
Image Database Retrieval

Using Neural Networks

Brunel *%-->
THE UNIVERSITY OF WEST LONDON

Image Database Retrieval

Using Neural Networks

Richard Rickman

Brunel 4c,b
THE UNIVERSITY OF WEST LONDON

Image Database Retrieval

Using Neural Networks

A Thesis submitted for the degree of Doctor of Philosophy

by

Richard Matthew Rickman

Neural Networks and Pattern Recognition Group

Dept. Electrical & Electronic Engineering

Brunel University

Uxbridge

Middx.

July 1993

Abstract.

Richard Rickman

Neural Networks and Pattern Recognition Group

Dept. Electrical & Electronic Engineering

Brunel University

Uxbridge

Middx.

The broad objective of this work has been to achieve retrieval of images from large

unconstrained databases using image content. The problem is typified by the need to

locate a target image within a database where no numerical indexing terms exist. Here,

retrieval is based on important features within in an image and uses sample images or user

sketches to specify a query. A typical query might be framed as "Find all images similar

to this one", for example. The aim of this work has been to show how neural networks can

provide a practical, flexible and robust solution to this problem.

A neural network is basically an adaptive information filter which can be used to

extract the salient characteristics of a data set during a training phase. The transformation

learnt by the network can map the images into compact indices which support very rapid

fuzzy matching of images across the database. This learning process optimises the

performance of the code with respect to the contents of the database.

We assess the applicability of several neural network architectures and learning rules

for a practical coding scheme and investigate how the system parameters affect the

performance of the system. We introduce a novel learning law which has a number of

advantages over existing paradigms. In-depth mathematical . analysis and extensive

empirical tests are used to corroborate the arguments presented throughout.

This thesis aims to show the nature of the image retrieval problem, how current

research trends attempt to tackle it and how neural networks can offer us a real alternative

to conventional approaches.

1

Acknowledgements

I would like to thank my friends within the Neural Networks and Pattern Recognition

group at Brunel who made this project so stimulating and rewarding. My special thanks

go out to my supervisor, Professor T. John Stonham, whose constant encouragement

helped me to realise that the darkest hour comes just before the dawn.

This work was funded by the British Library Research and Development Department

research contract M0921.

