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Abstract

In this paper, the formation control of networks of multiple agents is studied via con-
trollability, where the network is under leader-follower structure with some agents taking
the leader role and others being followers interconnected via neighbor-based rule. It is
shown that the controllability of a multi-agent system is uniquely determined by the
topology structure of interconnection graph, and the investigation of which comes down
to that for a multi-agent system with the interconnection graph being connected. Based
on these observations, two kinds of interconnection graph topologies are characterized,
under which the network of multiple agents is uncontrollable, revealing to some extent
how the controllability, and accordingly the formation control, are affected by the inter-
connection topology between agents. Finally, a necessary and sufficient condition in terms
of eigenvector is presented. The results also touch upon the selection of leaders and are
illustrated by several examples.

Keywords: Multi-agent systems, controllability, local interactions, leader-follower structure.

1 Introduction

Recently, the study of networked systems has caused great attention in the literature. This is
because in the real world, collective behavior in swarms of entities is ubiquitous, for example
in biological swarms, ants and birds often work and live together; and in the cooperative con-
trol and coordination of multiple robots or unmanned aerial vehicles, decision-making must be
performed by multiple collaborating agents. As a special cooperative behavior of numbers of
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interacting dynamic agents, such behavior has advantages in increasing the chance of finding
food and avoiding predators and other risks, etc. Understanding the cooperative and oper-
ational principles of such systems may provide useful ideas for developing formation control
of unmanned air vehicles, underwater vehicles, satellite clusters and so on. Accordingly, re-
searchers have started focusing their attention on modeling and understanding the cooperative
principles of such collective behavior, as well as their potential engineering applications (e.g.
[1, 5, 6, 14, 17]).

In the last decade, a number of researchers have investigated the formation control problem
from various perspectives, e.g. [3, 10, 15, 8, 9, 16, 18]. In [16], the controllability was put forward
for the first time for formation control of multi-agent systems, in which the controllability
of a multi-agent system means that the system can be steered from one state to another
any one through certain regulations. The spirit is to transform the formation control into a
classical controllability problem for fixed topology, and a switched controllability problem for
switching topology. To date, few results have been available along this line in the literature. In
[7], the controllability was characterized by graph theory. In [12], the controllability problem
was studied under both fixed and switching topologies for continuous-time case, and then for
discrete-time case [11]. Different from the classical control system, the dynamical behavior of
networked systems heavily relies on how the network is connected, i.e. the topology structure of
the network. In particular, with respect to the controllability problem, how the controllability
is affected by the interconnection topology structure among agents is a fundamental problem.
The investigation of this problem is at the very outset. So the research on controllability of
multi-agent systems calls for extensive exploration of properties for the topology structure of
interconnection graph. This motivates the study in the paper.

In this paper, we consider a multi-agent system under leader-follower structure, where some
agents take the leader role and others are followers interconnected via neighbor-based rule. The
leaders are unaffected by the followers and do not abide by the agreement protocal whereas
the followers are influenced by the leaders directly or indirectly. We first show that control-
lability is a property uniquely determined by the interconnection topology. Then a necessary
and sufficient condition is derived for the multi-agent system to be controllable by dividing
the overall system into some controllable connected components. As a consequence, the con-
trollability problem is simplified to the investigation of that for a connected interconnection
subgraph since all the connected components constitute the whole interconnection graph. Fi-
nally, two kinds of interconnection topologies are constructed to identify the uncontrollability
of networks, revealing to some extent how the controllability, and accordingly the formation
control, are affected by the interconnection topology among agents. A principle is also given for
the selection of leaders to satisfy the necessary condition on controllability and a necessary and
sufficient condition in terms of eigenvector is presented. The results are illustrated by several
examples.

The paper is organized as follows: Section 2 is a brief review of graph theoretic terminologies
and the controllability problem is formulated in this section. Section 3 follows with the main
results. Finally, we briefly summarize the results of the paper in Section 4.
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2 Preliminaries

2.1 Graph preliminaries

An undirected graph G consists of a node set V = {v1, · · · , vχ} and an edge set E = {(vi, vj)|vi, vj

∈ V}, where an edge is an unordered pair of distinct nodes of V . A graph with node set V is
said to be a graph on V , and it can be visually depicted by drawing a dot for each node and a
line for each edge. The number of nodes of a graph G is its order, and its total number of edges
is its degree. If we use | · | to denote cardinality, we have that the order of G is |V(G)|, or simply
|V|, and its degree of G is |E(G)|, or |E|. Two nodes vi and vj are neighbors if (vi, vj) ∈ E , and
the neighboring relation is indicated with vj ∼ vi. In this case we say that vj is a neighbor of vi.
The number of neighbors of each node is its valency or degree. If all the nodes of G are pairwise
adjacent, then G is complete. Here it is assumed that there are no self-loops, i.e. (vi, vi) /∈ E ,
and there are no multiple edges between any pair of distinct nodes. A path vi0vi1 · · · vis is a
finite sequence of nodes such that vik−1

∼ vik , k = 1, · · · , s, and a graph G is connected if there
is a path between any pair of distinct nodes. Let G = (V , E) and G ′ = (V ′, E ′) be two graphs.
We call G ′ a subgraph of G (and G a supergraph of G ′) if V ′ ⊆ V and E ′ ⊆ E , and we denote this
by G ′ ⊆ G. A subgraph G ′ is said to be induced from the original graph G if E ′ = E ∩ V ′ × V ′.
In other words, it is obtained by deleting a subset of nodes and all the edges connecting to
those nodes. G ′ ⊆ G is a spanning subgraph of G if V ′ = V . An undirected graph is said to
be connected if there exists a path between any two distinct nodes of the graph. An induced
subgraph of an undirected graph, which is maximal and connected, is said to be a connected
component of the undirected graph. A graph is said to be simple if it is undirected, without
loops and multiple edges.

