
INVESTIGATING GRID COMPUTING TECHNOLOGIES FOR USE WITH

COMMERCIAL SIMULATION PACKAGES

Navonil Mustafee

The Health Care Research Group

Warwick Business School, University of Warwick

Coventry, CV4 7AL, UK

navonil.mustafee@wbs.ac.uk

Simon J E Taylor

Centre for Applied Simulation Modelling

School of Information Systems, Computing & Maths, Brunel University

Uxbridge, Middlesex, UB8 3PH, UK.

simon.taylor@brunel.ac.uk

ABSTRACT:

As simulation experimentation in industry become more

computationally demanding, grid computing can be seen as

a promising technology that has the potential to bind

together the computational resources needed to quickly

execute such simulations. To investigate how this might be

possible, this paper reviews the grid technologies that can

be used together with commercial-off-the-shelf simulation

packages (CSPs) used in industry. The paper identifies two

specific forms of grid computing (Public Resource

Computing and Enterprise-wide Desktop Grid Computing)

and the middleware associated with them (BOINC and

Condor) as being suitable for grid-enabling existing CSPs.

It further proposes three different CSP-grid integration

approaches and identifies one of them to be the most

appropriate. It is hoped that this research will encourage

simulation practitioners to consider grid computing as a

technologically viable means of executing CSP-based

experiments faster.

Keywords: Simulation Modelling, Grid Computing, COTS

Simulation Package, BOINC, Condor

1. INTRODUCTION AND MOTIVATIONS

Grid computing has the potential to provide users on-

demand access to large amounts of computing power, just

as power grids provide users with consistent, pervasive,

dependable and transparent access to electricity,

irrespective of its source (Baker et al., 2002). It has been

identified that simulation modelling can potentially benefit

from this as computing power can be an issue in the time

taken to get results from a simulation (Robinson, 2005;

Taylor and Robinson, 2006). Furthermore, development in

simulation has been closely allied to the advances in the

field of computing (Robinson, 2005) and it is expected that

it will continue to rely on the latest advances in computing

to support increasingly large and complex simulations

(Pidd and Carvalho, 2006). Grid computing is a significant

advancement in the field of distributed computing and it is

possible that, like previous beneficial developments in

computing adopted by simulation users, this technology

may provide an opportunity to further improve the use of

simulation in industry. This is supported by the

observation that the use of grid computing in scientific

simulation has certainly proved beneficial. For example,

the role it plays to reduce the time taken to produce results

(and therefore the opportunity to do more!) is certainly true

in disciplines such as particle physics, climatology,

astrophysics and medicine, among others. The question is

can the same benefits be passed on to the use of simulation

modelling as practiced in industry?

Another issue is the relatively low adoption rate of grid

computing outside of academic and research domains. At

present a major proportion of grid users comprise of

researchers (physicists, biologists, climatologists, etc. who

are the primary stakeholders of the applications running on

the grid) and computer specialists with programming skills

(the providers of IT support to the stakeholders). This is not

unexpected as the majority of applications using grid

computing are research applications. The widespread

adoption of grid computing technologies by employees in

industry has so far been relatively little. One important

reason for this is that although the employees are experts in

their own discipline they generally do not have the

necessary technical skills that are required to work with

present generation grid technologies. A possible means to

increase adoption is to incorporate grid support in software

applications that require non-trivial amounts of

computation power and which are used by the end-users to

perform their day-to-day jobs. The commercial simulation

packages used in industry are an ideal candidate for such

type of integration. Figure 1 summarises the motivations of

this research (we shall return to this figure in the

conclusions).

This paper therefore investigates the use of grid computing

technologies to support simulation modelling by

Figure 1: Research motivations

investigating how these technologies can be integrated with

Commercial Off-The-Shelf (COTS) Simulation Packages

(CSPs). This paper is structured as follows. This section

has described the motivations for this research. Section 2

presents an overview of CSPs and discusses operating

system support for them. This is followed by a review of

grid computing which highlights the opportunities and

barriers to using this technology together with the CSPs

(section 3). This leads to a discussion of grid technologies

for integration with CSPs (section 4 and 5). Three different

integration approaches to using CSPs together with desktop

grid middleware are presented and one approach is

identified as most the appropriate (section 6). Finally,

section 7 concludes the paper with a discussion on the

challenges facing the wider adopting of this technology for

simulation modelling with CSPs.

2. COTS SIMULATION PACKAGES

In the context of simulation practice in industry, discrete

event simulation is arguably the most frequently used

classical OR technique that is applied across a range of

industries like manufacturing, travel, finance and

healthcare, among others (Hollocks, 2006). Commercially

available discrete-event simulation packages like

Simul8™, Witness™ and AnyLogic™ are generally used

to model such simulations (Taylor et al., 2005). Monte

Carlo simulation is yet another OR technique that is

extensively used in application areas like finance and

insurance (Herzog and Lord, 2002). Commercially

available spreadsheet applications (Microsoft Excel™,

Lotus 1-2-3™, etc.), spreadsheet add-ins (Crystal Ball™,

@Risk™, etc.) and Monte Carlo simulation packages

(Analytica™, Analytics™, etc.) are often used for

modelling Monte Carlo simulations in industry (Swain,

2007). We use the term Commercial Off-The-Shelf (COTS)

Simulation Packages (CSPs) to collectively refer to these.

