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State Estimation for Coupled Uncertain Stochastic
Networks With Missing Measurements and
Time-Varying Delays: The Discrete-Time Case

Jinling Liang, Zidong Wang, Senior Member, IEEE, and Xiaohui Liu

Abstract—This paper is concerned with the problem of state
estimation for a class of discrete-time coupled uncertain sto-
chastic complex networks with missing measurements and
time-varying delay. The parameter uncertainties are assumed
to be norm-bounded and enter into both the network state and
the network output. The stochastic Brownian motions affect
not only the coupling term of the network but also the overall
network dynamics. The nonlinear terms that satisfy the usual
Lipschitz conditions exist in both the state and measurement
equations. Through available output measurements described by
a binary switching sequence that obeys a conditional probability
distribution, we aim to design a state estimator to estimate the
network states such that, for all admissible parameter uncer-
tainties and time-varying delays, the dynamics of the estimation
error is guaranteed to be globally exponentially stable in the mean
square. By employing the Lyapunov functional method combined
with the stochastic analysis approach, several delay-dependent
criteria are established that ensure the existence of the desired
estimator gains, and then the explicit expression of such estimator
gains is characterized in terms of the solution to certain linear
matrix inequalities (LMIs). Two numerical examples are exploited
to illustrate the effectiveness of the proposed estimator design
schemes.

Index Terms—Complex networks, discrete-time systems,
Lyapunov functional, missing measurements, parameter uncer-
tainties, state estimator, stochastic disturbances.

I. INTRODUCTION

HE complexity of networks in the social, biological, en-

gineering, and physical sciences gives rise to many chal-
lenges for scientists and engineers, which have been overlooked
by the traditional disciplines. Recently, dynamical behaviors of
complex networks have attracted recurrent research interests
and a huge amount of results have been reported in the litera-
ture. In particular, the synchronization problem has been paid re-
newed attention for complex networks in various fields. Among
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many others, we mention here that the synchronization problem
has been thoroughly investigated for the large-scale networks
of chaotic oscillators [13], [31], the coupled systems exhibiting
spatio—temporal chaos and autowaves [27], [40], and the array
of coupled neural networks with or without delays [3], [15],
[21], [23]-[26], [32], [37], [25]. Note that the delay effects in
synchronization has been extensively studied; see, e.g., [4], [8],
[14], [22], [38], and the references cited therein. The main rea-
sons can be summarized as follows: 1) delays often occurs as a
natural consequence of finite information transmission and pro-
cessing speeds among the units of networks [8], [9], [29]; 2) de-
layed couplings arise frequently in biological neural networks,
gene regulatory networks, communication networks, and elec-
trical power grids [14], [8], [14], [16]; and 3) time delays can in-
duce complex dynamics such as periodic or quasi-periodic mo-
tions, Hopf bifurcation, and higher dimensional chaos.

It is worth pointing out that most of the existing research
concerning synchronization problems has been carried out for
continuous-time and deterministic complex networks with or
without delays. In reality, however, the existence of parameter
uncertainties and stochastic disturbances are ubiquitous in
a discrete-time fashion. First, the connection weights of the
nodes of complex networks depend on certain resistance and
capacitance values that include uncertainties (modeling errors).
Second, signal transmission within a digital network is con-
ducted in a discrete-time rather than a continuous-time way, and
therefore, it is not surprising that the discrete-time networks
have already been applied in a wide range of areas, such as
image processing, time-series analysis, quadratic optimization
problems, and system identification. Third, the signal transfer
could be perturbed randomly from the release of probabilistic
causes such as neurotransmitters [34] and packet dropouts [36].
Subsequently, the synchronization problem for stochastic net-
works has begun to receive initial research attention; see, e.g.,
[5], [18], and [39] for some recent publications. Unfortunately,
the discrete and random nature of the network topology, though
vitally important for understanding the interaction topology
[30], has not received sufficient research attention due primarily
to the difficulty in mathematical analysis. Note that, in [19],
the global exponential stability problem has been studied for a
class of discrete-time uncertain stochastic neural networks with
time delays. Furthermore, in [16], one of the first few attempts
has been made to address the synchronization problem for
stochastic discrete-time complex networks with time delays,
where the synchronization criteria are expressed in the form of
linear matrix inequalities (LMIs).

Due to the complexity of large-scale networks, it is often the
case that only partial information about the states of the key
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nodes is available in the network outputs. For the purpose of
better understanding the complex networks, it becomes neces-
sary to estimate the states of the key nodes through available
measurements, and then use the estimated key node states to
carry out specified tasks such as dynamics analysis and synchro-
nization control for the complex networks. However, in most lit-
erature regarding complex networks, it has been implicitly as-
sumed that the network states are fully accessible, which is not
always the case in reality. Therefore, from a practical viewpoint,
the state estimation problem for complex networks has become
vitally important. It might be worth mentioning that, the state
estimation problem for neural networks (a special class of com-
plex networks) was addressed in [6], [7], [28], and [33], and has
then drawn particular research interests; see, e.g., [11], [12], and
[20], where the networks are assumed to be deterministic and
continuous time. As pointed out in [33], the neuron state estima-
tion problem is precursor for many applications such as system
modeling, signal processing, and control engineering. In order
to make use of relatively large-scale neural networks, one often
needs to estimate the neuron state through measured network
output, and then utilize the estimated neuron state to achieve
certain practical performances, e.g., approximation of stochastic
nonlinear systems based on a radial basis function neural net-
work using [6], estimation of online immeasurable states based
on a recurrent neural network [7], adaptive state estimation of
a general neural network [28], and mathematical analysis of es-
timation error dynamics of various neural networks [11], [12],
[20], [33].