11

Contents

Abstract. 	 i

Acknowledgements 	 ii

Chapter 1 Introduction 	 1

1.1. Motivation for Research 	 1

1.2 Objectives 	 1

1.3. Applying Neural Networks to Practical Image Database Systems. 	 2

1.4. Overview of the Thesis. 	 3

Chapter 2 The State-of-the-art in Image Database Retrieval Systems 	 7

2.1. Introduction. 	 7

2.2. The Growth of Image Database Technology. 	 8

2.3. Contrasting Conventional and Image Databases. 	 9

2.4. Elements of a Content-Based Retrieval Mechanism. 	 11

2.5. Shape and Feature Representation in an Image Index 	 13

2.5.1. Global and local features for indexing 	 13

2.5.2. Spatially dislocated features as indices 	 14

2.5.3. Object/position descriptors as indices. 	 14

2.5.4. Low level features as indices. 	 14

2.6. Easing the Burden of Object Recognition for Index Construction 	 15

2.6.1. Interactive object recognition 	 15

2.6.2. Indexing CAD drawings 	 15

2.7. Similarity Measures for Image Retrieval Systems 	 16

2.8. Query Processing. 	 17

2.8.1. Query by sketch and images 	 18

2.8.2. Query by colour 	 18

2.8.3. Query by subjective descriptions. 	 18

2.9. Data Representation and Organisation 	 19

2.10. The role of Neural Networks in IDBMS 	 21

2.11. The Nature of Queries in a Typical Commercial Pictorial

Archive 	 23

2.10.1. Characterisation of requests 	 23

2.12. Discussion 	 25

111

Chapter 3 The Fundamentals of Image Coding using Neural Networks. 	 28

3.1. Introduction 	 28

3.2. Neural Network Research - Some Key Issues. 	 29

3.2.1. The 'curse of dimensionality' and the blessing of the

neuron. 	 29

3.2.2. The evolution of the species. 	 29

3.2.3. A simple coding scheme using neural networks. 	 32

3.2.4. What perceptrons cannot do 	 33

3.2.5. Backpropogation for image coding 	 34

3.3. PCA and its Relationship to Our Coding Scheme 	 36

3.4. Unsupervised Learning in Neural Networks 	 37

3.4.1. What features should our coding network learn? 	 37

3.4.2. Hebb's law - a biological paradigm for unsupervised

learning 	 38

3.4.3. Learning to forget 	 40

3.4.4. Constrained Hebbian learning - a generalised approach. 	 40

3.4.5. The relationship between constrained Hebbian learning

and Principal Component Analysis. 	 42

3.4.6. Implementing a multiple Principal Component system

on a neural network 	 42

3.5. Non-Linearities and Multiple-layer Networks - Are they

Appropriate? 	 43
3.5.1. Is one layer enough? 	 44

3.6. Discussion 	 44

Chapter 4 An Empirical Study of the System Parameters for a

Sum-of-weights type Neural Network 	 46

4.1. Introduction 	 46

4.2. An Image Coding Scheme using Constrained Hebbian Learning 	 47

4.2.1. Does this strategy produce a conformal mapping? 	 47

4.2.2. Learning rate and the dynamic behaviour of the

constrained Hebbian node	 48

4.2.3. A practical test to assess the performance of an image

retrieval mechanism. 	 48

4.2.4. How does order of presentation affect training? 	 49

4.2.5. Dimensionality and learning dynamics. 	 51

4.2.6. Data set size and learning dynamics 	 52

4.3. A Multi-Node Coding Scheme using Constrained Hebbian

Learning 	 53

4.4. Database Contents and System Performance. 	 55

4.4.1. Matching code length to diversity of database 	 55

4.4.2. The need for re-training. 	 58

iv

4.4.3. Re-training for a database containing limited image

types 	 58

4.4.4. Re-training for a database containing unlimited image

types 	 59

4.5. Non-Linearities - A Practical Assessment of Their Worth. 	 60

4.5.1. Non-linearities and the prospect for improved

performance. 	 60

4.6. An Intelligent Video Editing System using the Neural Network

Coding Scheme 	 64

4.6.1. Methodology 	 64

4.6.2. Results 	 65

4.6.3. The effect of the number of nodes on the performance of

the editing system 	 68

4.7. Discussion 	 69

Chapter 5 Logical Neural Networks 	 73

5.1. Introduction 	 73

5.2. Why use Logical Neurons? 	 73

5.3. The WISARD architecture 	 74

5.4. How does the tuple size affect the performance of a Logical

Neural Network? 	 75

5.4.1. The nodal transformation of an n-tuple 	 75

5.4.2. Response profiles and tuple size - an analysis. 	 76

5.4.3. The contrasting roles of image classification and coding

systems 	 78

5.4.4. The effect of tuple size for a simple coding scheme. 	 80

5.5. Training and System Performance 	 81

5.5.1. Training and tuple size - an analysis 	 81

5.5.2. Training by image shifting for a practical coding scheme 	 84

5.5.3. Training by adding noise to an image for a practical

coding scheme 	 86

5.6. Mapping the Tuples onto the Image. 	 87

5.6.1. Why do some tuple mappings perform better than

others? 	 87

5.6.2. The tuple as a feature extractor - what's going on 9 	 90

5.6.3. Mapping tuples to maximise the discriminant

information. 	 92

5.7. A Multi-Node encoding Scheme using Logical Neural Networks 	 93

5.7.1. Matching the size of the code to the diversity of the

database 	 94

5.7.2. The effect of training in a multi-node coding scheme 	 96

5.8. An unsupervised Coding Scheme using a Logical Neural Network 	 98

v

5.9. Discussion 	 102

Chapter 6 A Novel Self Organising Learning Law for Image Coding. 	 105

6.1. Introduction 	 105

6.2. An Overview of Self -Organisation in Logical Neural Networks 	 106

6.2.1. The Feature Sensitive Node. 	 106

6.2.2. Tamboratzis' SOLNN 	 107

6.2.3. Allinsons' logical Kohonen clone 	 108

6.2.4. A further logical implementation of a Kohonen feature

map 	 110

6.2.5. On the formalism of learning paradigms for LNNs. 	 110

6.3. Hebbian learning for Logical Neural Networks 	 112

6.3.1. Discriminant features in Self Organising Logical Neural

Networks 	 112

6.4. A New Self Organising Hebbian Learning Law from First

Principles 	 116