The adjacency matrix A(G) of G is an |V| × |V| matrix of whose (i, j)-entry is 1 if (vi, vj) is
one of G’s edges and 0 if it is not. Any undirected graph can be represented by its adjacency
matrix, A(G), which is a symmetric matrix with 0-1 elements. The valency matrix 4(G) of a
graph G is a diagonal matrix with rows and columns indexed by V , in which the (i, j)-entry is
the valency of node vi. The incidence matrix In(G) of G is an |V|× |E| matrix, with one row for
each node and one column for each edge. Suppose edge e = (vi, vj). Then column e of In(G)
is zero except for the ith and jth entries, which are +1 and −1, respectively. The Laplacian
matrix L(G) (simply, L) of a graph G, where G = (V , E) is an undirected, unweighted graph
without graph loops (i, i) or multiple edges from one node to another, is an |V|× |V| symmetric
matrix with one row and column for each node defined by

L(G)i,j =





di, if i = j (number of incident edges)

−1, if i 6= j and ∃ edge (vi, vj)

0, otherwise.

Given a graph G, its associated matrices In(G) and L(G) have the following properties: (a) L(G)
is always symmetric and positive semidefinite; (b) zero is always a eigenvalue of L(G) with 1n,
the vector of ones, being the associated eigenvector, and the algebraic multiplicity of the zero
eigenvalue is equal to the number of connected components in the graph; (c) In(G)(In(G))T =
L(G), and L(G) = 4(G)−A(G). Throughout the paper, we will abuse the language by referring
to the eigenvalues and eigenvectors of L(G) as those of G.
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2.2 Problem formulation

The multi-agent system is given by

{
ẋi = ui, i = 1, . . . , N

ẋN+j = uN+j, j = 1, . . . , nl

(1)

which consists of N + nl agents with simple, first order dynamics; where xi is the state of the
ith agent, i = 1, · · · , N + nl. The dimension of xi could be arbitrary, as long as it is the same
for all agents. We will analyze only the one-dimensional case for the sake of simplification
of presentation. The analysis is valid for any dimension n, with the difference being that
expressions should be rewritten in terms of Kronecker products. The following definition of
interconnection graph is employed to describe the interconnection network once the linkages
between agents are given.

Definition 1. [16] The interconnection graph, G = {V , E}, is being defined as an undirected
graph consisting of a set of nodes, V = {v1, . . . , vN , vN+1, . . . , vN+nl

}, indexed by the agents in
the group, and a set of edges, E = {(vi, vj) ∈ V × V| vi ∼ vj}, containing unordered pairs of
nodes that correspond to interconnected agents.

Let Ni be the neighboring set of vi, i.e. Ni = {j | vi ∼ vj; j 6= i}. Then, under the following
protocol,

ui = −
∑
j∈Ni

(xi − xj), i = 1, · · · , N + nl, (2)

the multi-agent system (1) reads
ẋ = −Lx, (3)

where L is the Laplacian matrix of interconnection graph, x = (x1, · · · , xN+nl
)T is the stack

vector of all the agent states.

Definition 2. The topology of an interconnection graph G is said to be fixed if each node of G
has a fixed neighbor set.

Take xN+1, · · · , xN+nl
to play the leaders role, and assume that interconnections with the

leaders are unidirectional, that is, the leaders’ neighbors still obey (2), but the leaders are
indifferent, and are free to pick uN+j arbitrarily, j = 1, . . . , nl. Now, let us rename the agents
as follows:

{
yi

∆
= xi, i = 1, . . . , N

zj
∆
= xN+j, j = 1, . . . , nl

With y being the stack vector of all yi, z the stack vector of all zj, and u the stack vector of all
uN+j, j = 1, . . . , nl, the system can be written in the form:

[
ẏ
ż

]
= −

[F R
0 0

] [
y
z

]
+

[
0
u

]
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where F is the matrix obtained from L after deleting the last nl rows and nl columns, and R
is the N × nl submatrix consisting of the first N elements of the deleted columns. Then the
dynamics of the followers that correspond to the y component of the equation can be extracted
as

ẏ = −Fy −Rz. (4)

Definition 3. The multi-agent system (1) is said to be controllable under leaders xN+j, j =
1, . . . , nl, and fixed topology if system (4) is controllable.

An interconnection graph G is said to be controllable if its corresponding multi-agent system
is controllable. In subsequent arguments, we also indicate the multi-agent system (1) under
fixed topology with matrix pair (F ,R), and F ,R are said to be the corresponding system
matrix and the control input matrix of the multi-agent system, respectively. Throughout the
paper, we do not discriminate the eigenvalues (eigenvectors) of L from those of the associated
interconnection graph G. Once linkages between agents are known, an interconnection graph,
and accordingly the fixed topology can be then determined in association with a multi-agent
system. In contrast, given an interconnection graph, one can write out a corresponding multi-
agent system, with interconnections between agents characterized by the graph. In this sense,
we say that a multi-agent system has a one-to-one correspondence to an interconnection graph.