Swain (2005) has made a comprehensive survey of

commercially available simulation tools based on the

information provided by vendors in response to a

questionnaire requesting product information. This list

presently consists of 56 CSPs and features the most well

known CSP vendors and their products (Swain, 2007). Of

these, a total 45 CSPs have been identified by Mustafee

(2007) to be either discrete event or Monte Carlo

simulation packages. The 45 CSPs are all supported in the

Windows platform, 15.56% (approx.) are supported in

UNIX and Linux platforms, and only 13.33% (approx.) are

supported under the Apple Macintosh Operating System

(Mustafee, 2007). As will be discussed later in this paper,

platform support for CSPs is important when considering

different grid technologies that can be potentially used with

existing CSPs.

3. GRID COMPUTING: DEFINITION,

OPPORTUNITIES AND BARRIERS

Grid computing (or Grids) was first defined by Ian Foster

and Carl Kesselman in their book “The Grid: The

Grid computing

Grid Computing

Provides large scale

access to computational

resources

Simulation in industry

The need for

increasingly more

computation power to

run larger and more

complex simulations

Provides access to end-

user simulation

applications to create

and experiment with

models

The need for end-user

applications to increase

adoption

application

challenge

Scientific simulations in

disciplines like particle

physics, climatelogy etc.

challenge

Industry-specific

simulation in domains

like manufacturing,

healthcare, finance, etc.

application

Motivation 3: Simulations in industry are usually created using end-user simulation applications

Motivation 1: Grid computing provides access to computation power

Motivation 2: Successful application of Grid computing to scientific simulations

Blueprint for a New Computing Infrastructure” as a

hardware and software infrastructure that provides access

to high-end computational resources (Foster and

Kesselman, 1998). It was further stated that this access

should be dependable, consistent, pervasive and

inexpensive. This definition of grid computing has since

been modified twice by the grid veterans; once by Foster,

Kesselman and Tuecke in their paper titled “Anatomy of

the Grid” (Foster et al., 2001), and again by Foster and

Kesselman with the publication of the second edition of

their book “The Grid: The Blueprint for a New Computing

Infrastructure” (Foster and Kesselman, 2004).

The re-definition of the term “grid computing” twice over

the period of nearly 6-7 years suggests that this is still an

evolving field. However, all the three definitions are

consistent in terms of their focus on large-scale computing.

Thus, Foster and Kesselman (1998) mention “access to

high-end computational resources”, Foster et al. (2001)

refer to “large-scale resource sharing” and, finally, Foster

and Kesselman (2004) highlight “delivery of nontrivial

Quality of Service”. This focus on large scale computing

makes grid computing an enabling technology for eScience

(Hey and Trefethen, 2002). e-Science is large scale science

that is increasingly being carried out through global

collaborations, and which requires access to very large data

sets and computing resources distributed across a wide

geographical area (National e-Science Centre, 2001). Some

of the e-Science projects using grid technology include

CERN’s Large Hadron Collider (LHC) project that is

devoted to studying particle physics under conditions well

beyond any other previous experiment (Lamanna, 2004);

the Network for Earthquake Engineering Simulation

(NEES) e-science project that inks earthquake researchers

across the U.S. with leading-edge computing resources and

research equipment like supercomputers, data storage,

networks, visualization displays and sensors (Spencer et al.,

2004) and the Earth System Grid (ESG) project where

global climate models are used to simulate climate, and

experiments are executed on an array of distributed

supercomputers (Bernholdt et al., 2005).

Thus it is clear that grid computing presents immense

opportunities for e-Science projects that require large scale

collaborative use of computing resources. Consequently,

the majority of grid users comprise of researchers and

computer specialists who are associated with such e-

Science projects and have the technical knowledge to work

with the present generation grids. This is because the

creation of an application that can benefit from grid

computing (faster execution speed, linking of

geographically separated resources, interoperation of

software, etc.) typically requires the installation of complex

supporting software and an in-depth knowledge of how this

complex supporting software works (Jaesun and Daeyeon,

2003). This software is commonly referred to as grid

middleware. A grid middleware is a distributed computing

software that integrates network-connected computing

resources (computer clusters, data servers, standalone PCs,

sensor networks, etc.), that may span multiple

administrative domains, with the objective of making the

combined resource pool available to user applications for

number crunching, remote data access, remote application

access, among others. A grid middleware is what makes

grid computing achievable.

Globus™, arguably the most recognized grid middleware,

is an open source set of services and software libraries

which supports grids and grid applications (Foster et al.,

2002). Examples of other grid middleware include gLite

(Berlich et al., 2005), VDT (Virtual Data Toolkit, 2007),

European Data Grid (EDG) middleware (Berlich et al.,

2005), OMII middleware (OMII, 2006), LCG-2 (Peris et

al., 2005), etc. The middleware mentioned above are all

geared towards dedicated, centralized, high performance

clusters (such as Beowulf clusters (Beowulf.org, 2007))

and supercomputers running on UNIX and Linux flavour

operating systems. Currently, the only exception appears to

be Globus™, which allows certain components to be

installed in Windows™ computers. These middleware are

hence forth referred to as cluster-based grid middleware.