It should be pointed out that, for neural networks as well
as chaotic systems, numerous research results regarding syn-
chronization problems based on the observer techniques have
been developed. For the observer-based synchronization, a slave
system (driven system) is designed such that its dynamics syn-
chronizes that of the master system (drive system). From the
viewpoint of control theory, the slave system is an observer of
the master system, and the state of the master system can be
estimated by the slave system. In this sense, the state estima-
tion problem can be viewed partially as a synchronization one,
for which a rich body of research outputs has been available.
Nevertheless, a literature search reveals that the state estima-
tion problem particularly addressed for coupled uncertain sto-
chastic complex networks does not seem to be fully investi-
gated. In order to reflect a more realistic situation, we further
consider the state estimation problem with probabilistic missing
measurements. Such a problem stems from the fact that the net-
work measurements may not be consecutive but contain missing
observations. The missing measurements for complex networks
are caused for a variety of reasons, for example, a failure in the
measurement, intermittent sensor failures, network congestion,
accidental loss of some collected data, or some of the data may
be jammed or coming from a very noisy environment, etc.; see
[35] and the references therein. To the best of our knowledge,
the state estimation problem for discrete-time coupled uncer-
tain stochastic complex networks with missing measurements
and delays has received very little research attention despite
its significance in practice. It is, therefore, the main purpose of
this paper to shorten such a gap by making one of the first few
attempts.

In this paper, we focus on the state estimation problem for un-
certain stochastic discrete-time complex networks with missing
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measurements and time-varying delay, where the stochastic dis-
turbances are assumed to be Brownian motions that affect not
only the network coupling but also the overall networks, and the
parameter uncertainties are imbedded in both the network state
and the network output. The subsystems in the network interact
with each other through the coupled terms that are disturbed by
Brownian motions. Through available actual output measure-
ments, we aim to design a state estimator to estimate the net-
work states such that, for all admissible parameter uncertainties
and time-varying delays, the dynamics of the estimation error
is guaranteed to be globally exponentially stable in the mean
square. By employing the Lyapunov functional method com-
bined with the stochastic analysis approach, several delay-de-
pendent criteria are established that ensure the existence of the
desired estimator gains, and then the explicit expression of such
estimator gains is characterized in terms of the solution to cer-
tain LMIs. Note that the LMIs can be effectively solved and
checked by the algorithms such as the interior-point method [1].

The rest of this paper is organized as follows. In Section II,
the coupled discrete-time uncertain stochastic complex network
with missing measurements is presented, and some definitions
and lemmas are provided for designing the state estimators. In
Section III, by employing the Lyapunov functional method com-
bined with the matrix inequality techniques, sufficient condi-
tions are established in the form of LMIs and the explicit ex-
pression of the estimation gains is given. Under the obtained
conditions, the estimation error dynamics is globally exponen-
tially stable for all admissible uncertainties and stochastic dis-
turbances. In Section IV, two examples are given to demonstrate
the effectiveness of the results obtained. Finally, conclusions are
drawn in Section V.

Notations: Throughout this paper, I is the identity matrix
with appropriate dimensions and X > 0 means that matrix X
is real, symmetric, and positive definite. The superscript “I"
stands for matrix transposition, and “*” in a matrix is used to
represent the term which is induced by symmetry. diag{- - -} de-
notes a block-diagonal matrix and || - || refers to the Euclidean
vector norm. Let (€2, F, P) be a complete probability space with
a natural filtration {F; },>( satisfying the usual conditions and
generated by Brownian motion {w(s) : 0 < s < t}. E{-}
stands for the mathematical expectation operator with respect
to the given probability measure P. Matrices, if their dimen-
sions are not explicitly stated, are assumed to have compatible
dimensions.

II. PROBLEM FORMULATION

In this paper, we consider the following coupled discrete-time
uncertain stochastic complex network model with time-varying
delay:

zi(k +1) = Ai(k)zi(k) + Di(k)zi(k — (k)
+ Bifi(zi(k)) + Wiz (k)wi (k)

+ ZGijij(k)(li + wa(k)) 1)

where 1 = 1,2, k = 1727...7 :Ez(k) = (.I'Ll(k)/le(k)

., zin(k))T € R™ is the state vector of the ith subsystem at
time k, and n denotes the number of nodes in each subsystem.
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B; and W; are known real matrices and A; (k) and D;(k) are
time-varying matrices of the form

Ai(k)=A; + AA; (k) D;(k) = D; + AD;(k).
Here, the constant matrices A; and D, are known and
AA;(k) and AD;(k) are unknown matrices representing

the time-varying parameter uncertainties and are assumed to
satisfy the following conditions:

[AAL(K), ADy (k)] = By F(k)[My, Ms]
[AAz(k), ADy(k)] = EF(k)[ M, My] 2

where Fq, Fo, My, M5, M5, and M, are known real constant
matrices and F'(k) is the unknown time-varying matrix-valued
function subject to the following condition:

FY(k)F(k) < I,

k=1,2,... 3)

The nonlinear function f;(-) : R® — R™ is known and the
delay integer (k) is time-varying, which satisfies

Tm < 7(k) < 7oa,s k=1,2,...
with 7,,, and 73 being known positive integers representing
the lower and upper bounds of the delay, respectively. Matrix
G = (Gyj)2x2 is the coupling configuration matrix denoting
the topological structure of the complex networks and I' de-
scribes the inner coupling of the network. L = diag{ly,l2} and
l; > 0(i = 1,2) stands for the coupling strength.

