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Global Synchronization for Discrete-Time Stochastic
Complex Networks With Randomly Occurred
Nonlinearities and Mixed Time Delays

Zidong Wang, Senior Member, IEEE, Yao Wang, and Yurong Liu

Abstract—1In this paper, the problem of stochastic synchroniza-
tion analysis is investigated for a new array of coupled discrete-
time stochastic complex networks with randomly occurred nonlin-
earities (RONs) and time delays. The discrete-time complex net-
works under consideration are subject to: 1) stochastic nonlinear-
ities that occur according to the Bernoulli distributed white noise
sequences; 2) stochastic disturbances that enter the coupling term,
the delayed coupling term as well as the overall network; and 3)
time delays that include both the discrete and distributed ones.
Note that the newly introduced RONs and the multiple stochastic
disturbances can better reflect the dynamical behaviors of cou-
pled complex networks whose information transmission process is
affected by a noisy environment (e.g., internet-based control sys-
tems). By constructing a novel Lyapunov-like matrix functional,
the idea of delay fractioning is applied to deal with the addressed
synchronization analysis problem. By employing a combination of
the linear matrix inequality (LMI) techniques, the free-weighting
matrix method and stochastic analysis theories, several delay-de-
pendent sufficient conditions are obtained which ensure the asymp-
totic synchronization in the mean square sense for the discrete-time
stochastic complex networks with time delays. The criteria derived
are characterized in terms of LMIs whose solution can be solved by
utilizing the standard numerical software. A simulation example
is presented to show the effectiveness and applicability of the pro-
posed results.

Index Terms—Discrete time delays, distributed time delays,
global synchronization, randomly occurred nonlinearity (RON),
stochastic complex networks, stochastic coupling.

1. INTRODUCTION

VER the past few years, complex networks have been
gaining increasing research attention because of their po-
tential applications in many real-world systems from a variety
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of fields such as biology, social systems, linguistic networks,
and technological systems [1], [6], [13], [14], [18], [25], [29],
[31], [32]. In particular, rapidly growing research results have
been reported in the literature that have focused on the structural
properties between the coupled nodes in the complex networks
such as stability and robustness, see [14], [19], [38] for some
recent publications. As one of the mostly investigated dynam-
ical behaviors, the synchronization in complex networks with
or without time delays has drawn significant research interest in
recent years; see, e.g., [13]-[21], [25], [34] and the references
therein.

The time-delay phenomenon in spreading information
through complex networks is well known to be ubiquitous in
nature, technology, and society because of the finite speed of
signal transmission over the links as well as the network traffic
congestions. Hence, constant or time-varying discrete delays
have been considered in many existing results about the syn-
chronization problem for complex (neural) networks; see, e.g.,
[15] and [25]. It is worth mentioning that, as a particular kind
of time delays, the continuously distributed time delays have
also received much research attention since a network usually
has a spatial nature due to the presence of an amount of parallel
pathways of a variety of axon sizes and lengths [17]-[19], [22].
Accordingly, the synchronization problem for continuous-time
complex networks with discrete and/or distributed time delays
has been extensively investigated in [17] and [18]. Note that the
corresponding results for the discrete-time complex networks
with distributed time delays in the discrete time domain have
been very few; see [19] for some initial research.

In real-time systems, the complex networks are often subject
to noisy environment and, therefore, the stochastic modeling
issue has been of vital importance in many branches of science
such as neurotransmitters and network packet dropouts. In order
to reflect more realistic dynamical behaviors, many researchers
have recently investigated the problems of stochastic coupling
and/or external stochastic disturbances for the synchronization
of stochastic complex/neural networks [15], [28], [37]. It should
be pointed out that, another interesting random phenomenon,
namely, randomly switching connections, has been paid consid-
erable research attention in the literature. For example, in [3],
the global synchronization problem has been studied for con-
tinuous-time network with the so-called blinking connections
that are randomly switched on and off with a given probability,
and the frequency of switching is high compared to the network
dynamics. In [26], the synchronization problem has been exam-
ined where the communication network topology changes ran-
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domly and is dictated by the agents’ locations in the lattice. A
stochastic genetic toggle switch model has been investigated in
[27] where different time delays for transcription and translation
and all reaction constant rates are randomly chosen from a range
of values. In [9], it has been found that, for ensembles of yeast
transcriptional network, those with deterministic Boolean rules
are remarkably stable and those with random Boolean rules are
only marginally stable. For various complex/neural/biological
networks with deterministic switching topologies, we refer the
readers to [2], [5], [30], and [35] for some representative publi-
cations.

Motivated by the rich literature on complex network with
switching structures, in this paper, we aim to specifically ad-
dress the randomly occurred nonlinearity (RON) that is an im-
portant phenomenon for the “blinking” networks discussed pre-
viously. As is well known, a wide class of practical systems are
influenced by additive nonlinear disturbances that are caused
by environmental circumstances. For complex networks with
communication constraints, such nonlinear disturbances them-
selves may experience random abrupt changes, which may re-
sult from abrupt phenomena such as random failures and repairs
of the components. Let us choose the networked systems and
biological networks to justify the need of studying RONs. In a
real-time networked environment, due to the limited bandwidth,
network-induced packet losses, congestions, as well as quanti-
zation could be interpreted as a kind of external disturbances
that occur in a probabilistic way and are randomly changeable
in terms of their types and/or intensity. In a neural network, the
signal transmission could be perturbed randomly from the re-
lease of probabilistic causes such as neurotransmitters. The ran-
domly perturbed signals are in the form of spikes and most of the
interaction with the other neurons takes place during the arrival
of the spikes at the connection points, the synapses, which gives
rise to a randomly switching interaction that is normally non-
linear. The so-called RONS, also called stochastic nonlineari-
ties, have recently received some interest [33], and the filtering
problem for discrete-time systems with stochastic nonlinearities
has been thoroughly investigated. Nevertheless, to the best of the
authors’ knowledge, the synchronization problem for complex
networks with specified RONs has not been fully investigated,
and the purpose of this paper is therefore to shorten such a gap.

In this paper, the synchronization problem is studied for sto-
chastic delayed discrete-time complex networks (SDDCN) with
RONSs, multiple stochastic disturbances, and mixed time delays.
The proposed complex network model possesses the following
characteristics: 1) the RONs described by the binary randomly
switching sequences; 2) the distributed delay represented in the
discrete-time setting; and 3) the multiple stochastic disturbances
entering all coupling terms. The techniques we adopt are up to
date in order to achieve delay-dependence for reducing possible
conservatism. Specifically, we are interested in deriving suffi-
cient conditions for the addressed problem by employing the
properties of Kronecker product [12], the free-weighting ap-
proach [7], [8], and the stochastic analysis techniques [10], [23],
combined with the “delay fractioning” approach [24], [25], [38].
A novel matrix functional is constructed to attain new synchro-
nization criteria, which are formulated in the form of linear ma-
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trix inequalities (LMIs) [4]. Note that the LMIs can be solved
by using the standard numerical software.

