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Abstract

A family of navigation algorithms for packet transport in complex networks
is introduced. These algorithms use deterministic and probabilistic rules
which depend, in different ways, on the degree of the node, packet flow and
the temporal properties of packet delivery and distribution. On scale-free
networks all our algorithms can handle a larger load than the random walk
algorithm. I examined the fluctuation properties of packet traffic on scale-free
networks and random graphs using random diffusion and a locally navigated
diffusive motion with preferred edges. I found that preferential behaviour in
either the topology or in the dynamics leads to the scaling of fluctuations
of the number of packets passing nodes and the number of packets flowing
along edges, respectively. I showed that the absence of any preference results
in the absence of scaling. Broad distributions of the return times at nodes
and edges illustrate that the basis of the observed scaling is the cooperative
behaviour between groups of nodes or edges.

I presented an empirical study of the networks created by users within
internet news groups and forums and showed that they organise themselves
into scale-free trees. The structure of these trees depends on the topic under
discussion; specialist topics have trees with a short shallow structure whereas
more universal topics are discussed widely and have a deeper tree structure.

The correlation function of activity shows long range correlations connected



with the users’ daily routines.

I presented an analysis of empirical data on the arrival and discharge
times at a UK Accident and Emergency (A&E) department. I found that
discharges rates vary with the workload and that the distribution of the
length of stay has a fat tail. A sand pile model is introduced to show that
the A&E department is a driven self-organised system. In my model I used
a variable input space to mimic the queuing discipline related to different

types of patients presenting to the department.
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Introduction

Contemporary scientists have to move outside their original realm of studies
and challenge themselves with multidisciplinary problems. We observe today
a trend to cross the edges of our original scientific background in multidis-
ciplinary teams, tackling problems spanning natural and social science and
studying broad models with applications in such different subjects as physics,
biology, finance and social psychology.

One of these models is without doubt the network model, which con-
siders the structure built up by the constituents (nodes or vertices), and
the interconnections between them (links or edges). The internal features
of both elements are usually not studied and the theory is focused on the
structure and function of networks. Random graphs considered by Erdés
and Rényi [1| were the first approximation to real networks. However, it
took almost 40 years for scientists to find that the real networks are much
more sophisticated than the random graphs. This was due to the develop-
ment in computing and capacities of databases that allowed researchers to
grapple with large real datasets. The access to them resulted in the rapid
growth of studies of the real networks, such as World Wide Web (WWW)
[2, 3, 4, 5, 6, 7|, Internet [8, 9, 10, 11], movie actor collaboration network
[12, 13, 14, 15, 16], science collaboration graph [17, 18, 19, 22|, the web of

human sexual contacts |23], cellular networks |24, 25, 26|, internet discussion



INTRODUCTION

networks (27, 28, 29, 30, 31|, phone call networks |32, 33, 34|, social networks
[36], and gene networks [35].

The results obtained from these works have shown that real networks
are not regular nor random at all. This is quite surprising that the most
ubiquitous type of network is a scale-free network. It means that in most cases
a real network observed in different scales is similar to itself (self-similarity
is a well known property of fractals [38]). This non-trivial topology has
interested many scientists who breathed a new life into the graph theory and
developed it into the modern theory of networks.

There are a few factors supporting the popularity of the theory of net-
works, but first of all one has to mention that an enormous number of real
systems can be represented as a set of nodes and links. A link between two
nodes can represent a link existing in reality (Internet on the router level) or
a virtual link (a hyperlink in World Wide Web page or a relation between
species in a foodweb). Second, classic physical models are suitable for regu-
lar structures and particles. Applied to finance, economics or social sciences
they use mostly a statistical approach where each constituent is on average
identical, such as an agent based model. The network model is a powerful
tool, which can handle irregularity, individualisation of constituents and lo-
cally oriented connectivity. Third, the basic concepts of properties such as a
preferential attachment [49], growth and evolution [87], small-world [37, 12],
clustering [49], assortativity and disassortativity |20, 21| can be adopted in
a variety of fields, spanning from genetics [35] to the internet [8, 9, 10, 11].

The study of the theory of networks is divided into two main groups: the
study of structure and the study of dynamics on networks.

The most important characteristics of a network topology is its degree

distribution, where a degree is a number of links connected to a single node.
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We say a network is scale-free when its degree distribution is power law
p(k) ~ k= A random graph is described by a Poisson distribution. Real
networks are often enormously large. Thus, useful characteristics were found
to describe their properties, such as the length of the shortest path, clustering
coefficient, dimension, motifs, centrality, betweenness or assortativity. For
example, the last parameter, assortativity, does a great job separating human
networks from all other types. It is characterised by a Pearson coefficient,
which in the case of human networks is positive and negative in all other
cases [20, 21]. The study of structure helps us to classify networks, however
the study of growth and evolution models [49, 88, 57, 51| give us insight into
the processes leading to a certain type of network. It is fascinating that very
elementary ingredients such as the growth and preferential attachment [49|
lead us to such complex result as a scale-free network.

The behaviour of dynamical processes taking place on networks is very
complicated. First of all there are many different types of dynamics such
as random walk, navigated diffusion, percolation or transport. Second, for
most of them the results depend on the type of underlying network. Thus,
scientists focus mostly on a very elementary process (random walk) or study
dynamics for a representative type of a network (random graph or Albert -
Barabasi model). Large improvements in our understanding of the dynamics
of networks were made for diffusion [41], navigation [62, 65, 66, jamming[42,
62|, transport|73], noise and fluctuations |79, 80, 81, 82, 83, 84, 85, 86|.

This thesis focuses mostly on complex networks and three chapters of
it are devoted to this subject. First of all we focus on a transport process
on networks and the influence of a navigation algorithm on its properties.
For the transport we understand the process of sending any type of item

from a place of origin to a place of destination. In networks these places



INTRODUCTION

are nodes and the transport process takes place along links. An item stands
typically for an idea, particle, charge or a packet and the name refers to the
real process, which is considered. Here, we will describe it as a packet.

A random walk is the basic navigation algorithm and is often used as a
reference for other algorithms. It describes a diffusive dynamics of a packet
from an origin to the destination. This transport process is not optimised in
any way. Thus, all transport properties depend on the type of the underlying
network. All other algorithms have optimised performance, such as shortest
delivery time or jamming threshold. They can be divided into global and
local ones. Global algorithms are optimised in the sense of finding minimum
or maximum value of desired property for the whole network, for instance
the minimum number of hops between two nodes or the maximum network
load. In the case of local algorithms we optimise the network performance
in a local scale. For instance, we find a node in the neighbourhood of node
¢ with the highest connectivity and thus, we increase chances of a walker to
reach the destination faster. The local minimum or maximum can overlap
with the global one but it does not overlap in general and the local navigation
algorithms are not as good as the global ones. However, there are cases where
we are unable to retrieve information about the whole system and the global
algorithms cannot be used. Moreover, even in the case of complete knowledge
about the system, its size can limit an implementation of some algorithms and
this is due their computational complexity. Because of that, local navigation
algorithms can be helpful in both cases. They explore usually the nearest
neighbourhood of a node, which can be assumed as knowledge of a constituent
about the whole system. Thus, these algorithms optimise a subsystem of size
n; = k; for ¢ = 1,2,... N which is typically much smaller than the size of

the network and therefore much faster to compute. In this way, despite of
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their limitations, local navigation algorithms in some applications are worth
considering. In Chapter 1 we investigate four local navigation algorithms.

The basic characteristic that describes a transport process on a network
is the load time series. This is a number of packets that are processed in the
network in given time ¢. The average value of load stands for the network
capacity. When the load increases in time constantly, it indicates that the
network is jamming. For most navigation algorithms, the power spectrum
of the load follows a power law relation with exponent 3 ranging from —2
to —1, which stand for no correlations (diffusive transport) and long-range
correlations, respectively. The power spectrum of a load time series is very
similar to a power spectrum of noise. For instance, in acoustics the power
spectrum of a signal time series described by P(f) = af 2, where f is a signal
frequency, is called the brown noise and is characteristic for the sounds of
nature such as a waterfall. Because of this similarity the network load is
often called the noise.

This property focuses on the network on a macro scale. But one can ask
a question about the load time series for each network node. This approach
is called multichannel analysis and is well known in discrete systems, where
each part of the system can be distinguished. For instance, it was applied for
agent based model and to the stock market [84]. For each noise time series
recorded at node ¢ one can obtain the average number of flowing packets
< h; > and relate it to the dispersion g;. We would like to stress here that we
use the term dispersion in sense of a standard deviation. This terminology
is commonly used in the literature following one of the first works in this
subject [79]. If you plot o; against < h; > for each node i you will obtain a
scaling relation o ~< f ># where 0.5 < p < 1. Chapter 2 is devoted to the

origin of this scaling relation.
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The internet gives us an unprecedented opportunity to study the interac-
tion of human beings. This comes mostly because of the possibility to track
internet users’ activity through internet databases and web pages. Nowa-
days, there are plenty of ways in which people communicate with each other
such as emails, Skype, Facebook, news groups or forums. Particularly, the
last two methods are very interesting because of the open access to them
and the huge number of users. We wrote a computer program which enables
us to download these internet discussions from both sources. First of all, we
chose the biggest Polish news portal www.onet.pl, where forum users are very
active. The second internet discussions source was a students’ news group,
available only to students of Warsaw University of Technology. We analysed
these systems as a network of messages sent by users. These discussions form
the tree-like structures, where a topic of each discussion is a root node. In
Chapter 3 we investigate in detail their structures and temporal distributions
as well as the activity of the internet discussions’ users.

In Chapter 4 we move outside the scope of the network theory and we deal
with the behaviour of hospital personnel in an A&E department. We focus
on two characteristics of this system: the discharge / arrival rate against
number of patients in the department and the length of stay distribution.
The former is a linearly growing curve indicating that the discharge / arrival
rate depends on the workload. This means the department staff adjusts itself
to the number of patients in the department. This property places the A&E
department within the scope of self-organised systems. Furthermore, the fat
tail of the length of stay distribution supports remarkably this claim. Thus,
we decided to model the behaviour of personnel at the A&E department
using a sand pile model, which is a well known example of the self-organised

system. However, we modified this model by introducing an idea of the
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variable input space to cope with the different cases of emergency observed

at the A&E department.



Chapter 1

Navigation on Networks

We introduce four algorithms for
packet transport in complex networks.
These algorithms use deterministic
rules which depend, in different ways,
on the degree of the node, the num-
ber of packets posted down each
edge, the mean delivery time of pack-

ets sent down each edge to each des-

tination and the time since an edge

last transmitted a packet. On scale-free networks all our algorithms are con-
siderably more efficient and can handle a larger load than the random walk
algorithm. We consider in detail various attributes of our algorithms, for
instance we show that an algorithm that bases its decisions on the mean
delivery time jams unless it incorporates information about the degree of the

destination node.
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1.1 Introduction

Complex networks can be used to model a wide range of physical and techno-
logical systems. One of the most interesting dynamical problems on networks
is transport, which can give us some insight into the transport of informa-
tion in technology based communication networks like the internet [8], the
World Wide Web [2],[39] or phone call networks [40]. Here we use the term
transport to mean the transport of particles, which are packets in a network.
Thus our model falls within the Network Layer of the OSI Reference Model
and the algorithms described in section 3 are routing algorithms that belong
to the Network Layer of the OSI Reference Model. Of particular interest is
the phenomenon of load in a network, as a function of the rate of packet cre-
ation R, which has been investigated for models of communication networks
[42],[43],]44] and in real networks [45].

Typically the problem of transport is investigated using either a random
walk algorithm [42], or the shortest path algorithm used by most internet pro-
tocols. The difficulty with these approaches is that random walk algorithm
is very inefficient for transport in technology based communication networks
and shortest path algorithm requires, for its implementation, information
about all connections in a network.

Thus, we would like to study in this chapter the local navigation algo-
rithms, that could benefit from a simple local network structure and display
an efficiency much greater than the random walk algorithm. Particularly, we
would like to explore the local mean delivery time property. We assume that
the shortest paths are also the quickest ones. Thus, when a node sends a
packet it should choose one of its neighbours with the shortest mean delivery
time. We believe that this property can be useful in creating an efficient

navigation rule.
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One can argue that a mean delivery time of node i is not a local property.
This is due to the fact that node ¢ needs all information from the destination
nodes about the arrival times of the packets. But this information can be
passed to node ¢ also by a packet. This demand is not an artificial one, for
instance in the TCP internet protocol a destination router sends back to a
sender information about the correctness of received data. In our algorithms
it would be information on the time of delivery.

In this paper we focus on algorithms that use local information about the
topology, along with information about the flux of packets between neigh-
bours, the link load and the time taken to deliver packets. We propose four
algorithms that use some or all of these properties to deliver packets in a
network.

In section 2 we describe the algorithm that we use to perform numerical
simulations of our models. In section 3 we discuss the algorithms that packets
use to find their destinations and in section 4 we show our results. In section

5 we summarise our results.

1.2 The Program

A program was written to simulate packet transport on a network that does
not depend on the size of the network or its topology. At the beginning of
the program an external file with the adjacency matrix of the network is
read in. We focus on the internet and consequently we treat nodes in our
network as if they are routers. The connections between the routers have the
same capacity for all networks. Such a model can not only be used to model
internet packet transport but also for a range of transport networks in which

the nodes have local routing information.
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Each node:

e Generates a new packet with probability r = R/N and with a randomly
chosen destination, where R is a fixed rate for the whole network, and

N is the number of nodes in network.

e Stores packets in a queue, which has maximum length of L = 1000.
Packets are despatched from the queue in a first in, first out (FIFO)

order.
e Sends packets to its neighbours.
Each node has information about:
e The address of all its neighbours (they have unique indices j).
e The degree of its neighbours - k(7).
e Flow through all its neighbours, which is measured by

— The number of packets posted down each edge to neighbour ¢ -

the Link Load - C'(7).

— The number of packets sent through neighbour ¢, which have
reached their destination - Np(i).
— The sum of the delivery times of all the packets sent through

neighbour ¢ that have reached their destination - Tp(7).

— The time interval since an edge last transmitted a packet to neigh-

bour ¢ and current time step - AT (7).

The index ¢ enumerates each neighbour of node k£ and each node keeps all
the statistics about its neighbours. Quantities C(7), Np(i), Tp(i) and AT'(7)

describe node 7 from the perspective of node k. Each node is described by its

11
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neighbours and all properties can be different for all neighbours that describe
node 1.

The initialisation part of the program sets up the network topology, the
nodes and all the tables used by them. Inside the main loop a time step is
incremented, and within that a loop over all nodes calculates and updates
the statistics. The loop over all nodes includes three basic routines, which
are run for each node; generating new packets, checking its queue for packets
with its address and sending packets to its neighbours. Each node generates a
packet with a randomly chosen destination with probability R/N. The node
checks its own queue for packets addressed to itself. When it finds one of
these it deletes it from the queue and updates the statistics Np(i) and Tp(7)
for all the nodes on the packet’s path. Each packet keeps track of its own
path. The node sends packets to its neighbours by taking the first packet
in its queue and checking the packet’s destination address. If the packet is
addressed to one of its neighbour, the node will send it to the neighbour. If
it is not, the node will use the algorithm to find where to send the packet.
During this posting step the C(i) property is updated. When node k sends
packets to node i, the number of sent packets C(i) increases. After this loop
over all the nodes is completed, the quantities AT (i) and the mean delivery

time of packets sent down each edge Np(i)/Tp(i) are updated for all nodes.

1.3 Algorithms

The most important element in transport is the rule that determines the
direction in which a packet is sent. A transport network without a rule is
a random walk network. We call this rule the algorithm. It describes how

nodes deal with packets and should help packets to get to their destination.

12
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Not all algorithms help packets to reach destinations, poor algorithms can
easily be worse than the random walk algorithm. All algorithms considered
in this paper work with deterministic rules.

As we mentioned before, we are mainly interested in exploring potential
application of the local mean delivery time property. In our basic algorithm

when a node k is attempting to send a packet it finds one of its neighbours

Tp(3)
Np(i)

properties we have run a set of simulations for this algorithm and we have

with the smallest mean delivery time S, = min [ L L To verify its
found that a network is easily jamming even for a small value of the input
rate R. The reason for that is twofold. First of all, links that were found in
the initial phase of the simulation as inefficient (i.e. very long time of the first
delivery) have no possibility to improve their performance. Secondly, large
nodes are usually better in delivering packets and their mean delivery time is
smaller than for small nodes. This property in connection with deterministic
rule leads to the state when two large nodes send packets only between
themselves, trap packets and jam the network. These two side effects of
applying the local mean delivery time lead us to the inclusion of another
properties and creation four navigation rules that will cope with the problems
described above and keep our algorithms deterministic.