Remark 1: The addressed discrete-time delayed complex net-
works (1) are quite general that include many different kinds
of networks (e.g., neural networks and social networks) as spe-
cial cases. For example, we consider the following n-neuron
discrete-time neural network with stochastic disturbances and
time-varying delay of the form:

w(k+1) = Au(k)+ Du(k—7(k))+ BF (u(k)) + Wu(k)w(k)

“)
where w(k) = (ui(k),uz(k),...,u,(k))T is the neural
state vector, A = diag{ay,as,...,a,} with |a;| < 1 is the
state feedback coefficient matrix, and the n X n matrices
B = [bijlnxn and D = [d;;]nxn are, respectively, the connec-
tion weight matrix and the delayed connection weight matrix.
The positive integer 7(k) is the same as in (1). w(k) is the
state-dependent white noise. In (4), F'(u(k)) denotes the neuron
activation function. It is obvious that the neural network model
(4) is just a subnetwork of an array of stochastically coupled
neural networks described by (1).

Remark 2: For presentation simplification, we consider the
case where there are two coupled subsystems (i = 1,2), but
our main results can be readily applied to the complex network
of n subsystems. Also, the lower and upper bounds of the time-
varying delay 7 (k) are adjustable [9]. One typical example is the
networked control system where the delay caused either from
sensor to controller or from controller to actuator is actually time
varying and bounded.

Remark 3: For notational convenience, in (1), it is
temporarily assumed that the subsystems share the same

time-varying delay. The reason why we adopt such an assump-
tion is just to avoid unnecessarily complicated notations and
make the presentation as concise as possible. We claim that, as
will be shown later in Remark 8, our main results can be easily
generalized to more general complex networks with different
time delays in their subsystems.

As discussed in the introduction, it is usually the case in prac-
tice that: 1) the states of the complex networks are not com-
pletely accessible [20], [33]; and 2) the information one can
have is just the actual measurement output of the network, which
may contain probabilistic missing data encountered in practice
such as networked system analysis (the data missing phenom-
enon is also called packet dropout [35]). It is, therefore, neces-
sary to make use of the available information and design a state
estimator to approximate the states of the complex networks (1)
at an exponential rate, regardless of the parameter uncertainties,
stochastic disturbances, and probabilistic data missing.

In this paper, the network measurements are of the following
form:

y(k) = (k) | > Cilk)zi(k) + gla1 (), w2(k))(q + ws(k))

i=1
(&)
where y(k) € R™ is the actual measurement output; and the
stochastic variable v(k) € R is a Bernoulli distributed white
noise sequence specified by the following distribution law:

Prob{y(k) = 1} = E{y(k)} = 7
Prob{y(k) =0} =1-E{y()} =1-7  (©)

with 4 > 0 being a known constant. Obviously, for the sto-
chastic variable y(k), one has the variance 02 = 5(1—%).q > 0
represents the nonlinearity strength. C; (k) = C; + AC;(k), and
C; € R™*™ and g(+,-) : R™ x R™ — R™ are a known matrix
and a nonlinear function, respectively. AC; (k) (i = 1,2) is the
time-varying parameter uncertainty and satisfies the following
admissible conditions:

ACy (k) = EsF(k)M,
ACsy(k) = EsF(k)Mo, k=1,2,... @)
where F3 and F4 are known real constant matrices and F'(k) is
defined in (3).

Remark4: AA;(k),AD;(k),and AC;(k) (i = 1,2) are said
to be admissible if conditions (2), (3), and (7) hold. This kind
of parameter uncertainties has been widely used for studying
the robustness of an uncertain systems, and can represent many
practical situations (see, e.g., [36]).

In system (1) and its output measurement system (5),
w1 (k),wa(k), and wz(k) are independent scalar Brownian
motions on (2, F,P) with

E{wi(k)} =0 E{wi(k)} =1
E{w;(s)wi(t)} =0 (s # 1), i=1,2,3. ®)

It is further assumed that w;(k) (: = 1,2, 3) and (k) are mu-
tually independent.
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Remark 5: In the network model (1), stochastic disturbances
are introduced on both the coupling term and the overall network
because the network coupling could occur in both a determin-
istic and a stochastic way. Note that the stochastic coupling term
was first proposed in [5] for investigating the complete synchro-
nization problem of an array of linearly stochastically coupled
neural networks with time delays, but the deterministic coupling
as well as the overall stochastic disturbances have not been taken
into account in [5].

In order to estimate the network states of (1), we construct the
following Luenberger-like state estimator:

zi(k+1)

= Aizi(k) + Bifi(@:(k)) + 1; chrx] k)

7=1
€))
where ¢ = 1,2,%,(k) is the estimation of the network state

z;(k), and K; € R™™ is the estimator gain matrix to be
designed.
Throughout this paper, the following assumptions are made
on the nonlinear functions in (1) and (5).
Assumption 1: f1(0) = 0 and f»(0)
matrices S7 and Ss such that

1fi(w) = fi)ll < [ISi(u =),
Assumption 2: g(0,0) = 0 and there exists a matrix 7" such
that the following inequality holds:

llg(u, u2) — g(vi,ve)|| < H <U2 - v2> H

for all uy,ug,v1,v2 € R™.
By using the Kronecker product, complex networks (1) can
be rewritten in a compact form as

z(k+1) = (A(k) + (LG) @ D)x(k) + D(k)x(k — 7(k))
+ Bf(xz(k)) + Wa(k)wi (k) + (G @ I')x(k)ws (k)
(10
where z(k) = (a1 (k),z (k))T7f($(k‘)) = (f{ (z1(k)),
fF(xa(k))T, B = d1ag{Bl By}, W = diag{Wi, W},
A(k) = A+ AA(K), D(k) = D+AD(k), A = diag{ A1, A5},
D = diag{D1, Do}, AA(E) = diag{AA;(k), Ads(k)}, and
AD(k) = diag{AD; (k), ADs(k)}.
Similarly, by denoting
C(k) = C + AC(k), O :=
AC(k) : = [AC(k), ACy (k)]
g(@(k)) : = g(a1(k), w2(k)), &(k) == [2] (k), 3 (k)
K:= [k K"

the network measurements (5) and the state estimator (9) turn
out to be

= 0 and there exist

1=1,2 Yu,v € R".