For the interconnection graph G, denote by Gf and Gl the follower and leader subgraphs of G,
which are induced, respectively, by the follower and leader node sets. Let Gc1 , . . . , Gcγ stand for
the γ connected components in the follower subgraph Gf , the following definition is introduced
in [8] and [9], which is shown therein to be prerequisite to the investigation of controllability.

Definition 4. (leader-follower connected topology) An interconnection graph G is said to be
leader-follower connected if for each connected component Gci

in the follower subgraph Gf , there
exists a leader in the leader subgraph Gl, so that there is an edge between this leader and a node
in Gci

, i = 1, · · · , γ.

3 Main results

In this section, we will first present a basic fact on controllability in Proposition 1. Then
a necessary and sufficient condition is derived in the following Theorem 1. Based on these
preliminary observations, the investigation of controllability is reduced to that for a connected
interconnection graph. Finally, two kinds of interconnection topologies are constructed to
identify the uncontrollability of networks.

Proposition 1. The controllability of multi-agent system (1) is invariant under any labeling
of the nodes in interconnection graph G if the interconnection topology of G and the leader
positions in G are fixed.

Proof. The nodes in the interconnection graph G are first labeled by v1, · · · , vN , vN+1, · · · , vN+nl

with vN+1, · · · , vN+nl
representing the nl leaders. Let i1, · · · , iN , iN+1, · · · , iN+nl

be an arbitrary
permutation of 1, · · · , N + nl. We then relabel the nodes in G as vi1 , · · · , viN , viN+1

, · · · , viN+nl

and the corresponding interconnection graph is denoted by G ′, where viN+1
, · · · , viN+nl

denote
the leaders. In other words, the node vj in G is relabeled as vij in G ′, ij ∈ {1, · · · , N + nl} , ij 6=
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ik if j 6= k. Note that G and G ′ have the same topology structure since the interconnection
topology of G is fixed.

Denote by L and L′ the corresponding Laplacian matrix of G and G ′, respectively. It follows
from the same topology structure of G and G ′ that there exists a permutation matrix P such
that

L′ = PLP T , (5)

where P =
[
ei1 , · · · , eiN , · · · , eiN+nl

]T

, eij is the ijth identity vector with dimension N +nl. By

definition, the multi-agent system matrix F ′ and the control input matrix R′ associated with
G ′ are

F ′ = E ′L′E ′T , R′ = E ′L′T ′,

where E ′ = [ei1 , · · · , eiN ]T , T ′ =
[
eiN+1

, · · · , eiN+nl

]
, that is, E ′T is obtained by eliminating

the columns of the identity matrix IN+nl
that correspond to the leader nodes in G ′, and T ′ is

constructed by grouping these eliminated columns in a new matrix. Similarly, with respect to
G, one has

F = ELET , R = ELT, (6)

where E = [e1, · · · , eN ]T , T = [eN+1, · · · , eN+nl
] . By (5),

F ′ = E ′PLP T E ′T . (7)

Let E ′P = [ej1 , · · · , ejN
]T . Since the interconnection topology of G and the positions of leaders

in G are both fixed, G and G ′ have the same topology structure and the same leader positions.
Accordingly, {j1, · · · , jn} constitutes a permutation of {1, · · · , N}, where the latter is the index
set associated with the N row vectors of E. In other words, E ′P and E have the same row
vectors with the difference on their ordering in the corresponding matrix. Accordingly, there
exists an N -by-N permutation matrix W such that E = WE ′P. Combining this with (6) and
(7) gives rise to

F = WE ′PLP T E ′T W T = WF ′W T . (8)

Also, it follows from the same positions of leaders and the construction of control input matrices
that WR′ and R have the same column vectors with the difference on their ordering in the
associated matrix. Hence, there exists an nl-by-nl permutation matrix V such that

WR′ = RV. (9)

By (8) and (9), the relationship between the two controllable matrices is derived as follows:

C =
[R,FR, · · · ,FN−1R]

=W
[
W TR,F ′W TR, · · · ,F ′N−1W TR]

=W
[
W TRV,F ′W TRV, · · · ,F ′N−1W TRV

]
diag

{
V T , · · · , V T

}

=W
[R′,F ′R′, · · · ,F ′N−1R′] diag

{
V T , · · · , V T

}

=WC ′diag
{
V T , · · · , V T

}
,
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where C and C ′ are controllable matrices of the multi-agent system associated, respectively, with
G and G ′. Since both W and V are permutation matrices, rank C = rank C ′. This completes
the proof.

Remark 1. The above assertion indicates that controllability is a property uniquely determined
by the interconnection topology. Although intuitively reasonable, it is, as far as we know, not
clarified in the literature. The proposition then provides a formal confirmation on the fact.

To illustrate Proposition 1, we give the following example.

(a) (b)

Figure 1: Two interconnection graphs with the same interconnection topology and the same
leader positions.