The remainder of this paper is organized as follows. In
Section II, a stochastic discrete-time complex network model
with mixed time delays, stochastic nonlinearities, and multiple
stochastic disturbances is proposed, and some preliminaries
are briefly outlined. In Section III, by utilizing the approach
of “delay fractioning” and the matrix functional method, we
conduct the stochastic analysis to obtain delay-dependent suffi-
cient criteria in terms of LMIs so as to ensure that the addressed
stochastic complex network to be globally synchronized in the
mean square. In Section IV, a numerical example is provided to
show the applicability of the obtained results. The conclusions
are finally drawn in Section V.

Notations: Throughout this paper, R” and R™*™ denote,
respectively, the n-dimensional Euclidean space and the set of
all n x m real matrices. P > 0 means that matrix P is real,
symmetric, and positive definite. I and O denote the identity
matrix and the zero matrix with compatible dimensions, respec-
tively. diag{- - -} stands for a block-diagonal matrix. col{---}
denotes a matrix column with blocks given by the matrices in
{---}. If A is a matrix, denote by || A|| its operator norm, i.e.,
Al = sup{|Az| : |z]| = 1} = \/Amax(AT A) where A pax(-)
means the largest eigenvalue of A, and | - | is the Euclidean
norm on R™. The superscript “7™ stands for matrix transpo-
sition and the asterisk “*” in a matrix is used to represent the
term which is induced by symmetry. The Kronecker product of
matrices Q € R™*™ and R € RP*? is a matrix in R™P*"? and
denoted as Q ® R. col{ My, M, ..., M,} stands for a column
vector with its entries being M;, M>, ..., M,. Moreover, let
(Q, F,{Fi}t>0, P) be a complete probability space with a
filtration {F;};>0 satisfying the usual conditions (i.e., the
filtration contains all P-null sets and is right continuous). E{-}
stands for the mathematical expectation operator with respect
to the given probability measure P. Sometimes, the arguments
of a function will be omitted in the analysis when no confusion
arises.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following array of SDDCN model consisting of
N coupled nodes of the form:

Tm(k+1) = Az (k) + Agm (k — d(k))+~(k)Bf (2m(k))
+ H(k)Cyg (2 (k — d(k)))
+o0
+ 3 ngh (@m(k = B)

B=1

N
+ D wi (D1 + wi(k)]) a (k)
a=1

N
+ D wiih (D2 4 wa(k)D) o (k — d(k))

+ om (k2w (k), Tm (K — d(k))) ws(k),
m=1,2....N (1)
where, for £k € N, z,(k) = col{z,i1(k),zma(k),
ooy Tmn(k)} € R™ is the state vector of the mth node
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at time k and n denotes the number of nodes in each
subsystem. A, Ay, B, and C are known real matrices.
F@am (k) = Ol fi (1 (K)), fo(@ma(k))s -+, F@mn ()},
glam(k = (k) = col{gi(wmi(k — d(k))).ga(malk —
d(k))), - gn(:vmn( — d(k))}, and h(zn(k) =
col{ (2,01 (k). R (s (R)). .- (@0 (F)} are  non-
linear vector-valued functlons satlsfying certain conditions to
be given later. The positive integer d(k) describes the discrete
time-varying delay that satisfies

dm < d(k) < dr 2)
where d,,,, dj; are known positive integers representing the min-
imum and maximum delays, respectively.

Define the following random events for the system (1):

Event 1: System (1) experiences
nonlinear disturbance f(-)

Event 2: System (1) experiences
nonlinear disturbance g(-).

3

Then, the stochastic variables y(k) € R and J(k) € R are given
by the following two independent Bernoulli distributed white
noise sequences:

(k) = {(1) :if Event 1 occurs

: if Event 1 does not occur
and

9(k) = { 1 :if Event 2 occurs
0 : if Event 2 does not occur.

Let v(k) and ¥(k) satisfy the following distribution law:

Prob {y(k) = 1} =E {7(k)} =
Prob{y(k) = 0} =1 —E{y(k)} =1—~ (4
Prob {#(k) = 1} =E {9(k)} = 6

Prob {#(k) =0} =1 —E {9(k)} =1 — 8 )

where 7y, # € [0 1] are known constants reflecting the occurrence
probability of the different nonlinear functions. The constant
tg > 0 satisfies the following convergence conditions:

+o00 +o0
ﬂzzu5<+oo ﬂ:Zﬂu5<+OO. 6)
=1 =1

Iy, 'y are inner-coupling matrices linking the «th state variable
at time k and k — d(k), respectively; and w@ = (wg,;)a) €
RN*N denotes the outer-coupling configuration matrix of the
network with wis > 0 (m # «) but not all zero, and the
coupling configuration matrix W) is assumed to satisfy the
diffusive connections

wi, =wl,  m#a

N .

dwi =0, i=12  ma=12,...,N. (7
m=1

Furthermore, we assume that W1 and W) are commutative,
ie, WOWE = w@AwW®, Throughout this paper, the no-

tations of wﬁn)a and wfn’of) are used to denote the (m, «) entry

of the matrix W) and WHOWU) (4,5 = 1,2), respectively.
Moreover, o, (-, -, -) : Rx R™ X R™ — R" is the noise intensity
function vector; wq(k) (¢ = 1,2, 3) are scalar Wiener process
(Brownian motion) defined on (2, F, P) with

E{wg(k)} =0 E{wp(k)wq(k)} =0,
E {Wg(k)} =1 E{wi(iwe(j)} =

where w1 (k) and w2 (k) are the stochastic coupling disturbances
while w3 (k) represents the system noise. Also, we should fur-
ther assume that w, (k) (¢ = 1,2, 3) are independent with (k)
and (k).

Remark 1: Ttfollows from the given hypothesis that E{~(k)—
v} = 0, E{d(k) — 0} = 0, E{(y(k) — 7)*} = +(1 — 7).
and E{(J(k) — 6)?} = (1 — 0). As pointed out in [36], (k)
and ¥(k) are Markovian processes, which follow unknown but
exponential distribution of switching.