The operating system support for grid middleware is

important when considering the adoption of grid

technologies by the end-users at their workplace.

It is common knowledge that most desktop computers run

on the different variants of the Windows™ operating

system. As such, most of the end-user applications are also

supported under the Windows™ platform. Let us take the

example of CSPs. The CSPs are typically standalone

packages that run on a single desktop PC on the Windows

operating system. The users of CSPs tend to be skilled in

simulation modelling and not computer science (as many

users of grid computing are). Grid support for CSPs must

therefore take into account that these packages are

windows-based, their users are specialists in simulation

modelling and not computing and any technological

solution must be developed with little or no change to the

CSP. However, the barrier here is that most of the grid

middleware designed for large scale computing are either

based on UNIX and Linux operating systems or provide

only partial functionality on Windows™ based system.

4. SOLUTION: DESKTOP GRID COMPUTING

The discussion on grid computing, until this point, has

shown that grid middleware and applications have

traditionally been geared towards large scale projects that

use cluster computers running on UNIX and Linux

operating systems. Cluster-based grid computing can be

contrasted with desktop-based grid computing which refers

to the aggregation of non-dedicated, de-centralized,

commodity PCs connected through a network and running

(mostly) the Microsoft Windows operating system.

Middleware for cluster-based grid computing severely

limits the ability to effectively utilize the vast majority of

Windows-based resources that are common place in both

enterprise and home environments, and therefore

development of middleware for desktop-based grid

computing is important with the growing industry interest

in grids (Luther et al., 2005).

Desktop grid computing or desktop grids addresses the

potential of harvesting the idle computing resources of

desktop PCs for processing of parallel, multi-parameter

applications which consist of a lot of instances of the same

computation with its own input parameters (Choi et al.,

2004). The desktop grid resources can be part of the same

local area network (LAN) or can be geographically

dispersed and connected via a global network such as the

Internet. Studies have shown that desktop PCs can be under

utilized by as much as 75% of the time (Mutka, 1992). This

coupled with the widespread availability of desktop

computers and the fact that the power of network, storage

and computing resources is projected to double every 9, 12,

and 18 months respectively (Casanova, 2002), represents

an enormous computing resource. In this paper the use of a

desktop grid within the enterprise is termed as Enterprise-

wide Desktop Grid Computing (EDGC). Thus, EDGC

refers to a grid infrastructure that is confined to an

institutional boundary, where the spare processing

capacities of an enterprise’s desktop PCs are used to

support the execution of the enterprise’s applications

(Chien et al., 2003). User participation in such a grid is not

usually voluntary and is governed by enterprise policy.

Applications like Condor (Litzkow et al., 1988), Platform

LSF (Zhou, 1992), Entropia DCGrid (Kondo et al., 2004),

United Devices GridMP (United Devices, 2007) and

Digipede Network (Digipede Technologies, 2006) are all

examples of EDGC.

Like EDGC, Internet computing seeks to provide resource

virtualization through the aggregation of idle CPU cycles

of desktop PCs. But unlike EDGC, where the desktop

resources are generally connected to the corporate LAN

and used to process enterprise applications, Internet

computing infrastructure consists of volunteer resources

connected over the Internet and is used either for scientific

computation or for the execution of applications from

which the user can derive some benefit (for example,

sharing music files). This research distinguishes between

two forms of Internet computing - Public Resource

Computing (PRC) and Peer-to-Peer Computing (P2P) -

based on whether the underlying desktop grid infrastructure

is used for solving scientific problems or for deriving some

user benefit respectively. The different forms of grid

computing are shown in figure 2. PRC and P2P computing

are described next.

Figure 2: Forms of grid computing (Mustafee, 2007)

PRC refers to the utilization of millions of desktop

computers primarily to do scientific research (Anderson,

2004). The participants of PRC projects are volunteers who

contribute their PCs to science-oriented projects like

SETI@home (Anderson et al., 2002) and

Climateprediction.net (Christensen et al., 2005). Berkeley

Open Infrastructure for Network Computing (BOINC)

(BOINC, 2007b) is arguably the most widely used PRC

middleware that enables the project participants to

download work units from BOINC servers, process them

and upload the results back to the servers. The majority of

the PRC middleware is supported on Windows. This is not

unexpected as PRC projects depend on volunteer

computing resources, and the bulk of these resources

presently run on the Windows operating system. The

participants of a PRC project are unable to use the

underlying desktop grid infrastructure, of which they

themselves are part of, to perform their own computations.

P2P computing refers to a non-centralized infrastructure for

file sharing over the Internet. P2P networks are created

with the resources of the volunteer users (peers) who derive

benefit from such networks as it allows them to download

files that are shared by other peers. As P2P computing is

voluntary, the middleware for such systems should ideally

have mechanisms to organize the ad-hoc and dynamic

peers in such a way that they can co-operate to provide file

sharing services to the P2P community; for example, the

P2P middleware should have mechanisms to quickly and

efficiently locate files that are distributed among peers

(Saroiu et al., 2002). Some of the popular P2P file sharing

systems are Gnutella (Sun et al., 2006), KaZaA (Good and

Krekelberg, 2003) and in the past, Napster (Giesler and

Pohlmann, 2003). They are all supported under the

Windows operating system.