The shortest time(ST) algorithm is our basic algorithm that uses informa-
tion about the mean delivery time Tp(i)/Np(i) and the time interval between
the last packet that came to node 7 and actual time step. The ST algorithm

finds the minimum value

S = min | 0 )L 4

in order to determine which node to send the packet to. The idea of this
algorithm is to try and find the minimum travel time for each packet be-

tween source and destination. At the start of the simulation S is equal to

13
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0 for all neighbours. Because the update of Tp(i)/Np(i) only occurs when
a packet arrives at its destination, it can take a number of time steps be-
fore Tp(i)/Np(i) becomes non-zero. The inclusion of the reciprocal of AT'(7)
in S is a response to the first problem described above, it ensures that the
algorithm does not get into a state where it never sends a packet down cer-
tain links which have a large mean delivery time. This state is particularly
likely to occur at the start of the simulation. The inclusion of the recip-
rocal of AT(i) in S also prevents overcrowding when a node finds a node
which is clearly better than all its other neighbours. Hence, because of the
inclusion of AT(i) more nodes take part in the transport and in this way
the large node does not become overcrowded. Because the algorithm with
Tp(i)/Np(i) is looking for minimum delivery time we call it the shortest time
(ST) algorithm. To start this algorithm, and the STD algorithm, which we
will introduce shortly, we use the random walk algorithm. This is due to
initial values of the mean delivery time which are set to 0 in the beginning.
Once all values in the neighbourhood of node i are greater than 0 (at least
one delivered packet through each neighbour), node i starts to use an ap-
propriate algorithm. This means in the initial stage the random walk and
the algorithm coexist, but in the time scale of our simulations the influence
of this stage can be neglected. Without this initial random walk procedure
both the ST and the STD algorithms would jam almost immediately.

Our computer simulations have shown that the inclusion of 1/AT'(7) helps
only for small values of the input rate R. The effect of overcrowded large
nodes is present and is still the main problem to overcome. Thus, we intro-
duce to our algorithm information about the local topology, the neighbours’
degrees. This idea of incorporating information about the degree of nodes

in the transport algorithm was discussed in [46] and [47]. In these papers
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models were introduced in which nodes were selected at a rate proportional
to a power of their degree. It was found that the most efficient algorithm was
one in which the probability of selecting a node of degree k£ was proportional
to 1/k [46, 47].

The shortest time and degree (STD) algorithm is a modification of the
ST algorithm. It uses information about a neighbour’s degree which helps
packets avoid the nodes with the largest degree. The STD algorithm is

defined by -
Np(i) AT(4) i=l..n

where k(i) is a degree of node ¢ and k(i) > 1. This last assumption allows

Sj, = min { (1.2)

the algorithm to avoid dead-end nodes. A node with degree £ = 1 can only
receive a packet that is addressed to itself. The STD algorithm uses both
temporal properties and also information about the local connectivity. For
transport in a scale-free network the most important nodes are those with the
largest degree. But because their neighbours send these nodes a large number
of packets, the queues at these nodes can become overcrowded. Information
about the degree helps the algorithm to avoid these nodes, but it does not
mean that they are not used.

We introduce here the CDT algorithm, connections, degree and shortest
time, which incorporates information about the link load C(i). Thanks to
this property we can avoid the random walk initial procedure. It is similar
to STD algorithm, it tries to minimise the delivery time and benefits from

the degree property to avoid overcrowding. The CDT algorithm is defined

~C (k)| with k(i) > 1. (1.3)
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: : Tp(d) 1 _
For the CDT algorithm we begin at No() AT = 1.
We are going to test the algorithms described above by comparing them to
an algorithm without the mean time delivery property. We call it connections

and degree (CD) algorithm and it is defined by
Sy = min[C(0)k(1)]i=1..n (1.4)

where C(7) is a number of packets that node k sends to node 7. CD algorithm
uses information about the link load C(¢) and the degree, however the link
load property is used here only to make it deterministic implementation of
the algorithm described in [46, 47|. That very simple navigation rule was
designed to avoid large nodes, which are mostly responsible for jamming.
In that algorithm a node ¢ sends a packet to one of its nighbours with the
probability p ~ 1/k(5)°, where k(j) is a degree of its neigbour. Our CD algo-
rithm represents the case for 3 = 1, which was found to be most efficient in
dealing with jamming in the scale-free networks. The probabilistic version of
of CD algorithm called D algorithm is used in Chapter 2. The CD algorithm
does not need the initial random walk procedure, in the beginning S equals
0 and C(i) is updated almost immediately. For this navigation rule there is
no property that can be minimised, unlike in the ST and STD algorithms
where the delivery time is expected to minimise.

Additionally, we compare performance and efficiency of our navigation
algorithms with the random walk and the shortest path algorithm. We use
Dijkstra’s algorithm [48] to find the shortest paths between nodes in the
network and all packets are navigated through them from the origins to their
destinations.

We use the learning property to describe behaviour of an algorithm in the
beginning. By learning we mean the proportion of links whose value of S has

changed since t = 0. The CD and CDT algorithms learn the most quickly.
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After 5000 time steps they tried 95% of the links. This is because the link
load, C'(7), changes when a packet is sent down it whereas Tp(7)/Np(7), used
by the ST and STD algorithms, only changes when a packet sent down it gets
to its destination. That is why the ST and STD algorithms need the random
walk starting procedure. With this procedure after 5000 time steps 35% of
links were tried. For the ST algorithm without the random walk starting
procedure it was 5%. As we have mentioned before for ST and STD, a node
1 starts to use a navigation rule once all its links have been used at least once.
Thus, in the initial state two navigation rules operate effectively, the random
walk and a navigation algorithm. However, our simulations are long enough
to ensure there is no influence of the initial state for our findings. The speed
of learning is important because when a network learns slowly, the network
only uses a small proportion of its links for transport over a long period of
time, which means that the network is easily jammed when a region of the

network becomes overcrowded.

1.4 Results

We consider transport on the Barabési and Albert model of a network [49]
with N = 1000 nodes and m = 2. The parameter m is the number of links
of a new node that are added to network. When m = 2 the network includes
loops and has relative small number of connections. Our research shows
that this network jams for lower values of the posting rate than networks
with m = 1 or m = 3 and higher. When it is necessary we support our
analysis and conduct additional simulations on the same type of network
with V = 500 and N = 100 nodes to reveal important size effects. In this

work we use a posting rate of R = 0.1. This means that each node creates
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a packet with probability R/N. We use one value of the posting rate R for
all algorithms. Hence, the particular choice of R = 0.1 is set by the free flow
regime of the least efficient random walk algorithm. Moreover, we are not
going to study here the queuing effect and we do not want to disturb our
studies by the effect of short queues. Thus for the queue length L = 1000
we choose R = 0.1 to be sure that queues are not overcrowded throughout a
whole simulation. However, one should be aware that some additional effect
for the properties studied here may occur for higher posting rate and different
network sizes.

The number of time steps for our simulations is 6M. Due to the long
transient time of the STD algorithm we extended its simulation up to 8M
time steps to confirm its stability. We present results for the STD, CD and
CDT algorithms. We do not consider the ST algorithm any further because
it is not stable and easily jams, even for a very low posting rate R.

In figure 1.1 we show the load time series, which is defined as the number
of packets that are in the network at time step t. The figure presents results
for the final 500,000 time steps of the simulations for the STD, CD and
CDT navigation algorithms. All three algorithms are stable, however the
load for CDT algorithm displays larger deviations from the mean value than
the other two algorithms. In table 1.1 we compare the load mean values and
their standard deviations. In the case of STD, CD and CDT algorithms, the
STD has the smallest mean load value. As we might expect from Fig. 1.1,
the standard deviation for CDT algorithm is the highest one. However, all
algorithms compared with the Shortest Path algorithm (SP) display rather
poor performance. This result was expected, because any local algorithm can
only approach the optimal solution given by the Shortest Path algorithm.

The number of packets in the network can be treated as a noise in the
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Figure 1.1: Load in the network for the STD, CD and CDT algorithms.

network. The measure of the power spectrum of this noise is an useful indi-
cator of the type of correlations found in the network and is usually given by

the power law relation

P(f)=af™ (1.5)

where f is the load frequency. The exponent 3 takes typically values
from 1 to 2, where 3 = 1 indicates long-range correlations and 3 = 2 the
short ones. In Fig. 1.2 we show the power spectrums for STD, CD and
CDT algorithms. In all cases, we observe long-range correlations (5 < 2) for
frequencies smaller that 107 and short-range correlations (3 = 2, blue dash
line) above this value. In the inset of Fig. 1.2 we present parts of the power

spectrums for long-range correlations with fitted curves. The exponents are
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Algorithm | Mean load SD
STD 36.58 6.17
CD 41.70 6.71
CcDT 40.33 10.75
SP 0.22 0.47

Table 1.1: The mean load values and their standard deviations for the STD, CD, CDT
and the Shortest Path (SP) algorithms. The values are obtained for the time series shown

in Fig.1.1.

8=106£0.15, 3 =1.12+0.12 and § = 1.47 £ 0.18 for STD, CD and CDT
algorithms, respectively. The change in the exponent of the power spectrum
for f = 1072 is a finite size effect of the network. We can find in Fig. 1.3
that the change in the exponent (3 is observed for f = 1/N, where N is the
size of the network. For a small network N = 100 we find almost flat power
spectrum (white noise) for f < 1072 which is related to a very small network
load. This is due to a very large hub node in this network, which is very
efficient in delivering packets, even for the STD algorithm that minimise the
use of hub nodes.

We measured the distribution of the waiting time AT, the factor we
introduced before to prevent long inactivity times of links. This is a local
property, which describes waiting time of node ¢ for a packet from node j or
more intuitively the directed inactivity time of ¢ — j link. The reciprocal of
AT is used only by STD and CDT algorithms but we measured it also for
CD and SP algorithm for the comparison purposes. The results are shown in
figure 1.4. For short waiting times (A7 < 50) the distributions are flat for
all algorithms. Both STD and SP algorithms have clear power law tails of
their distributions p(AT) = a AT~ with the exponent b = 1.5. However for
STD, power law behaviour starts for AT > 10% and for SP for AT > 10*. In
the case of CDT and CD algorithms the distributions decay faster than STD
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Figure 1.2: The power spectrum of the navigation algorithms for the STD, CD and CDT
algorithms. The inset of the figure shows parts of the distributions for f < 1072 and the
fitted power law curves P(f) = af~? with exponents 8 = 1.06 £0.15, 3 = 1.12+0.12 and
8 =1.4740.18 for STD, CD and CDT algorithms, respectively.

and SP ones due to the C'(i) property. The fastest decay for CDT algorithm
is related with incorporation of C(i) and 1/AT(i) properties which forces
usage of larger number of network links and thus decreases links inactivity
time. For the SP algorithm the waiting times are equally probable in a very
broad range (AT < 10%).

The distribution of packet delivery time (Fig.1.5) is similar for all the al-
gorithms. However the distribution shows that the number of packets deliv-
ered in a short time is different for each algorithm. The packets are delivered

Tp (i)

quickly most frequently for the STD algorithm due to the o) factor, which

promotes the fastest delivery paths. For the CDT algorithm the impact of
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Figure 1.3: The power spectrum of the STD navigation algorithms compared for two
network sizes N = 1000 and N = 100. The two power law curves with exponents 8 = 1

and (6 = 2 indicate the slopes of the power spectrum.

this factor is decreased by the C'(i) property, which tends to equalise the link
loads. Thus, the result for the short delivery times is worse than for the STD
algorithm. Finally, the CD algorithm displays the worst performance among
our three studied algorithms in delivering packets quickly. If we do not con-
sider the sharply decreasing tail, the packets’ delivery time distribution for
the CD algorithm is mostly flat. This is a reflection of the C(i) property,
which tends to distribute packets equally. As we might expect the distribu-
tion shifts to the right for a larger network size that is shown in the inset of
Fig.1.5. This is due to the larger distances between the places of origin and
destination, which make the very long distances more frequent to find.

The next measure we study is the mean delivery time series. This mea-
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Figure 1.4: The distribution of the time interval AT calculated for the STD, CD, CDT
and the Shortest Path algorithms.

sure indicates the overall performance of an algorithm and its stability. It is
calculated as a sum of all packet delivery times since the beginning, divided
by the number of delivered packets. The time series for the mean delivery
times are calculated for 6 million time steps and are shown in Fig. 1.6. The
CD and CDT algorithms reach stable level of the mean delivery time quickly,
but in the case of STD algorithm, the transient time is very long. Thus, for
this algorithm we calculated the standard deviation, which is shown in the
inset of Fig. 1.6. It was obtained for the subsequent time windows, where
each time window contains 80,000 time steps. The inset shows that the stable
state for the STD algorithm is reached after 5 million time steps. We com-
pare the performance of all studied algorithms in the Tab. 1.2. The STD,
CD and CDT algorithms are outperformed by the Shortest Path algorithms
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Figure 1.5: The distribution of packet delivery time for the STD, CD and CDT al-
gorithms. The inset of the figure shows the network size effect in the case of the STD
algorithm. The mean delivery time grows with the network size which results in the shift

of the distribution to the right for a larger network.

significantly. However, this might be expected for any local navigation algo-
rithm and low packets load. In our case it results mainly from the degree
property, which tends to avoid the large nodes.

The overall mean delivery time is considerably lower for the STD algo-
rithm than for the CD and CDT algorithms. However, we might expect that
this algorithm will minimise its mean delivery time due to the Tp(i)/Np(i)
factor. It does not happen mainly because of the inclusion of AT(i) prop-
erty. It prevents jamming and supports learning in the initial part of the
simulation but it also forces the usage of the infrequent links thereafter. We

considered switching it off after a certain number of time steps, however we
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Figure 1.6: The mean delivery time series for the STD, CD and CDT algorithms. All
algorithms reach stable state, however in the case of the STD algorithm the transient time
is very long. The inset of the figure shows the standard deviation calculated for the STD
algorithm mean delivery time series. The algorithm reaches the stable state after 5 million

time steps.

encountered another problematic issue, which is an intrinsic weakness of all
possible algorithms based on the average shortest time property. The prob-
lem lies in a direct link between two hub nodes. The large nodes have a
significant number of the possible destination nodes. Thus, a link between
them has a very low average delivery time, much lower than any other link
directing to a small node. Without the AT'(i) property two large nodes would
send all packets between themselves and update the mean delivery time of
the link only for the packets addressed to the nodes in their closest vicinity.

All other packets would travel endless back and forth leading to the jamming
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of the hubs.
Algorithm | Mean delivery time | SD
STD 295.91 5.69
CD 336.68 1.12
CDT 333.14 1.35
SP 1.83 0.01

Table 1.2: The mean delivery time values and their standard deviations for the STD,
CD, CDT and the Shortest Path (SP) algorithms. The values are obtained from the mean

delivery time series shown in Fig.1.6.

1.5 Conclusions

The aim of this chapter was to investigate the possibility of using the shortest
delivery time property to navigate packets in a complex network. To do
so, we created three local and deterministic navigation algorithms, the ST,
STD and CDT, and we studied their properties such as the load and its
power spectrum, the link inactivity time AT, packets’ delivery time and the
time series of the mean delivery time. We compared the performances of
the algorithms between themselves and with the benchmark Shortest Path
algorithm. Additionally we compared the results with the CD navigation
algorithm, which is a deterministic version of the algorithm studied in [46]
and [47].

We were mainly interested in studying the local navigation algorithms
due to the fact that the transportation networks can be extremely large and
the knowledge of the network structure may not necessairy be available for
each network node. The implementation of the Shortest Path algorithm in
the internet network is possible because of the powerful high speed routers

and the high capacities of the network backbone structure.
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We supposed originally node i, based on the shortest time property Tp(j)/Np(j),
will send packets to its neighbours and update in time the statistics about the
delivery time through each neighbour. As a result node 7 will find local quick-
est on average node j in its vicinity in delivering packets to the destinations.
As we mentioned before, the most significant problem that emerges here is
caused by the direct links between large nodes. The shortest time algorithm
finds these links locally quickest and the hubs send packets back and forth
through such links endlessly, leading to the jamming of the network. Our
first solution to this problem was an introduction of 1/AT property, which
forces use of infrequent links. It occurred however, that this was not enough
to prevent jamming of the network. Our next step based on avoiding large
nodes strategy through implementation of the degree D property, realised in
the STD algorithm. It was natural at this step to compare the results of the
STD algorithm with the performance of the algorithm introduced in [46], the
CD algorithm. This algorithm uses only information about the degrees of
the neighbours of node 7, the shortest time property is not implemented here
and the C'(j) property that counts packets posted down from i to j is only to
make it deterministic. The CDT algorithm is a straightforward combination
of the CD and ST algorithms, very similar to STD algorithm. While for the
CD algorithm the C(j) property is essential to perform, its combination in
the CDT algorithm with 1/AT(j) property results in high volatility of links
usage. Thus, for the CDT algorithm, the AT property studied in Fig. 1.4
decays very fast for the long link inactivity times.

The STD navigation algorithm displays the best performance among our
studied algorithms. The mean delivery time is shortest for it and because
of that the network load is lowest. On the other hand, the transition time

when the STD algorithm reaches the stable state is very long. However,
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in comparison with the simple local navigation algorithm [46, 47|, the STD
algorithm is definitely a step forward.