Remark 2: In this paper, the random variables (k) and ¥(k)
are used to model the probability distribution of the nonlinear
functions. To our knowledge, this represents the first attempt
to take into account the occurrence of different nonlinear
functions in a probabilistic way for the addressed complex
networks. In other words, in the complex network (1), the two
terms y(k)Bf(z;(k)) and ¥(k)Cg(z;(k — d(k))) can be used
to account for the binary occurrence of these two nonlinear
functions according to the given probability distribution.

Remark 3: The model of SDDCN (1) can be regarded as a
discrete analog of the stochastic complex network in the contin-
uous-time domain described by

pPF£q
i F

Az, (t) = | Axm(t) + AaZm (t —7(2)) + Y(t)Bf (xm(t))

+0()Cyg (wm (t —7(1)))

t

+0 [ (e = B)h(an(0))ds | de

— 00

+ Z w<1 21126 () (dt + dwa(t))

+ Z w2 Doz (t— 7(1)) (dt + dws(t))

o (t (1), 2 (1 — 7(8))) dess (),
m=1,2,...,N.

Throughout this paper, the following assumptions are made.

Assumption 1 [11]: For Yu,v € R", the nonlinear functions
f(), g(+), and h(-) are continuous and assumed to satisfy the
following sector-bounded nonlinearity conditions:

—f(v)=Fi(u=0)]" —Fy(u—v)]<0 (8
—g(v)—- ( —0)]"[g(u)—g(v)—Ga(u—v)] <O (9)
—0)]" [h(w) = h(v)— Ha(u—0)] <O (10)

where Fy,G1,H; and F5,G5, Hy are known constant real
matrices.
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Remark 4: The description of nonlinear functions is known
as the sector-like condition, which is more general than the com-
monly used Lipschitz conditions. Such a general description has
been exploited in a number of papers, e.g., [18] and [19].

Assumption 2: The noise intensity function vector o; : R x
R™ x R™ — R™ satisfies the Lipschitz condition, i.e., there exist
constant matrices N7 and N> of appropriate dimensions such
that the following inequality:

|0 (ks w1, 01— 0 (K, uz, v2) | <IN (1 —u2) PN (01 —v2) [

holds forallz, j = 1,2,..., N and uy, v1, us, vo € R™.
For simplicity, we denote

x(k) = col{z1(k ) xo(k),...,zn(k)}

F (x(k)) = col{ f (z1(K)) , f (z2(k)),
flen(k))}
H (z(k)) —col{h z1(k)),h (z2(k)),
hon ()}

G (xz (k—d(k))) —col{g x1 (k= d(k))),
g (x2 (k—d(k))),
gl (k—d(k))))
o(k,z(k),z(k—d(k))) = cof o1 (k,z1(k),z (k d(k))),

o2 (k, w2(k), ©

oy (e (B (5 — )}

Using the matrix Kronecker product “®,” we can recast the
network (1) into a more compact form as

w(k+1)= (I © A+ WD @ T1) (k)

+ (IN ®Ag+ WD g Fz) x (k —d(k))
+7(k)(In ® B)F (z(k))
+9(k)(In ® C)G (z (k — d(k)))

+oo
+ Z wsH (x(k —
p=1

+ (W<2> ® 1) a (k — d(k)) wa(k)
+o(k,x(k),z (k- d(k)))ws(k).

Definition 1: The discrete-time stochastic complex network
(1) [or (11)] is said to be asymptotically synchronized in the
mean square if, for the addressed discrete and distributed delays,
the following holds:

. 2 e
Jim E {am(F) = va(B)”} =0,

)+ (W & 1) w(k)ws (k)

(1)

1<m<a<N.

Furthermore, the complex network (1) [or (11)] is said to be ex-
ponentially synchronized in the mean square if, for any solution
x(k) of system (11), there exist two constants 0 < £ < 1 and
o > 0 such that, for a sufficiently large integer ~ > 0, the in-
equality

E {Jom(k) — walh)} < o,

holds for all & > k.

1<m<a<N
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In the rest of this paper, we aim to provide the sufficient con-
ditions for the stochastic synchronization problem between the
nodes of a class of discrete-time stochastic complex network (1)
[or (11)] with both discrete and distributed time delays. With the
“delay-fractioning” method, we construct a novel matrix func-
tional and develop an LMI approach to derive the criteria to en-
sure the addressed stochastic complex networks to be synchro-
nized in the mean square.

III. MAIN RESULTS AND PROOFS

In this section, the mean square synchronization problem for
the stochastic system (1) [or (11)] is investigated by utilizing
the LMI techniques and free-weighting matrix method as well
as the stochastic analysis theory.

First, the following lemmas are needed in the derivations of
our main results.

Lemma 1 [19]: Let M € R™ "™ be a positive-semidefinite
matrix, x; € R® and a; > 0 (i = 1,2,...). If the series con-
cerned are convergent, the following inequality holds:

+oo T +o0 Hoo | oo
(Z a,L'Xi) M <Z a,L'Xi) S (Z ai) Z aixiTMxi.
i=1 i=1

i=1 i=1
(12)
Lemma 2 (Schur Complement): Given constant matrices
01,82, Q3 where Q; = Q7 and Q5 > 0, then

Ql + Qg Q 193 <0
if and only if

T

L N )
Q3 —Q

Lemma 3 [12]: Leta € R and A, B,C, D be matrices with

appropriate dimensions. Then, the following statements about

Kronecker product are true:

1) a(A® B) = (aA)® B=A® (aB);

2) (A® B)T = AT @ BT;

3) (A® B)(C ® D) = (AC) ® (BD);

4) AQBRC=(A®B)C=A® (B C);

5) (A+B)®(C+D)=A®C+BC+A®D+B®D.
Lemma 4: Let U = (oyj)nxn, P € R™™ z =
col{z1,zo,...,xn}, and y = col{y1,y2,..., yN} with

zp,yr € R (k=1,2,...,

of U is zero, then
dUPy == Y e

1<i<j<N

Lemma 5: Let A = (aij)mxn> B = (bij)nxq, and C =
(¢ij)mxq = AB. If each column sum of A is zero or each row
sum of B is zero, then each column sum or row sum of C' is
Zero.

Now, we are in the position to deal with the stochastic syn-
chronization problem of network (11). First, let us introduce
the approach of “delay fractioning,” that is, an important step
we take in this paper lies in that the lower bound d,,, of the
time-varying delay d(k) can be described as d,,, = rp, where
r, p are positive integers and r denotes the number of fractions.
Then, we represent the time delay d(k) by two parts: a constant
part rp and a time-varying part h(k), i.e.,

d(k) =rp+h(k),  0<h(k) <du—rp.