[C1, Co]

y(k) = 1(R)C(F)z(k) + g(2(k))(q + ws(k))] (11)
(k+1) = (A+ (LG) @ D)ii(k) + Bf (i (k)
+ Kly(k) — 7(Ca(k) + qg(2(k))].  (12)
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In terms of Assumptions 1 and 2, one can easily obtain that

[1f(w) = F@)I < IS¢ (u =)l
llg(w) = g()II < T (u = v)|
where Sy = diag{S1,52}.
Our main aim in this paper is to choose a suitable estimator
gain K € R?"*™ such that the state estimation (k) approaches

the network state vector xz(k) exponentially fast. Letting the
error state be

Yu,v € R*™  (13)

(14)

it follows from (10)—(12) that

a(k+1)
= (A+(LG) @ D)z(k)+AA(k)x(k)+D(k)x(k — 7(k))
+ B(f(x(k)) — f(2(k))) + Wa(k)wi (k) =7
x K[Ci(k) + AC(k)z(k) + q(g(z(k)) — g((k)))]
+ (G @ Dz(k)wa (k) — 7K g(z(k))ws (k)
— (v(k) = 7)K[C(k)z(k) + g(z(k))(q + w3(k))]. ~ (15)
The initial condition associated with (15) is given as
z(s) = p(s), s=—-1p,—Tm+1,...,0 (16)

where ¢(-) € L%, ([-7a,0],R*") and L%, ([—7ar, 0], R*")
is the family of all Fo-measurable C([—7a, 0], R?")-valued
random variables satisfying sup_, <.<o E{[l¢(s)[|*} < 0.
Definition 1: The system (9) is said to be a globally robustly
exponential state estimator of the complex networks (1) if the
estimation error system (15) is globally robustly exponentially
stable in the mean square, i.e., there exist two constants J > 0
and p € (0, 1) such that
E{llz(k)]*} < 9u* E{lle(s)1}

sup

sEN[—=7m,0

holds for all k > r,¢(-) € L%, ([=7ar,0], R*") and param-
eter uncertainties satisfying (2), (3), and (7), where « is a suf-
ficiently large positive integer and N[—7yy, 0] is the set defined
as N[—T]\/[7 0] = {—TM, -+ 1,... ,0}.

III. MAIN RESULTS

In this section, an LMI method is employed to solve the
state estimation problem formulated in the previous section.
Before deriving the main results, two useful lemmas are given
as follows.

Lemma 1: Let X,Y and F be real matrices of appropriate
dimensions with F satisfying FTF < I. Then, for any scalar
e>0

XFY +(XFY)T <e 'XXT 4 YTy,

Lemma 2 [1]: Let Q(z) = Q¥ (x), R(x) = R*(x), and

S(z) depend affinely on x. Then, the following linear matrix

inequality:
Q(x)  S(x)
BRI
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holds if and only if one of the following conditions holds: (18), shown at the bottom of the page, hold. Moreover, the state
D) R(z) > 0,Q(x) — S(x)R=1(2)ST(z) > 0; estimator gain can be determined by
2) Q(a) > 0, Rx) — 57 (2)Q " (x)S(x) > 0.
We are now in a position to give the main results in the fol-
lowing theorem. K =Py 'X. (19)
Theorem 1: Under Assumptions 1 and.2, system (9) becomes Proof- Taking the augmented state vector to be
a globally robustly exponential state estimator of the complex
networks (1) if there exist four matrices P; > 0, P, > 0,Q11 >
0, and Q22 > 0, two matrices Q12 and X, and three scalars x(k)
e > 0,6 > 0, and 32 > 0 such that the LMIs in (17) and e(k) = {5:(/1)] (20)
Qu Q12
Q= [Qsz Q22:| >0 (17)
TV W U3 0 s 0 U7 0 0 0 7
x =P 0 0 0 0 0 P E, PE, 0
* * —PQ 0 0 0 0 P2E~I1 — ’7XE~V3 PQEl 0
* * * —-P; 0 0 0 0 0 0 ~
* * * * —Ps 0 0 0 0 o X Es
* * * * * — 0 0 0 0 <0 (18)
* * * * * * T 0 0 0
* * * * * * * -0 I 0 0
* * * * * * * —p11 0
L * * * * * * * * — 01 |
where
_Al (T]\/[—Tm+1)Q12 0 0 0 0 0 0 7
* Aoy o 0 0 0 0 0
* * —Qu+ MM —Q12 O 0 0 0
U= | * * —Q22 0 0 0 0
* * * * —el 0 0 0
* * * * * —el 0 0
* * * * * * —el 0
L * * * * * * * —el J
rAs r 0 7 reCTXT A r 0
0 Ay 0 0
DTp, DTp, 0 0
V= | prp | Tw=| U=, =,
0 0 ogXT xXT
0 BTP, 0 0
L 0 [ —y¢X 7T ] L o0 L 0 |
and

Ay = —Pi+ WP (P +Po)W+(B1+B2) M My+e (ST Sy + TT) +(rar =T +1)Qu1+(GT @ TT) (P14 P2) (G @T)

Ay = =P+ (Taf — Tm + 1)Qa2 + £ (S} Sy + 177
As=ATP + (GTLT) o TT)P,

Ay =ATP —3CTXT + (GTLT) @ TT) Py

Ey = diag{F1, 2}, B3 = [Es, Ey]

