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Abstract

In this paper we define simulation relations for dis-
tributed systems. Taking as starting point our previous work
on the distributed testing architecture, we introduce novel
simulation relations that can be used to define, given a spec-
ification, what a good implementation is. We approach the
problem from two different perspectives. First, we consider
that different ports of the system cannot share information.
Thus, the decision to consider whether a system is correct
has to be based only on local observations. We give some
examples to show that this relation is very weak and propose
a new one where we allow the different ports to partially
communicate. Specifically, we do not implement a complex
synchronization mechanism but allow entities to combine
whole traces to obtain a verdict.

1 Introduction

The high complexity of current software systems has en-
forced the use of systematic techniques in order to assess
their correctness. One of the software engineering method-
ologies to perform this assessment consists in working with
an abstract model (specification) showing the desirable be-
haviour of the system. Then, the correctness of the system
is defined in terms of its comparison with the specification:
We say that the system conforms to the specification if it
does not show a behaviour that contradicts the model. In
order to check the conformance of the developed system
with respect to the specification, specially if we have a state
based model, the area of formal testing has received much
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attention (see, for example, [LY96, Tre96, Pet01, BT01,
HU02, Hie02, PY05, RMN08, HBH08, HBB+09]).

Even though most work on formal testing is based on no-
tions related to trace containment (for its extended use, we
can mention ioco [Tre96, Tre08]), other possibilities to es-
tablish the correctness of the system can be introduced. In
this line, simulation relations [Gla93, LV95, Gla01, CFG08,
FG09] are a good candidate since they relate two processes
if one of them is able to simulate the behaviour of the other.
The asymmetry of the notion is more suitable to define what
a good implementation is, in contrast with symmetric no-
tions such as bisimulation, because it recognises that the
related objects can be, in fact, of different nature. However,
this advantage of simulation relations has, to the best of our
knowledge, not been exploited before in the context of for-
mal conformance relations for distributed systems.

If the system that we are studying has physically dis-
tributed interfaces, called ports in this paper, then in or-
der to determine its conformance with respect to a speci-
fication, we place an observer at each port. Usually, we
have to assume that either the observers cannot communi-
cate with each other or that this communication is costly
since it requires the installation of an external network
to channel the huge amount of exchanged messages. In
addition, we assume that the different observers do not
have access to a global clock. In the framework of for-
mal testing it has been established that the use of such a
decentralised approach reduces the ability to distinguish
between agents and both conformance and testing in this
context have received much attention (see, for example,
[SB84, DB85, LDB93, TY98, RC03, UW06, HU08]).

Taking as a first step our previous work [HMN08a,
HMN08b] on formal testing in the distributed architecture,
the main purpose of this paper is to define sensible sim-
ulation relations to establish the conformance of a system
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Figure 1. Example of distributed systems.

against a specification in the context of a distributed archi-
tecture. In other words, we have to adapt the notion of sim-
ulation relation both to a conformance vision of the correct-
ness of systems and, more importantly, to deal with the ex-
istence of different ports. We consider two scenarios. In the
first scenario we assume that ports of the system are inde-
pendent in the sense that no external agent or system can
receive information from more than one of them. In this
situation it is sufficient that the local behaviour observed
at a port 𝑝 of the system is consistent with some global be-
haviour of the specification and that this is the case for every
port. In the second scenario there is the possibility that in-
formation from two or more of the ports could be received
by some external agent/system and as a result the local be-
haviours observed at the separate ports could be brought
together. This leads to a stronger simulation relation where
some errors that could not be detected while applying the
previous relation can be unveiled.

In order to see the difference, consider a specification 𝑠
which nondeterministically chooses to either have event 𝑎𝐿
at port 𝐿 followed by 𝑎𝑈 at port 𝑈 or event 𝑎′𝐿 at port 𝐿
followed by 𝑎′𝑈 at port 𝑈 (see Figure 1, left). Further, let
us suppose that the implementation 𝑟 nondeterministically
chooses to either have event 𝑎𝐿 at port 𝐿 followed by 𝑎′𝑈 at
port 𝑈 or event 𝑎′𝐿 at port 𝐿 followed by 𝑎𝑈 at port 𝑈 (see
Figure 1, right). Then 𝑟 conforms to 𝑠 under the weaker
notion of conformance (simulation) since in each case the
agent at port 𝑈 can either observe 𝑎𝑈 or 𝑎′𝑈 and the agent
at port 𝐿 can either observe 𝑎𝐿 or 𝑎′𝐿. However, 𝑟 should
not conform to 𝑠 under our stronger notion of conformance
since each possible behaviour of the implementation (the
performance of 𝑎𝐿 and 𝑎′𝑈 or the performance of 𝑎′𝐿 and
𝑎𝑈 ) can be distinguished from the behaviours of the spec-
ification if we allow an agent to receive information about
the local observations made at each port.

The rest of the paper is structured as follows. In Sec-
tion 2 we introduce some preliminary concepts that we will
use along the paper. In particular, we will give a formalism
to define systems having distributed ports. In Section 3 we
introduce our first notion of distributed simulation that we
call weak simulation. In Section 4 we point out the draw-
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Figure 2. A simple distributed majority voting
protocol.

backs of the previous simulation relation and introduce an
alternative, stronger simulation relation. Let us remark that
the use of the adjectives weak and strong is not associated to
the usual meaning of these concepts in the context of bisim-
ulation, where the weak notion partially abstract internal ac-
tions. In our case both simulation relations are weak in this
sense since internal actions are dealt with in a way simi-
lar to the one in weak bisimulation. In Section 5 we com-
pare our two simulation relations with one another and with
the dioco relation previously defined [HMN08a, HMN08b].
Finally, in Section 6 we present our conclusions and give
some lines for future work.

2 Preliminaries

In this section we introduce the main notation that will
be used in the paper. In order to present systems we will use
a notion of labelled transition system where we take into ac-
count the port at which an action is performed. Therefore,
we will consider a pairwise disjoint partition of the actions
of the system among the different ports. Next, we recall
the usual notion of labelled transition system and then show
how to consider this type of systems in a context where
more than one port is available.

Definition 1 A labelled transition system 𝑠, in short LTS, is
defined by the tuple (𝑄,𝒜𝑐𝑡, 𝑇, 𝑞𝑖𝑛) in which 𝑄 is a count-
able set of states, 𝑞𝑖𝑛 ∈ 𝑄 is the initial state, 𝒜𝑐𝑡 is the set
of visible actions, and 𝑇 ⊆ 𝑄× (𝒜𝑐𝑡 ∪ {𝜏})×𝑄, where 𝜏
represents internal (unobservable) actions, is the transition
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relation. A transition (𝑞, 𝑎, 𝑞′) means that from state 𝑞 it is
possible to move to state 𝑞′ with action 𝑎 ∈ 𝒜𝑐𝑡 ∪ {𝜏}.

We say that the process 𝑠 is divergent if it can reach a
state in which there is an infinite path that contains only
internal actions. In this paper we only consider processes
that are not divergent.

Any state 𝑞 ∈ 𝑄 induces an LTS derived from 𝑠 by set-
ting the initial state to 𝑞, that is, abusing the notation we
consider 𝑞 = (𝑄,𝒜𝑐𝑡, 𝑇, 𝑞).

During the rest of the paper we use the following nota-
tion.