N).IfUd = U™ and each row sum

— ;) P(yi — ;)

13)
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Denoting
y(k) = Ad(k)
where
5(]{3) =col T(k),l’(k - Tp)7$ (k - d(k)) 7$(k - dﬂ1)7

F(x(k), G (x (k= d(k))), H (z(k)),

+oo
> naH (a(k — /)’))}

Y (k) =col {a:(k),x(k —p)yeex (k= (r—1)p)}
A= |:(IN ®A+ W(l) ®F1) s ONnernv

(IN ® Ad + W(2) & FZ) ’ 0Nn)<Nn7

Y(In ® B), 0(In ® C), ONnx N, INn}
then network (11) can be simplified as
x(k+1) =y(k) + B(k)6(k) + o(k)w(k)
where o(k) = [(W® @ Dax(k), W® @ Na(k —
o(k,z(k),z(k — d(k)))], w(k) = col{wi(k),wa(k
B(k) = [0nnx (r+3)nn: (V(k) = 7)(In ® B),(9(k) —
C)a 0Nn><2Nn]~
Hereafter, we will establish our main criterion based on the
LMI approach. For brevity of the following analysis or presen-
tation, we denote

(14)
));

d(k
),ws(k)},
0)(In ®

Fy=FTF, + FTF, F, = FT + FJ
G1=G{Gy+ GGy, Gy =G +GF
H, =HTH,+ HIH,, Hy = H + H}

Xma (k) =2m(k) — za(k)

fma(k) = f (xm(k)) — f (za())

Yina(k) =col {Xma(k),Xma(k = p), ...,
Xma (k= (r—1)p)}

8ma (k — d(k)) =g (zm (k — d(k))) — g (za (k — d(k)))
h,.o (k) =h (mm(k)) h(za(k))
Zuﬂh T (k—P3)) Zuﬁh o(k—P))
p=1 B=1
Oma(k) = 0m (kyxm(k), zm (kK — d(k)))
— 00 (k,2a(k), 2o (k — d(k)))

B (F) :col{rm(k),xm(k —d),
Xma (k= d(k)) , Xma(k — dar),
frna(k), 8ma (K —d(k)),
hm(k),ﬁm(k)}.

Theorem I: Under Assumptions 1 and 2, the stochastic com-
plex network (11) is asymptotically mean square synchronized
in the sense of Definition 1 if there exist positive-definite ma-
trices P; (1 =1,2),Q, (I =1,2,...,r), R, S, T, real matrices
XY, Z; (j = 1,2,...,r +7), M, J, and four constants
o1 >0 (1 =1,2,3), A* > 0 such that the following LMIs hold:

P+ P, <X\ (15)
Mo =10 + o + 05 + I + 117 <0 (16)

- Liyr@M X
Z= |, hPJ =
= Ls0d Y
Z= | hPJ =
=, = Ir+7*® J 532} >0 (17)
where i
Hl :p(Ir+7 ® M) + (d]V[ — dm)(lr+7 %4 J)
I, =W ow, II;=w ew,
Inyxn = Inxn 0n><(rn+5n)
Iy :[‘X Y Z] Onxrn Inxn = Inxn  Onxsn
0n><(r+1)n Inxn = Inxn Onxan
Q 0 Irnxrn Ornxn 0rn><6n
Q - L * _Q:| Wq - |:0rn><n Irnxrn 0rn><6n
Q :diag{Ql, QQ, ceey Qr}
i Inxn 0n><(r+6)n ]
0n><(r+1)n Iixn  Onxsn
0n><(7‘+2)n Inxn 0n><4n
We = 0n><(r+3)n In><n 0n><3n
0n><(r+4)n Inxn  Onxon
0n><(r+o)n Inxn 0n><n
n><(r+6)n Ian _ N
01 O 0 O O gslly Oy 7
* Oz 0 Oz O 0 O27
* * =T 0 0 0 0
O = * * x Oy v9BPC 0 ~BPI
* * * * Os5 0 6CPI
* * * * * Og¢s 0
L * * * * * O

O11 = A"PA - Nw(,D [T PTy + I" PI]
— NwQ), [ATPTy + TT PA] + (das — dm + 1)S

+ T+ NNEN, — Py — 01 Fy — 03 Hy
O, =ATPA; — Nw® ATPTy — Nu) TTPA,
— NuELOTT PTy,

@14 =7 I:APB - Nw%if‘r{PB} + Qlﬁg
O15 =0 [APC - Nwﬁ,}gf{PC*}
O = A4 PA;— Nw%? [TF PTy + I PI]
- ngg[ [AdTPFQ + fgpgd}
+ )\*NQTNQ -S - QZél
©17 =API — No ) TTPT
Oos =7 [A:,pB - nggfgpé}
Os =10 [AdPC — ng()lngC} + Qgéz
Og7 = AgPI — Nw A TTPT
@44 :’}/BTPB — 2@1] @55 = GC_'TPC_' — 202]
=1
O = iR — 203 ©77; =I"PI— —R
i
P =diag{Py, P,} I=col{l,, I,}
I; =col{I'; Ty}, i=1,2 A=col{A, A-1,}
Ag =col{Aq, Ay} B =col{B, B} C=col{C, C}
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X :col{Xl, XQ, XT+7}

Y =col{Yy, Yo, ..., Y7}

Z :C01{Z17 Zg, ey ZT+7}.

Proof: See the Appendix. [ |

Remark 5: In the stochastic networks addressed in this paper,
there are four main factors contributing to the complexities,
namely, the RONs, discrete time delays, distributed time delays
as well as stochastic disturbances on both the coupling and the
overall networks. All these four factors have been explicitly re-
flected in the LMI conditions (15)—(17) given in Theorem 1; see
the occurrence probabilities v and 6 for the RONs, the minimum
and maximum delays d,,, and dj; for the discrete time delays,
the “sum of the kernel information™ g for the distributed time
delays, and the constant matrices A7 and N> that quantify the
noise intensities.

As a by-product of Theorem 1, we now reconsider the for-
mulas (36)—(51) and obtain the following corollary by another
calculation method.

Corollary 1: Under Assumptions 1 and 2, the stochastic com-
plex network is asymptotically mean square synchronized in
the sense of Definition 1 if there exist positive-definite matrices
P(i=12),Q:(=12,...,r), R, S, T, real matrices X,
Y;,Z; (j = 1,2,...,r 4+ 7), and four constants g; > 0 (I =
1,2,3), A* > 0 such that the following LMIs hold:

R Pi+Py<A*I (18)
Hma \/EX \/dl\/f - dmy \/dI\/I - dmZ
x  —hP 0 0
* * —hPs 0
—hPs

<0 (19)

* * *

where f[ma =y4+3+14+ 17T, and X, ), and Z are defined
in Theorem 1.