Finally, the necessary inclusion of 1/AT and D properties has significant
side effects. The learning ability of the shortest time property is considerably
slowed down (long transient time), the mean delivery time does not minimise
in time and its value for the stable state is high. Thus, our goals were not fully
achieved. We believe the shortest time of delivery factor can be successfully
applied, but only if the unwanted behaviour of sending back and forth along

one link is solved.
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Chapter 2

Origin of Scaling on Networks,
Structural Inhomogeneity and
Preference in Dynamical

Behaviour

We examined the fluctuation prop-
erties of packet traffic on scale-free
networks and random graphs using
two different dynamical rules for mov-
ing packets: random diffusion and

a locally navigated diffusive motion

with preferred edges. We found that
preferential behaviour in either the topology or in the dynamics lead to the
scaling of fluctuations of the number of packets passing nodes and the num-
ber of packets flowing along edges, respectively. We show that the absence

of any preference results in the absence of scaling, and when scaling occurs
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it is non-universal with the scaling exponents depending on the acquisition

time window, the network structure and the diffusion rule.
2.1 Introduction

Most real systems exhibit complex dynamical behaviour. An interesting
property of complex systems is that the scaling of fluctuations is found in
rivers, stock markets, computer networks, World Wide Web (WWW) and
electric circuits [79, 83|. This occurs when the average activity < X; > of
the component i of a system is related to the standard deviation (called
dispersion in related works) o; of its time series by power law behaviour
o; ~< X; >" | where the value of the exponent u is between 0.5 and 1.0.
Initial studies [79] found the exponent p takes only two values: 0.5 or 1.0,
which were related to the internal and the external dynamics, respectively.
However, simulations on networks found the value of © to be dependent on
the traffic parameters such as the input rate R, the packet’s life time S, or
the time window Ty y of data acquisition |81, 86]. Similar dependencies
of the acquisition time window are observed in the analysis of the empirical
time-series of stock markets [86, 84] and in the gene expression data, where
the natural time window is determined by the cell-cycle dynamics [35]. The
occurrence of scaling and reasons for its nonuniversality have been the sub-
ject of debate |79, 83, 81, 86, 84|, with conclusions sometimes obscured by
the nature of the empirical data or limitations in the models.

In Chapter 1 four navigation rules for delivering packets in a complex
network have been introduced. All these algorithms were the edge-preferred
navigation rules, where the preference was based on the properties of a node
at the end of the edge, such as the degree and mean delivery time. In this

chapter we are mainly going to use a probabilistic version of the CD algo-
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rithm, called D algorithm, however without any in-depth search. The reason
is that this algorithm is the simplest possible realisation of algorithms intro-
duced in Chapter 1 to observe the scaling of flow fluctuations on links. It
does not involve any additional properties such as the shortest path prop-
erty (see Chapter 1) that might make the outcome results unclear. However,
in some particular cases we show also the results for the most efficient algo-
rithm we introduced in previous Chapter, the STD algorithm, for comparison
purposes.

By simulating the traffic of packets on an uncorrelated scale-free network
with the edge-preferred navigation rules, we show that preferences in either
topology (i.e., for nodes on a scale-free network), or in the dynamics (i.e., for
dynamically preferred edges), is necessary for the occurrence of the scaling.
Furthermore, we have shown that the nonuniversal dependence of the expo-
nent p on the time window appears to be different for nodes and for edges,
and related to waiting time distributions.

In this work we investigate the role of network topology and the role of
navigation rules in the occurrence of scaling. For this purpose we studied in

parallel:
e traffic on a scale-free network and on a random graph;

e random diffusion and a probabilistic edge-preferred local navigation

rule on both networks;

e fluctuating time series recorded at nodes, {h;(t)}, and at edges, {f;;(t)},

of the network within a specified time window Ty ;n.

Therefore we defined two types of the dispersion relations, for the activity of

nodes and for flow along the edges:
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og; ~< hz >H ; O35 ~< fij >H (21)

Our findings in this larger class of network structures and dynamic rules
confirmed the necessity of a preference for the scaling of the fluctuations in
Eq.(2.1). Furthermore, we demonstrated that the variations of the values of
the scaling exponents with the time window, both for nodes and links, are
strictly related to the network topology and to the navigation rules.

In Section 2 we introduced the network structures and navigation rules
and we briefly described the basic traffic properties. Section 3 focused on
the fluctuations of the time series recorded at nodes and at edges from the
simulations with the random diffusion on both network types and similarly,
in Section 4, the results for the edge-preferred navigation on both network

types. The conclusions of our results are given in Section 5.

2.2 Network structures and transport rules

Networks. To investigate the role of network structure on the fluctuating
time series we studied a network with a scale-free connectivity distribution
and a random graph. In both cases the network consisted of N = 1000 nodes
and E = 2N edges (links), with average connectivity per node < k >=
2E/N = 4. We grew the scale-free network with the preferential attachment
described in detail in Ref.[87]. In this model for each new node, m new links
are added to the network. However, with the probability « a link is created
between the new node and one of the older nodes and with probability 1 — «
a new link is created within the network, only between the older nodes. The

—1/(14a)

network with the connectivity k; ~ (i/N) at ith added node emerges,

leading to the degree distribution P(k) ~ k=¥, In our case m = 2, a = 0.5
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and at least one link connects a new coming node with the network, assuring
that there are no disconnected nodes and all destinations are reachable. The
random graph of the same size and number of edges is made by starting from
N nodes from each of which m = 2 links are randomly connected to two
other nodes. Multiple links are not allowed and we also take care to produce
a graph with all nodes connected to the giant cluster. It should be stressed
that both networks are uncorrelated and have low clustering coefficient. Once
the networks are generated, we consider their structure fixed, and given by
the adjacency matrix Cj;.

Nauvigation rules. We simulate the transport of packets on these networks
within the traffic model [62, 42]. The packets are created with a rate R and
each packet is given a destination address where it is eventually delivered
and removed from the network. The packets are moved through the network
in parallel using a local navigation rule (Chapter 1, [62]). Packets queue at
nodes with the FIFO preference rule. Here we use two strictly local rules to
navigate packets towards their specified destinations. These rules are defined
by the probability p;;, which a node i forwards a packet towards one of its
neighbour nodes j:

2 k;

D __
Di; = 57

ki

1

N
> Cik; > Cy
j=1

j=1

where Cj; is the adjacency matrix and k; is the degree of node j and subscripts
RD and D denote random diffusion and degree-dependent D-navigation rule,
respectively. Note in contrast to the algorithms described in Chapter 1,
the D rule in Eq.(2.2) does not imply any in-depth search, i.e., node i does
not know addresses of its neighbours and is unable to send directly any

package addressed to any of them, similar to the random diffusion. However,
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according to the D rule, the edge linked with the less-connected neighbour
node is dynamically preferred. In effect, the central node loses its topological
preference. This is in contrast to the random diffusion, where the number of
visits of a random walker to a node is proportional to the node’s connectivity
[90], i.e., the average number of packets processed by a node i, < h; > is given
by node’s degree k;

< h; >~ k;. (2.3)

Consequently, the average number of packets processed by a node, as shown
in Fig.2.1a, is different in the two dynamic rules. With the edge-preferred
local rule D, described above, we observe the dynamic homogeneity of the
network, i.e., < h; >~ const for large k;.

The < h; > (k;) dependence found for the D navigation rule is very
similar for the STD algorithm. This shows that degree property has the
largest impact on the performance of this algorithm. The much lower level
of < h; > for the STD algorithm than the D one for the same values of k;
results from much better performance of the STD navigation rule, mainly
due to the 1-depth search (see Chapter 1).

In the following we study in detail the fluctuating time series which rep-
resent the time fluctuations of the number of packets processed by nodes,
{hi(t)}, for all i = 1,2--- N nodes in the network and time fluctuations of
the number of packets processed along a link (packet flow), {f;;(¢)}, for all
E links (connected pairs ¢j) in the network. Examples of such time series for

the scale-free network and two diffusion rules are shown in Fig. 2.1b.
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Figure 2.1: (a) The average number of packets processed by a node against node degree
for random diffusion (RD), the D and the STD navigation algorithms (STD introduced
in Chapter 1). The plot for the random diffusion is fitted with a linear function. (b)
Example of time series recorded at a preferred node with random diffusion rule (bottom)
and time series recorded at a preferred edge with the D navigation algorithm for time-

window Ty = 1000 steps.

2.3 Scaling of Fluctuations for random diffu-
sion on networks

In this section we investigate the scaling of noise fluctuations {h;(t)} for the
random diffusion process on two types of underlying structures, the scale-free
network and the random graph, described in the previous section. Fig. 2.2
shows the relation between the dispersion o; and the average noise < h; >,
where each node i is represented as a point. The plots for the scale-free
network and the random graph follow the general scaling relation in Eq.(2.1).
In both cases the scaling exponents p are between the border values 0.5 and

1.0 (indicated by the thin lines).

According to Eq.(2.3) the average noise < h; > is related to node’s degree
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Figure 2.2: Random diffusion: Dispersion o; against average < h; > of the time series
recorded at nodes of the network within a fixed time window Ty ;nx = 4000 on (a) a
scale-free network and (b) a random graph. The exact value of the scaling exponent «

was obtained using software Origin, which applies Levenberg-Marquardt algorithm [100].

k;. This property results in clearly separated groups of points, where each
group contains only nodes with the same degree. The value of the scaling
exponent ;4 may depend on the traffic conditions|81| such as input rate R
or the closeness to jamming [82], and on the acquisition time window Ty 1y
[81, 83, 84|. In our simulations we use input rates R much below the jamming
limit R.|62]. We further investigate the dependence on the time window
w(Twin) for both our network structures. The results are presented in Fig.
2.3.

In both cases the dependence between scaling exponent p and the length
of the observation time window 7y is monotonical and p grows with Ty 7.
One of the explanations given in [79] states that the fluctuations of node i
activity have two sources, external and internal ones. When the external
fluctuations are absent the observed scaling exponent p is is always 0.5. But

once the external fluctuations are present we observe continuous change of
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Figure 2.3: Random diffusion: Dependence of the scaling exponent p for the node
activity fluctuations o; ~< h; >* on the width of the time window Ty ;n on a scale-free

network (a) and on a random graph (b).

The same technique can be applied to analyse the fluctuations of flow
along the links. In this case we measure the flow, f;;, which is defined as the
number of packets posted from i — 7 and from j — ¢ within a given time
window Ty n. The relation between the flow dispersion 0;; and average flow
< fi; > is plotted in Fig. 2.4a for the scale-free network and the random
graph. In these plots each point represents one edge of the network. In
this case, however, no scaling was found for either network structure. This
result can be easily understood in view of the Eq.(2.3) if we consider a link
as an element with two inputs/outputs, similar to a node with degree k = 2.
Indeed, all network links form a single group (cf. Fig. 2.4a,b). Moreover, the
group of all links overlaps with the group of nodes with the degree 2,

< fij >< h; k=2, (24)
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Figure 2.4: Random diffusion: (a) Dispersion o;; against average flow < f;; > of the time
series recorded at links of the network within a fixed time window Ty 7y = 4000 on a scale-
free network and a random graph. (b) The comparison between the fluctuations of the node
activity and flow along the links on the random graph for the random diffusion process.
Several groups of nodes are distinguishable, according to their connectivity, whereas all

links fall into a single group.

as shown in Fig. 2.4b in the case of a random graph. In this figure, groups
of nodes with increasing connectivity are systematically shifted to the right,

in agreement with Eq.(2.3).

The close relationship between the node’s connectivity and the differentia-
tion between node groups in the plots, as in Fig. 2.3 and 2.4b, is characteristic
for the random diffusion processes. In short, the role that a node plays in the
random diffusion is entirely determined by the number of links attached to
it. This can be seen even in a simple structure like the regular square lattice
with open boundaries shown in Fig. 2.5, where groups of boundary nodes are
differentiated from the interior nodes.

We can now conclude that for random diffusion, the scaling of fluctuations

in Eq.(2.1) occurs only in systems where the diversification of a property (like

38



ORIGIN OF FLUCTUATIONS

Figure 2.5: Random diffusion on a regular square lattice with 32 x 32 nodes: Dispersion
0; against average node activity < h; >. Four corner nodes (left), the groups of boundary

nodes (middle) and the interior nodes (right) are distinguishable.

node degree) is present. The degree distribution for scale-free network and
even the random graph provides enough diversification in degree values to
observe the scaling in node activity fluctuations. In the case of flow fluctu-
ations, however, we do not find any scaling property because in the random
diffusion every link transfers almost the same number of packets. In the next
section we will show that, although the links on both scale-free and random
graph are topologically equally important, the dynamical preference within
the navigated diffusion rule (D) will induce the flow differentiation that is

necessary for the scaling to appear.

2.4 Scaling of Fluctuations for edge-preferred
navigation

We adopt the local navigation rule with the edge-preferred diffusion, defined
by in the Eq.(2.2) with the probability pg. As discussed in Section 2, with
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this rule, the packets are preferably posted along the edges pointing towards
the neighbour node with smaller degree. The rule is more effective at nodes
close to the hub in the scale-free network. Precisely, the packets are avoid-
ing the large-degree nodes, whereas the nodes at the graph boundary and in
the random graph, the majority of nodes have similar degree and thus small
differences between edges connecting them could only weakly affect the dy-
namics. Note that we study here the diffusion rule D to demonstrate the
origin of scaling at network edges. We do not discuss here the potential ef-

fects of the rule on the traffic efficiency (see refs. [72, 42, 71, 62| and Chapter

1).
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Figure 2.6: Edge-preferred D-navigation on scale-free network: Dispersion o;; of flow
along the edges against average flow < f;; > for the time window Tw;ny = 10 (a) and

Twin = 5000 (b).

Fig.2.6 and Fig.2.7 show the relation between dispersion o;; and the av-
eraged flow < f;; > for the scale-free network and the random graph, re-
spectively. In the case of the scale-free network, as a new feature of the

navigated diffusion we find the scaling in the flow fluctuations, seen in Fig.
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Figure 2.7: Edge-preferred D-navigation on random graph: Dispersion o;; of flow along
edges against average flow < f;; > for time window Ty =5 (a) and Twry = 5000 (b).

Thin lines indicate slopes =1 and p = 1/2.

2.6. In particular, we find two scaling regimes with exponent p either 0.5
or 1.0. Further study has shown that the occurrence of two scaling regimes
is rather robust to the variations in the time window Ty ;n. However, we
find that the population of points, representing different links of the graph,
migrate from the upper part of the scatter plot with slope © = 1 to the
lower part, where the slope ;1 = 1/2 was found, when the time window is
decreased. For the limiting case Ty ;ny = 1 almost all points fit to the curve
with exponent p equal to 0.5. Hence, a continuous variation of pu(Tyy) is
absent, in contrast to the scaling of the node activity.

On the contrary, the two scaling regimes for o;;(< fi; >) dependency
are not present in the random graph (Fig. 2.7), suggesting that this feature
is caused by the structural properties of the scale free network. Indeed, we
found that the p = 0.5 regime is occupied by the links connected to large

nodes, in particular the links between hubs. The D navigation algorithm
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strongly reduces the usage of such links, so that they are visited very rarely
even for very large time windows Ty ;n. Because of that, the transport of
packets through such links is almost uncorrelated with the dynamics in the
other parts of the network and resembles rather a random deposition process,
for which o ~< f >%5 [79]. This explains the persistence of u = 0.5 regime
for large Twn.

In the case of the second regime, only ¢ = 1.0 was found. However,
we show for the random graph that p for the fluctuations of flow on edges
actually scales, but only for very small time windows Ty (Fig. 2.10b). We
were unable to find this behaviour for small Ty ;x5 on the scale free network
because while we decrease Ty ;n the points migrate to the p = 0.5 regime.
Hence, the span of the p > 0.5 part is so small that the real value of p
exponent is highly uncertain.

For the edge-preferred navigation the plots of node activity on the scale-
free graph are also shown in Fig. 2.8. We find the qualitatively similar be-
haviour as in the case of random diffusion, namely, the nonuniversal scaling
with the exponent continuously varying with the time window. However, the
numerical values of the exponents are different for the two diffusion rules.

The dependence p(Twy) is plotted in Fig. 2.10a.

For the edge-preferred navigation on the random graph the scatter plots
are shown in Figs.2.7 and 2.9. For the fluctuations of flow on edges we find
a qualitatively similar behaviour as for the fluctuations of node activity. In
particular, the scaling of Eq.(2.1) occurs with a continuously varying expo-
nent when the time window is changed. The numerical values, however, are
different. For the random graph we found a single scaling regime for the

fluctuations of flow on edges that is related to the graph structure. There
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Figure 2.8: Edge-preferred D-navigation on scale-free network: Dispersion o; of node

activity against average activity < h; > for time window Twny = 8 (a) and Ty ;n = 1000

(b).

are no hubs which might significantly reduce flow on links pointing to them
and the flow on links is highly homogenised compared to the flow on the scale
free network. As shown in Fig.2.10b for the flow fluctuations, the exponent
drops below the value ¢ = 1 only for very small time windows. In contrast,
in the case of node activity, see Fig. 2.10a, lower curve, the characteristic
crossover region between p ~ 0.5 and p ~ 0.8 was found. Note that for the
node activity fluctuations the range of Ty where exponent p scales is much
larger, but the maximum value of p found is still lower than 1.0 and in this
particular case it is around 0.8. We ran our simulations on different random
graphs (constant N=1000) and fi,,,, depends on a graph ensemble used in
the simulation, however, for all cases fi,,., Was always smaller than 1.0. Note
also that different groups of nodes are also distinguishable in the navigated
diffusion on the random graph, Fig. 2.9, whereas such groups cannot be iden-

tified in the case of edges, Fig. 2.7. In contrast to the random diffusion, the
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Figure 2.9: Edge-preferred D-navigation on random graph: Dispersion o; of node activity
against average activity < h; > for time window Ty ny = 8 (a) and Twiny = 1000 (b).