6.4.1. Developing the learning law. 	 116

6.4.2. Analysing the learning law for a 1-tuple system 	 119

6.4.3. Extending the novel learning law to larger tuple sizes 	 121

6.4.4. Extending the learning law to multi-node systems. 	 123

6.4.5. Effect of database diversity on performance of a

winner-take-all implementation of the learning law. 	 125

6.4.6. What tuple mapping gives the best performance for the

learning law? 	 126

6.5. Applying the Learning Rule to a Sum-of-Weights Node 	 127

6.5.1. Why is a sum-of-weights implementation preferable to a

1-tuple system? 	 128

6.5.2. Orthogonal learning in a sum-of-weights

implementation 	 129

6.6. Some Practical Results for the New Learning Law. 	 130

6.6.1. When should we re-train the neural network? 	 131

6.7. Comparing the Performance of Four Learning Systems Discussed

in this Thesis. 	 132

6.7.1. Comparing our coding scheme with a mask matching

system 	 135

6.8. Is a 1-tuple Coding Scheme Really Performing Mask Matching? 	 136

6.9. Discussion. 	 136

Chapter 7 Discussion and Conclusions. 	 140

7.1. Defining the Problem 	 140

7.2. Existing and Previous Work 	 141

7.3. Basic Thrust of the Neural Network Coding Scheme. 	 142

vi

7.4. What Kind of Neural Transformation Do We Want? 	 143

7.5. Developing a Suitable Learning Law for the Coding Scheme. 	 143

7.6. Logical Neural Networks for Coding Images. 	 145

7.7. An Objective Appraisal of LNNs for our Coding Scheme. 	 147

7.8. When do we Need to Retrain the System? 	 149

7.9. A Coding Scheme Based on Fixed Local Transforms 	 150

7.10. Epilogue. 	 152

Bibliography 	 154

Appendix A - Database for the 'Intelligent' Video editor. 	 162

Appendix B - A Collection of the Author's Papers 	 166

vii

Chapter 1 - Introduction.

Chapter 1

Introduction.

1.1. Motivation for Research.

We attempt to address the following problem: We want an image, or something

similar to it, from a large database. We think that its in there and we have some idea of

the important features which characterise it. How can we access that image?

1.2 Objectives.

Continuing advances in data storage and transmission technologies mean that Image

Database Systems are now a viable prospect. However, the technologies which have been

applied so successfully to text database retrieval mechanisms cannot readily be harnessed

for image databases. This is because image data is typically richer in information content

than simple alpha-numeric text; we have all heard that "a picture paints a thousand

words". Image retrieval by content will only become a practical prospect when general

purpose automatic feature extraction is possible. This relies heavily upon computer vision

and pattern recognition techniques to formulate efficient indexes. Extracting indexing

features has proved to be an extremely difficult process to automate using conventional

image processing techniques as those features deemed to be important to a human are

typically subtle, enigmatic and often not amenable to deterministic analysis.

Feature based indexing for retrieval of information is one of the main differences

between image and conventional database systems. Here, retrieval is based on important

features within in an image and uses sample images or user sketches, for example, to

specify a query. A typical query might be framed as: "Find all images similar to this

one".

1

Chapter 1 - Introduction.

This thesis aims to show the nature of the image retrieval problem, how current

research trends attempt to tackle it and how neural networks can offer us a real alternative

to conventional approaches.

1.3. Applying Neural Networks to Practical Image Database Systems.

A neural network is basically an adaptive information filter which can be used to

extract the salient characteristics of a data set during a training phase. The transformation

learnt by the network can map the images into compact indices which support very rapid

fuzzy matching of images across the database. This learning process gives neural

networks their remarkable ability to adapt to the nature of the problem in a non-

deterministic fashion. The Neural Network Transformation can optimise the efficacy of

the indexing scheme according to the distribution of images within the database.

Neural network technology, contrary to popular belief, is not new and has been with us

for over half a century. It may have been around for a while but it is still an immature

science struggling to establish itself and has yet to find widespread acceptance for practical

problems. Neural networks have promised much but, in reality, delivered little. Just why

is this?

The non-deterministic aspect of neural network computation is, at once, both a blessing

and a curse: it offers the potential for finding a mapping from the problem to the solution

where no obvious one exists, but it might not find the best one or even an adequate one.

Neural network practitioners who seek to find concrete solutions to real-world problems

find this rather irksome. Part of the problem lies with the fact that neural networks

frequently require a host of often abstruse network parameters to be adjusted for the

system to perform the desired function. Such parameters might include the network

topology, the learning law 'constants', the nodal functionality and the scope of the training

data, for example. This is seldom a straightforward affair and training these systems

typically requires expert knowledge both of the problem domain and of neural network

systems in general. This has, by and large, restricted their application to rather esoteric

problems. This is obviously not acceptable for a practical system.