Example 1. Denote by G and G ′ the two interconnection graphs depicted, respectively, in
(a) and (b) of Fig.1. The graphs show that G and G ′ have the same interconnection topol-
ogy structure and the same leader positions. It can be seen that N = 5, nl = 2. Let P =
[ei1 , ei2 , ei3 , ei4 , ei5 , ei6 , ei7 ]

T with i1 = 6, i2 = 4, i3 = 3, i4 = 2, i5 = 5, i6 = 1, i7 = 7, where eij is
the ijth identity vector with dimension seven. It can be verified that L′ = PLP T , where L′ and
L are Laplacian matrices of G ′ and G, respectively. The system matrix and the control input
matrix of G ′ and G are, respectively, F ′ = E ′L′E ′T ,R′ = E ′L′T ′ and F = ELET ,R = ELT,
where E ′ = [e1, e2, e3, e5, e7]

T , T ′ = [e4, e6]; E = [e3, e4, e5, e6, e7]
T , T = [e1, e2]. Computations

show that F ′ = E ′PLP T E ′T , with E ′P = [e6, e4, e3, e5, e7]
T . Obviously, E ′P and E have the

same row vectors eT
3 , eT

4 , eT
5 , eT

6 , eT
7 with the difference on their ordering in the corresponding

matrix. In fact, E = WE ′P, where W = [e3, e2, e4, e1, e5]
T is a permutation matrix. Then

F = WF ′W T , WR′ = R[w2, w1], where wi is the ith identity vector with dimension two,
i = 1, 2. As a consequence, the ranks of the two controllable matrices associated with the two
interconnection graphs are identical.

Suppose G(1), . . . ,G(δ) stand for the δ connected components of the interconnection graph G.
Leaders xN+1, · · · , xN+nl

are chosen according to the following principle.

Principle 1. [8] For each connected component G(i), the node set of the leader subgraph Gl

contains at least one node of G(i), i = 1, · · · , δ.

Remark 2. To analyze controllability, leaders should be selected only in accordance with the
principle. Otherwise, the necessary condition on the feasibility of controllability, i.e. the con-
nectedness between the leader and follower subgraphs, cannot be fulfilled (readers are referred to
the Theorem 1 of [8] for details).
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When leaders are chosen according to Principle 1, each connected component G(i) of G can be
partitioned into two subgraphs: one is G(i)

l , the other is G(i)
f , with G(i)

l , G(i)
f being, respectively,

the induced leader and follower subgraph of G(i).

Denote by Li1,··· ,im the principal submatrix obtained by selecting the i1th, . . . , imth rows and

columns of the Laplacian matrix L, and assume that G(i)
f is on the node set {vni−1+1, . . . , vni

},
with n0 = 0, nδ = N, i = 1, . . . , δ. Then for an interconnection graph G with leaders chosen
according to Principle 1, the following lemma reveals a property with respect to the Laplacian
matrix of G.

Lemma 1. L1,··· ,N is positive definite and

L1,··· ,N = diag
{L1,··· ,n1 ,Ln1+1,··· ,n2 , · · · ,Lnδ−1+1,··· ,N

}
,

where L1,··· ,n1 ,Ln1+1,··· ,n2 , · · · ,Lnδ−1+1,··· ,N are all positive definite submatrices too.

Proof. The assertion is a combination statement of Lemmas 1,2 in [8].

Theorem 1. The multi-agent system (1) is controllable under fixed topology and leaders xN+1,
· · · , xN+nl

if and only if each connected component G(i) is controllable, i = 1, · · · , δ.

Proof. For the simplification of presentation, it is assumed without loss of generality that
δ = 3, that is, the interconnection graph G consists of three connected components. The
general situation can be proved in the same manner.

Suppose G(1) is on the node set {v1, . . . , vn1 , vn3+1, . . . , vn4}, with {v1, . . . , vn1} and {vn3+1, . . . ,
vn4} being, respectively, the follower and leader set of G(1). Similarly, assume G(i) is on the
node set {vni−1+1, . . . , vni

, vni+2+1, . . . , vni+3
}, with {vni−1+1, . . . , vni

} and {vni+2+1, . . . , vni+3
}

being its follower and leader set, respectively, where i = 2, 3, and n3 = N, n6 = N + nl.
Then, since G(i), i = 1, 2, 3, are the three connected components of G, {v1, . . . , vn1 , . . . , vn3} and
{vn3+1, . . . , vn4 , . . . , vn6} constitute the follower and leader node set of G, respectively.

It follows from Lemma 1 that

F = diag {F1,F2,F3} ,

where Fi = Lni−1+1,··· ,ni
, i = 1, 2, 3; n0 = 0, n3 = N. Set ñi

∆
= ni−ni−1, i = 1, · · · , 2δ; the control

input matrix can be correspondingly partitioned as

R =
[RT

1 ,RT
2 ,RT

3

]T

with
R1 = [R11, 0ñ1×ñ5 , 0ñ1×ñ6 ] , R11 : ñ1 × ñ4,

R2 = [0ñ2×ñ4 ,R22, 0ñ2×ñ6 ] , R22 : ñ2 × ñ5,

R3 = [0ñ3×ñ4 , 0ñ3×ñ5 ,R33] , R33 : ñ3 × ñ6.
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The controllable matrix C can then be written as

C =



R1 F1R1 · · · FN−1

1 R1

R2 F2R2 · · · FN−1
2 R2

R3 F3R3 · · · FN−1
3 R3




=




[R11, 0, 0] [F1R11, 0, 0] · · · [FN−1
1 R11, 0, 0]

[0,R22, 0] [0,F2R22, 0] · · · [0,FN−1
2 R22, 0]

[0, 0,R33] [0, 0,F3R33] · · · [0, 0,FN−1
3 R33]


 . (10)

The specific structure of the controllable matrix indicated in (10) yields the following observa-
tion

rank C

=rank[R11,F1R11, · · · ,FN−1
1 R11] + rank[R22,F2R22, · · · ,FN−1

2 R22]

+ rank[R33,F3R33, · · · ,FN−1
3 R33]. (11)

Denote Ci
∆
=[Rii,FiRii, · · · ,F ñi−1

i Rii], i = 1, · · · , δ; it follows from the Cayley-Hamilton theo-
rem that

rank Ci = [Rii,FiRii, · · · ,FN−1
i Rii], i = 1, · · · , δ.