Proof: Similar to the proof of Theorem 1, here we just
replace formula (52) by the following:

E [AV(E)}

< > [E{a,fm(k) [T + pX (AP) ' AT
1<m<a<N
+(dar — dm)V(RPy) YT
+ (dy — ) Z(hP2) ™' 27| 6 (k)
1
- (hPorima(§) + X 6ma(k))

e
|

T

Il
=

J —-pP
X (hP2) " (hPonma (5) + X T 6ma(k))
k—rp—1

- X
j=k—rp—h(k)

X (hPy) ™" (hPama(§) + VT 6malk))
k—rp—h(k)—1

>

j=k—dn

(WPtna () + Y bra(8))

X (hpz)_l (hPZUma(J) + ZT(Sma(k)) }

(20)

(hPoima(§) + ZT 6ma(k))”
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Then, by Lemma 2, we know that LMI (19) guarantees
My + pX(BP) 7 XT + (dps — do)Y(RP) T YT +
(dar — d)Z(RPy) 12T <0 (21)

where ﬁma =TI, + 34+, + 117, and X, Y and Z are defined
in (16). The rest of the proof follows the similar line in Theorem
1, which is therefore omitted here.

To show that model (14) addressed in this paper is quite gen-
eral, let us consider two special cases and the corresponding re-
sults are still believed to be new. To be concise, we omit the
proofs that can easily follow from Theorem 1.

Case 1: We first specialize system (14) to the case without
RON s by setting y(k) = v =1 and ¢(k) = 6 = 1 forall k. In
this case, system (14) reduces to

w(k+1)= (IN RA+WWV ® P1> (k)

+ (IN ® A+ WP g rg) z (k — d(k))
+(In ® B)F (s(k))+(Ix ® O)G (z (k — d(k)))

+oo
+ 5 usH (a(k - B)) + (W<1> ® 1) w(k)wy (k)
B=1

+ (W@) ® I) o (k — d(k)) wa(k)

+ o (k,z(k),z (k—d(k)))ws(k). (22)

The following result follows readily from Corollary 1.

Corollary 2: Under Assumptions 1 and 2, the stochastic com-
plex network is asymptotically mean square synchronized in
the sense of Definition 1 if there exist positive-definite matrices
P(i=12),Q: (1=12,...,r),R,S, T, real matrices X,
Y;,Z; (j = 1,2,...,7 4+ 7), and four constants g; > 0 (I =
1,2,3), A* > 0 such that the following LMIs hold:

Pi+Py<\T (23)

1E[ma \/EX \/d]M - dmy \/dl\/l - dmé’7
* —hPs 0 0
* * —hPs 0 <0 24
* * * —hPs

with Inq = My + I3 + 11, + 17 Here [Ty, T4, X, Y, and Z
are defined in Theorem 1, and ﬁg is equal to I3 withy =6 =1
in (16).

Case 2: Let us now assume that system (14) evolves with
neither randomly occurred nonlinear functions nor multiple sto-
chastic disturbances. In this case, (14) reduces to

z(k+1)= (IN @A+WW g Fl) x(k)

n (IN ® Ag+ WP g rg) (k- d(k))
+ (Iy ® BYF (2(k)+(In©C)G ( (k — d(k)))

+o00
+ ) upH (a(k - B)). (25)
=1

The following corollary is readily accessible from Theorem 1.
Corollary 3: Under Assumption 1, the complex network is
asymptotically synchronized if there exist positive-definite ma-
trices P; (1 =1,2),Q; (I =1,2,...,r), R, S, T, real matrices
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XY, Z; (j =1,2,....,7r+7), M, J, and three constants

o1 > 0 (I = 1,2,3) such that the following LMIs hold:
o =1 4+ 1o 4 T3 + 1y + 11 < 0 (26)
E = :IT”*@M ;;J >0
=, = :Ir+7*®J ;:3;32 >0
=5 = :IT”*@ J 7,5)2 >0 @7

where Iy, IIo, Iy, X', ), and Z are defined in Theorem 1, and
I3 = WIOW, with

9}

©11 O3 0 Oy ©O15 e3Hy Oy
¥ B 0 O O 0 27
ol o« - 0 0 0 0
* * * * O35 0 CPI
* * * * * Ogs 0
* * * * * * O77 |

O = ATPA - NwEDTT Py
— Nw(®), [ATPTy + TT PA] + (dar — d + 1)S
+T — P — o1 Fy — o3 Hy

O =APB — Nw)TTPB + o F

©15 = APC — Nu)TT PC

O = A4’ PA; — NwZPTI PT,
- Nwr(r%gz [AdTPFZ + FzTP/Id} — S = 02G4

Oy = A4PB — N2 TTPB

5 = A, PC — NwATIPC + 05Cs

Ou =BTPB - 201 ©Os5=CTPC — 20,1

and the other symbols are the same as defined in Theorem 1.

Remark 6: Based on the general assumption of time-varying
delay in the discrete-time system, we partition d(k) by the time-
varying part and the constant part. Thus, in case of the constant
time delay, we can simply take dy; = d,,, and obtain the similar
results by taking S = 0 in the matrix functional (28).

Remark 7: In this paper, the random occurrence nonlinearity
or stochastic nonlinearity is introduced by using binary ran-
domly switching sequences to describe the distribution of non-
linear functions in a probabilistic way. Based on the setting in
(14), we can see that the RONs have been divided into two
parts, one of which is the deterministic functions vF'(z(k)) and
0G(z(k — d(k))), and the other one is the stochastic functions
(v(k) —v)F(x(k)) and (¥(k) — 0)G(xz(k — d(k))). Moreover,
it is not difficult to see that the mathematical expectation of the
two terms in the stochastic part is zero. Hence, by adopting this
conversion to deal with the stochastic nonlinearity, and using the
stochastic differential equation theory, we can obtain our main
results in that the probabilities of the corresponding randomly
switching sequences are contained.