5. DESKTOP GRID MIDDLEWARE

This section of this paper presents an overview of two

different middleware which has relevance to CSP-based

simulation, namely, PRC middleware BOINC and EDGC

middleware Condor. P2P computing is not investigated

Peer 2 Peer

Computing (P2P)

Public Resource

Computing (PRC)

Grid Computing

Cluster-based

Grid Computing

Enterprise-wide

Desktop Grid

Computing (EDGC)

Internet

Computing

further because it generally supports only file sharing and

as such P2P networks cannot be used to execute programs

(like CSPs) on the peer resources. From this point on, the

terms “desktop grid computing”, “desktop grids”, “grid

computing” and “grids” will be used synonymously to refer

to only PRC and EDGC, unless explicitly stated.

5.1 PRC MIDDLEWARE BOINC

The BOINC system (figure 3, adapted from (Anderson,

2006) and (Perez, 2005)) contains several server-side

components, which may execute on separate machines if

required. Most of the server side components can only be

installed over a UNIX or Linux flavour operating system.

The database holds all the metadata associated with the

project and lifecycle information for each work unit. A

client’s command channel operates via the scheduling

server, using an XML-based protocol. Results are

transferred using HTTP via the data servers. In addition to

work units and results, other files may be transferred

between server and client, including application

executables and any other interim data the application may

require during the operation. The database also has a web-

based front-end that is used for displaying project

information specific to volunteers, for example, how many

computers have been contributed by the user, the number

of work units processed, etc. On the client side, the BOINC

core client manages interaction with the server, while

optional components (like screensaver and manager)

provide graphical control and display elements for the

benefit of the user. The core client can be installed in the

Windows™ operating system. The BOINC client API

provides the interface between the user-created application

client and the BOINC core client. The API is a set of C++

functions and the application client is compiled with it. All

communication between the BOINC core client and the

BOINC project servers take place through HTTP on port

80. The BOINC core client can therefore operate behind

firewalls and proxies.

Although BOINC was originally designed to support PRC,

lately there has been a realization that the same software

can be reconfigured to support desktop grid computing

(BOINC, 2007a). The widespread availability of desktop

PCs in organizations makes the deployment of such an

enterprise-wide BOINC infrastructure an even more

attractive option. Thus, it may be possible to implement

and deploy BOINC-based projects for use exclusively

within an enterprise, such that it is geared up to support the

execution of the enterprises’ applications. The participants

of such an enterprise-wide BOINC setup can be the

employees of the organization who contribute their work

PCs. The participation in such projects may not be

voluntary and can be governed by the policy of the

organization. The computations being performed by the

BOINC clients will be in line with the needs of the

enterprise, and unlike PRC where volunteers are

encouraged to contribute their resources, only employees

and other trusted sources will be allowed to participate in

the enterprise-wide BOINC projects. BOINC features that

are necessary in the PRC context but may not be required

in an enterprise grid (for e.g., user rewards system, anti-

cheating measures, mechanisms to deal with client failure

or extended network non-connectivity, etc.) can be

disabled.

BOINC

database

Scheduling

server

Web

interface

Data

servers

Server library

Application

backend server

Application-specific components

BOINC core client

Client API

Application client

ManagerScreensaver

Optional GUI elements for

user control of the client

Server

Client

Client library

Figure 3: The BOINC system

5.2 EDGC MIDDLEWARE CONDOR

The Condor project was born in the University of

Wisconsin-Madison in 1988. Condor is an opportunistic

job scheduling system that is designed to maximize the

utilization of workstations through identification of idle

resources and scheduling background jobs on them

(Litzkow et al., 1988). A collection of such workstations is

referred to as a Condor pool. When Condor was first

introduced in 1988 it was unique because it was arguably

the only production system that allowed every user to

contribute as much or as little of their resources, and

offered an alternative to the dominant centralized

processing model of the day (Thain et al., 2004). Two

fundamental concepts of Condor middleware, which are

also important in our discussions on CSPs, are (a) Condor

matchmaking and (b) Condor universe. These are described

next.

(a) Condor architecture defines resource providers and

resource consumers. The resource providers make their

resources available to Condor for the processing of jobs

that originate from the resource consumers. Condor allows

both resource consumers and providers to advertise these

requirements, conditions and preferences by providing a

language called classified advertisements (ClassAds)

(Thain et al., 2004). The ClassAds are scanned by a Condor

matchmaker agent (an agent is a Condor software

component), running on only one computer in a Condor

Pool, to find a match between the requirements advertised

by the resource consumer agents and the resources

advertised by the resource provider agents. Once a match

has been found by the matchmaker agent, it notifies both

the resource consumer and the resource provider agents.

Upon receiving this notification, the resource consumer

agent claims the resource advertised by the resource

provider agent through a claiming protocol. The job is

executed by the resource provider agent and the results of

the computation are returned back to the resource consumer

agent. The matchmaking process is illustrated in figure 4.

The figure has been adapted from Basney and Livney

(1999).

Figure 4: Condor resource management architecture

Thus, in order to execute CSP-based simulations using

Condor, PCs acting as resource provider agents will have to

be installed with CSPs (Simul8™, Excel™, etc.) and will

need to advertise this using ClassAds mechanism. The

resource consumer agents will also be required to advertise

their requirement (for example, 10 PCs required) with the

condition that the resource providers will have the

appropriate CSPs installed on them.