Thin lines indicate slopes =1 and p = 1/2.

edge-preferred navigation induces the dynamical difference between edges,
that results in the occurrence of scaling in the plots both for scale-free and
for random graph, Figs. 2.6 and 2.7. The study of the node activity fluctu-
ations for the D navigation algorithm shown in Fig.2.8 and Fig.2.9 reveals
different dependencies of the scaling exponent on the time window, compared
to the random diffusion on the same graphs, but also it shows the differences

between the traffic on a random graph and on a scale-free network.

The results obtained for the STD algorithm (Figs. 2.11 and 2.12) are
similar to those found for the D navigation rule. The two part character of
the 0;;(< fi; >) dependency is also found here, however the transition from
i = 0.5 to p = 1.0 region is more complicated (Fig. 2.11a) and disturbed
by the additional navigation rules implemented into the STD algorithm than
the simple D rule. Due to the same reason, the separation of the groups of

nodes with the same degree found for the node fluctuations on the random
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Figure 2.10: Edge-preferred diffusion: Dependence of the scaling exponent u on the
width of the time window Ty n for: (a) fluctuations of the node activity for the scale-free
network (filled squares) and the random graph (empty squares), and (b) fluctuation of

flow on edges on the random graph.

graph (Fig. 2.9) is not visible in the STD algorithm case (Fig. 2.12b).

2.5 Waiting times of Nodes and Edges

Another type of dynamic measure collected at individual nodes and edges
that depends on the dynamic behaviour of the whole network is the statis-
tics of waiting times AT, defined as time intervals between the successive
events at a given node or an edge. In collective dynamical systems such as
earthquakes [91, 92, 93|, critical sandpiles |94, 95|, and stock market dynam-
ics [96, 97|, a broad distribution of waiting times (sometimes called return
times or recurrent times) is always found, with power-law tails suggesting the
occurrence of long-range dynamic correlations between the events. In this

section we address the question of waiting times to nodes and to edges in
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Figure 2.11: Edge-preferred STD-navigation: Dispersion o;; of flow along the edges
against average flow < f;; > for the time window Ty n = 5000 on scale-free network (a)

and random graph (b).

order to investigate further the nature of collective dynamic behaviour in our
model of diffusion of packets on a scale-free network for the random diffusion
and the introduced earlier D navigation rule. Note that the waiting time we
study is the time taken for a node (or edge) to receive its next packet, and
not the time taken for the same packet to return to that node (or edge).
Waiting times of Nodes. In the case of random diffusion (random walks)
on networks the waiting time distribution has been studied in other parts of
the theoretical physics literature. In particular, the waiting time of the first
return to the origin of a random walker on sparse random graphs, with nodes
representing states of a system, was considered by Bray and Rodgers [98] as
a model of non-exponential relaxation in spin glasses and other non-ergodic
systems. With the help of some heuristic arguments, they arrived at the
conclusion that on a random graph the long-time behaviour in the diffusion

in the phase space is dominated by the parts of the network with linear chains

46



ORIGIN OF FLUCTUATIONS

T T T T T B 7 T
STD, T,,,=1000 STD, T,,,=1000

1=1.02 £0.01
1=0.991 £0.006 7 >

0.14

0.01 0.1 1 10 100 3 4 5 6 7 8 9 10

Figure 2.12: Edge-preferred STD-navigation: Dispersion o; of node activity against
average activity < h; > for time window Tw iy = 1000 on scale-free network (a) and

random graph (b).

(no loops), leading to the expression P(AT) ~ exp(—A(k)(AT)Y?), where k
is the average connectivity of the random graph and A(k) is known.

These arguments can be generalised to introduce a power-law distribution
of connectivities. If the distribution of £ behaves like ~ k=7, and using
the result in [98] (under the assumption that the system is ramified) that
for small k, P(AT) ~ kexp(—2AT/k), then integrating over k leads to
P(AT) ~ (AT)""™ with

TA=T—2. (2.5)
Thus, the inhomogeneous connectivity creates a power-law distribution in
the waiting times distribution for RD. Recently a more rigorous treatment
of random walks on scale-free networks was carried out by Noh and Rieger
[90], that yielded identical results. The results of our simulations for different

diffusion processes are shown in Fig. 2.13.

The waiting time distributions in different cases studied here seem to have
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Figure 2.13: The nodes’ waiting time distribution on the scale-free network for non-
interacting and interacting walks with (a) the random diffusion algorithm and (b) for
interacting walks with different navigation algorithms. For the random diffusion process
(the top line) the slope 7a & 0.5 corresponds to theoretical prediction (Eq. 2.5).The
character of the distribution of the D navigation rule is very similar to the random diffusion
process and the slopes of two other diffusion processes are altered by the 1-depth search

rule.

a power-law behaviour before a cut-off. (The cut-off can be related to the
network size in the case of single random walker.) Note also a characteristic
splitting at small AT with an inherent preference for even waiting times,
caused by the lack of clustering and the low density of walkers. For instance,
in a chain structure with a single walker only even nodes’ waiting times are
possible (Fig. 2.14). The odd waiting times for nodes and even for links can
be found only in a structure with loops or a diffusion process with more than
one walker. Thus, the higher clustering or traffic, the smaller split in the

waiting time distributions.

In the case of non-interacting random walks, i.e., random diffusion with-

out queuing, the results agree, within error bars, with the above theoretical
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Figure 2.14: The nodes’ and edges’ waiting times in a chain structure with a single
walker. Only even waiting times At for nodes and odd for links are possible here. The
walker travels from node 1 to 4 and back starting at time ¢ = 0. Black numbers are related

with nodes and red with links.

prediction. We have the exponent 7o = 0.56 +0.03, whereas the distribution
of the network’s connectivity has a power-law exponent 7 ~ 2.5 (See sec.
2.2).

Increasing the traffic density reduces the value of the cut-off, but the slope
remains practically unchanged. However, when the navigated diffusion is
considered, both the slope and the cut-off of the distribution are changed. In
Fig. 2.13b we show the results for the random diffusion and the D navigation
algorithm, both with 0 and 1 depth search at low packet density (R = 0.001).

Waiting time of Edges. The situation is entirely different from the point
of view of edges on the same network. The results are shown in Fig. 2.15.
We find a pronounced difference between the random and navigated diffusion
in the tails of the distributions. In both cases, however, a unique functional
form can be found. For larger AT the distributions of the edges waiting
times can be fitted with a g—exponential form, which is often related to
non-ergodic behaviour in dynamical systems [99] :

(2.6)

AT 1/(1—q)
an)

P(AT) =B (1 (1)

In the case of random diffusion, shown in Fig.2.15a, the distribution is very
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close to the exponential form, which corresponds to the ¢ — 1 limit of Eq.
(2.6). In fact, we find ¢ = 1.0940.05 in the case of random diffusion, whereas

in the case of edge-preferred D navigation ¢ = 1.34 £ 0.02.
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Figure 2.15: Edges waiting time distribution for (a) the random diffusion and (b) D-
navigated diffusion algorithms. The fit lines according to Eq. (2.6), as explained in the

text.

2.6 Conclusion

Using the model of traffic on networks with packet creation and delivery, local
navigation and queuing at nodes, we analysed the fluctuations of time series
of node activities and traffic flow along the links. Two types of networks—
uncorrelated scale-free network and a random graph and two local diffusion
rules—random diffusion and edge-preferred navigation are applied to study
the occurrence and universality of scaling defined by Eq.(2.1). Our findings,
summarised in sections 2.3 and 2.4, confirm that for the occurrence of the

power-law behaviour in the scatter plots in Figs. 2.2, 2.4, 2.6, 2.7, 2.8, 2.9 a
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certain preferential behaviour in the diffusion is necessary. Such preference
is either induced by the topology, i.e., the dispersion of node connectivity
which directly influences the random diffusion process, or by local alteration
in the diffusion rules, in our case the edge-preferred diffusion is related to
the degree of the node down the link. The results of scaling of fluctuations
obtained for the random graph shows that even small differences in nodes
connectivity lead to the occurrence of scaling.

Moreover, for the random diffusion process and for the fluctuations of
node activity, the span of the scaling region in the plots is directly related to
the span of node connectivity resulting from < h; >~ k; property. Knowing
the number of points belonging to each group of points shown in Fig. 2.2 we
can reconstruct the degree distribution of the underlying structure. These
results suggest that the scatter plots can be used for a network structure
recognition for the random diffusion process taking place on the network,
however without the insight in the exact topology.

We demonstrated systematic dependence of the scaling exponents with
the width of the acquisition time window. Generally, the exponents increase
with larger time windows, however, the functional dependencies pu(Twy) are
related to the network and to the diffusion rule. Even for the same type of the
navigation rule the scaling properties of fluctuations for a scale-free network
or a random graph may look very different. For instance, we show that the
edge-preferred navigation rule induces the scaling of flow fluctuations. How-
ever, the character of these fluctuations depends on the underlying structure,
i.e., two scaling regimes for the scale-free network and one for the random
graph.

The o(< f >) dependence with two scaling regimes can be viewed as an

indicator that there are two types of processes taking place on a network. In
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our case the D navigation rule forces packets to avoid links leading to hub
nodes. Thus, the fluctuations of flow on these links were almost uncorrelated
with the flow of packets in the other parts of the network. As a result we
found persistent © = 0.5 regime even for very long time windows Ty n.
The existence of two p regimes were also found for fluctuations of nodes’
activity in [62]. A very efficient 2-depth search navigation algorithm used
there brought about that some nodes were receiving packets only when they
were the destinations of those packets. Hence, the dynamic in such nodes is
reduced to the random deposition, where the average number of visits grows

linearly with time < h >~ t, and the o increases as o ~ t%°

, providing
1 = 0.5. The second regime with p > 0.5 is related with many interplaying
factors such as the main dynamic process, packets input rate R, time window
of observation Ty y or the underlying structure [81]. Moreover, we found the
number of links belonging to p# = 0.5 regime changes with Ty,;x. This implies
that the traffic on given parts of a network can be viewed as uncorrelated
with other parts of the network only for given observation time window Ty,
which can be important in particular measurements.

We also presented arguments that in structurally inhomogeneous net-
works, such as the scale-free structures, for the time series measured at net-
work edges (i.e., in the case of edge-preferred navigation) the scaling features
are different from those obtained for the node activity fluctuations. There-
fore, it is important to make the distinction in the analysis of the empirical
data of the traffic on the Internet, where usually the flow along an edge
is monitored. We would like to stress that for the purposes of this work
the network structures that we studied have low clustering (vanishing in the
N — oo limit). In more realistic packet traffic models both in-depth search

algorithms and correlated network structures may lead to additional features
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in the scaling of the noise and flow time series |62, 82|.
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Chapter 3

Growing Trees in Internet

Discussions

We present an empirical study
of the networks created by users within
internet news groups and forums,
and show that they organise them-
selves into scale-free trees. The struc-
ture of these trees depends on the
topic under discussion; specialist top-

ics have trees with a short shallow

structure, whereas more universal
topics are discussed widely and have a deeper tree structure. For news groups
we find that the distribution of the time intervals between when a message
is posted and when it receives a response exhibits a composite power-law
behaviour. From our statistics we can see if the news group or forum is
free or is overseen by a moderator. The correlation function of activity, the

number of messages posted in a given time, shows long range correlations
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connected with the users’ daily routines. The distribution of distances be-
tween each message and its root is exponential for most news groups and
power-law for the forums. For both formats we find that the relation be-
tween the supremacy (the total number of nodes that are under the node
i, including node i) and the degree is linear s(k) ~ k, in contrast to the

analytical relation for Barabasi-Albert network.
3.1 Introduction

One of the most important features of the internet is the opportunity it offers
people to exchange opinions with one another. Now anyone can participate
in a discussion or debate on-line and the global reach of the internet allows a
single person’s opinion to be shared with people from all over the world. Thus
each of us can now be a source of information, not only for our relatives and
friends, but for the whole world. We can offer our opinion to a very wide range
of people and receive feedback on this opinion. Thus internet discussions are
potentially important in helping to shape people’s opinions and behaviour
and in the spreading of ideas and information. In this way the internet is
a medium which is very different to traditional media such as newspapers,
radio and television. The use of the internet has led to an explosion of interest
within other academic disciplines in phenomena such as social contagion,
viral marketing and stealth marketing. Despite this importance, scientific
research into internet discussions has been rather limited.

There have only been a few scientific papers examining internet discussion
networks. Makowiec and Bykowska [27] considered the three most popular
blog web pages in Poland. They provided an analysis of the network struc-
ture of blogs and gave a sociological explanation of the results. In related

work, Zhongbao and Changshui [28| examined the network properties of bul-
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letin board systems (BBS), which are similar to the news groups examined
in this paper. They [28] studied a network in which edges were between
users, and were able to identify distinct communities within the network
of users. BBS and users’ networks were also studied by Goh et al. [29],
who found intercommunities and intracommunities with different topolog-
ical properties. The intracommunity was a homogenous system, in which
members all knew each other, while intercommunities were characterised by
a power-law degree distribution. Capocci et al. |30] investigated the largest
internet encyclopedia, Wikipedia. A bow-tie-like, scale-free structure with
almost neutral mixing was found. Only small and medium nodes exhibited
linear preferential attachment. Valverde and Solé [31] focused on technology
development communities, such as open source communities, by looking at
e-mail exchanges. Non-local growth rules based on a betweenness centrality
model were examined and compared with the empirical data. The temporal
properties of e-mail exchange groups were studied by Barabasi [50].

Internet forums and news groups are similar to BBS networks, but in
contrast to previous work [27, 28, 29, 31|, here we place an edge between
messages and focus on the network of ideas or opinions posted by users,
rather than networks between the users themselves. In this way we obtain
tree-like networks with a central topic, the root node, and the surrounding
threads.

In the last few years there has been much work characterising the topology
of real networks |2, 6, 8, 13, 12, 23, 5|. This work has shown that our
world is more complex than we had originally imagined and has led to the
development of the idea of a complex network. The most significant result
arising from these studies is that a power-law degree distribution appears to

be very common in real complex networks.
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In this chapter we examine empirically a variety of basic structural and
temporal properties of the internet discussion networks that are created by
internet users. The chapter is organised as follows: in the next section we
introduce the different types of internet discussions, and describe the scope
of our empirical study; in section 3.3 we describe our results, both topological

and temporal; before summarising our findings in the final section.

3.2 Types of internet discussions

Almost all internet discussions take place through the medium of forums.
Most internet information portals, on subjects such as politics, accidents,
sport, etc..., include forums as part of their website. New topics are in-
troduced to these forums on a daily basis. Some portals give people fixed
forums to discuss common topics such as love, work and sport. Users cannot
put un-moderated messages into these forums; most forums have a person or
computer program - a moderator - that acts as a referee for the comments
posted, and rejects posts that are deemed unsuitable.

Another type of internet discussion are news groups. They contain an
enormous number of topics to be discussed. Originally, the news groups
were accessed by a computer program - a client, usually built into an e-mail
program such as Microsoft Outlook or Mozilla Firefox. Nowadays access
is much simpler and it is provided through a web browser, e.g. Google
news groups. Usually users of the news groups visit them regularly, take
part in a few discussions and from time to time open their own topic. The
administrator of a news group’s server can block access to the server to people
that break its rules.

A third popular medium of internet discussion is a blog. There are a
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number of websites where people can establish their own blog, which usually
takes the form of a diary of their day-to-day life. Other people can discuss the
blogs and express their opinions about them to other readers or the owners
of the blogs themselves. The bloggers are usually able to place links to other
blogs, which are either on a topic related to their blogs or of general interest

to them, on their website. These links create a network of blog owners [27].

3.2.1 Typical construction of internet discussions

For a news group and an internet forum the topic of the discussion is a root
node. The threads that initiate new discussions are connected directly to
the root node. When people contribute to a forum they can either write a
commentary on a previous opinion or start a new thread. Every message is
indexed by the name of the author, its place in the hierarchy and its time
of posting. In this paper we treat each message as a node. We create a link
between a message and a responding or answering message. This procedure
creates a tree-like structure. Fig. 3.1 shows a typical structure of a small
internet discussion.

The organisation of the threads on the main page of the online discussion
web page varies depending of the provider of the service. Some of the internet
discussions advertise on the main page the threads that received the latest
messages. This allow new users to quickly join and comment on the most
recent opinions connected to even old topics. Other, simply display the list of
threads sorted according to their time of creation, similar to the one shown
in Fig. 3.1. We study here the examples of the former (forums) and the
latter ones (news groups).

We have investigated the network structure and temporal properties of 3

forums and 15 news groups, whose data was collected from two sources:
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Figure 3.1: (a) The typical structure of an internet discussion. The black lines show

links between messages and the responses to them. (b) The tree-like structure of the small

news group Physics, N = 220 nodes.

e The internet forum on the web site www.onet.pl

e The news groups on the server news.student.pw.edu.pl

In the case of news

is limited by the fact

groups the people who can contribute to a discussion

that only computers inside the university’s network

are allowed to login. Because of this only students and academic staff have

access to these discussions and there are around 30,000 of them each year.