Remark 8: Novel delay-dependent criteria are established
in both Theorem 1 and Corollary 1 for the synchroniza-

tion problem of a new class discrete-time stochastic delayed
complex networks. By introducing the “delay-fractioning”
approach, we construct a novel matrix functional and utilize a
combination of the free-weighting matrix method and the prop-
erties of Kronecker product. The utilization of the stochastic
analysis technique results in the synchronization conditions
expressed in terms of LMIs. Obviously, the size of LMIs
grows as the node number increases. The LMI control toolbox
implements state-of-the-art interior-point LMI solvers. While
these solvers are significantly faster than classical convex
optimization algorithms, it should be kept in mind that the
complexity of LMI computations remains higher than that of
solving, say, a Riccati equation. For instance, problems with
a thousand design variables typically take over an hour on
today’s workstations. However, research on LMI optimization
is a very active area in the applied math, optimization, and the
operations research community, and substantial speedups can
be expected in the future.

IV. NUMERICAL SIMULATION

In this section, a numerical example is presented to demon-
strate the usefulness and applicability of the proposed testing
criteria on the synchronization stability of the SDDCN (1) with
mixed time delays.

Consider a SDDCN (1) with four nodes where the state vector
of each node is 2-D, i.e., N = 4, n = 2. Other parameters in
the example are given as follows:

0.13 —0.26 0.12 0.15

A= [0.31 0.42 } Aa= [0.32 0.21}
0.25 0.75 0.14 0.15
b= [0.35 0.25} ¢= [0.45 0.23}
-3 1 1 1
) _ @) _ . 1 -3 1 1
WY =W =0.15 x 1 1 3 1
1 1 1 -3

Iy =T = 0.250,
ps =20+ 4 =058 0=0.76
d(k) =4 + sin(kr /4).

The noise diffusion coefficient vector satisfies Assumption 2

with
0.1 -0.4 0.1 0.05
| 2= 53]

Nl:[—o.os 0.25 0.1 0.3

Let the nonlinear vector-valued functions be given by

[ (zm (k) =col {—0.47,,1 (k) 4+ 0.3zm2(k)
+ tanh (0.3z,,1(k)) ,
0.8Zm2(k) — tanh (0.4zm2(k))}

g (xm(k)) =col{0.1z,,2(k) — tanh (0.22,,1(k))

?

0.22m2(k)}
h (2 (k)) =col {0.32,,1 (k) — tanh (0.12,,1(k)),
0dzme(k)},  m=1,2,3,4.

Then, it can be verified that i = 0.125, and the lower bound
and the upper bound of the discrete time delay are d,, = 3
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0

0

E
W;
A

500

I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

Fig. 1. State trajectories of z;; (k) (i = 1,2,3.4).

I I I I I I I I
50 100 150 200 250 300 350 400 450 500

Fig. 2. State trajectories of x;2(k) (: = 1,2,3.4).
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200

100

Xi17X14
(e

=100

-200

1 1 1
100 150 200

1 1 1 1 1
250 300 350 400 450

k

300 T T T T
200+
100+

Xio=X12

0
-100

—-200 :

1 1 1
0 50 100 150 200

Fig. 3. Error states of between x; (k) (i = 2,3,4) and x4 (k).

and dp; = 5, respectively. Also, it is not difficult to see that
Assumption 1 is satisfied with

a0 me 0 8]
=02 0] em[h oy
Hy = :062 0(.)1} Hz = [063 0(.)1]

Letting » = 1 in the matrix functional (28) and using the

Matlab LMI toolbox, we can find a feasible solution to the LMIs
in (15)—(17) as follows:

P [ 18.0252 —3.3007 | p,_ | 20434 2.3683 |
"7 33007 16.3605 | T °7 [2.3683 7.6608 |
Q1= [ 3.9138 —0.7122]
YT -07122 11288 |
R [8.1296  1.2843 g_ | 0-3676 —0.0895 |
T [ 1.2843 19.0489 [ —0.0895  0.1000 |
T [ 6.8867 —2.0014 |
" | -2.0014 1.0701 |

A*=24.7570 01 =13.6054 2=17.0223 p3=19.6402.

According to Theorem 1, the array of coupled delayed com-
plex networks (1) with multiple stochastic disturbances and sto-
chastic nonlinearities can reach asymptotic synchronization in
the mean square. The numerical simulation supports the theo-
retical results perfectly. Specially, in Figs. 1 and 2, we show
the evolution of the state trajectories of each node z;(k) (i =
1,2,3,4). It is also noticed from Fig. 3 that the synchronization
error between the states of the whole network approaches zero
asymptotically.

Remark 9: It is worth pointing out that the example we de-
signed in this section is nontrivial in evaluating the synchro-
nization error since the synchronization analysis is investigated
between all the unstable nodes in identical stochastic complex

networks. In other words, the unstable complex networks are of

1 1 1 1
250 300 350 400 450

k

500

more significance to be exploited to test and support the theo-
retical results.

V. CONCLUSION

In this paper, we have investigated the synchronization
problem of a new array of coupled delayed complex networks
with stochastic nonlinearities, multiple stochastic disturbances,
and mixed time delays in the discrete-time domain. In order to
study the stochastic nonlinearities for the addressed complex
networks, we have first defined two sequences of random
variables to model the probability distribution of the nonlinear
functions. The description of the nonlinear functions is more
general than the commonly used Lipschitz conditions. By
utilizing a novel matrix functional, the properties of Kronecker
product, the free-weighting matrix method, and the stochastic
techniques, we have derived the synchronization stability
criteria that are characterized in terms of LMIs, which can
be readily checked by using standard numerical software. A
simple example has been presented to show the effectiveness
of the proposed results.

APPENDIX

A. Proof of Theorem 1

Based on the delay-fractioning idea, we conduct the fol-
lowing matrix functional:

V(k) = i: Vi(k) (28)

where

Vi(k) =2T (k) (U @ Py)x(k)

“+o00 k—1
Ve(k) =Y mg Y HT () (U® R)H ((3))

p=1  j=k—p

—rp+1 k—1
Yo D ATHU e S)ali)

j=—dny+1li=k—1+j

Va(k) =
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k-1
Z YTHQYE) + > 2T (i) (U ® T)x(i)
i=k—p i=k—dym
Z Z 7" (5)(U @ hPa)n(4)
i=—p j=k+i
—rp—1 k-1
+ > > 7N G)U @ hP)n(j)

i=—dy j=k+i

Q =diag{U ® Q1,U ® Qa,..., U ® Q,}
n(j) =z(j+1)—z(j) h=1/(dv —dm +p)
Y1) =col{z(l) x(Il — p) x(I —2p) ... (I — (r—1)p)}

and U = (tma)Nx N With

- -1, a#m
mETAIN-1, a=m

From condition (6), it is not difficult to see that Vo (k) in (28)
is convergent. By calculating the difference of V (k) along the
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solutions of network (11) and taking the mathematical expecta-
tion, we have