(b) Condor universe is an execution environment for jobs

that are submitted by the users. Depending upon the type of

job to be executed and its requirements, the user needs to

select from among the following Condor universes (Condor

Version 6.9.1 Manual, 2007b): standard universe, vanilla

universe, Java universe, PVM universe, parallel universe,

grid universe, scheduler universe, local universe. Of these,

Java universe, which supports the execution of java

programs using the Java Virtual Machine (JVM) execution

environment, is the most appropriate for executing CSP-

based simulations over Condor (Mustafee, 2007).

6. CSP-GRID INTEGRATION APPROACHES

For desktop grids to support CSP-based simulation, it

should take into account that the CSP vendors and the grid

middleware developers may be unwilling to make any

source code changes to their software. Thus, any

technological solution proposed should be able to integrate

“unmodified” grid middleware with “unmodified” CSPs.

Three possible approaches for using desktop grids with

CSPs are discussed next. These are referred to as the CSP-

middleware integration approach, the CSP-runtime

installation approach and the CSP-preinstalled approach.

6.1 CSP-GRID MW. INTEGRATION APPROACH

One possible way of using desktop grid middleware

together with CSPs is to “bundle” the latter along with the

former. When a desktop grid middleware is installed on a

PC, the CSP is also installed on it. In an enterprise-wide

desktop grid the jobs from other users (guest processes)

may run alongside the programs being executed by the

resource owner (host processes). However, the guest

processes are usually run in a “sandbox” that is

implemented by the middleware. This provides a logically

separate and secure execution environment for both the

host and guest processes. In Entropia DCGrid for example,

the sandbox mechanism is called the Entropia Virtual

Machine (EVM) and it wraps interpreters like cmd.exe, Perl

and Java Virtual Machine (JVM) to prevent unauthorized

access to a computer (Calder et al., 2005). Thus, it might be

possible to include a CSP installation inside the EVM and

offer it as part of an Entropia installation. The problem

with this approach is that it will require changes to the

enterprise desktop grid middleware as a CSP will have to

be integrated with it. Furthermore, an enterprise desktop

grid is a general purpose distributed computing

environment that allows the execution of various user

applications (not limited to simulation alone). Although the

integration of interpreters like JVM can be justified

because of the wide prevalence of Java applications, it is

arguably more difficult to explain the inclusion of a CSP

(but which CSP? there are at least 45 of them), unless a

customized desktop grid middleware distribution is created

for meeting simulation requirements of a specific

organization. This approach is not considered feasible for

reasons outlined earlier (section 6).

6.2 CSP-RUNTIME INSTALLATION APPROACH

The second approach involves the installation of a CSP

package at runtime, i.e. just before the simulation

experiment is conducted. In this case the CSP itself is

transferred to the desktop grid nodes, along with the data

files associated with the simulation and the trigger code

Resource

Consumer

Agent

Advertising

Resource

Requested

Advertising

Resource

Offered Match

Notification

Resource

Provider

Agent

Match

maker

Agent

Claiming

Protocol

(executable code which starts the CSP-based simulation on

a grid node). This approach may not be feasible for a

number of reasons. (1) the size of CSPs frequently exceed

100s of MBs and it may not be feasible to transfer such

large amounts of data to multiple clients over the network,

(2) the CSP will first need to be installed on the desktop

grid node before the simulation can start, (3) such an

installation is normally an interactive process and requires

human intervention, (4) an installation normally requires

administrative privileges on the client computers, (5)

transferring CSPs may lead to a violation of the software

licence agreement that may be in place between the CSP

vendor and the organization (if the number of desktop grid

nodes executing simulations exceed the number of licences

purchased).

6.3 CSP-PREINSTALLED APPROACH

The third CSP-grid integration approach is to install the

CSP in the desktop grid resource, just like any other

application is installed on a PC. The drawback with this

approach is that the sandbox security mechanism

implemented by most enterprise desktop grids may have to

be forfeited. However, as simulations are created by

trusted employees running trusted software within the

bounds of a fire-walled network, security in this open

access scheme could be argued as being irrelevant (i.e. if it

were an issue then it is an issue with the wider security

system and not the desktop grid).

Of the three CSP-grid integration approaches discussed in

this section, the CSP-preinstalled approach is considered

the most appropriate because (1) it does not require any

modification to the CSPs – thus, CSPs that expose package

functionality can be grid-enabled, (2) it does not require

any modification to the grid middleware – thus, existing

Windows™-based grid middleware like BOINC and

Condor can be used, and (3) CSPs that are usually installed

on the PCs of the simulation practitioners can be utilized

for running simulation experiments from other users in the

background.

The procedure to execute CSP-based simulation

experiments over desktop grids following the CSP-

preinstalled approach is as follows (see figure 5):

1. The simulation user writes an executable “trigger”

code in C++, Java, Visual Basic (VB), etc. that

accesses the CSP functionality through exposed

interfaces. The trigger code should generally invoke

the CSP, load the model file, transfer experiment

parameters into the model, execute the model, etc.

Mustafee (2007) provides a list of CSPs that expose

package functionality using well-defined interfaces.