1. If (𝑞, 𝑎, 𝑞′) ∈ 𝑇 , for 𝑎 ∈ 𝒜𝑐𝑡 ∪ {𝜏}, then we write
𝑞 𝑎−−→ 𝑞′.

2. We write 𝑞
𝑎

==⇒ 𝑞′, for 𝑎 ∈ 𝒜𝑐𝑡, if there exist
𝑞0, . . . , 𝑞𝑘, with 𝑘 ≥ 1, and 0 ≤ 𝑖 < 𝑘 such that
𝑞 = 𝑞0, 𝑞′ = 𝑞𝑘, and 𝑞0

𝜏−−→ 𝑞1, . . . , 𝑞𝑖−1
𝜏−−→ 𝑞𝑖,

𝑞𝑖
𝑎−−→ 𝑞𝑖+1, 𝑞𝑖+1

𝜏−−→ 𝑞𝑖+2, . . . , 𝑞𝑘−1
𝜏−−→ 𝑞𝑘.

3. We write 𝑞
𝜖

==⇒ 𝑞′ if there exist 𝑞0, . . . , 𝑞𝑘, with
𝑘 ≥ 0, such that 𝑞 = 𝑞0, 𝑞′ = 𝑞𝑘, and 𝑞0

𝜏−−→
𝑞1, . . . , 𝑞𝑘−1

𝜏−−→ 𝑞𝑘. In particular, we have 𝑞
𝜖

==⇒ 𝑞
for all 𝑞 ∈ 𝑄.

4. We write 𝑞
𝜎

==⇒ 𝑞′ for 𝜎 = 𝑎1, . . . , 𝑎𝑘 ∈ 𝒜𝑐𝑡∗ if there
exist 𝑞0, . . . , 𝑞𝑘, such that 𝑞 = 𝑞0, 𝑞′ = 𝑞𝑘 and for all
1 ≤ 𝑖 ≤ 𝑘 we have that 𝑞𝑖−1

𝑎𝑖
==⇒ 𝑞𝑖.

5. We write 𝑠
𝜎

==⇒ if there exists 𝑞′ such that 𝑞𝑖𝑛
𝜎

==⇒ 𝑞′

and we say that 𝜎 is a trace of 𝑠. We let 𝒯 𝑟∗(𝑠) denote
the set of traces of 𝑠.

If a system has multiple interfaces (ports) at which
it interacts with its environment then we can adapt our
formalism to deal with this situation. Given an LTS
(𝑄,𝒜𝑐𝑡, 𝑇, 𝑞𝑖𝑛) with port set 𝒫 = {1, . . . ,𝑚}, for a port
𝑝 ∈ 𝒫 we identify the set 𝒜𝑐𝑡𝑝 of visible actions that can
be observed at 𝑝. This partitions 𝒜𝑐𝑡 into 𝒜𝑐𝑡1, . . . ,𝒜𝑐𝑡𝑚.
We assume that 𝒜𝑐𝑡1, . . .𝒜𝑐𝑡𝑚 are pairwise disjoint.1 We
use the term LTS for the case where there are multiple ports
and when there is only one port we use the term single-port
LTS.

Example 1 In Figure 2 we sketch, as an LTS, the speci-
fication of the server side of a simple protocol to perform
majority voting. We will use this system as a running ex-
ample to illustrate some of the concepts that we will intro-
duce in the paper. There are two distributed parties that are
asked to vote either 0 or 1 (this is indicated by the two con-
secutive transitions labelled by 𝑎𝑠𝑘𝑈 and 𝑎𝑠𝑘𝐿). Then, the
server receives the answers from each party 𝑟𝑒𝑡𝑥𝐿 and 𝑟𝑒𝑡𝑥𝑈 .

1If the same types of values can be received or sent by the SUT at
different ports, then we can label these in order to ensure that the sets are
disjoint.

If they voted the same, then the server sends a message to
the parties with the corresponding result, that is, either the
transitions 𝑠𝑒𝑛𝑑0𝑈 and 𝑠𝑒𝑛𝑑0𝐿 or the transitions 𝑠𝑒𝑛𝑑1𝑈 and
𝑠𝑒𝑛𝑑1𝐿, and if they voted different, then the server resends a
request for votes with the previously indicated sequence of
transitions 𝑎𝑠𝑘𝑈 and 𝑎𝑠𝑘𝐿.

The corresponding LTS is 𝑠 = (𝑄,𝒜𝑐𝑡, 𝑇, 𝑞𝑖𝑛), where
𝑄, the states of the system, is given by the set of differ-
ent bullets, 𝑞𝑖𝑛, the initial state, is the state in the top-
left corner, 𝒜𝑐𝑡 = {𝑎𝑠𝑘𝑈 , 𝑎𝑠𝑘𝐿, 𝑟𝑒𝑡0𝐿, 𝑟𝑒𝑡1𝐿, 𝑟𝑒𝑡0𝑈 , 𝑟𝑒𝑡1𝑈 ,
𝑠𝑒𝑛𝑑0𝑈 , 𝑠𝑒𝑛𝑑

0
𝐿, 𝑠𝑒𝑛𝑑

1
𝑈 , 𝑠𝑒𝑛𝑑

1
𝐿} is the set of visible actions,

and 𝑇 , the set of transitions, is given by the directed arcs of
the graph.

If we see the previous LTS as a multi-port LTS we
have two different ports, that is, 𝒫 = {𝐿,𝑈}, so that
𝒜𝑐𝑡𝑈 = {𝑎𝑠𝑘𝑈 , 𝑟𝑒𝑡0𝑈 , 𝑟𝑒𝑡1𝑈 , 𝑠𝑒𝑛𝑑0𝑈 , 𝑠𝑒𝑛𝑑1𝑈} and 𝒜𝑐𝑡𝐿 =
{𝑎𝑠𝑘𝐿, 𝑟𝑒𝑡0𝐿, 𝑟𝑒𝑡1𝐿, 𝑠𝑒𝑛𝑑0𝐿, 𝑠𝑒𝑛𝑑1𝐿}. ⊓⊔

The next definition is based on the corresponding one
from our earlier work [HMN08a] but taking into account
the peculiarities of the current framework where we do not
distinguish between inputs and outputs.

Definition 2 Let 𝑠 = (𝑄,𝒜𝑐𝑡, 𝑇, 𝑞𝑖𝑛) be an LTS with port
set 𝒫 = {1, . . . ,𝑚}. Let 𝑝 ∈ 𝒫 and 𝜎 ∈ 𝒯 𝑟∗(𝑠) be a trace
of 𝑠. We let 𝜋𝑝(𝜎) denote the projection of 𝜎 onto 𝑝 and
this is called a local trace. This is formally defined by the
following rules:

1. 𝜋𝑝(𝜖) = 𝜖.