E{AV(K)} =) E{AVi(k)} (29)
=1

where we have (30) shown at the bottom of the page
and (31)-(34), shown on the next page, where n(k) =
z(k+1)—ax(k) = (A=T)6(k)+B(k)o(k) + o(k)w(k), with
1= [IN ® In, 0Nn><(7“+6)Nn]~

By virtue of Lemma 3, one can calculate Uw® =wOy =
NW® (i = 1,2), and

(W@ ® rj)T (U P) (W(k) ® Fz)
= (W er?) e P) (WP eT)
= (w0 rw®) @ (17 Pr)

= NWOW® @ (TP
= NWUH @ (ITPI),

ij, k=12 (35)

E{AVi(k)}
=E{Vi(k+1)-

=E {xT(k) <[N®AT+(W(1)®F1)T> U P)

(IN®A+W(1)®F1) z(k)

+2((IN®Ad+W(2)®F2)  (k—d(k)) + (YIn®B)F (z(k))+(BIy 0 C)G (a

" (k=d(h) (Iv® At W) (UeR)

+ FT (2(k)) (vIn@ BT (U Py) |:(IN®B)F (z(k))+2(0In®C)G (x (k-

+GT (z (k—d(k))) (0Iy2C)T (U P)

+oo T
+ (Zuﬁﬂ(muﬂ—ﬂ))) (UeP) (Zuﬁﬂ
B=1

x (U Py) (W(1)®I) z(k)+2t

ol (k,w(k), = (k—d(k)) (U Py)o (k,x(k),z (k—d(k)))—xT(k)(U®P1)w(k)}

X (IN®Ad+W(2)®F2)z(k—d(k))+2 ((WIN®B)F(x(k))+(91N®C)G(x (k—

(Iy®C)G (z (k—d(k))

Vi(k)} =E {27 (k4 DU P)a(k+1) — 2" (U@ Pr)a(k)}

+ZWH (k—P3) )]

+o0
DIEDS uﬂH(x(k—ﬂ)))}
p=1
+00
R)+2Y st (x(k—ﬁ))]
B=1

=1

) T (k) (W(1)®I)T

400
)+2) npH (w(k—ﬁ))]

(k—d(k)) (W<2>®1) wer) (WHer) s (k-dk)

(30)
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E {AVa(k)}
=E {Va(k+1)-Va(k)}

—[E{ZMB Z HT (2(j)) (U@ R)H (x(5)) — i HT (x(5)) (U®R)H(w(j>)”
i= =k

—[E{Z/w [HT (x(k)) (U@ R)H (x(k)) — H" (a(k—p)) (U®R)H(w(k—ﬁ))]}

{ZMHT ) (USR)H ZuaHT P)(UeR)H ((k—ﬂ))}
{uHT Y(U®R)H - = (Z ppH (z ) (U®R) <Z ppH (z ) } (by Lemma 1)
(31
E{AV3(k)}
=E{Vs(k+1)-Vs(k)}
—rp+1 k k-1
:IE{ > > ") (UeS)a(i) - mT(i)(U®S)x(i)]}
j=—dyH | i=k+j i=k—1+j
=E {(dM —rp+1D2T (B)(U®8)z(k) — | Z wT(i)(U(X)S)x(i)}
<E{(dy —rp+ D" (k)U®S)z(k) — 27 (k—d(k)) (U S)z (k—d(k))} (32)
E{AVy(k)}
—[E{V4(k+1) Va(k)}
{ Z YT (H)QY () Z TT()QY (i) S 2TOHUeT)() - Y 2T (@UT)x(i) }
i=k+1—p i=k—p i=k—d yH1 i=k—d s
=E{Y"(k)QY(k)—Y"(k—p)QY(k—p) + 2" (k)(UT)x(k) — 2" (k—dn )(URT)x(k—d)} (33)

E{AVs(k)}
=E{V5(k+1)-V5(k)}

=E { i [ S " HU PG - Y " (G)U @ hPy)n(j)

i=—p |j=k+1+i Jj=k+i

—rp—1 k k-1
+ Y| Y "W eRPG) = Y " ()(U @ hP2)n()) }
i=—dy | j=k+1+47 j=k+i
k—1 k—rp—1
=E {pnT(k)(U® hPa)n(k) =Y 1" (7)(U @ hPa)n(j)+(dar = rp)n" (k)(U ® hPo)n(k)= Y 0" (/)(U ® hPa)n(j)}
j=k—p j=k—dn
k—1 k—rp—1 k—rp—h(k)—1
:[E{nT(k)[UMZ]n(k)— Yon"DU PG~ > " (U PG - Y, n"(HUe ﬁPz)n(j)}
j=k—p j=k—rp—h(k) J=k—dnr

(34)
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In view of Lemma 4, we substitute (30)—(34) into (29) to get
(36) shown at the bottom of the page.
From Assumption 1, we have

[ @ (k) = Lo (k)
f(wm(K)) = f (za

(k))]T

« [—(FFFHFEFO (F1T+Fr?)}
(F1 + F»)

—21
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hya (k) HI  —2I'| | hypa(k)
Also, it follows from Assumption 2 and condition (15) that
Tma(B) (Pt + P2)0ma(k) < X [Xma (RN NiXima (k)
X (k= d(k)) NS NoXpma (k= d(F))] . (40)

[T 5 ] oo o

Furthermore, according to the definition of 7(j) in (28), we

» [f (g;iwzl(gk);g : f‘?;(z;?(k))] >0 it Saéikt)hlzi: the trajectory of system (11). Then, it is not difficult
e Tk Doalb-p= 306 @D
=] [ Sl [z o '
Similarly, we also have . ] ] ok —rp) — x (k — d(k)) = kizpfl () (42)
Ay =: [Xma (k : d(k))} {_VCSFI _GZ } j=k—d(k)
8ma (k —d(k)) G 21 k—rp—h(k)—1
~ [;’:Z EZ : zg:;” >0 (38) z(k—d(k)) —2(k —dy) = j:kz_:dM n(j). (43)
E{AV(k)}
< Y E {x?;m(k) [(ATP1A+(A—In)TP2(A—In)—Pl—NwS,{;j) [TT(Py+Py)Ty+ P+ Py]
1<m<a<N

~Nuw) [T P A+ AT PT +TT Py (A1) +(A—1,)" P.Ty] +(dM—rp+1)S+T) Kpma(k)

+2 (ATPIAdJr(A—In)TPQAd—Nw;fg (ATPy+(A—1,)"P5) T

~Nw) T (P +Py) Ag— NwL2TT (P +P2)F2) Xma (k—d(k))