By (11),
rank C = rank C1 + rank C2 + rank C3. (12)

On the other hand, let ei stand for the ith identity vector with dimension N + nl and set

P = [e1, · · · , en1 , en3+1, · · · , en4 , en1+1, · · · , en2 , en4+1, · · · , en5 , en2+1, · · · , en3 , en5+1, · · · , en6 ]
T .

Obviously, P is a permutation matrix. It can be verified that

PLP T = diag
{
L̃1, L̃2, L̃3

}
,

where

L̃i =

[ Fi Rii

RT
ii ∗

]
. (13)

Consider the ith connected component G(i), i = 1, · · · , δ; with its follower subgraph G(i)
f and

leader subgraph G(i)
l on the node sets {vni−1+1, . . . , vni

} and {vni+2+1, . . . , vni+3
}, respectively.

Concerning each connected component G(i), we rename the nodes as follows:

w1
∆
= vni−1+1, · · · , wñi

∆
= vni

; ñi
∆
= ni − ni−1

wñi+1
∆
= vni+2+1, · · · , wñi+ñi+3

∆
= vni+3

; ñi+3
∆
= ni+3 − ni+2.
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It follows that there is a ‘smaller’ multi-agent system (Fi,Rii) in association with an intercon-

nection graph, denoted by G̃(i), whose follower and leader subgraphs are, respectively, on the
node sets {w1, · · · , wñi

} and
{
wñi+1, · · · , wñi+ñi+3

}
; and the linkages between agents in G̃(i) are

the same as those in G(i). Accordingly, the matrix L̃i shown in (13) is the Laplacian matrix of

the interconnection graph G̃(i), and G̃(i) is controllable if and only if the connected component
G(i) is controllable. At the same time, it follows from (13) and the definition of Ci that Ci is the
controllable matrix of the aforementioned ‘smaller’ multi-agent system.

Furthermore, by (12), C is full row rank if and only if so is each Ci, i = 1, · · · , δ. In other

words, the original multi-agent system is controllable if and only if each G̃(i), and accordingly
each G(i), is controllable.

To facilitate understanding the result, we give the following example.

Figure 2: The interconnection graph G

Example 2. Consider a multi-agent system with its interconnection graph G depicted in Fig.2.
The system matrices are

F = diag {F1,F2,F3} , R = [RT
1 ,RT

2 ,RT
3 ]T ,

with

F1 =

[
3 −1
−1 1

]
,F2 =




2 −1 0
−1 1 0
0 0 1


 ,F3 =




3 −1−1
−1 1 0
−1 0 1


 ,

R1 = [R11, 02×3, 02×1] ,R2 = [03×2,R22, 03×1] ,R3 = [03×2, 03×3,R33] ,

where

R11 =

[−1−1
0 0

]
,R22 =



−1 0 0
0 0 0
0 −1 0


 ,R33 =



−1
0
0


 .

Set
P = [e1, e2, e9, e10, e3, e4, e5, e11, e12, e13, e6, e7, e8, e14]

T .

Computations show that

PLP T = diag
{
L̃1, L̃2, L̃3

}
,
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with L̃i =

[ Fi Rii

RT
ii Mi

]
, i = 1, 2, 3, where

M1 = M3 =

[
1 0
0 1

]
,M2 =




2 −1 0
−1 3 −1
0 −1 1


 .

There are three connected components G(1),G(2),G(3), respectively, on the node sets {v1, v2, v9, v10},
{v3, v4, v5, v11, v12, v13}, {v6, v7, v8, v14}, and they correspond, respectively, to (F1,R11), (F2,R22)
and (F3,R33). So ñ1 = 2, ñ2 = ñ3 = 3, and N = 8. It can be verified that both G(1) and G(2)

are controllable, while G(3) not, with the dimension of its controllable subspace being two. As
a consequence, the overall multi-agent system is not controllable, with the dimension of its
controllable subspace being seven.

Theorem 1 can be viewed as a kind of separation principle for controllability. By Theorem
1, the controllability problem can be simplified to the investigation of that for a connected
interconnection graph since each G(i) is a connected component of the original interconnection
graph. In view of this fact, we make, without loss of generality, the following assumption
throughout the paper.

Assumption 1. The interconnection graph G is connected.

Remark 3. The above arguments show that the controllability of multi-agent systems ought to
be studied according to the following procedure:

1) Select leaders according to Principle 1 to satisfy first the necessary condition on control-
lability, i.e. the leader-follower connectedness between leader and follower subgraphs (the
readers are referred to the proof of Theorem 1 in [8] for details).

2) With the selected leaders, the controllability problem can then be investigated, due to
Theorem 1, under the assumption that the interconnection graph G is connected.

Hence, Theorem 1 in [8] builds up a principle for the selection of leaders, and then, the Theorem
1 presented herein further simplifies the problem to the investigation of controllability only for
a connected interconnection graph. This is what combining Theorem 1 established here with the
one in [8] brings us.