2. If 𝑎 ∈ 𝒜𝑐𝑡𝑝 then 𝜋𝑝(𝑎𝜎) = 𝑎𝜋𝑝(𝜎).

3. If 𝑎 /∈ 𝒜𝑐𝑡𝑝 then 𝜋𝑝(𝑎𝜎) = 𝜋𝑝(𝜎).

Given 𝜎, 𝜎′ ∈ 𝒯 𝑟∗(𝑠) we write 𝜎 ∼ 𝜎′ if 𝜎 and 𝜎′ cannot
be distinguished when making local observations, that is,
for all 𝑝 ∈ 𝒫 we have that 𝜋𝑝(𝜎) = 𝜋𝑝(𝜎

′).
Let 𝑝 ∈ 𝒫 . We denote by 𝑠⌉𝑝 the process

(𝑄,𝒜𝑐𝑡𝑝, 𝑇
′, 𝑞𝑖𝑛) formed by replacing in 𝑠 all actions that

do not occur at 𝑝 by 𝜏 . Thus, 𝑇 ′ is the minimum set such
that for all transition 𝑞 𝑎−−→ 𝑞′ ∈ 𝑇 we have that:

1. If 𝑎 ∈ 𝒜𝑐𝑡𝑝 ∪ { 𝜏} then 𝑞 𝑎−−→ 𝑞′ ∈ 𝑇 ′.

2. If 𝑎 ∈ 𝒜𝑐𝑡𝑞 , for some 𝑞 ∕= 𝑝, then 𝑞 𝜏−−→ 𝑞′ ∈ 𝑇 ′.

An alternative approach to define projections is to con-
sider the graph induced by the

𝑎
==⇒ relation. In this case, we

can construct the 𝜏 -less projected LTS by using the classi-
cal 𝒪(𝑛2.376) algorithm based on the transitive closure op-
eration of [CW90] that has been previously used to decide
weak bisimulation.

Example 2 In Figure 3 we show the projection on port 𝐿
of our running example. Let us remark that since the infor-
mation concerning port 𝑈 has been removed we now have
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Figure 3. Projection on port 𝐿 of the majority
voting protocol.

a strange protocol. For example, after producing the action
𝑟𝑒𝑡0𝐿 it will non-deterministically decide either to produce
𝑠𝑒𝑛𝑑0𝐿 at port𝐿, concluding the process, or to produce 𝑎𝑠𝑘𝐿
at port 𝐿, reinitiating the process. Since we cannot see what
was produced at port 𝑈 , the decision is, apparently, non-
deterministic. In conclusion, by considering projections, we
are losing a lot of information about the causality relations
in our protocol, but projections are the right tool to charac-
terize one of our simulation relations. ⊓⊔

3 A weak simulation relation

This paper considers simulation relations for the case
when only local observations are made. To see that this
differs from normal notions of simulation consider, for ex-
ample, the majority voting protocol in Figure 2. The oper-
ation of this protocol can be seen as one in which there is
a sequence of pairs of events, each pair containing exactly
one event at each port. As a result, if we only make local
observations then we cannot distinguish between this pro-
tocol and the one given in Figure 4 since this only differs in
the order in which the events in each pair occur.

In one possible scenario, there is an agent at each port
of the implementation and no agent can receive information
from more than one of these agents. In this situation, we can
consider the ports separately: It is sufficient that for every
port 𝑝 ∈ 𝒫 the observations that can be made of the imple-
mentation at 𝑝 are consistent with the observations that can
be made of the specification at 𝑝. In this section we define
a simulation relation for this scenario.

𝑎𝑠𝑘𝐿

𝑎𝑠𝑘𝑈

𝑟𝑒𝑡0𝑈 𝑟𝑒𝑡0𝐿

𝑎𝑠𝑘𝐿

𝑎𝑠𝑘𝑈

𝑟𝑒𝑡0𝐿 𝑟𝑒𝑡0𝑈

𝑟𝑒𝑡1𝐿 𝑟𝑒𝑡1𝑈

𝑟𝑒𝑡1𝑈

𝑟𝑒𝑡1𝐿

𝑎𝑠𝑘𝐿𝑎𝑠𝑘𝑈

𝑟𝑒𝑡1𝐿

𝑟𝑒𝑡1𝑈

𝑠𝑒𝑛𝑑0𝐿 𝑠𝑒𝑛𝑑0𝑈

𝑠𝑒𝑛𝑑1𝐿

𝑠𝑒𝑛𝑑1𝑈

𝑟𝑒𝑡0𝑈

𝑟𝑒𝑡0𝐿

Figure 4. A variant of the simple distributed
majority voting protocol.

When considering a port 𝑝, all events at ports other than
𝑝 are unobservable and so can be treated in a similar manner
to silent moves. This observation leads us to define the fol-
lowing notation where a special notion of observable trace
is considered: We only observe actions performed at port 𝑝.

Definition 3 Let 𝑠 = (𝑄,𝒜𝑐𝑡, 𝑇, 𝑞𝑖𝑛) be an LTS and 𝑝 ∈ 𝒫
be a port of 𝑠. We use the following notation.

1. If (𝑞, 𝑎, 𝑞′) ∈ 𝑇 , for some 𝑎 ∈ 𝒜𝑐𝑡𝑝, then we write
𝑞 𝑎−−→𝑝 𝑞′.

2. We write 𝑞
𝑎

==⇒ 𝑝 𝑞′, for 𝑎 ∈ 𝒜𝑐𝑡𝑝, if there ex-
ist 𝑞0, . . . , 𝑞𝑘, with 𝑘 ≥ 1, and 0 ≤ 𝑖 < 𝑘 such
that 𝑞 = 𝑞0, 𝑞′ = 𝑞𝑘, 𝑞0

𝑎1−−→ 𝑞1, . . . 𝑞𝑖−1
𝑎𝑖−−→ 𝑞𝑖,

𝑞𝑖
𝑎−−→ 𝑞𝑖+1, 𝑞𝑖+1

𝑎𝑖+1−−−−→ 𝑞𝑖+2, . . . , 𝑞𝑘−1
𝑎𝑘−1−−−−→ 𝑞𝑘

for 𝑎1, . . . , 𝑎𝑘−1 ∈ 𝒜𝑐𝑡 ∪ {𝜏} ∖ 𝒜𝑐𝑡𝑝.

3. We write 𝑞
𝜖

==⇒𝑝 𝑞′ if there exist 𝑞0, . . . , 𝑞𝑘, for 𝑘 ≥ 0,
such that 𝑞 = 𝑞0, 𝑞′ = 𝑞𝑘, 𝑞0

𝑎1−−→ 𝑞1, . . . , 𝑞𝑘−1
𝑎𝑘−−→

𝑞𝑘 for 𝑎1, . . . , 𝑎𝑘 ∈ 𝒜𝑐𝑡 ∪ {𝜏} ∖ 𝒜𝑐𝑡𝑝.

4. We write 𝑞
𝜎

==⇒𝑝 𝑞′ for 𝜎 = 𝑎1, . . . , 𝑎𝑘 ∈ 𝒜𝑐𝑡∗𝑝 if there
exist 𝑞0, . . . , 𝑞𝑘, such that 𝑞 = 𝑞0, 𝑞′ = 𝑞𝑘 and for all
1 ≤ 𝑖 ≤ 𝑘 we have that 𝑞𝑖−1

𝑎𝑖
==⇒𝑝 𝑞𝑖.

5. We write 𝑠
𝜎

==⇒𝑝 if there exists state 𝑞′ ∈ 𝑄 such that
𝑞𝑖𝑛

𝜎
==⇒𝑝 𝑞′ and we say that 𝜎 is a 𝑝-trace of 𝑠. We let

𝒯 𝑟∗𝑝(𝑠) denote the set of 𝑝-traces of 𝑠.

We can use this notation in order to describe the se-
quences of observations that can be made at a port. Using
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this we can define our first simulation relation. During the
rest of the paper we will consider that every time that we re-
late implementations and specifications they have the same
port set.