We did not measure the number of active users of these news groups, but we

suppose that there are less than 5, 000.

The internet forum on www.onet.pl is part of the largest Polish news

portal, which is used by around 50% of all Polish internet users.

Almost all internet discussions that we have collected, were created at

different times. However for internet forums the period of collected data is

between 2001 — 2005 and for news groups the period is 2002 — 2005.
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3.3 Empirical results

We studied empirically a number of properties of real internet discussions.
Our networks are trees and consist of messages, not users, so we are unable to
study properties such as the clustering coefficient or to define communities.
Similarly it would be fruitless to study node mixing or the betweenness cen-
trality, which were studied in [27, 28, 29, 31]. Thus, the structural properties
we examine are the degree distribution, the average and maximal distance,
the distribution of distances between messages and their root nodes, and the
average supremacy [54| of each node as a function of degree. The temporal
properties we examine are the distribution of time between a message be-
ing posted and there being a response to it, the activity time series and its
correlation function. With the temporal properties we distinguish between
network time; time in which one message is posted in one time step and
message ¢ is added at time 7, and real time; the actual time that messages
were posted in our experimental data. Where appropriate we present re-
sults for both an internet forum and a news group, for the largest and most
representative examples.

All fitting procedures were performed in Origin scientific analysis soft-
ware, which uses Levenberg-Marquardt non-linear fitting curve method [100].
In most real datasets the distributions of given properties do not hold sin-
gle behaviour in whole fitting range. For instance, the degree distributions
shown in Fig. 3.3 display power law character starting from k = 2 and have
noisy tails, due to the system’s finite sizes. Thus, to obtain most reliable
results we follow a simple idea to maximise the fitting range and minimise
the error bars of the fitted curves. In particular, the exponents of the de-
gree distributions were found for k,,;, for which the error bars were smallest,

where k,,;, is the minimum value of k£ for which we perform calculations.
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The dependence of the error bars on the k,,;, found for 3.3 is shown in Fig.
3.2a. Note, that a similar approach would not be possible for the maximum
likelihood estimator (MLE) method [58, 59] (Fig. 3.2b), due to a strong error

dependence on the number of samples n, o = a—\/}} + O(1/n).
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Figure 3.2: The dependence of the error bars on k,,;, for Levenberg-Marquardt method
(a) and the maximum likelihood estimator (MLE) (b).

3.3.1 Degree distribution

All the networks we examined were found to have power law degree distri-

butions

p(k) ~ k7. (3.1)

Table 3.1 lists the topics of these discussions, their size N, the exponent

v of their power law degree distribution, the maximal distance R,,,, from
the root node, the ratio of the number of threads n; over the total number
of messages N and finally the average distance of all nodes in the network

from the root node < r >.
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The internet forums generally have a lower exponent v than the news
groups. In particular, the exponents for forums are in the range 3.28 < v <
3.34 and for news groups 4.36 < v < 5.62.

Fig. 3.3 shows a typical degree distribution for the forums and the news
groups. The networks have few nodes with high degree, even for the larger
networks, with only 7 networks having a maximum degree k., > 30. For
the news groups the largest degree is around 20.

The power law character of a distribution that spans over less that two
decades is usually unclear and sometimes questionable. However, in the case
of our datasets considering high values of obtained v exponents the sizes of
recorded discussions should be in the hundreds of thousands or even millions
of nodes to see scaling region spanning over two and more decades. More-
over, the preference in subjects that users discuss is an important preferential
attachment mechanism, which usually leads to a power law distribution of
connectivity. Finally, we studied 18 representations of the internet discus-
sions, where number of nodes varied from 11 to 52 thousands. This enabled
us to obtain robust degree distributions, for which character could be con-
firmed in a number of cases.

In all networks we examined, the number of nodes with degree 1 was
similar to the number of nodes with degree 2, that is p(1) =~ p(2). This seems
to be because people like to argue and preferentially create chain structures
in threads, and also because people also sometimes respond to their own
messages. This behaviour creates more nodes with degrees k = 2, k = 3,

etc... and shifts the degree distribution towards higher values of k.
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Figure 3.3: The degree distribution for the internet forum Poland in the EU (a) and the
news group Humor (b). The exponents 7 are v = 3.37 = 0.01 for forum Poland in the EU
(a) and vy = 4.43 +0.03 for news group Humor (b). The inset figures show the cumulative

degree distributions.

3.3.2 Time interval distribution 7'(7)

Internet users visit news portals to update themselves on the recent news,
and some of them will discuss this news in a forum. In most cases they
will only discuss the very latest news, and only very interesting topics will
be discussed by users over a long period of time. The same rule applies for
messages, only interesting or very controversial opinions are discussed for
a long time period. This is why messages age very quickly and are soon
forgotten. The influence of aging is the reason for the large exponent v in
these networks and for the lack of nodes with large degree.

There have been a number of attempts to model the effect of aging, see
for instance, [16, 51, 52, 53]. The fundamental quantity in these models is
m(k,t,7), the rate of attaching a new node to a node of degree k and age

7 at time ¢. All these models assume that 7(k,¢,7) a separable function of
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the degree and the age of the node. In particular, Dorogovtsev and Mendes
[51, 52| modelled this aging by assuming that incoming nodes are linked to
a node with degree k and age 7 with rate 7(k,t,7) = A(7)k, where A(7) is

some aging function, given by

A(r) ~ 175 (3.2)

They found that the degree distribution of this network remained power
law, p(k) ~ k=7 in the large time limit but with an exponent 7 that strongly
depends on the exponent 3 in the aging function [51].

Unfortunately, A(7) is not easily measured empirically, as attempts to
verify that some real networks were grown by preferential attachment without
aging clearly illustrate [55]. Instead, we have measured a related quantity,
[56], the time interval distribution. This is the distribution of times between
a message and a response, for all the internet discussions. More precisely,
where a message j, posted at real time ¢;, receives a response ¢ at real time
ti, we have studied both the distribution of the real time interval 7 = ¢; —t;,
T'(7) and the distribution of network time interval i — j. The distribution

T'(7) is related to the degree distribution at time ¢, p(k,t) via

T(r) = /w(k,t,T)p(k,t)dk:dt (3.3)

where w(k, t,7) is the probability that a node of degree k at time ¢ waits
another 7 time steps before gaining an edge. This latter function contains,
implicitly, two temporal processes, the natural waiting time for a new edge
which exists in all growing network models, plus the effect of the aging iden-
tified and modelled in [16, 51, 52, 53]|. However, for 1 << 7 << t, we expect
that the effect of the former will be exponential in 7 on T'(7) whereas if there

is appreciable aging, this will manifest itself as a fat tail in 7'(7) for large 7.

64



GROWING TREES IN INTERNET DISCUSSIONS

In fact our results for real time show that in an internet news group
messages age and have a power law T'(7). In Fig. 3.4 we show the time

interval distribution

Figure 3.4: The time interval distribution in real time for (a) the forum Poland in the EU
and (b) the news group Humor. The exponent 6 = 1.07 £ 0.05 for (a) and § = 1.26 +0.04

for (b). The real time unit is 1 minute.

The positive slope of the curve in Fig. 3.4a for small time intervals results
from the presence of the moderator in the forum www.onet.pl. The moderator
has to check each message and this takes some time. Fig. 3.4b shows that
Eq. (3.4) gives a good approximation to the empirical measurements.

In Fig. 3.5 we show the time interval distribution in network time and
this merits two observations. Firstly, there is a change in the time interval
distribution. For all news groups (but not for the forums) we obtained time
interval distributions with two regimes of aging. For each news group there is

a characteristic, cross-over time interval ¢. after which messages start aging
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T(i-)
T(i-))

Figure 3.5: The time interval distribution in network time for (a) the forum Poland
in the EU and (b) the news group Humor. The shape of Fig. (a) follows Eq. (3.4)
with 6 = 1.32 £0.03. Fig. (b) is described by composite power laws with exponents
0 =1.06+£0.01 and 6 = 2.19 £ 0.07.

faster. This characteristic time is different for each network, however in
almost all cases 20 < t. < 60.

Secondly, the shape of time interval distribution for internet forum is not
affected by a moderator and exactly follows Eq. (3.4). This means that for
small time intervals messages age slower and for large intervals faster but the
change is smooth and without the critical point observed in news groups.

Two regimes of scaling found for news groups are probably related with
the organisation of users’ discussions. Usually, users discuss one thread dur-
ing a single session (an evening for instance) and they rarely come back to
the previous subjects. Thus, the first part of the network time interval dis-
tribution is related with the time intervals within sessions, when threads are
mainly discussed. The second part of the distribution is built by time in-
tervals of responses that came much later, posted by late users, somebody

who wanted to add something at the end or by users posted off-peak. The
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second mechanism that can be responsible for two regimes of scaling is the
organisation of the threads in a browser. In the case of the news groups, new
threads occur on the top of the main page screen, pushing down older ones.
This establishes a list of threads sorted according to their time of creation.
Hence, the new coming users that see a list of recently started threads are
more likely to join one of the recently originated discussions.

For forums the mechanism of announcing is entirely different, because
there the thread that received the latest message is placed on the top of the
main page and the older ones are pushed down. Thus, the new coming users
see on the top recently active threads that were possibly originated a long
time ago. Hence, a user is more likely to join an older discussion and respond
to an old message. These two different mechanisms of announcement of re-
cently active threads could be the reason why there are two regimes of scaling
for the news groups and single one for forums. These two mechanisms reflect
also two different characters and approaches to the internet discussions.

Finally, the cross-over time t. can be viewed as a value that separates
time intervals related with users’ responses posted within sessions from the
time intervals that come from messages posted late or off-peak.

The power law behaviour of the time interval distribution was studied
by Barabési [50] for an e-mail exchange group. By simulating the types of
activity of internet users, it was shown that only the burst activity results in
power law distributions, A(7) ~ 77°, where § = 1. Fig. 3.5b shows that for
small network time intervals the index d is close to 1. For all news groups
d € (1.0,1.5). Because of the moderator the results for internet forums are
disturbed, however the value of § = 1.32 is still close to 1 (Fig. 3.5a).

We also studied the relationship between the network time interval and

the real time interval. Of course these are related by the fact that the activity
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n(t;), which is the number of messages that were posted in time ¢ satisfying

t; < t < ti11, can be approximated by n(t;) ~ t?:{, = AA]\f_i_j, where AM;;
i lj ij

stands for the number of messages posted within the time interval A¢;;. Our
empirical results show that, as would be expected, on average the relation is

linear with

n(t)(ti —t;) ~ €(i —Jj) (3.5)

with € = 1.07 £ 0.03 for the internet forum Poland in the EU Fig.3.6a and
e = 1.03 £ 0.02 for the news group Humor Fig.3.6b.

For small i — j intervals the number of messages posted in time n(¢;) is
closely related with the temporal activity of the discussion and follows linear
relation well. However, due to the high volatility in the users activity (Fig.
3.7a) the large deviations from the linear behaviour are observed for large

1 — j intervals.

3.3.3 Activity

We define the activity of a news group as the number of messages posted in
a given time interval. In Fig. 3.7 we show the activity time series and the
distribution of activity for the discussion forum Poland in the EU. Here we
have measured the number of messages posted in one hour. As one can see,
there is a variation of activity over a wide range of scales.

The peak, in which 898 messages were posted in a single hour, corresponds
to the time when Poland was voting in the accession referendum to the EU.
This hiatus can be seen in the activity distribution, corresponding to the
points to the right in Fig. 3.7b, away from the main curve. We examined

the distribution of activity for all our news groups, and found that all the
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Figure 3.6: The average value of the real time interval multiplied by the activity as
a function of the network time interval for (a) the forum Poland in the EU and (b) the
news group Humor. The data was logarithmically binned and the error bars express the

standard deviations from the averages in bins.

distributions were fat-tailed, with distributions that ranged from power law
to Kohlrausch, ~ exp(—7%), with 0 < a < 1.
We have measured the correlation function C'(7*) of the activity time

series, n(t), defined by

C(r) = %j iw[n(ti)— <n Sl + )= <n ] (3.6)

where t; = tpi and < n > is the mean number of messages posted per time
to over the whole time series. We studied ty = 1hour and tq = 1day.

All the internet discussions indicate a correlation for 7 = 24 hours, which
shows the daily routine of the internet discussion users (see for instance Fig.
3.8b). We also found a weak correlation for news groups on the time scale of
one week, which is probably connected to the higher activity over a weekend.

This is somewhat less pronounced, as Fig. 3.8a illustrates. Some news groups
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Figure 3.7: The activity time series (a) and the activity distribution function (b) for the
forum Poland in the EU.

also show correlations for very long times, for instance for 7* equal to 180,
270 and 365 days. These were seen in news groups that are only used by
students and these long correlations are connected the academic holiday and
semester structure. There is an interesting correlation for 7* = 12 hours in
the forum Poland in the EU. This correlation is generated by the before-after

work activity of the discussion users.

3.3.4 The distance distribution D(r)

D(r) is the distribution of the number of edges between each node in the
network and its root node (the central topic of the forum). For all the
networks the maximum distances are small. Almost all the news groups
exhibit an exponential D(r), such as that illustrated for the news group
Electronics in Fig. 3.9b. Of the news groups, only Humor has a distance
distribution close to a power law.

The distance distributions for forums are modified by the software used

70



GROWING TREES IN INTERNET DISCUSSIONS

T T T T T T T T T
1.04 4 1.04 4
0.8 1 0.8 4
0.6 1 0.6 -
&/\ *A
e e
SN N
O 044 1 O o044 J
0.2 1 0.2 4
0.0 T T T T T T T T T T T 0.0 T T T T T T T T T T T
0 20 40 60 80 100 0 100 200 300 400 500
T [1 hour] T [1 hour]

(a) (b)

Figure 3.8: The correlation function C'(7*) for (a) the forum Poland in the EU and (b)

the news group Humor, with a time step tg = 1 hour.

to manage the forum, which only allows a maximum distance of r = 13. A
message that somebody wants to post to a message with » = 13 is added to
previous the message with » = 12. This results in the large value of D(13)
seen in Fig 3.9a. Nevertheless, the distance distributions seams show power
law character with an exponential cut-off resulted from the maximum allowed
distance, as Fig. 3.9a illustrates.

Due to the maximum distance permission we are unable to definitely
confirm this character of the distance distribution. We cannot support also
this claim through the findings for the news groups. The difference in the
behaviour of the distance distributions for forum and news groups is probably
related to the main page threads announcement mechanism described in sec
3.3.2. For the forum, the thread with the latest message is placed on the top
of the main page pushing down the older, which allows even old threads to
acquire new comments that could possibly increase the maximum distance

if the blockade was not in operation. In the case of news groups, the most

71



GROWING TREES IN INTERNET DISCUSSIONS

recently started thread is in the top of the main page pushing down the older
ones, which definitely shortens their life time. However, in both cases the
rate of inserting new threads speeds up the aging process of the older threads,
which has impact on the length of a discussion. Thus, the discussion’s length
should be proportional to the rate of inserting new threads. Indeed, Fig.
3.10 shows the exponential relation n; /N ~ e~<">/<70> hetween the relative

number of threads n,/N and the average length of the discussion < r >.

10° . T

0 5 10 15 20

Figure 3.9: The distance distribution D(r) for (a) the forum Poland in the EU and (b)
the news group Electronics. The distribution for the forum has a power law behaviour
D(r) ~ r~¥ with exponent v = 1.73 £ 0.02 and the distribution for news group has an
exponential behaviour. The value of v exponent was obtained by the same method as

discussed in section 3.1.

The ratio ny/N (Table 3.1) shows how many threads are created as a
fraction of all posted messages. A small value indicates that internet users
are focused on the existing threads and they are prone to continuing the
previous discussions. Large values show that there is almost no discussion,
users place an offer or question and expect only answers to them. A related

parameter that describes a discussion is the average distance from the root
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Figure 3.10: The ratio of the number of threads n; to the total number of messages N as
a function of the average distance from the root < r >. The curve is fitted an exponential

function f(<r >) ~ e~ <">/<70> where < rg >~ 1.82 4 0.13.

node < r > (Table 3.1). For small value of < r > the discussion is not
engaging and users probably just exchange information. For large < r >
vigorous discussions are taking place. The ratio ny/N describes the behaviour
of the internet users and the average distance < r > describes the topological
consequences of this behaviour. There is a functional dependence between
them and Fig. 3.10 demonstrates this. The values of n;/N and < r > show
the kind of discussion we examined, technical, where people are interested
only in exchanging goods, information and looking for help, or theoretical,
where people introduce ideas, share opinions and argue with others. Good
examples are two news groups Games and Games.CS. The Games news group
is a general discussion about games, where < r > is rather small. The news
group Games.CS is dedicated to only one game’s fans, Counter Strike and
its value of < r > is much higher than for Games news group, which suggests

that the fans are more strongly engaging within the discussion.
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3.3.5 The supremacy function s(k)

The supremacy s; of node ¢ is defined as the total number of all nodes that
are not older than 7 and can be linked to it by a directed path (including the
node ). For tree-like networks this means that the supremacy s; of node i
is the total number of nodes that are under the node ¢, including node ¢. In
other words the supremacy s; is the total number of nodes in the sub-tree
started by node i. The supremacy function s(k) is the average supremacy
of all nodes of degree k. In |54] it was shown that for the Barabéasi - Albert
model [14],

k)= — | — —_— 3.7
s(k) m+1<m) +m—i—1 (3.7)
where m is a number of links created by an incoming node, and for trees,
when m =1
1 1

s(k) = 2/<;2 +3 (3.8)

For each network we measured the average value s(k) for a particular
degree k. Fig. 3.11 shows that for the internet discussions relation s(k)
is not s ~ k2, but relation is linear s ~ k. The result s ~ k2, obtained
for Barabési - Albert model, which does not include aging of nodes. This
suggests that the linear dependence between supremacy s and degree k could

be triggered by the aging of nodes.