2. The simulation user makes available the data files

associated with the simulation (simulation model files,

experiment parameter files, etc.) and the executable

file containing the trigger code to the desktop grid

nodes where the experiment will be executed. Two

possible ways of accomplishing this are (1) by

providing a shared grid access to a network drive, or

(2) by transferring the required files using the desktop

grid middleware.

3. The desktop grid middleware invokes the executable

trigger code on a remote desktop node. The simulation

starts and results are saved in a file. The user retrieves

the results by (1) accessing them from the shared

network drive, or (2) the result files are transferred

back to the user through the grid middleware.

Grid node 2, 3, 4, …

CSP (Simul8, etc.)

Simulation

model

Grid node 1

(job submission machine)

Grid Middleware

Trigger

CodeExperiment

Parameters

Simulation

model

Grid Middleware

Trigger

Code

Experiment

Parameters

Exposed Interface

Simulation

Results

3. invokes

4. invokes
5. uses

Network

drive

1. Transfer

of inputs

2. Transfer

of inputs to

grid notes

6. Transfer of results to

shared network drive

7
.
T

ra
n

s
fe

r
o

f
re

s
u

lt
s

jo
b

 s
u

b
m

is
s
io

n
 n

o
d

e

Figure 5: Executing CSP-based simulation over grid

resources using CSP-preinstalled approach

The reader is referred to Mustafee (2007) for case studies

associated with using CSPs together with BOINC and

Condor and the CSP-grid integration technology that is

used for this purpose.

7. DISCUSSIONS AND CONCLUSIONS

Through a review of literature this paper has identified two

forms of grid computing that can be used to grid-enable

existing CSPs. These are Public-Resource Computing

(PRC) in an enterprise context and Enterprise Desktop Grid

Computing (EDGC). The use of PRC and EDGC forms of

grid computing for CSP-based simulation in industry can

not only speed up simulation experimentation, but it can

also maximize the utilization of hardware and software

resources (PCs, network infrastructure, CSPs) within an

organization. The latter is achieved through making use of

under utilized desktop computers and the software installed

on them.

This paper has then discussed two specific grid computing

middleware, namely PRC middleware BOINC and EDGC

middleware Condor. Both these middleware are available

for download free of charge, include installation manuals

and user guides, and are supported by user forums and

training programs (for example, Condor Week is an annual

training program conducted by the University of

Wisconsin, Madison). This presents an opportunity for the

simulation user to experiment with these middleware with

an objective to run simulation experiments faster.

This research has shown that it is technologically feasible

for grid computing to make available computational

resources for running CSP-based experiments (figure 1:

motivation one) and thus industry can potentially benefit

from it (figure 1: motivation 2). It has also been shown that

end-user tools like CSPs could be successfully integrated

with grid middleware using low intervention solutions

(figure 1: motivation 3).

However, the CSP-grid integration solution proposed by

Mustafee (2007) requires some knowledge of Java and

Visual Basic programming. Furthermore, the end-users will

also need to know the middleware-specific mechanisms to

create jobs (in the context of CSP-based simulation, a job

can be thought of as one simulation experiment that is to be

executed over a grid resource), submit jobs, retrieve results,

etc. Some of this knowledge could be acquired through

self-study and imparted through training. However, for the

wider adoption of grid technology for CSP-based

simulation, it may be necessary to develop higher-level

tools that would hide the complexity of the CSP-grid

integration technology and middleware specific

mechanisms, and provide end-users with easy to use

graphical interfaces through which they could possibly

integrate CSPs with grid middleware.

REFERENCES

Anderson, D. P. (2004). BOINC: a system for public-

resource computing and storage. In Proceedings of the 5th

International Workshop on Grid Computing, pp.4-10. IEEE

Computer Society, Washington, DC, USA.

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M. and

Werthimer, D. (2002). SETI@home: an experiment in

public-resource computing. Communications of the ACM,

45(11): 56-61.

Anderson, D. P., Christensen, C. and Allen, B. (2006).

Designing a runtime system for volunteer computing. In

Proceedings of the 2006 International Conference on High

Performance Computing, Networking, Storage, and

Analysis (Supercomputing, 2006). Article No. 126. ACM

Press, New York, NY, USA.

Baker, M., Buyya, R. and Laforenza, D. (2002). Grids and

grid technologies for wide-area distributed computing.

Software - Practice and Experience, 32(15): 1437-1466.

Basney, J. and Livny, M. (1999). Deploying a high

throughput computing cluster. In Buyya, R. (ed.), High

Performance Cluster Computing, Volume 1 (chapter 5). NJ,

USA: Prentice Hall PTR.

Beowulf.org. (2007). What makes a cluster a Beowulf?

Website http://www.beowulf.org/overview/index.html.

Last accessed 9th February 2007.

Berlich, R., Kunze, M. and Schwarz, K. (2005). Grid

computing in Europe: from research to deployment. In

Proceedings of the 2005 Australasian Workshop on Grid

Computing and e-Research, pp. 21-27. Australian

Computer Society, Darlinghurst, Australia.

Bernholdt, D., Bharathi, S., Brown, D., et al. (2005). The

earth system grid: supporting the next generation of climate

modelling research. Proceedings of the IEEE, 93(3): 485-

495.

BOINC. (2007a). Desktop grid computing with BOINC.

Website http://boinc.berkeley.edu/dg.php. Last accessed

17th February 2007.