Definition 4 Let 𝑠 = (𝑄𝑠,𝒜𝑐𝑡, 𝑇 𝑠, 𝑞𝑠𝑖𝑛) be a specification
and 𝑟 = (𝑄𝑟,𝒜𝑐𝑡, 𝑇 𝑟, 𝑞𝑟𝑖𝑛) be an implementation with the
same port set 𝒫 . Given 𝑝 ∈ 𝒫 , ⪯′

𝑝 is a weak simulation
for 𝑠 and 𝑟 if for all 𝑎 ∈ 𝒜𝑐𝑡𝑝, 𝑞𝑠 ∈ 𝑄𝑠, and 𝑞𝑟, 𝑞

′
𝑟 ∈ 𝑄𝑟

such that 𝑞𝑠 ⪯′ 𝑞𝑟 and 𝑞𝑟
𝑎

==⇒𝑝 𝑞′𝑟 we have that there exists
𝑞′𝑠 ∈ 𝑄𝑠 such that 𝑞𝑠

𝑎
==⇒𝑝 𝑞′𝑠 and 𝑞′𝑠 ⪯′

𝑝 𝑞′𝑟. If there is such
a weak simulation ⪯′

𝑝 and 𝑞𝑠 ⪯′
𝑝 𝑞𝑟 then we write 𝑞𝑠 ⪯𝑝 𝑞𝑟

and we say that 𝑞𝑠 weakly simulates 𝑞𝑟 at 𝑝. So ⪯𝑝 is the
largest simulation relation for port 𝑝 and processes 𝑠 and 𝑟.

If for all 𝑝 ∈ 𝒫 we have that 𝑞𝑠 weakly simulates 𝑞𝑟
at 𝑝 then we say that 𝑞𝑠 weakly simulates 𝑞𝑟 and we write
𝑞𝑠 ⪯ 𝑞𝑟.

Finally, we write 𝑠 ⪯ 𝑟 if 𝑞𝑠𝑖𝑛 ⪯ 𝑞𝑟𝑖𝑛. In this case we say
that 𝑠 weakly simulates 𝑟.

We can now show that our first simulation relation ⪯ has
some desirable properties. The proof of the following result
is straightforward.

Proposition 1 Let 𝑠, 𝑟 be LTSs with the same port set 𝒫 .
Then, the following properties hold:

∙ Let 𝑝 ∈ 𝒫 be a port. If 𝑠 ⪯𝑝 𝑟 then for every trace 𝜎 ∈
𝒯 𝑟∗(𝑟) there is some 𝜎′ ∈ 𝒯 𝑟∗(𝑠) such that 𝜋𝑝(𝜎′) =
𝜋𝑝(𝜎).

∙ We have that 𝑠 ⪯ 𝑟 if and only if for every 𝑝 ∈ 𝒫 we
have that 𝑠⌉𝑝 simulates 𝑟⌉𝑝.

⊓⊔

The following relation allows us to provide an alternative
characterisation of our simulation relation ⪯. Intuitively,
the 𝑅 relation introduced in the following definition relates
two processes if the performance of one action by the im-
plementation at a certain port can be appropriately matched
by the specification.

Definition 5 Let 𝑠 = (𝑄𝑠,𝒜𝑐𝑡, 𝑇 𝑠, 𝑞𝑠𝑖𝑛) be a specification
and 𝑟 = (𝑄𝑟,𝒜𝑐𝑡, 𝑇 𝑟, 𝑞𝑟𝑖𝑛) be an implementation with the
same port set 𝒫 . We write 𝑠𝑅𝑝𝑟 if and only if 𝑠𝑅′

𝑝𝑟 for
a relation 𝑅′

𝑝 such that for all 𝑞𝑠 ∈ 𝑄𝑠 and 𝑞𝑟 ∈ 𝑄𝑟, if

𝑞𝑠𝑅
′
𝑝𝑞𝑟 and 𝑞𝑟

𝑎
==⇒𝑝 𝑞′𝑟 for 𝑎 ∈ 𝒜𝑐𝑡𝑝 then there exist states

𝑞′𝑠, 𝑞′′𝑠 , 𝑞′′′𝑠 and sequences 𝜎, 𝜎′ ∈ (𝒜𝑐𝑡 ∖ 𝒜𝑐𝑡𝑝)
∗ such that

𝑞𝑠
𝜎

==⇒ 𝑞′𝑠, 𝑞′𝑠
𝑎−−→ 𝑞′′𝑠 , 𝑞′′𝑠

𝜎′
==⇒ 𝑞′′′𝑠 , and 𝑞′′′𝑠 𝑅′

𝑝𝑞
′
𝑟.

We write 𝑠𝑅𝑟 if and only if for all 𝑝 ∈ 𝒫 we have that
𝑠𝑅𝑝𝑟.

Proposition 2 Let 𝑠 = (𝑄𝑠,𝒜𝑐𝑡, 𝑇 𝑠, 𝑞𝑠𝑖𝑛) be a specifica-
tion and 𝑟 = (𝑄𝑟,𝒜𝑐𝑡, 𝑇 𝑟, 𝑞𝑟𝑖𝑛) be an implementation with
the same port set 𝒫 . Then, for 𝑝 ∈ 𝒫 we have that 𝑠 ⪯𝑝 𝑟
if and only if 𝑠𝑅𝑝𝑟.

Proof : First, let us assume that 𝑠 ⪯𝑝 𝑟. It is sufficient
to prove that the choice 𝑅′

𝑝 =⪯𝑝 satisfies the requirements
of Definition 5. We therefore assume that 𝑞𝑠 ⪯𝑝 𝑞𝑟 we
have that 𝑞𝑟

𝑎
==⇒𝑝 𝑞′𝑟 for some 𝑎 ∈ 𝒜𝑐𝑡𝑝 and are required

to prove that there exist states 𝑞′𝑠, 𝑞
′′
𝑠 , 𝑞

′′′
𝑠 and sequences

𝜎, 𝜎′ ∈ (𝒜𝑐𝑡 ∖ 𝒜𝑐𝑡𝑝)
∗ such that 𝑞𝑠

𝜎
==⇒ 𝑞′𝑠, 𝑞′𝑠

𝑎−−→ 𝑞′′𝑠 ,

𝑞′′𝑠
𝜎′

==⇒ 𝑞′′′𝑠 , and 𝑞′′′𝑠 ⪯𝑝 𝑞′𝑟. Since 𝑞𝑠 ⪯𝑝 𝑞𝑟 there must ex-
ist 𝑞′′′𝑠 ∈ 𝑄𝑠 such that 𝑞𝑠

𝑎
==⇒𝑝 𝑞′′′𝑠 and 𝑞′′′𝑠 ⪯𝑝 𝑞′𝑟. But, by

the definition of 𝑞𝑠
𝑎

==⇒𝑝 𝑞′′′𝑠 there exist 𝑞1, . . . , 𝑞𝑘−1, with
𝑘 ≥ 1, and 0 < 𝑖 < 𝑘 such that 𝑞𝑠

𝑎1−−→ 𝑞1, . . . 𝑞𝑖−1
𝑎𝑖−−→ 𝑞𝑖,

𝑞𝑖
𝑎−−→ 𝑞𝑖+1, 𝑞𝑖+1

𝑎𝑖+1−−−−→ 𝑞𝑖+2, . . . , 𝑞𝑘−1
𝑎𝑘−1−−−−→ 𝑞′′′𝑠 for

𝑎1, . . . , 𝑎𝑘−1 ∈ 𝒜𝑐𝑡 ∪ {𝜏} ∖ 𝒜𝑐𝑡𝑝. Therefore, if we con-
sider 𝑞′𝑠 = 𝑞𝑖, 𝑞′′𝑠 = 𝑞𝑖+1, 𝜎 = 𝑎1, . . . , 𝑎𝑖, and 𝜎′ =
𝑎𝑖+1, . . . , 𝑎𝑘−1, then we have that 𝜎, 𝜎′ ∈ (𝒜𝑐𝑡 ∖ 𝒜𝑐𝑡𝑝)