M, = diag{ M, My}

M3 = diag{M37 M4}

o=/v(1-7).
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it follows from (10) and (15) that

e(k+1)
= Ac(k)e(k) + De(k)e(k —
+ Wee(k)wr (k) + Gee(k)wa(k) = 7K &(x(k), 2(k))ws (k)
+ (7 = v(B))[Ae(k)e(k) + Bl (w(k), & (k))
+ Ke&(x(k), & (k))ws (k)]

where &(z(k), £(k)) = [f"(x(k)),g" (x(k)), (f(z(k)) —
F@EEMT, (9(x (k) — g(2(k)))T]" and

7(k)) + Be&(x(k), (k)

21

A~ | AR+ (LG T 0
e(k) = | AA(k) — YK AC(k) A+(LG)®F_,YKC}
g _[B OO0 0 }
710 0 B —yK
_[D(k) 0 _[w oo
De(k)—_D(k) 0] We_[W 0}
[GaoT 0 0 0
“loer 0} Ae(k):[KC(k) o}
[0 0 00 0 0 00
B o a0 0] Ke:[ﬂ K 0 0]

From Assumptions 1 and 2, it is easy to show that

1€Cx(k), 2(R)I| < [[Se(k)]|

where S = diag{$, S} and § = [S?,TT]T.
Choose a Lyapunov functional candidate as follows:

(22)

V(k) = Vi(k) + Va(k) + V3(k)

= e’ (k)Pe(k) + i
j=k—7(k)
3w

i=k—7rp +1 j=1

e’ ()Qe(j)

(23)

where P = diag{ Py, P»}.

Calculating the difference of V; (k) along the trajectories of
(21) and taking the mathematical expectation, one has from (5)
that

E{AVi(k)}
=E{Vi(k+1) = Vi(k)}
= E{¢] (k) PCu(k) +79(1=7)¢5 (k) Pla(k)—e™ (k) Pe(k) }

- tE{eT(m[AZ(k)PAe(k)—P+v<1—w>AZ<k)PAe<k>

+WIPW,+GT PG le(k)+eT (k — (k)
x DT (KYPD.(k)e(k — 7(k)) + 2T (k) AT (k)
X PD(k)e(k — (k) + & (x(k), (k)
x [BTPB, +7(1 = %)BY PB, + 7K PK ]
x &(x(k), 2(k)) + 2¢7 (k)
x [AL (k)PBe+~(1—7) AL (k) PB.J¢(x(k), & (k))

1267 (k — 7(k))DY (k) PB.& (a(k). f(k))} 24)
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with i (k) = Ac(k)e(k) + De(k)e(k — 7(k)) + Be&(x(k),
(k) + Wee(k)or(k) + Gee(k)wa(k) — FKL(x(k),
i(k))ws(k), Ga(k) = A (k)e(k) + Be&(x(k),&(k)) +
Ke&(w(k), #(k))ws (k) and 7y defined in (6).
Similarly, we have
E{AV2(k)}
k k—1
=[E{ Yoo el - >, eT(j)Qe(j)}
j=k+1—71(k+1) j=k—7(k)
=E {eT(k)Qe(k)—eT(k —7(k))Qe(k — 7(k))
k—7,,
+ > HQel)
j=k+1—7(k+1)
k-1 k—1
+ Y Qe - D eT(j)Qe(j)}
J=k—Tm+1 j=k—7(k)+1
<E {6T(k)Qe(k‘) — el (k = 7(k)Qe(k — 7(k))
k—Tm
+ > e )Qe(j)} (25)
j=k+1—7Tn
and
E{AV3(k)}
—Tm k k-1
=[E{ > [ > T ()Qeh) - ZeT(j)Qe(j)]}
i=l—7a | j=k+1+i j=k+i
k—Tm
=E {(TM — )l (k)Qe(k) — eT(j)Qe(j)}-
Jj=k+1—7nr
(26)
From (22), it follows that
et (x(k), 2(k))E(x(k), 2(k)) < ee” (k)ST Se(k).  (27)
Using (23)—(27), we obtain
E{AV(k)} <E {67 (k)®:1(k)6(k)} (28)

where (k) = (¢ (k), ¢”(k — 7(k)), €7 (5(k), (k)" and
®, (k) is defined at the top of the next page, with II; (k) =
AT(B)PA(k) — P +7(1 — 3)AT (k) PA.(k) + WT PW, +
GTPG. + (tar — T + 1)Q + £STS. Also, it follows from
Lemma 2 that ®;(k) < 0 is equivalent to

My 0 0 AT(k)P oAL(k)P 0

x —-Q 0 DIk)P 0 0

* x —el BIP oBTP KI'p
o (k)= * * * -P 0 0

* * * * -P 0

* * * * * —5-tp

<0 29)

withIly = —P + WXPW, + GT'PG. + (tar — Ton +1)Q +
eSTS.
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My(k)  AZ(k)PDc(k) AZ(k)PBe +7(1 = 7) AL (k) PB
Oy(k)=| *  DI(k)PDc(k) - Q DI (k)PB.
* * BI'PB. —el +7(1 —3)BI'PB. + yKI PK.

Based on the derivation we have conducted so far, it follows where
that the uncertain nonlinear system (21) is globally robustly
asymptotically stable in the mean square if ®o(k) = ®3+ P4 <