BOINC. (2007b). Overview of BOINC. Website

http://boinc.berkeley.edu/intro.php. Last accessed 17th

February 2007.

Calder, B., Chien, A., Wang, J. and Yang, D. (2005). The

entropia virtual machine for desktop grids. In Proceedings

of the 1st ACM/USENIX international conference on

Virtual execution environments, pp.186-196. ACM Press,

New York, NY, USA.

Casanova, H. (2002). Distributed computing research

issues in grid computing. ACM SIGACT News, 33(3): 50-

70. ACM Press, New York, NY, USA.

Chien, A., Calder, B., Elbert, S. and Bhatia, K. (2003).

Entropia: architecture and performance of an enterprise

desktop grid system. Journal of Parallel and Distributed

Computing, 63(5): 597-610.

Choi, S., Baik, M., Hwang, C., Gil, J. and Yu, H. (2004).

Volunteer availability based fault tolerant scheduling

mechanism in desktop grid computing environment. In

Proceedings of the 3rd IEEE International Symposium on

Network Computing and Applications, pp. 366-371. IEEE

Computer Society, Washington, DC, USA.

Christensen, C., Aina, T. and Stainforth, D. (2005). The

challenge of volunteer computing with lengthy climate

model simulations. In Proceedings of the First International

Conference on e-Science and Grid Computing (E-

SCIENCE '05), pp.8-15. IEEE Computer Society,

Washington, DC, USA.

Condor Version 6.9.1 Manual. (2007b). Road-map for

running jobs, Condor 6.9.2 manual. Website

http://www.cs.wisc.edu/condor/manual/v6.9/2_4Road_map

_Running.html. Last accessed 27th February 2007.

Digipede Technologies. (2006). The digipede network.

http://www.digipede.net/products/digipede-network.html.

Last accessed 13th February 2007.

Foster, I. and Kesselman, C. (1998). The grid: blueprint for

a new computing infrastructure. San Francisco, CA:

Morgan Kaufmann.

Foster, I. and Kesselman, C. (2004). Concepts and

architecture. In Foster, I. and Kesselman, C. (eds.), The

Grid: Blueprint for a New Computing Infrastructure (2nd

Edition), chapter 4. San Francisco, CA: Morgan Kaufmann.

Foster, I., Kesselman, C. and Tuecke, S. (2001). The

anatomy of the grid: enabling scalable virtual

organizations. International Journal of High Performance

Computing Applications, 15(3): 200-222.

Foster, I., Kesselman, C., Nick, J. M. and Tuecke, S.

(2002). Grid services for distributed system integration.

IEEE Computer, 35(6): 37-46.

Giesler, M. and Pohlmann, M. (2003). The anthropology of

file sharing: consuming Napster as a gift. Advances in

Consumer Research, volume 30, pp 273-279. Available

online www.acrwebsite.org/volumes/display.asp?id=8790.

Last accessed 4th March 2007.

Good, N. S. and Krekelberg, A. (2003). Usability and

privacy: a study of kazaa P2P filesharing. In Proceedings of

the SIGCHI conference on human factors in computing

systems, pp. 137-144. ACM Press, New York, NY, USA.

Herzog, T. N. and Lord, G. (2002). Applications of monte

carlo methods to finance and insurance. Winstead, Conn:

ACTEX Publications. Available online

http://books.google.com. Last accessed 11th March 2007.

Hey, T. and Trefethen A. E. (2002). The UK e-science core

programme and the grid. Future Generation Computer

Systems, 18(8): 1017-1031.

Hollocks, B. W. (2006). Forty years of discrete-event

simulation - a personal reflection. Journal of the

Operational Research Society, 57(12): 1383-1399.

Jaesun H and Daeyeon P. 92003). A lightweight personal

grid using a supernode network. In Proceedings of the 3rd

International Conference on Peer-to-Peer Computing, pp.

168-175.

Kondo, D., Chien, A. and Casanova, H. (2004). Resource

management for rapid application turnaround on enterprise

desktop grids. In Proceedings of the 2004 Conference on

Supercomputing (SC’04), paper 17. IEEE Computer

Society, Washington, DC, USA.

Lamanna, M. (2004).The LHC computing grid project at

CERN. Nuclear Instruments and Methods in Physics

Research (Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment), 534(1-2): 1-6.

Litzkow, M., Livny, M. and Mutka, M. (1988). Condor -

a hunter of idle workstations. In Proceedings of the 8th

International Conference of Distributed Computing

Systems, pp.104-111. IEEE Computer Society,

Washington, DC, USA.

Luther, A., Buyya, R., Ranjan, R. and Venugopal, S.

(2005). Alchemi: a .NET-based enterprise grid computing

system. In Proceedings of the 6th International Conference

on Internet Computing (ICOMP'05), pp. 269-278. CSREA

Press, USA. Online http://gridbus.csse.unimelb.edu.au/.

Last accessed 4th April 2007.

Mustafee, N. (2007). A grid computing framework for

commercial simulation packages. PhD thesis. School of

Information Systems, Computing and Mathematics, Brunel

University, UK.

Mutka, M. W. (1992) . Estimating capacity for sharing in

a privately owned workstation environment. IEEE

Transactions on Software Engineering, 18(4): 319-328.