∗

and 𝑞𝑠
𝜎

==⇒ 𝑞′𝑠, 𝑞′𝑠
𝑎−−→ 𝑞′′𝑠 , and 𝑞′′𝑠

𝜎′
==⇒ 𝑞′′′𝑠 . Thus,

𝑅′
𝑝 =⪯𝑝 satisfies the requirements of Definition 5 and so

𝑠𝑅𝑝𝑟 holds as required.
Now let us assume that 𝑠𝑅𝑝𝑟 and let 𝑅′

𝑝 be the largest
relation such that if 𝑞𝑠𝑅

′
𝑝𝑞𝑟 then for 𝑎 ∈ 𝒜𝑐𝑡𝑝 we have

that 𝑞𝑟
𝑎

==⇒𝑝 𝑞′𝑟 implies that there exist states 𝑞′𝑠, 𝑞′′𝑠 , 𝑞′′′𝑠
and sequences 𝜎, 𝜎′ ∈ (𝒜𝑐𝑡 ∖ 𝒜𝑐𝑡𝑝)

∗ such that 𝑞𝑠
𝜎

==⇒ 𝑞′𝑠,

𝑞′𝑠
𝑎−−→ 𝑞′′𝑠 , 𝑞′′𝑠

𝜎′
==⇒ 𝑞′′′𝑠 , and 𝑞′′′𝑠 𝑅′

𝑝𝑞
′
𝑟. We let ⪯′

𝑝= 𝑅′
𝑝 and

prove that this is a weak simulation. It is sufficient to prove
that if 𝑞𝑠 ⪯′

𝑝 𝑞𝑟 and there exist 𝑎 ∈ 𝒜𝑐𝑡𝑝 and 𝑞′𝑟 ∈ 𝑄𝑟

such that 𝑞𝑟
𝑎

==⇒𝑝 𝑞′𝑟 then there exists 𝑞′′′𝑠 ∈ 𝑄𝑠 such that
𝑞𝑠

𝑎
==⇒𝑝 𝑞′′′𝑠 and 𝑞′′′𝑠 ⪯′

𝑝 𝑞′𝑟. Since 𝑞𝑠𝑅′
𝑝𝑞𝑟 there exist states

𝑞′𝑠, 𝑞′′𝑠 , 𝑞′′′𝑠 and sequences 𝜎, 𝜎′ ∈ (𝒜𝑐𝑡 ∖ 𝒜𝑐𝑡𝑝)
∗ such that

𝑞𝑠
𝜎

==⇒ 𝑞′𝑠, 𝑞′𝑠
𝑎−−→ 𝑞′′𝑠 , 𝑞′′𝑠

𝜎′
==⇒ 𝑞′′′𝑠 , and 𝑞′′′𝑠 𝑅′

𝑝𝑞
′
𝑟. Thus,

since ⪯′
𝑝= 𝑅′

𝑝 we have that 𝑞′′′𝑠 ⪯′
𝑝 𝑞′𝑟. Finally, by the

definition of
𝑎

==⇒𝑝 we have that 𝑞𝑠
𝑎

==⇒𝑝 𝑞′′′𝑠 as required.
⊓⊔

As an immediate corollary of the previous result we ob-
tain that 𝑅 and ⪯ relate the same processes.

Corollary 1 Let 𝑠 = (𝑄𝑠,𝒜𝑐𝑡, 𝑇 𝑠, 𝑞𝑠𝑖𝑛) be a specification
and 𝑟 = (𝑄𝑟,𝒜𝑐𝑡, 𝑇 𝑟, 𝑞𝑟𝑖𝑛) be an implementation with the
same port set 𝒫 . Then, we have that 𝑠 ⪯ 𝑟 if and only if
𝑠𝑅𝑟.

4 A stronger simulation relation

The simulation relation ⪯ corresponds to the situation
in which no agent can ever receive information from more
than one port. As a result, it is sufficient for the sequence of
observations at a port to be consistent with the specification.
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𝑎𝑠𝑘𝑈

𝑎𝑠𝑘𝐿

𝑟𝑒𝑡0𝐿 𝑟𝑒𝑡1𝑈

𝑎𝑠𝑘𝑈

𝑎𝑠𝑘𝐿

𝑟𝑒𝑡1𝑈 𝑟𝑒𝑡0𝐿

𝑟𝑒𝑡0𝑈 𝑟𝑒𝑡1𝐿

𝑟𝑒𝑡1𝐿

𝑟𝑒𝑡0𝑈

𝑎𝑠𝑘𝑈𝑎𝑠𝑘𝐿

𝑟𝑒𝑡0𝑈

𝑟𝑒𝑡1𝐿

𝑠𝑒𝑛𝑑1𝑈 𝑠𝑒𝑛𝑑0𝐿

𝑠𝑒𝑛𝑑0𝑈

𝑠𝑒𝑛𝑑1𝐿

𝑟𝑒𝑡0𝐿

𝑟𝑒𝑡1𝑈

Figure 5. An incorrect simple distributed ma-
jority voting protocol.

If, instead, an agent might receive information from more
than one port then we need a stronger simulation relation
and such a simulation relation is defined in this section.

Example 3 Let us consider the faulty version of the major-
ity voting protocol given in Figure 5. Here we have simply
changed the value associated with each reply and send mes-
sage that occurs at 𝑈 : from 0 to 1 and from 1 to 0. As a
result, for example, if after 𝑎𝑠𝑘𝑈 and 𝑎𝑠𝑘𝐿 the events 𝑟𝑒𝑡1𝐿
and 𝑟𝑒𝑡0𝑈 occur then the protocol will send messages 𝑠𝑒𝑛𝑑0𝑈
and 𝑠𝑒𝑛𝑑1𝐿 and then terminate. This is not a correct major-
ity voting protocol since now if 𝐿 votes 1 and 𝑈 votes 0, the
protocol reports to 𝐿 that both have voted 1 and reports to
𝑈 that both have voted 0. However, this looks acceptable to
each individual agent since each sees a 𝑠𝑒𝑛𝑑 message with
the same value as the 𝑟𝑒𝑡 message. In fact, the projections
of this incorrect protocol at 𝑈 and 𝐿 are isomorphic to the
projections of the original protocol in Figure 2 at 𝑈 and 𝐿,
respectively, and so these two protocols cannot be distin-
guished under ⪯. ⊓⊔

We might simply extend ⪯ to consider global traces.
However, this is not suitable since if the specification and
implementation have produced different traces at some
point, future events may lead to traces that are indistinguish-
able under ∼. For example, we would not want to distin-
guish between 𝑎1𝑎2 in the specification and 𝑎2𝑎1 in the im-
plementation if events 𝑎1 and 𝑎2 occur at different ports. In
order to define a simulation relation, we add to the state of
the specification sequences for each port: These sequences
denote additional actions in the trace of the implementation

that have not occurred yet in the specification but that might
later be ‘compensated for’ in the specification. If we reach
a point where a difference cannot be masked then we know
that the implementation cannot be simulated by the specifi-
cation.