0, in which S El N oo 1371
_ Ev= |:E1_’YKE3:| Bz = {EJ
rills, 0 0 ATpP oATP 0 . 0
* —Q 0 DZP 0 0 E3 = |:KE :|
o._ | * * —el BIP oBIP KIP . T .
37 % * * -pr 0 0 My =[M;,0] Mz =[Ms;,0].
* * % * —-P 0
L x * * % % —5-1p It can be shown from (34) and (35) that
0 0 0 AAT(K)P oAAT(K)P 0O . .. N . _ _
« 0 0 ADT(k)P 0 0 Ny = [E1F (k) My, E2F(k)Ms,0,0,0,0] = Ey F(k)Ms;
o — |* * 0 0 0 0 Ry = [E3F(k)Mq,0,0,0,0,0] = EsF (k)M (36)
3 E I 0 0 0
*kooox Xk * 0 0 where E1 = [El,EQ,O 0 010] E3 = [E3,0 0 , 0, 0] nd
e wox w0 F(k) = ding{F(k), F(k), F(k). F(). F(k). F(k)}. M
= PTR; + RT P, + PI'R, + RT Py 30) diag{,0,0,0,0,0}, Ms = diag{ M, Ms,0,0,0,0}.
Moreover, we have from Lemma 1 and condltlon (3) that
withPlz[OOOPOO]Pzz[Q,OO,,PO]le S
[AA.(k),AD.(k),0,0,0,0],Ry = [AA.(k),0,0,0,0,0] and 4 = PTELF(k)Ms + My FT(E)ET P,
AT i T Y T T 1.\ 7T P
L _[Aa+@c)er 0 Py By BRI, =+ My F™ (k) Es Py
| 0 A+ (LG)oT —54KC < By Pr E\Ey Py + 1 M3 M
aaii) = | AA(k) 0] + fy ' PY EsES Py + 5o MY Ny (37)
N AA(R) —AKAC(E) 0 with
D 0 AD(k) 0} 0 0 0 0 00
D, = AD.(k) =
| D 0} ®) [AD(k) 0 £ 0 0 0 0 0
- [ o o S 0 0 AT T | % ox 0 0 0 0
Ae = | KC 0} Ade(k) = [KAC(k) 0]' PEE =1 PEVETP+ PESETP 0 0
* ok % * 0 0
It is noticed from (2) and (7) that P * * 0
r MM 0 00 00
| E1F (k)M 0 oA ~ L S
AA(k)_{ 0 By F (k) M, = FE\F(k)M, (1) * MyMs 0 0 0 O
B (k)M 0 — * * 0 0 0 O
~ ~ 3 —
AD(k) = [ ! ? } =F F(k)Mg, (32) 3 x « % 00 0
0 EQF(k)M4 o * * x* % 0 0
) 00 0 0 0 0
where F'(k) = diag{F'(k), F(k)}. « 0 0 0 0 0
From the definitions of AA.(k), AA.(k) and AD,(k), one PR ETP, — | * * 00 0 0
has 22Ty % %0 0 0
_ - ENE S S S UQPE3ETP 0
EyF(k)My 0} A 3
AA(k)=| & ~ = F F(k)M, Lk % % % * 0
E\F(k)M KEsF(k)M; 0 Ao
| ErF(k)My 7K B3 (k) ” "MINM, 0 0 0 0 0
S . (34 £ 00000
Aﬁe(k) = :| = EgF(k)Ml T 1 * * 0 0 0 O
KE3(~) 0 My My = * * %« 0 0 0
_E1F(k)M 0 2 7 ~ * * % % 0 0
AD.(k) = | EAF ()M 0} = By F(k)M; (35) L« % s % o 0
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and

i _Pl 0 N El R
PE, = K PZ] [El—vKEJ
[ pnE
" | By - 7PKE;
PPN [MINM, 0
MEM, = " ! 0]
Ao :Pl 01[E] _ [PEy
PE?‘_O PQHEJ_[PQEJ
~ 0
PEs = _PQKE’J
NN [MIM; 0
My M, = 30 ’ 0]'

By Lemma 2 and noticing K = P; 1 X, we know that (18) is
equivalent to the following inequality:

&y + BT PTEVET Py + 1 MY N
05 PF EsET Py + BoMT M, <0 (38)

which ensures ®3(k) < 0. Therefore, it follows from the Lya-
punov stability theory that the uncertain nonlinear system (21) is
globally robustly asymptotically stable in the mean square. Fur-
thermore, along the similar line of the proof of Theorem 1 in
[16], we can prove that there exist scalars ¥} > 0 and p € (0, 1)
such that

E{lz(k)I1*} < Ou* E{lle(s)I*}

sup
seN[

(39)

—7u,0]

forall k > k,¢(-) € L%, ([=7ar,0],R*") and parameter un-
certainties satisfying (2), (3) (7), where & is a sufficiently large
positive integer. From Definition 1, we know that (39) means
that system (9) is a globally robustly exponential state estimator

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

Also, assume further that there is no probabilistic missing data
probability, in other words, the network measurements are the
ideal outputs, i.e., y(k) =7 =1

y(k) = Ca(k) + g(a (k). (41)
By taking the same state estimator (9) and the same Lyapunov
functional (23), along the similar proof lines of Theorem 1, one
has the following result immediately.

Corollary 1: Under Assumptions 1 and 2, the system (9) be-
comes a globally exponential state estimator of the complex
networks (40) with measurements (41) if there exist four ma-
trices P; > 0, P, > 0,Q11 > 0, and Q22 > 0, two matrices
Q)12 and X, and one scalar € > 0 such that the LMIs shown at
the bottom of the page hold, where Y1, = —P; + sSfo +
(Tar — Tm + 1)Q11; the other symbols are the same as in The-
orem 1. Moreover, the state estimator gain can be determined
by K = Py 'X.