3.4 Conclusions

Internet discussions are tree-like networks, whose degree distributions are
described by a power law function. The networks are growing in time and
because the posted messages become out of date naturally, the nodes are ag-

ing. For news groups the distribution of the network time interval between
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Figure 3.11: Average supremacy s(k) against degree k for (a) the forum Poland in the
EU and (b) the news group Humor. (a) and (b) both follow linear functions with slopes
1.19 £ 0.02 and 1.41 £ 0.07 respectively.

a message and a response has two scaling regimes. The small time interval
regime probably corresponds to responses within one session of the discus-
sion, from people currently on-line, which corresponds with the burst activity
studied in [50], and the behaviour for large time intervals is generated by
messages posted later or off-peak by new users arriving on-line. For the in-
ternet forums the time interval distribution is described by T'(7) ~ [ + 7] ™0
and shows a smooth behaviour.

The time correlations within the activity time series show that the activ-
ity of internet discussion users is integrated with users‘ daily routines on both
12 and 24 hour scales (Fig. 3.8). The most characteristic type of correlations
is different for forums and news groups. We suppose that strong 7 = 12h
correlations found for forums (Fig.3.8a) are related with before - after work

type of activity. Much weaker 7* = 24h correlations can indicate lack of

stable community of users gathered around the forum. On the other hand
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the most characteristic correlations for 7" = 24h found for the news groups
(Fig.3.8b) may let us conclude that these students’ online discussions have
a stable group of active users that every day devote their time to discussing
together. The stability and regularity of these groups are probably strength-
ened through the specific character of student communities and similarities
in students’ daily routines. On publicly open forum heterogeneity of users is
higher and their availability is much more diverse. Moreover, the forum was
held by the news portal and 12 hours correlations might be related to news
presented there. An important piece of information from the perspective
of users might drive hectic before - after work exchange of messages, whilst
others might induce barely noticable activity, which finally may lead to the
strong correlations for 7 = 12h and much weaker for 7 = 24h. These mea-
surements could help us to define an optimal place and time of operation for
people interested in marketing goods (viral marketing) or services to internet
users.

The distance distribution exhibits exponential character for most news
groups, which means that discussions are not deeply embedded within larger
tree structures. The results for internet forums on www.onet.pl show the
intervention of the software employed, which only allows a maximum distance
r = 13 in its forums. However the distance distributions for these groups
exhibit a power law behaviour. In section 3.3.4 we discussed how the different
main page announcement mechanism can trigger these results. While the list
of threads for the news groups is static and they are organised according to
their time of creation, the list of threads for the forum is dynamic and the
thread that received the latest message is placed on the top of the main page
list. Hence, threads in the news groups are inevitably aging but threads in

the forum can be "refreshed" and attract new messages.
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Secondly, these results can be also understood by considering the topics of
these discussions. The news groups mostly contain closely defined, themed,
discussions which are often very technical and frequented by experienced
users. Consequently answers are very short and directly address the problem.
Thus, the average distance < r > is small. In contrast, internet forums have
a wide range of users, who usually want to discuss and argue with others.
This attitude towards discussion creates large and deep tree structures.

The length of the discussion can be considered as an indicator of its
quality. In Fig. 3.10 we show how the average length of the discussion is
related to the dynamic of inserting new threads and in sections 3.3.4 we
discuss how the different hierarchy of threads on the main page can influence
this average length. These studies may deliver very useful information to
the providers of the online discussions on how to shape the character of the
service they administrate.

Internet discussions are an important source of data within social sci-
ences. They allow the study of the topology of social connections and their
temporal statistics [27, 28, 29, 30, 31]. Our study focused on the growing
trees of messages, whose structure and temporal statistics, as we have shown,
are related to the subject of the discussion and the day-to-day activities of
users. Investigating the emerging, aging and dying of topics in discussion
networks should yield data on people’s interests - what people like reading or
commenting on. This should give insight into the real dynamics of people’s

opinion change and exchange.
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Table 1

No. | Topic of discussion N ¥ Pmaz | n1/N | <r>
Onet Forums
1 Poland in the EU 43027 | 3.34+0.01 13 0.118 | 4.127
2 Opinions of Poles 36479 | 3.28 £0.03 13 0.103 | 4.062
Situation in Middle East | 47075 | 3.29 +0.01 13 0.048 | 5.701
News groups
1 Trade 44266 | 5.62 +0.07 24 0.517 | 1.905
2 Politics 11706 | 5.44 +£0.04 46 0.078 | 7.041
3 Humor 52525 | 4.43 +£0.02 76 0.204 | 3.534
4 Off-topics 21940 | 4.53£0.04 51 0.188 | 4.153
5 Linux 11049 | 5.43£0.07 25 0.208 | 3.234
6 Pillory 40495 | 4.58 +0.02 62 0.132 | 5.299
7 Games 34080 | 5.42£0.03 30 0.293 | 2.811
8 Games.CS 18976 | 4.36 £0.04 25 0.162 | 3.698
9 Programming 14560 | 5.44 +0.04 25 0.261 2.948
10 | Music 12461 | 5.41 +£0.09 20 0.359 | 2.481
11 Campus.Riviera 15431 | 5.03 £0.05 33 0.326 | 2.821
12 Campus.Ustronie 31170 | 5.14+0.03 26 0.317 | 2.897
13 | Electronics 28199 | 5.32+0.05 18 0.364 | 2.329
14 | Windows 13684 | 5.18 £0.08 32 0.210 | 3.575
15 | Film 32923 | 5.04 £0.02 20 0.306 | 2.783

Table 3.1: We measured 19 internet discussions, 4 from the internet forum www.onet.pl
and 15 news groups from the server news.student.pw.edu.pl. The columns contain the
name of the discussion, the number of nodes N, the exponent v of the power law degree
distribution and the maximum distance R,,,, from the root node. Next column contains
number of threads n; over all messages N and the last the average distance from the root

node < r >.
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Chapter 4

Self-Organised Criticality at the
A&E Department

We present an analysis of one
year’s worth of empirical data on
the arrival and discharge times at

an UK Accident and Emergency (A&E)

department. We find that discharge
rates vary with the workload and that the distribution of the length of stay
has a fat tail. A sand pile model is considered to show that the A& E depart-
ment is a driven self-organised system, where the department staff manage
their work time to cope with the department’s occupancy. We use in our
model a variable input space to mimic the queuing discipline related to dif-
ferent cases of accidents found in the department. The input space is defined
by two parameters; its size s X s and the distance m from two nearest edges.
We study the length of stay distribution for the sand pile model for both s
and m parameters. We show that while s or m are increased the character

of the tail of the distribution changes from power law to exponential one.

79
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4.1 Introduction

In this paper, we present and analyse empirical observations of the arrival
and discharge of patients at an UK Accident and Emergency (A&E) depart-
ment. Our methodological approach is in keeping with the increasing trend
to apply methods and perspectives from statistical physics outside the tradi-
tional boundaries of natural science, and in particular to social and economic
systems. Statistical physics provides methods for moving from microscopic
or individual elements to macroscopic or collective phenomena and can yield
important insights into our understanding of social systems [101]. Much of
the physics-inspired empirically based modelling has taken place in finance,
because of the availability of large quantities of high resolution data in this
field. Attempts have also been made to apply a similar approach to other
problems where humans are the microscopic elements and a broad range of
topics have been studied, including opinion dynamics [102], decision making
[103], terrorism [104], pedestrian flow [105], correspondence patterns [106],
and airline disasters [107].

In health care science, empirical results demonstrating power law signa-
tures in data on hospital waiting lists has opened up the possibility of using
physics-inspired models whose main focus is to give qualitative understand-
ings of the systems [108, 109, 110, 111, 112]. In this paper we use a sand pile
model [113] to mimic the service of patients in the A&E department, which

provides us with some insight into the dynamic process.

4.2 Empirical observations

The dataset analysed here consists of the arrival and discharge times for

92,965 patients from an UK A&E department over the period April 1 2003
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to May 31 2004. We focus on two observations that deviate from what would
be expected if the system were working as a simple queue, or in a random
manner. When the term discharge is used in this paper it refers to the event
of a patient leaving the A&E department by being admitted to the hospital,
transferred to another hospital, or being released. The term completion time
or length of stay then refers to the time interval between the registered arrival
time and the registered discharge time.

Arrival/Discharge rate. Two important metrics of an A&E department
are the rates of arrival and discharge. The mean values of these rates can
be measured by simply counting the total numbers of arrivals and discharges
and dividing by the total time. Of course, in reality these values show huge
variability with the time of day and the day of the week. To get around this
we look at the relative discharge rate I'(n), i.e. the number of discharges
divided by the number of arrivals, and how it varies with n - the number
of patients in the department. In Fig. 4.1a we show the dependence of
the relative discharge rate on the departmental workload. The values of the
number of arrivals, discharges and patients in the department were obtained
within the time window 1 hour. We note that the relative discharge rate is
somewhat higher when there is a large patient occupancy in the system and
lower when the workload is low.

If we would consider an A& E department as a simple FIFO (first in first
out) queue with a negligible service time, the number of discharges would be
equal to the number of arrivals and thus, independent from the queue load.
Furthermore, if the service capacities were not enough above some certain
load level, we would observe a monotonic decrease in the discharges / arrivals
rate from that point. However, none of these were observed. This means that

the system adjusts itself to the occupancy of the department. One explana-
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tion is that, as the department becomes busy, the staff work harder and some
limited resources are devoted to ensure that patients’ waiting times do not
become unacceptably high, and hence the relative discharge rate increases.
As the department becomes empty, doctors and nurses catch up on their ad-
ministrative work and on accidents with lower priorities or time consuming
ones. Thus, the relative discharge rate decreases.

These indicate that the A& E department exhibits a sort of self - adjusting
properties. Patients arrive and are discharged. Each member of the staff
manages their work to match themselves to the demands of the system so
that the system just copes and spends the majority of the time in the centre
of Fig. 4.1. Thus it seems natural to compare our empirical data with a
model of self-organised criticality such as a sand pile model [113].

Length of stay distribution. In the UK, a national target for emergency
care has been set. It states that after 2004, no patient should spend more than
four hours in an A&E department [115]. In September 2002, the completion
rate at four hours was 77% [116]. We have not compared our data with this
target, because we are interested in the dynamics of this system, and focus
on the distribution of the completion times. The length of stay distribution
is shown in Fig. 4.1b. As physicists have come to expect for human systems
of this kind, the tail of the distribution is fat and appears to fit a power law
function f(z) = ax™7. Of course we can never know if this is a real power law
since that would require A&E departments thousands of times greater than
their real size and large numbers of patients spending years between arrival
and discharge! Nevertheless, to allow us to pursue our analogy with a sand
pile model in the next section, we fit the curve to a power law and find an
exponent v = 1.58. The distribution is also disturbed by the aming of staff to

meet, the completion time target. Hence the discontinuity in the distribution
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when the length of stay equals 240min, as staff redistribute resources to

increase the number of patients that meet the completion time target.
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Figure 4.1: (a) Empirical number of discharges divided by number of arrivals, as a
function of the number of patients in the A&E department, n. An increasing trend is
clearly visible, which indicates that the system responds to a high occupancy by increasing
the discharge rate. The higher variability for large values of n is an effect of the lower
number of observations here. (b) The length of stay distribution for the patients in the
A&FE department. The fitted curve is a power law function f(x) = ax™7, where v = 1.58.
The inset figure presents the same data on a linear scale. The discontinuity in the tail of

the distribution is exactly at 4 hours (240 minutes).

4.3 The sand pile model

The adjusting property of the A&E department discussed above resembles
the self-organised behaviour of the sand pile model. Moreover, as we show it
later, this model displays a similar response of the discharges / arrivals rate
to the load of the system. One of the characteristics of the A&E department

is that it is the first place where all patients come or are delivered. Because
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the arriving patients have different illnesses and are in different conditions,
the waiting list cannot follow a simple FIFO queue (First In First Out) and
the positions of the patients waiting for the services are effectively reshuffled.
Additionally, the length of stay at the department involves not only the
waiting time but also the service, which varies from case to case. The data
obtained from the A&E department does not distinguish between the waiting
and service time, thus the dynamics of the sand pile model studied here
necessarily represents both the behaviour of the virtual complex queue and
service time at the A&E department. The relation between the studied model
and the A&E department is rather virtual and the specific choice of the 2D
model is the simplest possible version, which exhibits desired behaviour.

In our approach the grains represent the patients and we use a square
N x N lattice, where N = 75. This particular size of the system is not related
with any physical properties of the A& E department (i.e. the number of
beds or seats) and its choice was driven by the trade-off between minimising
the finite size effects (large system size) and the computational efficiency
of our algorithm. In each time step of the simulation one sand grain is
added to the system. The time step is defined on a macroscopic scale, which
means that any reshuffling of the sand grains within the lattice, which we
describe shortly, happens during a single time step. The simplest possible
driving of the system (one grain per time step) was chosen to minimise the
number of possible factors that might influence the dynamic of our model.
While our idea is only to show the link between the self-adjusting property
of the A&E department and the self-organised criticality, the influence of the
faster /slower driving is negligible here.

We call square of the lattice a bin and it represents the position of patients

in a complex treatment queue (waiting + service). Each bin is identified by
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two coordinates 7 and j and it contains grains. The number of grains in bin
(1,7) is given by H (i, j), which is called height of the bin. If the height of the
bin H (i, j) where a grain was added or moved to is greater than or equal to
4, 4 grains from this bin are moved to the bin’s 4 adjacent neighbours. This

represents the progression of the patients within the complex queue. Thus,

H(i+1,j) > Hi+1,5) +1 (4.1)
H(i,j+£1)— H(i,j+1)+1 (4.2)
H(i,j) — H(i,j) — 4 (4.3)

If a bin that releases sand grains is on the border, one or two grains
fall outside the lattice. This represents the discharge of patients. When
the number of grains is larger than the average, at some point a series of
avalanches will pass through the system removing grains from the lattice.
The system rests for some time, gaining new incoming grains and once again
at some point a wave of avalanches goes through the system. This behaviour
is repeated infinitely and the system balances all the time around an average
number of grains on the lattice (Fig. 4.2b). Dynamics of this type are called
punctuated equilibria [114].

Input space s X s. In the usual model of a sand pile, a new sand grain is
placed in the middle of the lattice, or is placed in a bin chosen at random.
However, in this particular problem it would mean that each patient comes to
the hospital with an average illness and needs an average length of treatment.

We modify these driving rules and use the input space explained in Fig.
4.2. In this way we are able to represent the diversity of patients presenting
at the department, most of whom have minor illnesses but others have life

threatening conditions. Thus, when we move the input space closer to the
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border we increase the spread of the distribution of treatment times. In
other words, the distance m from the edge of the lattice is responsible for
setting up the virtual rate quick/time demanding treatment time. A few
grains introduced at the edge of the lattice move inside the lattice and take
a long time to be discharged but most are discharged after a few time steps.

In our simulations we use a square s x s space. We link the value of s to the
size of the lattice, such as s = N/k, where k = 1,2, .... Increasing k we make
the input space smaller and concentrated in a corner (Fig. 4.2a). For s =1
the input space is a single bin. We allow the input space to “move” (Fig. 4.2a
dash line square) by introducing a parameter m = 0,1... N, which translates
the input space m lattice sites away from the two nearest edges of the lattice.
As the system is symmetric, parameters s and m completely define the input
space. In the following, we take m = 0 unless stated otherwise. The different
input spaces do not affect the average number of grains on the lattice (Fig.

4.2D).

Results. Our numerical simulations were made over t = 5x 10° time steps.
Fig. 4.3a shows the results for the discharge divided by arrival rate against
the number of grains on the lattice ,I'(n), for several different input spaces.
For s = N and s = N/2 the shape of the curve is exponential, but for smaller
input spaces it becomes linear, similar to Fig. 4.1a for the A&E department.
The linear growth shown in the inset figure is for s = 8 and m = 2. Despite
the large number of time steps ¢, extreme values of the number of grains in
the system n, are very rare. Thus, the large fluctuations on both edges are
observed.

We calculate the length of stay distribution by collecting the input and
output times for each grain. First we study the case when m = 0. We find

for s = N the distribution is an exponentially decaying function, but for
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Figure 4.2: (a) The definition of the input space s x s. The square (dash line) shows
the situation when the input space has no contact with borders. The cross shows the
situation when the input space is limited to the single element (deterministic case). (b)

The frequency distribution of sand pile grains for different input spaces.

s = N/4 and s = N/8, the tail of the distribution has a power law character,
f(z) = ax™" (Fig. 4.3b). For smaller values of s the tail of the distribution
starts earlier. The threshold value of s between exponential and power law
tail seems to be for s = N/2 (Fig. 4.3b inset figure). As we might expect,
when the input space is moved from the borders (m > 0), a maximum value
in the distribution emerges (Fig. 4.4b). The limit case is for m = N/2
(middle) and as we show for s = 1 the distribution is Poissonian (Fig. 4.4
inset).