It is generally held that neural networks will only begin to find favour with a curious

public when they can be seen to offer a robust solution to a variety of practical problems.

To this end, it is imperative that we develop systems which can be trained with only a

modest level of expertise. A primary objective of this work is to investigate how the

2

Chapter 1 - Introduction.

parameters for the architectures and learning laws discussed here affect the performance of

the retrieval mechanism with a view to completely automating this phase of the process.

We develop an entirely novel learning law which does not require manual selection of any

network parameters.

1.4. Overview of the Thesis.

We investigate the nature of the transformation required by the code and show how it

can be supported on a neural network architecture. We give a brief overview of the

development of several different network architectures and highlight some of the

fundamental issues pertinent to our coding scheme such as network topologies, learning

paradigms and node functionality, for example.

We show how the network parameters need to be adjusted as the contents of the

database change and investigate methods of automating the selection of these

parameters. We assess the applicability of several architectures and learning rules and

introduce a novel learning law which has a number of advantages over existing paradigms.

In-depth mathematical analysis and extensive empirical tests are used to corroborate the

arguments presented throughout.

In chapter 2 we aim to highlight the requirements of a practical Image Database

Management System and outline the approaches that have been adopted to solve this

difficult problem. We take a closer look at the essential components of a practical Image

Database Management System and concentrate on mechanisms which support automatic

image retrieval by content. Such a system must make a provision for automatic feature

extraction for constructing image indexes, data structures to contain these indexes and

query methods to support image access.

Much of chapter 2 is given over to a review current state-of-the-art in automatic image

indexing so that the work presented in the rest of this thesis might be put into proper

perspective. We summarise the different approaches to feature extraction, the type of

features that have been used index images to date and discuss the relative merits of each.

We present an analysis of the type of queries posed to a typical commercial picture

archive and show that the subjective nature of these requests are not always amenable to

conventional automatic processing.

3

Chapter 1 - Introduction.

Chapter 3 demostrates how a simple neural network architecture and associated

learning rule can be used as the basis of a very effective coding mechanism for our image

retrieval system. We introduce the neural network as an adaptive information filter which

can learn the important features within a database of images. We give a brief overview of

the fundamental issues in the development of neural networks and highlight some of the

factors pertinent to our coding scheme.

We indicate that the coding transform required by our scheme has much in common

with a classical statistical analysis technique called Principal Component Analysis. We

show how a learning law, found to exist in 'real-life' neurons can be developed and

implemented on a single layer feed-forward linear neural network to produce a very

efficient approximation of Principal Component Analysis. Much of the mathematical

formalisms, insights and theoretical foundations presented in this chapter are applied in a

practical context in chapter 4 which provides empirical backing to the work discussed in

chapter 3.

In chapter 4 we investigate the factors effecting the performance of a practical

retrieval-by-image-content system. Initially, we work with a database of machine printed

fonts which permits an objective appraisal of the performance of a neural network based

scheme. Extensive practical tests and computer simulations are used to back up the

arguments presented throughout.

The rate at which the neuron learns can have a profound effect upon the performance

of the system. We investigate how the order of presentation of training data, its size and

the size of the data set affect the choice of the learning rate. The performance is also

dependent upon the diversity of images within the database - we investigate the extent of

this relationship. We show how the code length and nodal transformation may be

optimised with respect to the contents of the database. The nodal transformation is

changed by re-training the system. We take a close look at the factors affecting the need

for re-training.

We provide some theoretical and empirical evidence to show that, though the system is

extraordinarily simple, further enhancements are unlikely to improve upon its

performance.

4

Chapter 1 - Introduction.

We demonstrate how the coding scheme developed here may be used as the basis of an

'intelligent' video editing system.

The objective of chapter 5 is to show how a single layer Logical Neural Network can

be used as the basis for a very simple coding scheme and to contrast the performance with

the sum-of-weights paradigm discussed in Chapters 3 and 4.

We introduce the WISARD neural network architecture and investigate, both through

mathematical analysis and experimental results, how the network parameters effect the

performance of the code. Such parameters include tuple size and mapping strategy,

training methodology and the number of nodes used. We show how a very basic

unsupervised Logical Neural Network coding mechanism can be used to retrieve images

from a database of machine printed characters.