Next, we are to present a ‘partition’ for the connected interconnection graph G. Recall that Gl

and Gf stand for, respectively, the leader and follower subgraph of G. Although G is connected
as a whole, as is not always the case for Gf . Accordingly it can be assumed that Gf consists
of γ connected components Gc1 , · · · ,Gcγ . Let G(i) be an induced subgraph of G, with its node
set being the union of those associated with Gci

and Gl, i = 1, · · · , γ. In other words, G(i) can
be viewed as a ‘smaller’ interconnection graph with its follower subgraph being Gci

and leader
subgraph still being Gl. Then G(1), · · · ,G(γ) constitute a ‘partition’ of G in the sense that the
whole interconnection graph G is partitioned into γ induced subgraphs G(1), · · · ,G(γ), with
each one having the same leader subgraph Gl and the union of them being G.

To proceed, we need the following supporting lemmas.

11



Lemma 2. (Theorem 1 of [8]) If multi-agent system (1) with fixed topology is controllable, then
the interconnection graph is leader-follower connected, and each subgraph G(i) is controllable,
where i ∈ {1, . . . , γ}; γ is the number of connected components in Gf .

Lemma 3. (Lemma 2.2 of [7]) Suppose the interconnection graph G is connected, the multi-
agent system (1) is controllable if and only if L and F do not share any common eigenvalues.

In view of this lemma, we will pursue conditions under which the Laplacian matrix L has
multiple eigenvalues. A direct consequence of the conditions will be that F and L have common
eigenvalues at least for a single leader case.

The following lemma is famous. The readers are referred to, for example, Theorem 9.1.1 of
[4] for detail.

Lemma 4. (Interlacing) Suppose M and N are real symmetric matrices of order m and n with
eigenvalues λ1(M) ≥ · · · ≥ λm(M) and λ1(N) ≥ · · · ≥ λn(N), respectively. If M is a principal
submatrix of N, then the eigenvalues of M interlace those of N, that is,

λi(N) ≥ λi(M) ≥ λn−m+i(N) for i = 1, · · · ,m.

To characterize the desirable topology structure, we give the following definition.

Definition 5. The κ nodes vi1 , · · · , viκ in the graph G = {V , E} are said to have the same
neighbor set if each of these nodes has the same set of neighbors {viκ+1 , · · · , viκ+%}, where vij ∈ V ,
ih 6= ij for ∀h 6= j.

Obviously, this definition is meaningless for a single node, i.e. the case κ = 1. So the number
κ is not less than two whenever the concept of the same neighbor set is mentioned.

Lemma 5. (Lemma 2.1 of [2]) Let G = {V , E} be a graph with vertex subset V ′ = {v1, · · · , vκ}
having the same set of neighbors {vκ+1, · · · , vκ+%}, where V = {v1, · · · , vκ, · · · , vκ+%, · · · , vn}.
Then the Laplacian matrix of the graph G has at least κ− 1 equal eigenvalues and they are all
equal to the cardinality % of the neighbor set. Also the corresponding κ− 1 eigenvectors are

[1,−1, 0, · · · , 0]T , [1, 0,−1, 0, · · · , 0]T , · · · , [1, 0, · · · ,−1︸ ︷︷ ︸
κ

, 0, · · · , 0]T .

Theorem 2. The multi-agent system (1) is uncontrollable, if there are nodes with the same
neighbor set in the interconnection graph G, and at the same time the leaders should be selected
as follows:

• When κ = 2, i.e. there are only two nodes with the same neighbor set, the leaders are
required to be selected from the remaining nodes in G other than the two nodes with the
same neighbor set.

• When κ ≥ 3, the number of leaders is required not greater than κ− 2 and the leaders are
to be selected arbitrarily.
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Proof. Since the interconnection graph G is connected, any selection of leaders accords with
the prerequisite of controllability, i.e., the leader-follower connectedness between the leader
and follower subgraphs. Suppose each node in the subset {vi1 , · · · , viκ} has the same set of
neighbors {viκ+1 , · · · , viκ+%}, where ih 6= ij, ∀h 6= j. Take the permutation matrix as follows

P =
[
ei1 , · · · eiκ , eiκ+1 , · · · eiκ+% , · · · , eN+nl

]
,

where es is the sth identity vector, s = i1, · · · , iκ+%, · · · , N + nl. Then vij plays the same role
in G as that the node vj plays in another interconnection graph G ′, which corresponds to the
permutation Laplacian matrix PLP ′, j = 1, · · · , κ+%, · · · , N+nl. In a word, it can be assumed,
without loss of generality, that {v1, · · · , vκ} has the same set of neighbors {vκ+1, · · · , vκ+%}, as
is due to the fact that G and G ′ have the same interconnection topology structure.

When κ = 2; the two nodes with the same neighbor set can be indicated with v1, v2, and then
it follows from Lemma 5 that [1,−1, 0, · · · , 0︸ ︷︷ ︸

N+nl−2

]T is an eigenvector of the Laplacian L associated

with the eigenvalue %. Since the nl leaders are chosen from the remaining nodes v2, · · · , vN+nl

and the system matrix F is obtained from L by deleting the rows and columns corresponding
to the leader nodes, it can be verified by straightforward computation that [1,−1, 0, · · · , 0︸ ︷︷ ︸

N−2

]T

is an eigenvector of F associated with the same eigenvalue %. So L and F share a common
eigenvalue %. By Lemma 3, the multi-agent system (1) is uncontrollable.

When κ ≥ 3, with the selected nl ≤ κ − 2 leaders, the interconnection graph G can be
‘partitioned’, as mentioned above, into γ subgraphs G(1), · · · ,G(γ). Since v1, · · · , vκ possess
the same neighbor set, the induced subgraph on the node set {v1, · · · , vκ, vκ+1, · · · , vκ+%} ,

indicated with G̃, is connected. As a consequence, G̃ must belong to a G(i) as long as the
leaders are chosen in advance. In other words, it is a subgraph of this G(i), where the index i
may vary with respect to differently selected leader set, i ∈ {1, · · · , γ}.