We find v to be slightly growing while parameters m and s are increased.
For constant m = 2 and for s = 1, s = 4 and s = 8 the exponents v of
the power law tails of the length of stay distribution are v = 1.50, v = 1.54
and v = 1.58 respectively. However, if we increase m and s too much the
power law tail of the length of stay distribution almost disappears and it is

impossible to obtain a reliable value of v (Fig. 4.4a and b). The value of
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v = 1.58 found for m = 2 and s = 8 was used to fit the real length of stay
distribution (Fig. 4.1b).
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Figure 4.3: (a) The discharge/arrival rate over the number of grains on the 75 x 75
lattice for different input spaces s X s. The inset shows a linear I'(n) relation for input
space s = 8 and m = 2. (b) The distributions of the length of stay for a sand grain on the
lattice for different input spaces s x s. The fitted curve for s = 8 and m = 2 is a power
law function f(z) = ax™7, where v = 1.58. The inset figure shows distributions for s = N

and s = N/2 in single logarithm scale.

4.4 Conclusions

In this chapter we have provided empirical evidence that for the UK A&E
department the ratio between the discharges and arrivals is dependent on the
number of patients in the department. While there are limited possibilities
to move doctors and nurses from their current duties to support the A&E
department, we believe the staff work harder during rush hours and catch up
their administrative duties during quieter periods. We have shown that this

behaviour exhibits many similarities to the sand pile model, where quieter
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Figure 4.4: (a) The distributions of the length of stay for a sand grain on the lattice for
m = 2 and input spaces 1 X 1, 8 x 8, 24 x 24 and 48 x 48. (b) The distributions of the
length of stay for a sand grain on the lattice for input space 1 x 1 and m = 1, m = 4,

m =8 and m = N/2 (middle).

periods when the system gains new grains are interrupted by busy periods
with avalanches of activity when grains move out from the system. Each
member of the staff makes his/her own "to do" list where certain priorities
are given for each accidents. The process of prioritization is responsible for
the burst activity displayed by human systems [50].

The length of stay distribution for the A&E department (Fig. 4.1b) is a
Poissonian-like curve for short waiting times with a fat tail for long ones. Two
facts can be responsible for that: the conditions of the presenting patients
and the queuing discipline. We put both together by considering the input
space close to edges of the lattice. In most cases a single grain leaves the
system quite quickly, with average time related to parameter m. However,
some grains move inside the lattice where they stay much longer and their
waiting time contributes to the fat tail of the length of stay distribution.

This mechanism mimics the range of conditions with which patients present
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at the A&E department: simple and complex.

We studied here a small 75 x 75 lattice just to show self-organised be-
haviour of the UK A&E department. However, it would be strongly recom-
mended in further studies to use a larger one and define s and m parameters
as a ratio of the system size; m = m/N and § = s/N. It would be interesting
to find out how the exponent v depends on the s and m to determine the

boundary values of .
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Chapter 5

Conclusions

The multidisciplinary character
of this work is a reflecion of sev-
eral placements and collaborations
I have been involved in during the
time of my PhD studies. The four
projects which I studied here span

several fields such as networks, nav-

igation algorithms, the fluctuations
of packets’ traffic, the analysis of social interactions via web pages and the
analysis and modeling of the part of the UK national health service. Thus, in
this concluding chapter I will sum up each of the above chapters separately,

rather that comment on the whole thesis.
5.1 Navigation on networks

The goal of the first chapter was to investigate the possibility of using the
average shortest delivery time property to navigate packets in a complex

network. Moreover, my intention was to apply a local navigation algorithm,
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which could benefit from a simple architecture and nearest neighbourhood
knowledge. The latter points were motivated by my interest in designing an
efficient algorithm, which could operate in a network which shape is unknown
and global navigation is impossible. The conditions described above exclude
application of widely used shortest path algorithm, where the optimal short-
est path between nodes 7 and j is obtained based on full information of the
network connectivity. Hence, I introduced a three variations of the average
shortest path algorithm ST, STD and CDT (see Chapter 1). The perfor-
mance of two latter ones was compared with deterministic version of the
algorithm based only on the degree property (CD, Chapter 1).

The analysis of the ST algorithm showed two intrinsic problems related
with the average shortest time approach. Firstly, the initially average short-
est paths were not necessarly the best possible ones and the navigation al-
gorithm lacks an update mechanism, which would inform nodes successively
about them. Secondly, the jamming of hubs occurred even for very small
input rate R due to long delivery times and the back and forth phenomenon
described in Chapter 1. The introduction of 1/AT; and degree k; properties
in the STD and CDT algorithms mostly solved both problems, however not
without costs in potential efficiency. This is because the degree property is
responsible for the avoiding of large nodes, which actually leads to losing
benefits of the scale free structure and hub nodes. On the other hand, the
1/AT; property helps nodes to explore new paths and make the STD and
CDT algorithms sensitive to changes in the network structure. However, the
rate of changes must be much slower that the updating procedure.

The degree property included in both STD and CDT algorithm makes it
sensible to compare their properties with an algorithm which based only on

the degree in the local navigation of packets in the network. Thus, T intro-
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duced the CD algorithm, a deterministic version of the algorithm described
in [46] and found the STD algorithm has 14% lower load and 14% shorter
mean delivery time compared to the CD navigation algorithm (see Tab. 1.1
and 1.2 in Chapter 1). The practical implementation of the STD and CDT
algorithms needs the feedback packets to update nodes with the delivery
times, what would double the flow in the network. However, the feedback
packets would know the return paths and in reality, they are widely used in
the most popular internet protocol TCP as the confirmations of the correct
transmitions.

Finally, the STD algorithm is a step forward compared with the CD
algorithm, but still greatly outperformed by the shortest path algorithm.
It would be interesting to replace the 1 depth neighbourhood search with
a 2 or 3 depth search [62], but it seams that the crucial thing for further
implementation of the average shortest time algorithm is solving the back
and forth sending of packets between two localy most efficient nodes. It
would require probably an implementation in a node a memory of trafficked

packets, what would however heavily complicate the potential algorithm.

5.2 Scaling of fluctuations

In chapter 2 T used a model of a network traffic to study the scaling of
fluctuations of time series of nodes and traffic flow along the links. The
analysis was performed for two types of navigation rules and using two dif-
ferent network structures: a scale-free network and a random graph. While
the occurrence of scaling of fluctuations on nodes attracted recently several
scientists 79, 80, 81, 82, 83, 84, 85, 86|, the scaling of fluctuations of flow
along the links were not studied. This could be related with the fact that in
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all cases only the random diffusion of packets was considered, which as we
showed in Fig. 2.4a does not exhibit any scaling properties of fluctuations of
flow along the links.

I compared the results for two navigation rules: a random diffusion of
packets and the degree navigation algorithm (D), which is a probabilistic
version of the CD algorithm studied in Chapter 1. For the random diffu-
sion the scaling of fluctuations of traffic flow along the links is not present.
Moreover, the relations o;; ~< f;; > and o; ~ hi(k = 2) are on average
identical (Fig. 2.4b), what suggests that dynamical properties of nodes with
k = 2 and links are the same. This is due to both constituents having two
inputs/outputs and the same probability of receiving a packet in the network
structure.

In the case of the D navigation rule, the probability of posting a packet
along a link is proportional to the degree of the node at the end of the link
(Eq. 2.2). Thus, the links in a network are not equal any longer and the
probability of packets’ flow along given link depends on the local network
structure and the network degree distribution. In this way, the D algorithm
introduces necessary preference among links, which finally leads to the scal-
ing of fluctuations of traffic flow along the links (Fig. 2.6). The necessity
of preference among network constituents for obtaining scaling of fractiona-
tions was highlighted by the result obtained for the lattice structure and the
random diffusion in Fig. 2.5.

The peculiar property of the D navigation rule is the emergence of two
scaling regions found for the o;;(< f;; >) relation on the scale free graph. I
found this outcome results from the sharp differences between links’ proba-
bilities of transporting packets in a scale-free network for the D algorithm.

The links that direct to very large nodes (hubs) have a very small chance

94



Conclusions

to transport packets and it happens very rarely even for the large observa-
tion time windows. Hence, the dynamics on those links resembles a random
deposition process for which oy; ~ < f;; >%° [79]. This indicates that the
dynamics on a network is dynamically split into the dynamics related with
the main navigation rule and random deposition. The scenario described
here can be used to understand the emergence of two regimes of scalings for
fluctuations of time series of nodes for a very efficient navigation rule [62], for
which some nodes do not take part in traffic of packets and are only receivers

of randomly addressed packets, following the random deposition.

5.3 Internet discussions

In chapter 3 I analysed two types of internet discussions: forums and news
groups. While recent work on on-line discussions focused on the communities
of users, I studied the properties of networks of messages, which are the out-
comes of human on-line interactions. The messages posted to the discussions
by users create scale-free, tree-like structures with power law degree distri-
butions. The subject of the forum or news group is a root of the network
and it is surrounded by branches representing one of the threads of the dis-
cussion. The nodes of these networks, which represent messages, are aging,
i.e. the older a message, the smaller chance it has to receive an answer. The
power law character of the degree distribution indicates that while most of
the messages do not attract much attention, some of them are the sources
of large activity, attracting many responses from other on-line users. The
degree distributions have large v exponents, ranging from 3.28 < v < 5.62,
what is probably related with the aging character of nodes.

The study of correlations of user activity time series revealed significant
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correlations for two time periods: 12 and 24 hours. Both of these were present
for forums and news groups, but 24h correlations were much stronger for news
groups and 12h for forums. The very strong 24h correlations for news groups
indicate the existence of a stable user community coming back every day at
the same time. The regularity of these groups are probably amplified by the
specific character of student communities and similarities in students’ daily
routines. On the contrary, the publicly open forum attracted a much more
diverse audience.

The forums and news groups are accessible through an internet browser
and the layout of the threads displayed on the web page may influence ob-
served properties. In particular, two types of internet discussions studied
here have a different approach in displaying recent activities. In the case
of the news groups, the list of presented threads is organised according to
the time of creation. Only the creation of a new thread pushes down the
older ones. On the other hand, on the main page of the forum the list of
threads is dynamic and the thread which received the last message is placed
on the top of the list. This mechanism allows even older threads to jump to
the top of the main page and attract new responses. The difference in the
web page layout is responsible for several differences between the forums and
news groups. Firstly, the exponents of the degree distributions are lower for
forums than for news groups, because the messages on the forum are aging
slower. Secondly, the distance distribution D(r) for the new groups has an
exponential character. This shows that long discussions are not expected,
because old threads are pushed down on the main page, what inevitably
decrease their chance of receiving a new message. On the other hand, the
distance distribution D(r) for forums display power law character, disturbed

however by the maximum distanced r = 12 allowed on the web page.
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Finally, I showed that the rate of inserting new threads is related with the
average length of the thread (Fig. 3.10). The faster users start new threads
the shorter on average is the thread, what probably has an impact on the
quality of the discussion. Thus, it is not surprising that on the far ends of
the spectrum we have trading news group, where users are not interested in
chatting and political news groups, where the long exchange of arguments is

a norm.

5.4 Self-organised criticality at A&E Depart-
ment

In chapter 4 T studied the behaviour of the A&E Department by analysing
two metrics: the ratio between the discharges and arrivals in function of the
department workload and the patitnts’ length of stay distribution. I discussed
that the growing character of the discharges / arrivals ratio in function of
number of patients in the department is an evidence of a self-adjustment of
the staff to the current department’s workload. This-self adjustment property
prompted me to discuss the application of a self-organised model to simulate
the behaviour of the A&E department. In particular, I focused on the sand-
pile model, which mirrors the behaviour of the department on the macro
level of analysis.

A hospital in general and an A&E department in particular are the sys-
tems where a simple first in first out (FIFO) queue cannot be applied. The
cases of patients admitted at the A&E department vary from a simple sore
throat to life threatening conditions. Thus, the effective treatment queue
there changes all the time, reflecting the patients conditions.

In my model the dynamics of changes of patients’ position in the treat-
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ment queue is mirrored by the reshufling of grains on the lattice, when a new
grain enters the system. The position and size of the input space, described
by two parameters m and s respectivelly, sets the proportion of short and
long treatment times, what captures the proportion of simple and complex
cases of patients arriving to the A&E departemnt. The model is a macro
level analogy to the A&E department, however the characters of obtained
discharges / arrivals ratio in function of number of grains on the lattice and
the length of stay distribution are in a good agreement with the ones found

for the A&E departemnt.
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Appendices

Much of my work is based on computational methods and the algorithms I
use in my simulations. They are vital products of my work, but never shown
in any publication.

The subjects of the Appendix A is:

Obtaining the exponent from a power law distribution. A set of Matlab

functions for calculation and visualisation.
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Appendix A
Obtaining the exponent from a power law distri-

bution

Our main goal was to develop a set of tools to obtain the exponent of a power
law function or distribution. This kind of distribution is commonly observed
in many real data sets. However obtaining the proper value of the exponent
of such distributions is usually problematic.

The most important part of the power law distribution is the tail, which
usually consists of a small number of samples. Other problems complicate the
analysis, for example in some cases it is difficult to find data that spreads over
a suitable number of orders of magnitude while other projects, for example
a health study, have a limited number of observations. These effects make it
more difficult to reliably obtain the exponent of the distribution, also called
the scaling exponent.

In this appendix we do not discuss wheather a given distribution is a
valid power law function and we assume the user of our Matlab functions is
confident about the character of the data he analyses. However, if the user
does not feel particularly bold about the true character of the distribution we
suggest calculating goodnes-of-fit between the data and the power law using

for instance Kolmogorov-Smirnov (KS) test [59, 60].
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General Ideas

The power law function is given by an equation:
P(z) = Az® (A-1)

where « is the exponent and A is a constant. Some of the methods
discussed here are related only to the case where av < 0. This is the case for
cumulative and rank distributions as well as the Newman method [58]. In this
appendix we will mostly talk about distributions, however linear regression
methods can be also applied to other power law relations.

We divided our techniques into two parts:

e Data preparation

e Analysing methods

We begin by creating histograms or probability distributions of the raw
data, this might be the number of web pages based in various countries for
example. We call raw data set of samples obtained from a measurement.
The histogram /probability distributions are not usually the best sources for
regression techniques - linear or nonlinear, because they are usually too noisy.
However we can convert these histograms into both cumulative and rank
distributions so as to make them smoother. For a power law probability
distribution the relation between its exponent « and the exponent o’ of the
cumulative or rank distribution is @« = o/ — 1. Figure A-1 shows the reduction
in the noise of a data set with both a cumulative or rank distribution applied.
The data becomes very smooth so that regression methods will work much
better than with the raw data. The Newman method was designed to work
only with raw data, we do not need to build a distribution. However quite
often the only data we have is a probability distribution or histogram, so we

adapted the Newman method also for this situation.
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Raw Data
Cumul. Dist -
Rank Dist E|

Figure A-1: A comparison between raw data ,cumulative and rank distributions.

Working with data

Obtaining the exponent of a power law distribution is one part of the pro-
cess of analysing data, the shape and quality of the distribution affects the
research methods that can be applied. Thus the decision of which method
to use is mostly data dependent. Fig. A-3 explains the flow of processes
from the raw data to the output (the scaling exponent «). The regression
methods also give us the constant parameter A, so we can obtain complete
information about the data. Fig. A-3 shows which methods are available
at each step of the analysis. It was prepared with distributions in mind for
for other power law relations (involving growing functions) the only possible

flow of data is shown in Fig. A-2.

log-log LS

—\, Original — — §
Rawbata =) S8 = s = A

Figure A-2: The flow of data for growing functions.
According to Fig.A-3 there are three ways to proceed with the raw data.
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The fastest and most straightforward way is the Newman method. Alterna-
tively we can prepare the original distribution for example the degree distri-
bution. This gives us an access to all of the available methods of analysing the
power law distribution. Finally we can create a rank distribution, which can
be used by the regression based methods. The ¢ symbol in Fig.A-3 indicates
that this process is not a standard procedure. If we have discreet original
distributions, we can create its "raw data" and use the Newman method or
make the rank distribution. However for real data (y has real values) linear
regression methods, based on original or cumulative distributions, are also
possible.

In the next sections we will describe the methodology to create cumulative
and rank distributions. We will also discuss the regression methods in detail.
The maximum likelihood estimator (Newman) method is well described in

recent works [58, 59| and is not discussed in details here.

Data preparation methods

The raw data is a set of measurements or elements that are characterised by
a given property. The good example is a network, where each node has its
degree - or number of connections. In this example our set X C (z1,22...2y)
consists of nodes degrees x; and is the number of nodes N in the network.
From raw data we can make a histogram or probability distribution of a
given property p(z), for example the degree distribution. This distribution
gives the probability of property x; or how frequent a given property is.
The rank distribution is created from raw data, for each element or mea-
surement we give it a rank. Rank 1 is given to largest element, rank 2 to the
next one and so on. Then we plot rank(z) to obtain the rank distribution.