In chapter 6 we trace the development of a novel learning paradigm for a Self

Organising neural network. The learning law began life as an adjunct to the work on

Logical Neural Networks described in chapter 5.

We give a brief overview of existing Self Organising learning paradigms for Logical

Neural Networks and assess their suitability for our own particular application. We take

an empirical look at the underlying principles governing Self Organisation in these

systems and discuss how these might be implemented using a learning law. We go on to

develop a mathematical formalism for this law and present an analysis of the system

dynamics.

We present a form of this same learning law which can be supported on a sum-of-

weights type node and contrast its performance with a Logical Neural Network

implementation.

We set out to determine whether Self Organising Logical Neural Network architectures

are more appropriate for our particular application than sum-of-weights type counterparts,

both in terms of speed of training, memory requirements and optimality of solution. We

compare and contrast the performance of four different Self Organising neural network

coding schemes for our image retrieval system.

5

Chapter 1 - Introduction.

We consolidate the major findings of this research in chapter 7 and highlight

potentially fruitful avenues worthy of further investigation.

This thesis encapsulates the findings of a three year British Library funded project to

investigate the use of neural networks for image database retrieval systems. It provides a

very firm base of practical research upon which to build. This author believes that

ambitious demonstrator projects are sorely needed to raise both public awareness and

confidence in neural networks. In the final part of this thesis we propose a demonstrator

project, based on the Neural Network Transformations investigated in this thesis, which

goes some way toward this.

6

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

Chapter 2

The State-of-the-art in Image Database Retrieval
Systems.

2.1. Introduction.

The technologies which have been developed to transmit, store and access alpha-

numeric data have now come of age and we are poised on the edge of a new era in

information systems design. The next logical step is the design of efficient, flexible and

robust systems for handling image data. So, where are they? Why can't the technologies

which have been applied so successfully to text-databases be harnessed for image

databases, for instance? What is it about image data that makes it so difficult to manage

using conventional Database Management System (DBMS) practice?

We attempt to address the following problem: We want an image, or something like it,

from a large database. We think that its in there and we have an idea of the important

features which characterise that image. How can we get it out?

In this chapter we aim to highlight the requirements of a practical Image Database

Management System (IDBMS) and outline the approaches that have been adopted to solve

this difficult problem. Such a problem will only really be resolved when our DBMS can

isolate, encode and compare entities which correspond to the users own perception of

important image features. However, the information contained within an image is

typically rich, subtle and enigmatic. It is open to subjective interpretation, contextual

nuances and not always amenable to deterministic analysis. For these reasons it is not easy

to compare one image against another. We take a closer look at the essential components

of a practical DBMS and concentrate on mechanisms which support automatic image

retrieval by content. Such a system must make a provision for the following:

• Automatic feature extraction for constructing image indexes.

• Data structures to contain these indexes for multi-dimensional searches.

• Query methods to support image access.

7

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

This thesis aims to show how neural networks can be used to extract features for

automatic indexing and, so that this work might be put in perspective, much of this chapter

is given over to the current state-of-the-art in automatic image indexing. Data structures,

storage methodologies and data management systems are mentioned only in passing.

We summarise the different approaches to feature extraction, the type of features that

have been used index images to date and discuss the relative merits of each. At present the

most successful methods have, on the whole, avoided the use of sophisticated image

descriptors and use rather crude, low-level features or 'put a human in the loop' to extract

objects from an image.

There is a general consensus that retrieval by content in DBMS will push current

image processing technologies to their limits and that neural networks hold much promise

for this type of application. We discuss the role of neural networks in feature extraction for

image retrieval by content systems.

The first tentative steps have been made toward tackling automatic indexing for

IDBMS. It is, however, a very formidable problem. We present an analysis of the type of

queries posed to a typical commercial picture archive and show that the subjective nature

of these requests are not always amenable to conventional automatic processing.

We have a problem and we want a practical solution. We hope to show what that

problem is, how current research trends attempt to tackle it and how neural networks can

offer us a real alternative to conventional approaches.

2.2. The Growth of Image Database Technology.

Every day we are bombarded with information presented in the form of images. So

important are images in the world of Information Technology that we generate literally

millions of images every day, and this number keeps escalating with advances in imaging,

visualisation, video and computing technologies. It would be impossible to cope with this

explosion of image information unless these images were organised for rapid, reliable,

flexible and convenient access on demand. The application spheres for DBMS are

widening as the cost of the technology to support it continues to drop. Such applications

might include:

8

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

• Office and Library applications.