Continuing with the intuitive explanation of our alterna-
tive simulation relation, for implementation 𝑟 and specifica-
tion 𝑠 we compare 𝑟 with (𝑠, 𝜖), where 𝜖 denotes the vector
of ∣𝒫∣ empty queues. This denotes the processes 𝑟 and 𝑠 be-
ing in their initial states and so no actions having occurred
in either the implementation or the specification. If an ac-
tion 𝑎 ∈ 𝒜𝑐𝑡𝑝 occurs in port 𝑝 of 𝑠 and 𝑎 is the head of the
𝑝-queue of 𝑠 then we remove it from the queue. If 𝑎 occurs
in 𝑟 at 𝑝 then we add it to the 𝑝-queue for 𝑠. If 𝑟 and 𝑠 move
to states 𝑟′ and 𝑠′, respectively, and the queues are empty
then the same sequences of observations must have been
made at each port. We can represent the possible changes
in state and queue contents as defined below.

In defining a simulation relation we will want the spec-
ification to delay in simulating an action of the implemen-
tation. However, we will also require that if an action 𝑎
previously performed by the implementation is at the front
of the queue of the specification and the specification can
currently take a transition with action 𝑎 then it will do so.
We allow the specification to delay simulating an action but
do not allow the implementation to delay an action and this
is why we only require a queue for 𝑠 and not for 𝑟. This
leads us to introduce a notion of valid change.

Definition 6 Let 𝑠 = (𝑄,𝒜𝑐𝑡, 𝑇, 𝑞𝑖𝑛) be an LTS with port
set 𝒫 = {1, . . . ,𝑚}, for all 𝑝 ∈ 𝒫 let 𝑠𝑞𝑖 be a se-
quence of visible actions belonging to 𝒜𝑐𝑡𝑝 and let 𝑠𝑞 =
(𝑠𝑞1, . . . , 𝑠𝑞𝑚). For all 𝑞 ∈ 𝑄 we say that the pair (𝑞, 𝑠𝑞)
is a configuration of 𝑠.

Let 𝑠 = (𝑄𝑠,𝒜𝑐𝑡, 𝑇 𝑠, 𝑞𝑠𝑖𝑛) be a specification and 𝑟 =
(𝑄𝑟,𝒜𝑐𝑡, 𝑇 𝑟, 𝑞𝑟𝑖𝑛) be an implementation with the same port
set 𝒫 . Given a configuration (𝑞𝑠, 𝑠𝑞) and a state 𝑞𝑟 ∈ 𝑄𝑟,
we say that the following are valid changes:

1. If 𝑞𝑠
𝑎

==⇒ 𝑞′𝑠, for 𝑎 ∈ 𝐴𝑐𝑡𝑝, and 𝑠𝑞𝑝 = 𝑎𝑠𝑞′𝑝
for some 𝑠𝑞′𝑝, then we say that ((𝑞𝑠, 𝑠𝑞), 𝑞𝑟) ↪→𝑠,𝑎

((𝑞′𝑠, (𝑠𝑞1, . . . , 𝑠𝑞𝑝−1, 𝑠𝑞
′
𝑝, 𝑠𝑞𝑝+1, . . . , 𝑠𝑞𝑚)), 𝑞𝑟) is a

valid change and we also write ((𝑞𝑠, 𝑠𝑞), 𝑞𝑟) ↪→𝑣

((𝑞′𝑠, (𝑠𝑞1, . . . , 𝑠𝑞𝑝−1, 𝑠𝑞
′
𝑝, 𝑠𝑞𝑝+1, . . . , 𝑠𝑞𝑚)), 𝑞𝑟).

2. If the premises of the previous item do not hold and
𝑞𝑟

𝑎
==⇒ 𝑞′𝑟, for 𝑎 ∈ 𝐴𝑐𝑡𝑝, then ((𝑞𝑠, 𝑠𝑞), 𝑞𝑟) ↪→𝑟,𝑎

((𝑞𝑠, (𝑠𝑞1, . . . , 𝑠𝑞𝑝−1, 𝑠𝑞𝑝𝑎, 𝑠𝑞𝑝+1, . . . , 𝑠𝑞𝑚)), 𝑞′𝑟) is a
valid change and we also write ((𝑞𝑠, 𝑠𝑞), 𝑞𝑟) ↪→𝑣

((𝑞𝑠, (𝑠𝑞1, . . . , 𝑠𝑞𝑝−1, 𝑠𝑞𝑝𝑎, 𝑠𝑞𝑝+1, . . . , 𝑠𝑞𝑚)), 𝑞𝑟).

Example 4 Let us consider the specification 𝑠 given in Fig-
ure 2 and the implementation 𝑟 given in Figure 4. Here we
will label the states in a manner that is consistent; since both
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processes are deterministic the state reached by a sequence
of events is uniquely defined.

We compare (𝑞𝑠𝑖𝑛, 𝜖) and 𝑞𝑟𝑖𝑛. Consider now the action
𝑎𝑠𝑘𝐿 that can occur from the initial state of 𝑟 but not from
the initial state of 𝑠. Thus, under this action we can apply
rule 2 of Definition 6 and move to the situation in which
𝑟 is in a new state 𝑞′𝑟, 𝑠 is still in its initial state, and the
queues for 𝑠 are (𝜖, 𝑎𝑠𝑘𝐿). We can now take the action
𝑎𝑠𝑘𝑈 in 𝑟 moving to state 𝑞′′𝑟 and 𝑠 moves to configuration
(𝑞𝑠𝑖𝑛, (𝑎𝑠𝑘𝑈 , 𝑎𝑠𝑘𝐿)). We are now in the situation in which
there is an action 𝑎𝑠𝑘𝑈 at the front of a queue of 𝑠 such that
there is a transition from the current state of 𝑠 with action
𝑎𝑠𝑘𝑈 and so we apply Rule 1 of Definition 6. Under this,
we change the state of 𝑠 and remove 𝑎𝑠𝑘𝑈 from the relevant
queue and so 𝑟 stays in the same state and 𝑠 moves to con-
figuration (𝑞′𝑠, (𝜖, 𝑎𝑠𝑘𝐿)). We now apply Rule 1 again, and
in this case 𝑟 stays in the state 𝑞′′𝑟 and 𝑠 moves to configu-
ration (𝑞′′𝑠 , 𝜖). It is not hard to see that we can continue this
process to show that transitions of one process can be al-
ways appropriately compensated by transitions of the other
one. ⊓⊔

We can now define a new simulation relation in terms
of reachability. The basic idea is that for any legal choice
of moves from the implementation under ↪→𝑟 there must be
some corresponding sequence of moves from the specifica-
tion under ↪→𝑠 such that some final state does not represent
failure. Failure can occur through it being impossible to
simulate some of the actions of 𝑟 and this can be seen as one
or more of the queues associated with 𝑠 being non-empty.