The rank distribution can be made from the original (frequency) distribution
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log-log LS Newman —

— Prob. Distribution/
Cummulative — Histogram —‘

| ’T Raw Data

N

it

Rank ¢ . ‘ c o, o

Figure A-3: Flow of data preparation methods, analysing techniques and possible out-
puts. The rank is connected with the cumulative one (blue box). The NLS and Log-Log
LS are regression methods, the first is nonlinear and the second is linear operating on dou-
ble logarithmic data. The light green boxes show the possible output from given methods.

The ¢ symbol indicates non-standard data processing.

if we have no access to the raw data. Because we know how many elements
with a given property should be in the system we can create the 'raw data’
and then create the rank distribution.

You can also extract this information from the probability distribution by
multiplying each probability by 1/pm:, and rounding it to the natural value.
Pmin 18 the smallest probability found in the distribution.

The cumulative distribution is given by:

P(z)=px' >z) = /00 p(a')dx’ (A-2)

or in discrete form:
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P(z) =p(z; > x) Zp () (A-3)

Therefore it is a sum of all probabilities (z’ ) larger than z. The exponent
of a cumulative distribution is larger by 1 than the exponent of the probability
distribution (o/ = a + 1 ). If we insert p(2’) = A(2’)* and a > —1, into the
cumulative distribution the value of the integral will diverge.

However, the relation o’ = a+1 between the exponents of the probability
distribution and the cumulative one holds only if the analysing probability
distribution is a purely power law function. Especially, the measurements
performed on small systems often lead to the finite-size effect in particular
distributions obtained from these systems. In Fig. A-4 we show the prob-
ability and cumulative distributions of the nodes waiting times discussed in
Chapter 2. In this particular case we observe an exponential cutoff related
with the number of nodes in the network N = 1000. The finite-size effect
affects the cumulative distribution function (CDF) severely and one should
not perform any analysis of the scaling exponent based on it. In such a
case, one should identify the source of the finite-size effect and related with
it maximum value of x and then discard all data larger that x,,,, from the

raw data set before obtaining of the scaling exponent a.

Analysis methods

Our two regression techniques NLS and Log-Log LS work with the least

square method. The goal in the method is to minimise following equation:

S = i f(z;,d@))? (A-4)

=1

Or to minimise the square of the difference between our data Y C (y;)
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Q O CDF

Figure A-4: The impact of the finite-size effect in the probability distribution function
(PDF) on the cumulative distribution function (CDF). The exponents of PDF and CDF

do not hold o = o + 1 relation.

and the function f. Let’s consider situation we have two parameters ag and

a1. To find the minimal value of S we calculate the derivate over ag and ai:

oS
and
0S

As a result we have two equations from which we can calculate ay and
a1. This method works well with linear regressions where parameters ay and
a; are described by the linear relationship y(z) = ag 4+ a1z, if we have a set
of (x,y) data. This method is also used in Log-Log LS regressions, where
a double logarithmic transformation is used. If we consider a power law
relation y = Ax® , this can be written as a linear function if we calculate the

logarithm of both sides of this equation:

log(y) = log(Az®) = log(A) + alog(x) (A-7)
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which can be written as:

y =A + ax (A-8)

where ¢ = log(y), A’ = log(A) and z’' = log(x)

The NLS method also uses the least square method but for nonlinear
functions [61]. Tt is not straightforward, because the sum S is a form of aver-
aging, which works well for linear functions. However, for nonlinear functions
different parts of the curve should be calculated with different weights.

If we consider power law functions, most of the elements contribute to the
left side of the curve, with small values of . The tail of the distribution is
neglected by the least square method. To deal with this problem for nonlinear
functions the nonlinear least square technique was introduced. We do not
calculate the parameters ag and a; directly, but in each step j we find the
best approximation to them. We run this method till parameters converge to
constant values or the level of improvement from one step to another drops
to a sufficient level . Provided that our nonlinear function f has continuous

second partial derivatives, we can write for it Taylor expansion for a given

step j:

f(@i)jr = fxi);+ a“gj;)j Aag +

of(x;);
fa(x i Aoy + O(Aag?) + O(Aay?). (A-9)
3]
where Aag = ag j+1 —ap; and Aay = a4 j+1 —aq ;. Then, based on a linear
approximation to the components of f (a linear model of f, for instance the
Gauss-Newton method) in the neighbourhood of z;, for small Aay and Aay
we see from the Taylor expansion A-9 that
Of (i),

f(@)j = f(z); + g, Do af&(xi)j Aa (A-10)
ao a1
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As a result we can write the linear formula:

yi — flxi); = —af@i)j Aag + —8J;(xi)j Aa; (A-11)

8@0 ai

or in matrix notation:
{D;} ={Z;H{AA} (A-12)

From this equation we can use the classic least square method to obtain
ag and a;. The crucial point of this method is to use suitable initial values of
ap and a;. The constant parameter ay should be of the order of the largest
value in the data set (z or y) and the exponent a; should be positive for
growing and negative for decaying functions. This method can be unstable
and only for some datasets it only works only if the initial parameters are
close to their solution. It is recommended that the Log-Log LS method is
used first and then the NLS method is run with the results.

The Newman method [58, 59| is very simple method to obtain the ex-
ponent, without calculating the distribution. This is very useful in many
cases, however there are a few problems with its accuracy. This method is
sensitive to xmin and xmax, which are the lower and upper bound of the
scaling region. It is very important that xmax is large so that the data range
is over a few orders of magnitude. For data where between 1 to 1.5 orders of
magnitude is available the Newman method calculates the exponent with a
large error. The analysis of a theoretical distribution is shown in Fig. A-5.
For the same dataset the whole data and only first 50 results were analysed.
It shows that when a higher maximum value is used the calculation of the
exponent is largely insensitive to the minimum of the data set. However as

the range of the data set narrows the calculation of the exponent diverges.
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Newman method, Xmax and Xmin dependance, alpha teoretical
=23
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Figure A-5: The accuracy of the Newman method compared for long and short part of

the same distribution.

Matlab functions

Data vector B and low level methods We wrote a set of Matlab
functions that use all of the methods described above. Fig. A-6 explains
the flow of data. On the lowest level we have the raw data - a vector
B = (z1,22...2y), where z; is the measured value and N is the number
of samples. Because Matlab treats a vector as a matrix, we need to make
sure that the data is in a row or column order. The row is the standard in
all functions the B = B’ operation can be used to transpose the data. This

vector can be analysed using the Newman method using:
e a—newman(B,xmin);
or transformed into:
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e rank distribution - R=RankDistNew(B);
e histogram or probability distribution - D=histogram(B);

The Newman method, rank distribution and probability distribution all
work with real numbers. A histogram can be regarded as not normalised
probability distribution. The output of the newman(B,xmin) function is
1 x 2 matrix, where a(1) is the exponent and a(2) is the error. The rank (R)
and probability (D) distributions are analysed with other tools.

There are several parameters that are common to many functions:
e xmin - minimum value of z to include in the analysis;

e xmax - the maximum value, similar to xmin. In all functions xmax can

be equal to 0, in this case functions takes largest value in vector B;

e al,bl,e - the parameters for the NLS method. This method needs to
start with some parameters. al is equivalent to the constant A, b1 is the
exponent and e is the difference below which the iterations stop. The
value of al should be around the largest value (or larger) in the data
and b1 should be at least having the correct sign (growing, decaying).
However sometimes quite precise values are needed. The better the
initial parametrisation the faster the result is obtained. For unrealistic

parameters the function will diverge;

Regression methods starting from a given distribution If we have
a distribution created from the raw data or we have some given distribution

we call use:

e both regression methods for the probability, cumulative and rank dis-

tributions;
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Ao
" oL
a=coef(1); N o.=coef(1,1);
A=coef(2); . A=coet(21);
a=coefNd(1); a=coeflN(1);
NLS log-log LS
Newman coefN=newman(B,xmin);
coef=nls(D,al bl xmin,xmax,e) coef=LinReg(Dxmin xmax); coefNd=newmanDist(D,xmin);
coefR=LinRegRank(R, xmin xmax);

C=Cumulative(D); D=histogram(B);
— Prob. Distribution/

Cummulative | {——————Frop;Suriou %
T

Raw Data

@ | R-RankReadyDist(D); B, o
. [
‘Xa. L

Rank < LR
, * e X
R=RankDistNew(B);
B(L.i.N)

Figure A-6: The data flow with Matlab functions.
e the Newman method for the histogram;

The Newman method (a=newmanDist(D,xmin)) has been adapted to
work with histograms. The D parameter is the input histogram. The output
parameter is 1 X 2 matrix, where a(1) is the exponent and a(2) is the error.

The first linear regression function coef=LinReg(D,xmin,xmax) works
with probability and cumulative distributions. It works with real numbers.
The output parameter is a 2 x 2 matrix, where the coef(1,1) value is the
exponent «, coef(1,2) the error and coef(2,1) the constant parameter A. The
function has problems with rank distribution so a second function was writ-
ten: LinRegRank(R,xmin,xmax).

The last nonlinear regression function (NLS method is run through the
a=nls(D,al,bl,xmin,xmax,e) function and works with probability, cumula-

tive and rank distributions. It works with real numbers. The input parame-
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ters are described in previous sections. This function works fine, however it
gives poor results if the initial parameters al and bl are not very well set.
al is particularly crucial as the solution will diverge if it is too small. The
output contains a(1) as the exponent and a(2) as the constant parameter A.
This method does not give an error.

If we have an (z,y) relation instead of a histogram or we have some
growing function, we should only use the regression methods. Quite often
(x,y) relations do not have a functional form; there are the same z values
with different y values. This of course will create problems, however the
functions will work. For better accuracy we should calculate an average for

each y value or at least sort our data in ascending/descending order.

Useful Functions

We created a set of useful functions to calculate the exponent using several
methods in just one run. We also prepared functions for visualising the

results.

e These functions go through all the necessary steps from raw data (vec-
tor B) to the output (the exponent and its error). detect(B,xmin,xmax)
function compares the Newman method with Log-Log LsSmethod for
histogram, cumulative and rank distributions. It gives four outputs
with their errors (the param matrix). detect nls(B,al,bl,xmin,xmax)
function calculates the same results using a NLS method. Because
this method is more sensitive to the input parameters and does not
give any errors, we separated it from the detect(B,xmin,xmax) func-
tion. largest(B) and largest2(D) find the largest value in 1 X N and
2 x N matrixes respectively. They are useful in estimating the value

of al. The find _exp B(B,xmin,xmax) function calculates exactly the
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same results as the detect(B,xmin,xmax) function but also draws the
results: firstly the approximated power laws compared to the histogram

and histogram compared to the cumulative and rank distributions.

param—detect(B,xmin,xmax);

param—detect nls(B,al,bl,xmin,xmax);
— param=find exp B(B,xmin,xmax);

— al=largest(B);

al=largest2(D);

e If we want to start from a given distribution/histogram or relation
we can use the param=detect dist(D,xmin,xmax) function. It uses
the same methods as detect(B,xmin,xmax) except for the two marked
on Fig. A-6 with the symbol ¢. The limitations of these methods
are described in previous sections. We also created the B—dist_B(D)

function, which converts a histogram into raw data (vector B).
— param=detect _dist(D,xmin,xmax);
— B=Dist_B(D);

e These functions draw one or two power laws with a given exponent and
compares it with the data D. The output is a figure and the value of
R?. This value of course depends on the input parameter xmin. The
last function draws 2 datasets with given o and xmin for each dataset.

— draw(D,a,xmin);
— draw2(D,al,02,xmin);

— draw22(D1, al,D2,02,xminl,xmin2);
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e One of the initial goals of this project was to obtain the exponent of the
degree distribution of a network. We built the find _exp(G,xmin,xmax)
function, which works with an adjency matrix G. The output is a figure
with approximated degree distributions (one for each method) and the

matrix with the parameters: exponents and errors.
— param=find _exp(G,xmin,xmax);

The functions shown here can be widely used to calculate a range of
results. However, there are a lot of cases where we do not need to go through
all the steps or run all the methods. In the next section we will show how to

use the functions.

—0.=-2.176+ 1.0384, R? = 86.0757
—— 0 =-2.1902+ 0.62455, R%=87.813

——o__ =-2.2983+ 0.14718, R? = 101.6693
rank

——a, =-21715, R = 85,5377
—DATA

N
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Figure A-7: The output figure from find_exp(),find_exp B() and find_exp D() func-

tions.
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—q.=-1.3944, R? = 49854 \
—DATA \ 1

Figure A-8: The output figures from draw() function.

Examples

The functions were written to be used step by step and to allow new functions
to be easily built. Here we give some examples of how to build them.

We start from reading the raw data from a file
e load ’data.txt’;
if our data is a column it is transposed into a row

e data—=data’;

usually we need to estimate the xmin for our functions, for small and

medium sized datasets we can run the rank distribution analysis very quickly
e R—=RankDistNew(data);
For very large datasets running the histogram function is recommended
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——a=-1.3944, R? = 4.9354 o
——02=-15978, R? = 9.0047 A Y
—DATA \

Figure A-9: The output figures from draw2() function.
e D=histogram(data);

We can plot this R or D matrix and estimate the xmin from which power
law relation starts.

Having xmin we can run the detect(data,xmin,xmax) function. For most
cases a zero value for xrmax is recommended, because the function will use

then use the largest value in the data.
e param—detect(data,xmin,0);

If we already have the histogram or distribution D, we can easily find

xmin and run
e param—detect dist(D,xmin,0);

This function works quite slowly (because of the internal use of the
R—=RankReadyDist(D) function) . You can create vector B (raw data) by

using
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——a =-1.3944, R? = 4.9854
—a2=-21683, R?=4.489
——DATA1

DATA2

Figure A-10: The output figures from draw22() function.
e B=Dist_ B(D);

When we have a histogram, where large y values exist creating a rank
distribution or a vector B can take a long time. If this histogram is quite
noisy we want to make it smoother. In this case it is much faster to create
a cumulative distribution from a histogram and then run regression method.

Below is the list of steps from histogram D to the graphical output.
e C=Cumulative(D);
e alfa=LinReg(C,xmin,xmax);
o alfa2=nls(C,largest2(C),alfa(1,1),xmin,xmax,e);

(the value alfa(1,1) from LinReg was used as an input parameter, function

largest2 finds largest value in 2 X N matrix )
e draw2(C,alfa(1,1),alfa2(1),xmin);
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These steps are the most typical, however the user can look at the Fig.

A-6 (the data flow diagram) and create their own functions.

List of functions

Below is a list with all of the functions written for this project. Some of
them are just internal functions, not for end-users. First we describe some

standard notation:

e B is the vector of raw data;

D is a histogram;
e (C is a cumulative distribution;

R is a rank distribution

xmin is the minimum value a function uses in a regression;

xmaz is the maximum value a function uses in a regression (0 is used

for automatically obtaining the maximum value from the data);

a is the exponent;

e param, a, anls, alfa, b, L, p are the outputs from some functions where

the most important are described in Tab. A-1.

The outputs param and par come from higher-level functions, it means
they use basic functions inside to calculate the exponents. The alfa, a and

anls outputs come from basic low-level functions.
e Higher-level functions:

— param=detect(B,xmin,xmax);
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Method Exponent « Error Constant A
Newman param(1,1) | param(1,2) -
Log-Log LS, histogram param(2,1) | param(2,2) -
Log-Log LS, cumulative param(3,1) | param(3,2) -
Log-Log LS, rank param(4,1) | param(4,2) -
NLS histogram par(1,1) - par(1,2)
NLS cumulative par(2,1) - par(2,2)
NLS rank par(3,1) - par(3,2)
Log-Log LS (depending on input) alfa(1,1) alfa(1,2) alfa(2,1)
Newman a(1) a(2) -
NLS (depending on input) anls(1) - anls(2)

Table A-1: The list of all output parameters and what they contain inside themselves.

param—detect _dist(D,xmin,xmax);
— param=find _exp(G,xmin,xmax);
— param=find exp B(B,xmin,xmax);

— param=find _exp D(D,xmin,xmax);

par=detect nls(B,al,bl,xmin,xmax,e);
e Low-level functions:

— alfa=LinReg(D,xmin,xmax);

— alfa=LinRegRank(R,xmin,xmax);
— a=newman(B,xmin);

— a=—newmanDist(D,xmin);

— anls=nls(D,al,bl,xmin,xmax,e);
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e Data preparation functions:

— C=Cumulative(D);

D=histogram(B);

B=Dist_B(D);

R—=RankDistNew(B);

R—RankReadydist(D);
e Drawing functions:

— draw(D,a,xmin);
— draw2(D,al,02,xmin);
— draw22(D1,a1,D2,02,xmin1,xmin2);
e Internal functions:
— b=findB(D,xmin,xmax,«);
— p=nls_core(D,al,bl);
— draw_slopes(coef,coef2,coefR,alfaN,D,C,R, xmin);

e Other functions:

— D=PowerLaw(N, ,a);

— G=scalefreeBernard(N,m);
— G=scalefreeKertesz(N,m);
— L=largest(B);

— L=largest2(D);
To obtain a socecode pleas emial berni.kujawski@gmail.com
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