Consider the complex networks (40) with measurements (41).
If we further implement the following state estimator:

zi(k+1)
+ K <ZC$1 +g xl(k%‘f:?(k')))“ ’
1=1,2 (42)

then the error state (k) =
equation:

x(k) — &(k) satisfies the following

#(k+1) = (A+ (LG) ® T — KC)i(k)

of the complex network (1), and the proof is then completed. B +D(k — 7(k)) + BE(w(k), (k) (43)
When there are neither stochastic disturbances nor parameter s : . _
uncertainties in the complex networks (1) and the corresponding ‘}Vgl;(rz))B;T z (a[f k) — —K] a (@ El i()xT(] ), 8(k) = [(f(=(k)
output measurement system (5), the equations reduce to Obviousiyg for any scalar ¢ > 0
zi(k+1) = Ajz; (k) + Dz (k — 7(k)) . . o
e€” (w(k), (k)€ (x(k), 2(k)) < exT (k)STSE(k)  (44)
+B; fi(zi(k)) +1; G;;iTz;(k). (40) .
le 7 in which matrix S is defined as in (22).
Yy (T]\/j — Tm + 1)Q12 0 0 0 0 0 Aj 0 7
* Ao 0 0 0 0 0 0 Ay
* * —-Qu —-Qi2 O 0 0o DTp, DTP,
O Q * * * Q2 0 0 0 0 0
{Q%} le} >0 * * * * —I 0 0 BTp 0 <0
12 W22 » * * * x —el 0 0 BTP,
* * * * * * —el 0 -XT
* * * * * * * —-P 0
L x * * * * * * * Py
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Choose a Lyapunov functional candidate as follows:

V(b = RPN Y #()QEG)
j=k—7(k)

LY Yamer

i=k—7y+1 j=1

(45)

Then, along the similar line of the proof of Theorem 1, we can
obtain the following criterion.

Proposition 1: Under Assumptions 1 and 2, the system (42)
becomes a globally exponential state estimator of the complex
networks (40) with measurements (41) if there exist two ma-
trices P > 0 and Q > 0, one matrix X, and one scalar ¢ > 0
such that the LMI (46) shown at the bottom of the page holds.
Moreover, the state estimator gain can be determined by K =
P1X.

Remark 6: In Theorem 1, Corollary 1, and Proposition 1,
delay-dependent criteria are established that ensure the exis-
tence of the desired estimator gains, and the explicit expressions
of such estimator gains are characterized in terms of the solu-
tions to certain LMIs. Note that LMIs can be effectively solved
and checked by the algorithms such as the interior-point method
[1].

Remark 7: The superiority by employing the state estimator
(42) lies in that it can estimate the states of a network that even
has nonconvergent dynamics, and this can be illustrated in Ex-
ample 2 of Section IV.

Remark 8: In this paper, for presentation simplicity, we con-
sider the case where all time-varying delays in the complex net-
work are equal. However, our main criteria can be easily applied
to the system with different delays. For example, if we consider
the following coupled discrete-time uncertain stochastic com-
plex network model with time-varying delays:

xi(k+1) = Ay(k)zi(k) + D;i(k)x;(k — 7 (k))
+ Bifi(xi(k)) + Wiai(k)w (k)

+ 3 Gyl (k)(
=1

where 7;,, < 7;(k) < 1ipr (4 = 1,2). By utilizing the symbols
defined in (10), this system can be rewritten in a compact form
as follows:

z(k+1) =

li + wa(k))

(A(k) +
2

+ZDi(k):E(k—’rz( ) + Bf(z(k))
+ (G D)x(k)ws(k)

(LG) @ ')z (k)

where D1(k) = diag{D1(k),0}, Da(k) = diag{0, Da(k)}.
Take the same state estimator (9) and the similar Lyapunov func-
tional as follows:

k—1
V(k) = e"(k)Pe(k)+ Y e (j)Qe(j)
j=k—7'1(k)
k—T1m k—1

k—1
+ Y €(6)Qe)
j=k—72(k)

k—Tom
+ Z Ze

i=k—Top+1 j=1

Along the similar line of the proof of Theorem 1, one can
have similar corresponding results, which are omitted here for
conciseness.

Remark 9: State estimation problem for general dynamical
systems has long been a research topic attracting constant at-
tention in the areas of control engineering, signal process, and
communication. It should also be mentioned that the synchro-
nization problem or regulation problem are, to some extent,
similar to the state estimation problem for complex or neural
networks [2], [10], [17], [41]. As indicated in Remark 1, the
kind of complex networks investigated in this paper is general
enough to include neural networks as a special case. Compared
to the traditional systems in open literature, the addressed com-
plex networks exhibit the following particular characteristics:
1) probabilistic missing measurement is taken into account on
the network output; 2) the stochastic Brownian motions affect
not only the overall network dynamics but also the coupling
term of the network as well as the network output; and 3) the
subsystems are explicitly coupled in terms of the coupling con-
figuration matrix, the inner coupling, and the coupling strength.
For the possibly large-scale coupled networks, in this paper,
we introduce the Kronecker product to represent the complex
networks in a compact form. Properties of Kronecker products
are thoroughly exploited so as to simplify the derivation. Fur-
thermore, in view of the three stochastic disturbances acting
on the system and the stochastic variable describing the data
missing phenomenon, stochastic analysis is intensively carried
out throughout the paper, combined with the latest Lyapunov
functional approach that leads to less conservative delay-depen-
dent LMI-based results. It is believed that this paper represents
one of the first few attempts to deal with the state estimation
problem for the complex networks of the kind, and the results
are useful in the area of complex networks in terms of both the
problem addressed and the techniques developed.