Definition 7 Let 𝑠 = (𝑄𝑠,𝒜𝑐𝑡, 𝑇 𝑠, 𝑞𝑠𝑖𝑛) be a specification
and 𝑟 = (𝑄𝑟,𝒜𝑐𝑡, 𝑇 𝑟, 𝑞𝑟𝑖𝑛) be an implementation with the
same port set 𝒫 = {1, . . . ,𝑚}. We say that ⊑′ is a strong
simulation if for every configuration (𝑞𝑠, 𝑠𝑞) of 𝑠 and state
𝑞𝑟 of 𝑟, if (𝑞𝑠, 𝑠𝑞) ⊑′ 𝑞𝑟 then the following hold:

1. There is a sequence of valid changes that moves to a
situation in which the queue in the configuration for
𝑠 is empty and that passes through pairs of config-
urations related under ⊑′. More formally, there ex-
ist (𝑞𝑠1 , 𝑠𝑞1), . . . , (𝑞𝑠𝑘 , 𝑠𝑞𝑘) and 𝑞𝑟1 , . . . , 𝑞𝑟𝑘 such that
(𝑞𝑠1 , 𝑠𝑞1) = (𝑞𝑠, 𝑠𝑞), 𝑞𝑟1 = 𝑞𝑟, for all 1 ≤ 𝑖 < 𝑘 we
have that ((𝑞𝑠𝑖 , 𝑠𝑞𝑖), 𝑞𝑟𝑖) ↪→𝑣 ((𝑞𝑠𝑖+1 , 𝑠𝑞𝑖+1), 𝑞𝑟𝑖+1)
and (𝑞𝑠𝑖+1 , 𝑠𝑞𝑖+1) ⊑′ 𝑞𝑟𝑖+1 , and 𝑠𝑞𝑘 = 𝜖. This
says that we must be able to move to a situation in
which all actions of the implementation have been sim-
ulated in the specification and also where all config-
urations/state pairs we pass through are related un-
der ⊑′.

2. If ((𝑞𝑠, 𝑠𝑞), 𝑞𝑟) ↪→𝑣 ((𝑞′𝑠, 𝑠𝑞
′), 𝑞′𝑟) then (𝑞′𝑠, 𝑠𝑞

′) ⊑′

𝑞′𝑟. This says that if we make a valid change then the
new configuration for 𝑠 should be able to simulate the
new state of 𝑟.

We say that (𝑞𝑠, 𝑠𝑞) strongly simulates 𝑞𝑟 if there is a
strong simulation relation ⊑′ such that (𝑞𝑠, 𝑠𝑞) ⊑′ 𝑞𝑟 and
we write (𝑞𝑠, 𝑠𝑞) ⊑ 𝑞𝑟. We say that 𝑠 strongly simulates 𝑟
if (𝑞𝑠𝑖𝑛, 𝜖) strongly simulates 𝑞𝑟𝑖𝑛 and we write 𝑠 ⊑ 𝑟.

Let us remark that this notion of strong simulation is
asymmetric since it requires that the specification should
be able to simulate behaviours of the implementation but
does not require the implementation to be able to simulate
behaviours of the specification.

5 Comparing relations

In this section we compare ⪯ and ⊑ with one another
and with the previously defined dioco relation [HMN08a,
HMN08b]. The dioco relation represents a conservative ex-
tension of the ioco relation [Tre96] to the distributed setting.
The dioco relation operates in a similar manner to ioco by
comparing suspension traces of the implementation and the
specification, where a suspension trace is a trace in which 𝛿
can be added whenever a process is in a quiescent state: A
state in which it cannot progress without further input.

The original definition of dioco [HMN08a, HMN08b]
only allowed global traces to be compared in quiescent
states. Since we do not distinguish between input and out-
put, we only have quiescence when in a deadlock state,
where a state 𝑞 is a deadlock state if there are no transitions
of the form (𝑞, 𝑎, 𝑞′). In order to adapt dioco to the current
framework we consider only traces reaching a deadlocked
state. Thus, we introduce the notion of complete trace.

Definition 8 Let 𝑠 be an LTS and 𝜎 be a finite trace of 𝑠. We
say that 𝜎 is a deadlocking trace of 𝑠 if there exists 𝑞 ∈ 𝑄
such that 𝑞𝑖𝑛

𝜎
==⇒ 𝑞 and for all 𝑎 ∈ 𝒜𝑐𝑡∪{𝜏} we have that

there does not exist 𝑞′ ∈ 𝑄 such that (𝑞, 𝑎, 𝑞′) ∈ 𝑇 . In this
case we also say that 𝑞 is a deadlocked state of 𝑠. We define
the set of complete traces of 𝑠, denoted by 𝒞𝒯 𝑟(𝑠), as the
set containing all the deadlocking traces of 𝑠.

Let 𝑠, 𝑟 be LTSs with the same port set 𝒫 . We write
𝑟 dioco 𝑠 if and only if for all 𝜎 ∈ 𝒞𝒯 𝑟(𝑟) there exists
some 𝜎′ ∈ 𝒯 𝑟∗(𝑠) such that 𝜎 ∼ 𝜎′.

Proposition 3 There exist processes 𝑟 and 𝑠 such that
𝑟 dioco 𝑠 but 𝑠 does not strongly simulate 𝑟.

Proof : It is sufficient to consider the processes shown in
Figure 6. These are indistinguishable under dioco but under
⊑ it is sufficient to observe that after 𝑎𝐿 the first process
can perform 𝑏𝑈 and 𝑏′𝑈 and so it cannot be simulated by the
second process since this must either be able to perform 𝑏𝑈
only or to be able to perform 𝑏′𝑈 only. ⊓⊔

As we might expect, given processes 𝑟 and 𝑠, if 𝑠 does
strongly simulate 𝑟 then 𝑟 dioco 𝑠.
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Figure 6. Processes that cannot be distin-
guished under dioco.

Proposition 4 Let 𝑠 = (𝑄𝑠,𝒜𝑐𝑡, 𝑇 𝑠, 𝑞𝑠𝑖𝑛) be a specifica-
tion and 𝑟 = (𝑄𝑟,𝒜𝑐𝑡, 𝑇 𝑟, 𝑞𝑟𝑖𝑛) be an implementation with
the same port set 𝒫 . If 𝑠 ⊑ 𝑟 then 𝑟 dioco 𝑠.

Proof : Let us assume that 𝑠 ⊑ 𝑟. It is sufficient to prove
that for each 𝜎 ∈ 𝒞𝒯 𝑟(𝑟), there exists some 𝜎′ ∈ 𝒯 𝑟∗(𝑠)
such that 𝜎 ∼ 𝜎′.

Let 𝑞′𝑟 be a deadlocked state of 𝑟 such that 𝑞𝑟𝑖𝑛
𝜎

==⇒
𝑞′𝑟. Since 𝑠 ⊑ 𝑟, there is a sequence 𝜌 of valid moves
from ((𝑞𝑠𝑖𝑛, 𝜖), 𝑞

𝑟
𝑖𝑛) to ((𝑞′𝑠, 𝑠𝑞), 𝑞′𝑟) for some configuration

(𝑞′𝑠, 𝑠𝑞) such that the moves in 𝜌 involving transitions in
𝑟 have label 𝜎. Since 𝑠 ⊑ 𝑟 we must have that there is
a sequence 𝜌′ of valid moves from ((𝑞′𝑠, 𝑠𝑞), 𝑞′𝑟) to some
((𝑞′′𝑠 , 𝜖), 𝑞

′′
𝑟 ). Since 𝑞′𝑟 is a deadlock state we have that

𝑞′′𝑟 = 𝑞𝑟. In addition, 𝑠 can only simulate actions that have
already occurred in 𝑟 and thus the sequence 𝜎′ of actions at
𝑠 in 𝜌𝜌′ must satisfy 𝜎′ ∼ 𝜎. Thus there exists 𝜎′ ∈ 𝒯 𝑟∗(𝑠)
such that 𝜎′ ∼ 𝜎 and so the result follows. ⊓⊔

An alternative definition ⊑𝑎𝑙𝑡 of strong simulation would
have queues for both 𝑠 and 𝑟 and allow 𝑠 to simulate actions
of 𝑟 that have yet to happen and allow the queue for 𝑟 to be
non-empty at the end of a sequence of valid moves. Inter-
estingly, we would not have that 𝑠 ⊑𝑎𝑙𝑡 𝑟 not implying that
𝑠 dioco 𝑟 since while dioco allows the specification to do
actions in addition to those in a complete trace 𝜎 of 𝑟, these
must occur after a trace 𝜎′ such that 𝜎′ ∼ 𝜎. In contrast, in
⊑𝑎𝑙𝑡 we could allow 𝑠 to take additional actions to produce
a trace 𝜎′ such that for every port 𝑝 we have that 𝜋𝑝(𝜎) is a
prefix of 𝜋𝑝(𝜎′). This appears to be reasonable, since such
a global trace 𝜎′ is indistinguishable from another global
trace 𝜎′′ ∼ 𝜎′ such that 𝜎 is a prefix of 𝜎′′. There thus
seems merit in investigating simulation relations similar to
⊑𝑎𝑙𝑡 and another interesting challenge is adapting dioco in
order to make it less restrictive. However, the definition of
this new notion goes well beyond the scope of this paper
and will be tackled in future work.

