allowed every user to 

contribute as much or as little of their resources, and 

offered an alternative to the dominant centralized 

processing model of the day (Thain et al., 2004). Two 

fundamental concepts of Condor middleware, which are 

also important in our discussions on CSPs, are (a) Condor 

matchmaking and (b) Condor universe. These are described 

next. 

 

(a) Condor architecture defines resource providers and 

resource consumers. The resource providers make their 

resources available to Condor for the processing of jobs 



that originate from the resource consumers. Condor allows 

both resource consumers and providers to advertise these 

requirements, conditions and preferences by providing a 

language called classified advertisements (ClassAds) 

(Thain et al., 2004). The ClassAds are scanned by a Condor 

matchmaker agent (an agent is a Condor software 

component), running on only one computer in a Condor 

Pool, to find a match between the requirements advertised 

by the resource consumer agents  and the resources 

advertised by the resource provider agents. Once a match 

has been found by the matchmaker agent, it notifies both 

the resource consumer and the resource provider agents. 

Upon receiving this notification, the resource consumer 

agent claims the resource advertised by the resource 

provider agent through a claiming protocol. The job is 

executed by the resource provider agent and the results of 

the computation are returned back to the resource consumer 

agent. The matchmaking process is illustrated in figure 4. 

The figure has been adapted from Basney and Livney 

(1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Condor resource management architecture 

 

Thus, in order to execute CSP-based simulations using 

Condor, PCs acting as resource provider agents will have to 

be installed with CSPs (Simul8™, Excel™, etc.) and will 

need to advertise this using ClassAds mechanism. The 

resource consumer agents will also be required to advertise 

their requirement (for example, 10 PCs required) with the 

condition that the resource providers will have the 

appropriate CSPs installed on them. 

 

(b) Condor universe is an execution environment for jobs 

that are submitted by the users. Depending upon the type of 

job to be executed and its requirements, the user needs to 

select from among the following Condor universes (Condor 

Version 6.9.1 Manual, 2007b): standard universe, vanilla 

universe, Java universe, PVM universe, parallel universe, 

grid universe, scheduler universe, local universe. Of these, 

Java universe, which supports the execution of java 

programs using the Java Virtual Machine (JVM) execution 

environment, is the most appropriate for executing CSP-

based simulations over Condor (Mustafee, 2007). 

 

6. CSP-GRID INTEGRATION APPROACHES 

 

For desktop grids to support CSP-based simulation, it 

should take into account that the CSP vendors and the grid 

middleware developers may be unwilling to make any 

source code changes to their software. Thus, any 

technological solution proposed should be able to integrate 

“unmodified” grid middleware with “unmodified” CSPs. 

Three possible approaches for using desktop grids with 

CSPs are discussed next. These are referred to as the CSP-

middleware integration approach, the CSP-runtime 

installation approach and the CSP-preinstalled approach.  

6.1 CSP-GRID MW. INTEGRATION APPROACH 

One possible way of using desktop grid middleware 

together with CSPs is to “bundle” the latter along with the 

former.  When a desktop grid middleware is installed on a 

PC, the CSP is also installed on it. In an enterprise-wide 

desktop grid the jobs from other users (guest processes) 

may run alongside the programs being executed by the 

resource owner (host processes). However, the guest 

processes are usually run in a “sandbox” that is 

implemented by the middleware. This provides a logically 

separate and secure execution environment for both the 

host and guest processes. In Entropia DCGrid for example, 

the sandbox mechanism is called the Entropia Virtual 

Machine (EVM) and it wraps interpreters like cmd.exe, Perl 

and Java Virtual Machine (JVM) to prevent unauthorized 

access to a computer (Calder et al., 2005). Thus, it might be 

possible to include a CSP installation inside the EVM and 

offer it as part of an Entropia installation. The problem 

with this approach is that it will require changes to the 

enterprise desktop grid middleware as a CSP will have to 

be integrated with it. Furthermore, an enterprise desktop 

grid is a general purpose distributed computing 

environment that allows the execution of various user 

applications (not limited to simulation alone). Although the 

integration of interpreters like JVM can be justified 

because of the wide prevalence of Java applications, it is 

arguably more difficult to explain the inclusion of a CSP 

(but which CSP? there are at least 45 of them), unless a 

customized desktop grid middleware distribution is created 

for meeting simulation requirements of a specific 

organization. This approach is not considered feasible for 

reasons outlined earlier (section 6). 

6.2 CSP-RUNTIME INSTALLATION APPROACH 

The second approach involves the installation of a CSP 

package at runtime, i.e. just before the simulation 

experiment is conducted. In this case the CSP itself is 

transferred to the desktop grid nodes, along with the data 

files associated with the simulation and the trigger code 
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(executable code which starts the CSP-based simulation on 

a grid node). This approach may not be feasible for a 

number of reasons. (1) the size of CSPs frequently exceed 

100s of MBs and it may not be feasible to transfer such 

large amounts of data to multiple clients over the network, 

(2) the CSP will first need to be installed on the desktop 

grid node before the simulation can start, (3) such an 

installation is normally an interactive process and requires 

human intervention, (4) an installation normally requires 

administrative privileges on the client computers, (5) 

transferring CSPs may lead to a violation of the software 

licence agreement that may be in place between the CSP 

vendor and the organization (if the number of desktop grid 

nodes executing simulations exceed the number of licences 

purchased).  