By Lemma 5, the Laplacian matrix L(i) associated with G(i) has an eigenvalue % with its
algebraic multiplicity at least κ − 1. For the convenience of presentation, we assume without
loss of generality that % = λ1 = · · · = λκ−1. Denote by F(i) the system matrix of the ‘smaller’
multi-agent system corresponding to G(i). Recall that Gci

and Gl are, respectively, the follower
and leader subgraph of G(i). If there are mi nodes in Gci

, F(i) is mi ×mi and L(i) is (mi +
nl) × (mi + nl), where nl is the number of leaders, i.e., the number of nodes in Gl. It can be
seen that F(i) is a principal submatrix of L(i) with order mi. Let µ1 ≥ µ2 ≥ · · · ≥ µmi

be the
eigenvalues of F(i). It follows from Lemma 4 that

λnl+1 ≤ µ1 ≤ λ1

where λ1 ≥ · · · ≥ λmi+nl
are the eigenvalues of L(i). This, together with nl ≤ κ− 2, gives rise

to
µ1 = λ1 = · · · = λnl+1 = · · · = λκ−1,

which means that F(i) and L(i) have at least one common eigenvalue µ1 = λ1 = %. In view
of Lemma 3, the induced subgraph G(i) is uncontrollable. The multi-agent system is then
uncontrollable by following Lemma 2.
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(a) (b)

Figure 3: Two interconnection graphs

Example 3. The example is employed to illustrate Theorem 2. The interconnection graph (a)
of Fig.3 corresponds to the situation κ = 2, where v1, v2 have the same neighbor set {v3, v4, v6}.
If v5, v6 are chosen to be leaders, computations show that [1,−1, 0, 0, 0, 0]T and [1,−1, 0, 0]T

are, respectively, the eigenvector of L and F , associated with the same eigenvalue % = 3. The
corresponding multi-agent system is uncontrollable.

The interconnection graph (b) of Fig.3 corresponds to the situation κ ≥ 3, where each node
in the subset {v1, v2, v3} has the same set of neighbors {v4, v5, v6, v7}. So κ = 3, % = 4. Since
κ = 3, one only need consider the case of single leader. The leader is indicated with vl and falls
into one of the following three cases: (a) vl ∈ {v1, v2, v3, v5, v6, v8, v11, v12}; (b) vl ∈ {v4, v7, v9};
(c) vl = v10. In case of (a), the follower subgraph Gf is connected. Accordingly, γ = 1. In case
of (b), Gf consists of two connected components, and then γ = 2. In case of (c), Gf consists
of three connected components, which are denoted, respectively, by Gc1 , Gc2 , and Gc3 , where Gc1

is on the note set {v1, v2, v3, v4, v5, v6, v7, v8, v9}, Gc2 on the node v11 and Gc3 on the node v12.
In any case, it can be verified that the Laplacian matrix L and the system matrix F share
the common eigenvalue 4. Accordingly, the multi-agent system with the single leader and the
interconnection topology structure depicted in (b) of Fig.3 is uncontrollable regardless how the
leader is selected.

Lemma 6. (Corollary 2.3 [13]) Let G be a graph on n vertices. If 0 6= µ < n is an eigenvalue
of the Laplacian matrix associated with G, then any eigenvector affords µ takes the value 0 on
every vertex of degree n− 1.

Let χ stand for the number of nodes in the interconnection graph G. Assume that there are
m nodes, say vχ−(m−1), · · · , vχ, in the interconnection graph G, with each one having the degree
χ− 1. We have the following assertion.

Theorem 3. The multi-agent system (1) is uncontrollable if leaders are chosen from the node
set {vχ−(m−1), · · · , vχ}, with each one in the set having degree χ− 1, and there is an eigenvalue
of G not equal to 0 and χ. Furthermore, in this case, the dimension of the corresponding
controllable subspace is one.

Proof. As mentioned above, let {v1, · · · , vN} and {vN+1, · · · , vN+nl
} stand for the follower and

leader node set, respectively, where χ
∆
= N + nl, and the nl leaders are chosen from the set

{vχ−(m−1), · · · , vχ}, 1 ≤ nl ≤ m. Let µ be an eigenvalue of interconnection graph G not equal
to 0 and χ. By Lemma 6, any eigenvector associated with µ takes value 0 on the (N + i)th
element, i = 1, · · · , nl. Accordingly, any eigenvector ξ associated with µ can be denoted by
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[ξT
1,··· ,N , 0, · · · , 0︸ ︷︷ ︸

nl

]T , where ξ1,··· ,N is the vector consisting of the first N elements of ξ. Since F is

a principle submatrix of the Laplacian L, obtained by deleting the last nl rows and nl columns of
L, a straightforward matrix calculation shows that ξ1,··· ,N is an eigenvector of F corresponding
to the eigenvalue µ. So, L and F share a common eigenvalue µ. By Lemma 3, the multi-agent
system (1) is uncontrollable.

In fact, direct computation shows that under aforementioned conditions, each row of the
controllable matrix associated with the multi-agent system is in the following form


1, · · · , 1︸ ︷︷ ︸

nl

,−nl, · · · ,−nl︸ ︷︷ ︸
nl

, (−nl)
2, · · · , (−nl)

2

︸ ︷︷ ︸
nl

, · · · , (−nl)
N−1, · · · , (−nl)

N−1

︸ ︷︷ ︸
nl


 .