We can also compare ⊑ with ⪯, obtaining the expected
result.

Proposition 5 Let 𝑠 = (𝑄𝑠,𝒜𝑐𝑡, 𝑇 𝑠, 𝑞𝑠𝑖𝑛) be a specifica-

tion and 𝑟 = (𝑄𝑟,𝒜𝑐𝑡, 𝑇 𝑟, 𝑞𝑟𝑖𝑛) be an implementation with
the same port set 𝒫 . We have that if 𝑠 ⊑ 𝑟 then 𝑠 ⪯ 𝑟 but it
is possible that 𝑠 ⪯ 𝑟 but not that 𝑠 ⊑ 𝑟.

Proof : First, let us assume that 𝑠 ⊑ 𝑟 and let 𝑃 denote
the set of sequences of valid moves from ((𝑞𝑠𝑖𝑛, 𝜖), 𝑞

𝑟
𝑖𝑛). Let

us note that we do not restrict 𝑃 to complete paths and so
𝑃 is prefix closed. We will define a relation on the basis of
the paths in 𝑃 , parameterized by a port 𝑝 ∈ 𝒫 , and we will
show that this relation is a weak simulation for 𝑠 and 𝑟 at 𝑝.

We write 𝑞𝑠ℛ𝑝,𝜌𝑞𝑟 if 𝜌 ∈ 𝑃 is a path such that along 𝜌
the sequence of actions in 𝑠 at 𝑝 is 𝜎 = 𝑎1, . . . , 𝑎𝑘 and the
following two conditions hold:

1. 𝑞𝑠 is the state of 𝑠 in the configuration reached by the
shortest prefix 𝜌′ of 𝜌 whose sequence of actions in 𝑠
at 𝑝 is 𝜎

2. 𝑞𝑟 is any state of 𝑟 on 𝜌 reached by a prefix 𝜌′′ of 𝜌
whose sequence of actions in 𝑟 at 𝑝 is 𝜎.

In addition, we write 𝑠ℛ𝑝𝑟 if there exists 𝜌 such that
𝑞𝑠𝑖𝑛ℛ𝑝,𝜌𝑞

𝑟
𝑖𝑛. Clearly, we have that 𝑠ℛ𝑝𝑟. Now let us sup-

pose that 𝑞𝑠ℛ𝑝𝑞𝑟 and 𝑞𝑟
𝑎

==⇒𝑝 𝑞′𝑟. Since 𝑞𝑠ℛ𝑝𝑞𝑟 we have
that 𝑞𝑠ℛ𝑝,𝜌𝑞𝑟 for some 𝜌 ∈ 𝑃 and let the correspond-
ing sequence of actions in 𝑠 at 𝑝 be 𝜎. In addition, since
𝑞𝑟

𝑎
==⇒𝑝 𝑞′𝑟 and 𝑠 ⊑ 𝑟, there is a path in 𝑃 with prefix 𝜌

whose sequence of actions in 𝑠 at 𝑝 is 𝜎𝑎 and let 𝜌′ denote
a shortest such path. Let 𝑞′𝑠 denote the state of 𝑠 in the con-
figuration reached by 𝜌′. Then by the definition of ℛ𝑝 we
have that 𝑞′𝑠ℛ𝑝𝑞

′
𝑟. In addition, 𝑞𝑠

𝑎
==⇒𝑝 𝑞′𝑠. Thus, ℛ𝑝 is a

weak simulation for port 𝑝 and processes 𝑠 and 𝑟. Since this
can be done for any port 𝑝 we have that 𝑠 weakly simulates
𝑟 as required.

To see that it is possible that 𝑠 ⪯ 𝑟 but not that 𝑠 ⊑ 𝑟,
let us consider the processes depicted in Figure 1. It is clear
that these are related under ⪯ since in each case the obser-
vation made at port 𝐿 is either 𝑎𝐿 or 𝑎′𝐿 and the observation
made at port 𝑈 is either 𝑎𝑈 or 𝑎′𝑈 . In addition, these two
processes are not related by either dioco or ⊑ since each
complete trace 𝜎 of one has the property that no complete
trace 𝜎′ of the other is equivalent to 𝜎 under ∼. ⊓⊔

Our definition of ↪→ did not force the implementation
and specification to simultaneously use the same action
when this is possible. However, our definition of ⊑ did
require that the specification should take a transition cor-
responding to an earlier action of the implementation when
this is possible. If we do not make such a restriction, and
the implementation has only finite traces, then the specifica-
tion can wait until the implementation has deadlocked and
then simulate the sequence of actions that occurred and as a
result we would have a relation that is very similar to trace
inclusion.

Now let us consider the processes depicted in Figure 7.
Under our definition of ⊑, when one takes a common cur-
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Figure 7. Two equivalent processes.

rent action from the initial state then we have to consider
the set of configurations in which the other process takes
the same action. As a result we will distinguish between
these processes. It could be argued that we should not be
able to distinguish between these processes and thus that in
some situations ⊑ is too strong. The problem here is that we
have branching in which the branches have actions at differ-
ent ports. Future work will consider alternative simulation
relations.

6 Conclusions

Distributed systems have become increasingly important
and this has led to interest in the verification of distributed
systems and their designs. In this paper we have considered
the situation in which a system has physically distributed
interfaces, called ports, and observations are made locally
at the ports. Recent work has shown that this situation can
require conventional notions of conformance, such as ioco,
to be adapted. However, this is the first paper to propose
simulation relations for such systems.

We first considered the situation in which there is a sep-
arate agent at each port of the implementation, each agent
only observes at its port, and no external agent will receive
information from more than one of these agents. In this sit-
uation it is sufficient that the observations made at a port are
consistent with those in the specification and this led us to
define a simulation relation ⪯. We then produced an alter-
native characterisation of ⪯.

In some situations an external agent will receive infor-
mation regarding the observations made at most than one
port and then ⪯ is too weak. This led us to define a sec-
ond simulation relation, ⊑, in which we require that the set
of observations made at the ports are consistent with the
specification. It transpires that ⊑ is stronger than ⪯ and is
also stronger that the implementation relation dioco that has
been previously defined.

While ⊑ has many of the desired properties, we gave an
example in which it is too strong. This example involved
the implementation and specification branching and for the
branches involving actions at different ports. The problem
is that ⊑ forces the specification to make a choice too early.
However, it can be argued that processes should normally
branch on actions at the same port. Future work will in-
vestigate the problem of defining a simulation relation for
situations in which branching can occur on events at differ-
ent ports.
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