National e-Science Centre. (2001). Defining e-Science.

http://www.nesc.ac.uk/nesc/define.html. Last accessed 12th

February 2007.

OMII. (2006). User guide for the OMII middleware,

release 3.2.0. Accessible online

http://www.omii.ac.uk/docs/3.2.0/user_guide/omii_user_gu

ide.htm. Last accessed 15th March 2007.

Perez, J. A. L. (2005). BOINC architecture and basic

principles, CERN presentation. Website

https://twiki.cern.ch/twiki/pub/LHCAtHome/LinksAndDoc

s/boincciemat06.pdf. Last accessed 17th February 2007.

Peris, A. D., Lorenzo, P. M., Donno, F., Sciaba, A.,

Campana, S. and Santinelli, R. (2005). LCG-2 user guide,

manuals series. Document identifier: CERN-LCG-GDEIS-

454439. Online https://edms.cern.ch/file/454439//LCG-2-

UserGuide.pdf. Last accessed 15th March 2007.

Pidd, M. and Carvalho, M. A. (2006). Simulation software:

not the same yesterday, today or forever. Journal of

Simulation, 1(1): 7-20.

Robinson, S. (2005). Discrete-event simulation: from the

pioneers to the present, what next? Journal of the

Operational Research Society, 56 (6): 619-629.

Saroiu, S., Gummadi, P. K. and Gribble, S. D. (2002). A

measurement study of peer-to-peer file sharing systems. In

Proceedings of the Multimedia Computing and

Networking. Available online

http://www.cs.toronto.edu/~stefan/publications/mmcn/2002

/mmcn.html. Last accessed 18th March 2007.

Spencer, B., Finholt, T. A., Foster, I., et al. (2004).

NEESgrid: A distributed collaboratory for advanced

earthquake engineering experiment and simulation. In

Proceedings of the 13th World Conference on Earthquake

Engineering, paper No. 1674. Available online

http://www.globus.org. Last accessed 4th April 2007.

Sun, Q., Daswani, N. and Garcia-Molina, H. (2006).

Maximizing remote work in flooding based peer-to-peer

systems. Computer Networks, 50(10): 1583-1598.

Swain J. J. (2005). Gaming reality: biennial survey of

discrete-event simulation software tools. OR/MS Today

(December 2005). Institute for Operations Research and the

Management Sciences (INFORMS), USA. Available

online http://www.lionhrtpub.com/orms/orms-12-

05/frsurvey.html. Last accessed 4th April 2007.

Swain J. J. (2007). INFORMS simulation software survey.

OR/MS Today. Institute for Operations Research and the

Management Sciences (INFORMS), USA. Available

http://www.lionhrtpub.com/orms/surveys/Simulation/Simul

ation.html. Last accessed 4th April 2007.

Taylor, S. J. E. and Robinson, S. (2006). So where to next?

A survey of the future for discrete-event simulation.

Journal of Simulation, 1(1): 1-6.

Taylor, S. J. E, Turner, S. J., Mustafee, N., Ahlander, H.

and Ayani, R. (2005). COTS distributed simulation: a

comparison of CMB and HLA interoperability approaches

to type I interoperability reference model problems.

Simulation, 81(1): 33–43.

Thain, D., Tannenbaum, T. and Livny, M. (2004).

Distributed computing in practice: the Condor experience.

Concurrency and Computation: Practice and Experience,

17(2–4): 323–356.

United Devices. (2007). Grid MP: The technology for

enterprise application virtualization. Web

http://www.ud.com/products/gridmp.php. Last accessed

18th March 2007.

Virtual Data Toolkit. (2007). What is in VDT 1.6.1?

Website http://vdt.cs.wisc.edu/releases/1.6.1/contents.html.

Last accessed 16th March 2007.

Zhou, S. (1992). LSF: Load sharing in large-scale

heterogeneous distributed systems. In Proceedings of the

1992 Workshop on Cluster Computing. Supercomputing

Computations Research Institute, Florida State University,

Florida, USA.

AUTHOR BIOGRAPHIES

NAVONIL MUSTAFEE is a research fellow in the Health

Care Research Group at Warwick Business School. His

research interests are in parallel and distributed simulation,

health care simulation and grid computing. He completed

his PhD in Information Systems and Computing and his

MSc in Distributed Information Systems from Brunel

University in 2007 and 2003 respectively. He is a member

of the drafting group of the COTS Simulation Package

Interoperability Product Development Group (CSPI-PDG)

under the Simulation Interoperability Standards

Organization. His email address is

navonil.mustafee@wbs.ac.uk.

SIMON J. E. TAYLOR is the co-founding Editor-in-

Chief of the UK Operational Research Society’s (ORS)

Journal of Simulation and the Simulation Workshop series.

He has served as the Chair of the ORS Simulation Study

Group between 1996 to 2006 and was appointed Chair of

ACM’s Special Interest Group on Simulation (SIGSIM) in

2005. He is also the Founder and Chair of the COTS

Simulation Package Interoperability Product Development

Group (CSPI-PDG) under the Simulation Interoperability

Standards Organization. He is a Senior Lecturer in the

Centre for Applied Simulation Modelling in the School of

Information Systems, Computing and Mathematics at

Brunel. His email address is <simon.taylor@brunel.ac.uk>.