Accordingly, the dimension of the controllable subspace is one.

A direct consequence of the result is the following corollary.

Corollary 1. A complete graph is uncontrollable.

The corollary is true because each node in a complete graph has a degree of χ − 1, where χ
is the number of nodes in a graph.

Remark 4. Corollary 1 is the Proposition V.1 in [16], which is employed therein to show that
increased connectivity has an adverse effect on the controllability of networks. Here, Theorem
3 tells us that rather than completeness of the overall graph, the existence of one node with the
degree (of connectivity) χ − 1 is enough to destroy the controllability only if the very node is
chosen as a leader. In this sense, Theorem 3 provides a further observation on the relationship
between controllability and connectivity for networks of multiple agents. We remark that The-
orem 3 can also be verified by computing the controllable matrix directly and it can be shown
that under conditions of Theorem 3, the rank of the controllable matrix is one.

(a) (b)

Figure 4: Two interconnection graphs: (a) is uncontrollable, while (b) is controllable.
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Figure 5: The trajectories of the four followers in the plane, with the associated interconnection
graph of the multi-agent system depicted in (b) of Fig.4. Here, (a) is the whole trajectory of the
system and (b) depicts the initial state and the final desired configuration of the multi-agent
system, which is the magnification of the corresponding part of (a).

Example 4. The example is employed to verify the above result. The number χ of nodes in the
interconnection graph depicted in (a) of Fig.4 is 6, where nodes v5 and v6 have the same degree
χ− 1. The eigenvalues of the corresponding Laplacian matrix L are 0, 2, 3, 5, 6, 6. If v5 and v6

are chosen to take the leader role, calculations show that the eigenvalues of F are 2, 2, 3, 5. In
this case, 2, 3, 5 are clearly the common eigenvalues of F and L. If the leader is single, say v5

is the leader, it can be verified that F and L also share the common eigenvalues 2, 3, 5. In both
cases, the rank of the controllable matrix is one. It is interesting to point out that although the
dimension of the controllable subspace corresponding to the system associated with (a) of Fig.4
is just one, the multi-agent system can be turned to be controllable by a slight modification of
the original interconnection graph. For example, if the connection between node 1 and node 6
is removed, that is, the edge between 1 and 6 are deleted, see (b) of Fig.4, the original system
turns to be controllable. Fig. 5 depicts the trajectories of the four controllable followers in the
plane, where (a) of Fig.5 is magnified in apart in (b) of Fig.5 to observe clearly the initial state
and the final desired configuration of the system.

Next, we present a necessary and sufficient condition for the controllability of multi-agent
systems.

Theorem 4. The multi-agent system is controllable if and only if there is no eigenvector of G
taking 0 on the elements corresponding to the leaders.

Proof. The theorem can be reformulated as stating that the system is uncontrollable if and
only there exists an eigenvector of G takes 0 on the elements corresponding to the leaders.

(Sufficiency) Suppose {vi1 , · · · , viN} and {viN+1
, · · · , viN+nl

} are, respectively, the follower and

leader node set. Set E
∆
= [ei1 , · · · , eiN ]T , T

∆
=

[
eiN+1

, · · · , eiN+nl

]
, where eij is the ijth identity

vector with dimension N + nl. Then F = ELET , R = ELT. Let y be an eigenvector of
L associated with the eigenvalue λ, with the ijth component of y, i.e. yij , being zero, j =
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N + 1, · · · , N + nl. It can be directly verified that ET Ey = y. Then, from Ly = λy, one has

ELET Ey = λEy, T TLET Ey = 0.

That is, Fy1 = λy1,RT y1 = 0, where y1
∆
= Ey = [yi1 , · · · , yiN ]T . By the controllability PBH

criteria, the multi-agent system (F ,R) is uncontrollable.

(Necessity) Since F is symmetric, its left eigenvectors are equal to the right ones. Suppose
the system is uncontrollable. Then, by the PBH criteria of controllability, there exists a vector
x ∈ RN such that Fx = λx for some λ ∈ R, with RT x = 0. Let

P
∆
=[ei1 , · · · , eiN , eiN+1

, · · · , eiN+nl
]T =

[
E
T T

]
,

where E, T are matrices defined as above. It follows that P is a permutation matrix and

PLP T

[
x
0

]
=

[ F R
RT T TLT

] [
x
0

]
= λ

[
x
0

]
.

Accordingly, y
∆
= P T

[
x
0

]
is an eigenvector of L, with the components corresponding to the

leaders being zero. This completes the proof.

Remark 5. This Theorem characterizes the controllability from the viewpoint of eigenvector of
Laplacian matrix, while Lemma 3 from the viewpoint of eigenvalue.

4 Conclusions

In this paper, we study connections between the controllability of multi-agent systems and the
topology structure of interconnection graph. It is shown that the controllability of a multi-agent
system is uniquely determined by the topology structure of interconnection graph as long as the
leaders are designated. Two kinds of topology structures are revealed under which the system
is uncontrollable and necessary and sufficient conditions are proposed for the controllability
of networks of multiple agents. One advantage of the results is that controllability, and then
the feasibility of formation control for multi-agent systems can be determined straightforward
from the graph topology itself. To facilitate understanding the results and notations, several
examples are included in the paper. The results add to the understanding of formation control
of multi-agent systems by means of the classical concept of controllability.
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