(v = 7w + 1)@ = P+ (STS; +T7T) 0
-Q

*

* K X X

*

*  —el

0 AP+ ((LG)TeIT)p-CcTXT

0 DTpP

0 BTP < 0. (46)
—el -XT

% -P
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IV. NUMERICAL EXAMPLES

In this section, two examples are shown to justify the criteria
obtained in the previous section.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

The time-varying delay 7(k) is assumed to have upper bound
7y = 4 and lower bound 7,,, = 2. The parameters of the rele-
vant network measurement (41) are given as follows:

Example 1: Consider a coupled complex network model (40) 01 02 02
with parameters as follows: Oy = [ 0 01 0.1}
0.1 -02 0.1
Cr = [—0.1 0.2 0.1}'
[0.14 0 0 L .
=10 o025 o The nonlinearities fi(+) and g(-)in system (40) and (41) are
1
0 0 024 assumed to satisfy Assumptions 1 and 2 with
Ay =102 —01 02 [ 0.1 =02 03
| —0.1 02 -0.3] S, = [0.3 0.1 —0.2]
[ 03 —01 02 ] 10.1 =02 03
'=| 0 -03 02 T [ 02 —-01 -015 —0.1 0.1 0
—-0.1 -0.1 -0.2 |—05 025 -02 -04 O O0.1]°
0.2 0.2 0 By using the Matlab LMI Control Toolbox, we solve the LMIs
Dy=|-01 01 =03 in Corollary 1 to obtain the equation shown at the bottom of the
. 02 0.1 0.1 page (Q11, @12, and ()25 are omitted for simplicity). Therefore,
(03 01 -0.2 it follows from Corollary 1 that system (9) is an estimator of the
Dy,=1]01 0.1 0 coupled complex networks (40) with time-varying delay.
0.05 0.2 —0.1 Example 2: Consider a coupled complex network system
01 0 (40) with parameters as follows: By = By = 0,7(k) = 4 +
L= [ 0 0.2} sin(kw/2), L = diag{0.3,0.12}, and
T_01 0.2 R 0.0183]
Bi=| 01 01 7| 0.3287  0.0161
| 0.1 02 Ao — [0.1064 0.1271]
T 01 01 > 7 10.5350 0.5467
By;=1] 01 -0.1 D. — [0.1223 0.0199]
| —0.1 0.2 1= | 0.0636 0.0259
0.1 O —0.0138 0.3827
G= [0.2 0.1} ' Dz = | 0.5910 0.0546}
r83.8679 20.6693 —1.2878  1.5176 0.8494  —0.2830
20.6693 70.6999 —4.4931  1.9884 1.2210  —0.3240
P = —1.2878 —4.4931 87.5894 —0.1408 0.0413 0.4470
L= 15176 1.9884 —0.1408 73.5056 —2.6079 —24.7856
0.8494 1.2210  0.0413  —2.6079 79.6573 —4.2875
[ —0.2830 —0.3240 0.4470 —24.7856 —4.2875  75.9066
r 54.9881 —7.0796 —12.4294  3.7072 0.9411  —0.9145
—7.0796 41.8705  6.7480 —1.9970  0.3910 0.0778
P, — —12.4294  6.7480 53.4407 1.4995 —-0.1316 —0.5113
27| 37072 —1.9970  1.4995 49.8235 —7.6956 —10.3280
0.9411 0.3910 —0.1316 —7.6956 64.3763  3.3246
L —0.9145 0.0778 —0.5113 —10.3280 3.3246  55.6505
r—0.0984 —0.6751 0.0277  —0.0048
3.6245 1.9025 0.0746  0.0438
4.5022 2.3026 0.0822 0.0338
X=1 25038 46604 | 732590 K=1 0503 0.0024
4.8903 —1.9889 0.0729  —0.0202
L —4.2371 —0.8033 —0.0904  0.0041
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0.2 0.1
¢= [—0.2 0.11}

r_ [-013 024
~ o023 025]"

Here, we take the network measurement (41) with g( - ) = 0 and

0.4032 0.2092

c = [0.1582 0.2825]

—0.5257

Cr = [—0.4068

—0.3236

—0.2204}

By using the Matlab LMI Control Toolbox, the LMI in Propo-
sition 1 has feasible solutions as follows:

853.3893  181.5725
p_ 181.5725  544.8212

—45.5398 —11.3038

33.3233 6.1914

—45.5398

—11.3038

289.6969
—204.1426

33.3233
6.1914
—204.1426
162.7764

step

Fig. 4. State trajectories of x22 and Z22.

r79.2309 —7.5621  3.8431 —2.8271
| —=7.5621  76.2042 4.0694 —3.3450
@= 3.8431 4.0694 67.4556  —47.3623
[ —2.8271 —3.3450 —47.3623 37.9673
r12.8328 —58.7544
X = —153.6470  130.2772
25.4106 189.5013
L —18.1685 —161.9833

Moreover, the state estimation gain is obtained as

0.0856  —0.0912
K= —0.3088  0.2782
0.0550  —0.3861
—0.0484 —1.4713

Therefore, it follows from Proposition 1 that system (42) is
an estimator of the coupled complex (40) with time-varying
delay, which is further verified by the simulation results given
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by Figs. 1-4, where the solid line represents the network state,
the dotted line stands for the state estimate, and the initial
conditions are taken as x(k) = [1.0,2.5,—1.0,2.5]7,2(k) =
[-0.5,-0.5,0.1,0]7 (k = —5,—4,...,0).

V. CONCLUSION

In this paper, we have investigated the state estimation
problem for uncertain stochastic discrete-time complex net-
works with missing measurements and time-varying delay.
The stochastic disturbances are assumed to affect not only
the network coupling but also the overall networks, and the
parameter uncertainties are imbedded in both the network state
and the network output. The subsystems in the network interact
with each other through the coupled terms that are disturbed by
Brownian motions. We have designed a state estimator to esti-
mate the network states such that, for all admissible parameter
uncertainties and time-varying delays, the dynamics of the esti-
mation error is guaranteed to be globally exponentially stable in
the mean square. We have also shown that our method applies to
unstable system as well when there are no parameter uncertain-
ties. By employing the Lyapunov functional method combined
with the stochastic analysis approach, several delay-dependent
criteria have been established that ensure the existence of the
desired estimator gains, and then the explicit expression of such
estimator gains have been characterized in terms of the solution
to certain LMIs. Two simulation examples have been presented
to illustrate the usefulness and effectiveness of the main results
obtained.
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