6.3 CSP-PREINSTALLED APPROACH 

The third CSP-grid integration approach is to install the 

CSP in the desktop grid resource, just like any other 

application is installed on a PC. The drawback with this 

approach is that the sandbox security mechanism 

implemented by most enterprise desktop grids may have to 

be forfeited.  However, as simulations are created by 

trusted employees running trusted software within the 

bounds of a fire-walled network, security in this open 

access scheme could be argued as being irrelevant (i.e. if it 

were an issue then it is an issue with the wider security 

system and not the desktop grid).  

 

Of the three CSP-grid integration approaches discussed in 

this section, the CSP-preinstalled approach is considered 

the most appropriate because (1) it does not require any 

modification to the CSPs – thus, CSPs that expose package 

functionality can be grid-enabled, (2) it does not require 

any modification to the grid middleware – thus, existing 

Windows™-based grid middleware like BOINC and 

Condor can be used, and (3) CSPs that are usually installed 

on the PCs of the simulation practitioners can be utilized 

for running simulation experiments from other users in the 

background. 

 

The procedure to execute CSP-based simulation 

experiments over desktop grids following the CSP-

preinstalled approach is as follows (see figure 5): 

 

1. The simulation user writes an executable “trigger” 

code in C++, Java, Visual Basic (VB), etc. that 

accesses the CSP functionality through exposed 

interfaces. The trigger code should generally invoke 

the CSP, load the model file, transfer experiment 

parameters into the model, execute the model, etc. 

Mustafee (2007) provides a list of CSPs that expose 

package functionality using well-defined interfaces. 

2. The simulation user makes available the data files 

associated with the simulation (simulation model files, 

experiment parameter files, etc.) and the executable 

file containing the trigger code to the desktop grid 

nodes where the experiment will be executed. Two 

possible ways of accomplishing this are (1) by 

providing a shared grid access to a network drive, or 

(2) by transferring the required files using the desktop 

grid middleware.  

3. The desktop grid middleware invokes the executable 

trigger code on a remote desktop node. The simulation 

starts and results are saved in a file. The user retrieves 

the results by (1) accessing them from the shared 

network drive, or (2) the result files are transferred 

back to the user through the grid middleware.  
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Figure 5: Executing CSP-based simulation over grid 

resources using CSP-preinstalled approach 

 
The reader is referred to Mustafee (2007) for case studies 

associated with using CSPs together with BOINC and 

Condor and the CSP-grid integration technology that is 

used for this purpose. 

 

7. DISCUSSIONS AND CONCLUSIONS 

 

Through a review of literature this paper has identified two 

forms of grid computing that can be used to grid-enable 

existing CSPs. These are Public-Resource Computing 

(PRC) in an enterprise context and Enterprise Desktop Grid 

Computing (EDGC). The use of PRC and EDGC forms of 

grid computing for CSP-based simulation in industry can 

not only speed up simulation experimentation, but it can 

also maximize the utilization of hardware and software 

resources (PCs, network infrastructure, CSPs) within an 

organization. The latter is achieved through making use of 



under utilized desktop computers and the software installed 

on them.  

 

This paper has then discussed two specific grid computing 

middleware, namely PRC middleware BOINC and EDGC 

middleware Condor. Both these middleware are available 

for download free of charge, include installation manuals 

and user guides, and are supported by user forums and 

training programs (for example, Condor Week is an annual 

training program conducted by the University of 

Wisconsin, Madison). This presents an opportunity for the 

simulation user to experiment with these middleware with 

an objective to run simulation experiments faster. 

 

This research has shown that it is technologically feasible 

for grid computing to make available computational 

resources for running CSP-based experiments (figure 1: 

motivation one) and thus industry can potentially benefit 

from it (figure 1: motivation 2). It has also been shown that 

end-user tools like CSPs could be successfully integrated 

with grid middleware using low intervention solutions 

(figure 1: motivation 3). 

 

However, the CSP-grid integration solution proposed by 

Mustafee (2007) requires some knowledge of Java and 

Visual Basic programming. Furthermore, the end-users will 

also need to know the middleware-specific mechanisms to 

create jobs (in the context of CSP-based simulation, a job 

can be thought of as one simulation experiment that is to be 

executed over a grid resource), submit jobs, retrieve results, 

etc. Some of this knowledge could be acquired through 

self-study and imparted through training. However, for the 

wider adoption of grid technology for CSP-based 

simulation, it may be necessary to develop higher-level 

tools that would hide the complexity of the CSP-grid 

integration technology and middleware specific 

mechanisms, and provide end-users with easy to use 

graphical interfaces through which they could possibly 

integrate CSPs with grid middleware.  
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