+2y ((ATPl—i—(A—In)TPZ) B—ng,{gr{(PﬁPQ)B) frna (F)

+26 ((ATP1+(A—In)TP2) C—Nwi), T <P1+P2>0) 8ma (k—d(k))

) (ATP1+(A—In)TP2—nggrf(PﬁPQ)) ﬁma(k)}

+xZ, (k—d(k)) [(Ag(P1+P2)Ad_Nw§3;3> [PZ(Py+ Py)Ta+ P+ ]

—Nw@), [T (Py+Py) Ag+ A% (P + P,)Ts] —S) Xma (k—d(k))

+ 2y (Ag(Pl +P3) B=Nuwi) T3 (P, +P2)B) fina (k)

+ 26 (Af(Pl+P2)C—NwﬁLF2T(P1+P2)C) 8ma (k—d(k))

+2 (AT (Pi+Py) - Nw@ZhTT (Pi+P2)) hyna (k)]

Y0 () [ BT (Pu+ P2) Bl (k) + 2087 (P4 P2) Cgma (k= d(k)) +2B7 (Py-+ Po) by ()]

080, (k=d()) [CT (Pi~+P2)Cgimer (k=d(k))+2C" (Pr+P2)no (1)

. 1 .
+ihT  (k)Rh,,o(k)+hZ (k) <P1+P2—ER> Do (B)=%xE  (k—dar) TXma (k—dar)

k—1

+T£za(k)Q'rma(k)_nga(k_p)QTma(k_p)+0’7’1;za(k)(P1+P2)0'ma(k)_ Z hnrfza(j)PQWma(j)

k—rp—1

>

j=k—rp—h(k)

Nl (5) P2ma (7) —

k—rp—h(k)-1

>

j=k—dn

j=k—p

W (G) Patima (j)} : (36)
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Based on the above equalities (41)—(43), the following equations

hold for any matrices X;, Y;,and Z; (I =1,2,...,7+ 7), with
appropriate dimensions:
k—1
0=26"(K)X |a(k) —x(k—p)— > n(j } (44)
j=k—p

i k—rp—1
0=26"(R)Y |z(k—rp)—x (k—d(k))— > n()| ©5)

I j=h—d(k)

[ k—rp—h(k)—1
0=26"(k)Z |z (k—d(k))—z(k—dy)— > n(j)

i j=k—dy

(46)

with X = col{U ® X3,U ® Xo,....U ® X,17},
Y = co{U @ Yi,U ® Ya,...,U @ Ypi7}, and Z =

COI{U ® Zl, U ® ZQ, e 7[] ® ZT+7}.
Using Lemma 4, formulas (44)—(46) can be converted into the
following:

0= >  25h.(k)X
1<m<a<N
I k—1
X Xm,(y(k) Xm(w k P Z 77’”’70 (47)
L j=k—p
0= > 250n,(k)Y
1<m<a<N
I k—rp—1
X [ Xma(k=7p)—Xma (k — d(k))— Z NMma(J) | (48)
L j=k—d(k)
0=y 25L.(k)Z
1<m<a<N
k—rp—h(k)—1
X | Xma (k=d(k) =Xma(k—da)= > Tmald) |-
j=k—dy
(49)

On the other hand, for any appropriately dimensioned ma-
trices M = MT > 0and J = JT > 0, the following equations
are true:

™ 5T(k) (s @ (U © M)) 5(R)

_ 5T (k) (I47 ® (U @ M) 6(k)

) (Iry7 © (U @ M)) 6(k)

_ 8T (k) (I47 ® (U @ M)) 8(k)
= {pé;{zn(k)(IT-i-'? ® M)éma(k)
N

- 6 a(k)Lrpr @ M )6m(k)} (50)

k—rp—1
0= Z §T(k) (Inyr © (U © J)) 8(k)
j=k—dn
k—rp—1
— Y R (L@ (U J))6(k)
j=k—dn
=(dpr — d)6T (k) (L7 @ (U @ J)) 6(k)
k—rp—1

- > k) Ty (U ) 6(k)

j=k—rp—h(k)

k—rp—h(k)—1
- S 6T (k) (L @ (U@ ) 8(k)
= Z {(dM — )6 (k) (Ir 47 ® J)bma(k)

k—rp—1
- X
j=k—rp—h(k)
k—rp—h(k)—1
- X

j=k—dm

Sa(F)(Lr7 ® J)8ma (k)

S (k) (L7 ® J)6ma(k)}.

61V

Then, when (37)—(40) and (47)—(51) are all added into (36),
we can derive that

E{AV(k)}

>

1<m<a<N

IN

E {53;“1(]{:) (Hl + Iy + ﬁ3 + 114 + H:‘f)

3
k) + Z o1\
=1

k—1

= Y k )ECmalk, )
j=k—p
k—rp—1

— Y (k) Eaona (k)
j=k—d(k)
k—rp—h(k)—1
j=k—dum

T’Ir—;a(kvj)EBCma(k7j)}

= > EQ88 . (MImabmal(k)
1<m<a<N
k—1
= > Gk, )E1Cmalk, 5)
j=k—p
k—rp—1

= > Chalk,)ZCmalk, )
j=k—d(k)
k—rp—h(k)—1

-2

J=k—dy

;Ir;a(k7j)53<ma(k7j)}
(52)
where (ma(k,7) = col{dma(k), tma(4)}-
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Now, from (16) and (17) in Theorem 1, we have
,>0(1=1,2,3)and I1,,, < 0, where 6%, , (k)[36,,0 (k) =
6T (k)36ma (k) + Y27, o1A;. Then it follows readily that
E{V(k + 1) = V(k)} < XXicmcacn [0ma(k)* where

_ o ' <
X 137313§<N{)\max( ma) - Noticing that x < 0 and

[Xma (k)[? < |6ma(k)|2, it is not difficult to deduce that

>

1I<m<a<N

E{V(k+1)} -E{V(k)} <x Xma(K)[* . (53)

Letting k( be an arbitrary positive integer, it implies from (53)
that

ko

E{V(ko+1)}~E{V()}=D E{V(k)}

k=1

ko
<x Z Z |Xma(k)|2 - (54)

k=11<m<a<N

Consequently, with condition (6), we obtain

ko
S50 B € —SE{V()} < 4oo. (55)
k=11<m<a<N X

Inequality (55) indicates that the series

Y l<m<a<N [Xma(k)> — 0 as kg — +oo. That

is, klim [T (k) — 24(E)]2 = 0 (1 < m < a < N). This
— 400

completes the proof of Theorem 1.
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