• Printing.

• Publication and Advertising.

• Security and Identification.

• Medicine.

• Geographic Information Systems.

• Education and Training.

• Fine Arts archiving.

• Entertainment and Broadcasting.

These communities have enthusiastically embraced multi-media technologies for

further exploitation of their holdings[1][2][3].

Methods used to retrieve images from these databases vary greatly from application to

application. An art historian may want to retrieve images of a reclining model, a medical

researcher may want chest images with a specified condition near the heart and an

advertising layout editor may be looking for a picture he remembers of a beach scene with

palm trees in it, for example. To be effective, such applications demand innovative

approaches to a variety of issues and components including storage sub-system platforms,

indexing and retrieval mechanisms and user interfaces.

Whilst the technologies which store and transmit image data have, by and large,

developed at a steady rate, it is true to say that the methods to retrieve this data in a

convenient and flexible way have not. The marked lag of automatic image indexing and

retrieval mechanisms behind the development of the storage technologies has created a

situation that can be likened to that of a library kept behind locked doors. The dichotomy

between these two inter-dependent technologies has highlighted a very pressing need for

the development of practical access mechanisms for image databases/2114J.

2.3. Contrasting Conventional and Image Databases.

Computerised text database management systems came about because users desired

convenient access mechanisms for archives of alpha-numeric type data (in the same way

that they now want convenient access mechanisms for image databases). In these systems,

large amounts of data are organised into fields and important or key fields are used to

index the database making the search very efficient. These information management

9

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

systems are limited by the fact that they work well only with numeric data and short, one-

dimensional alpha-numeric strings. However, image data is, typically, richer in

information content than simple alpha-numeric text; we have all heard that 'a picture paints

a thousand words'. The radical difference between image and alpha-numeric data has

meant that classical approaches to text database design cannot be readily applied to image

databases.

Most current commercial DBMS base their retrieval mechanisms on the use of

keywords or text associated with each image and do not directly capture the visual

properties of the data [5][6][7]. Queries are performed using standard query languages

such as SQL. This allows keywords and text queries including logical combinations,

conjunctions (AND's), disjunctions (OR's) and negations (NOT's) of image/text predicates.

There are several problems associated with these methods:

• The search is dependent solely on the key words. If the current query refers to

image properties that were not initially described, the search will, in all

probability, fail.

Some visual properties are difficult or nearly impossible to describe with text such

as certain textures or shapes. See, for example [8].

• Even if all useful characteristics of an image are described with text, there is no

commonly agreed-upon vocabulary for describing image properties, so that a

'curvy' item may not match a 'wavy' one, for example.

• Whereas text may be regarded as a unique data representation, multiple

representations are possible for images. At present it is difficult to incorporate a

mechanism that will deal adequately with such ambiguities in the framework of

existing practices.

• The descriptors for the image indices must be selected from a code book of

object/feature types. For a database whose contents are in a state of flux, the code

book entities may have to be continually updated. This is not an easy task.

It is evident that a totally new approach to organisation, indexing and query processing

is needed. We must consider the issues in visual information management rather than

simply extending existing database technology to deal with images. DBMS encompass

10

Image Output
Subsystem

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

not only databases but aspects of image processing and image understanding as well - this

is shown below in fig. 2.1.

Image Communication
Subsystem

Image Input
Subsystem

_.>
I

Image Processing
System

t
Image Database
System

___)

Fig. 2.1 A typical Image Information System.

2.4. Elements of a Content-Based Retrieval Mechanism.

Given a large image database, how can we retrieve images from it? There is an

increasing body of research which is moving toward content-based retrieval

methodologies. Here, retrieval is based on shape, colour, layout and position of objects in

an image, or motion of objects in a video sequence, for example, and uses sample images

or user sketches to specify a query. In this context the type of user queries that might be

encountered are; "Find images with an object of this texture", "Find images with a

significant amount of red", "Find objects which contain images similar to this one", for

example.

In a conventional database system, the access mechanism is facilitated by an index

which forms a 'hook' for queries posed by the user. In general, one can regard indexing as

a means of reducing the search space of an operator without losing any relevant

information. In the case of an image database, an index may be regarded as a mechanism

for supporting the efficient search of a collection of images, based upon intrinsic

properties of the images and their semantic content. There are a variety of types of

features to index which might include entities/objects, attributes, relationships and

derivations of these.

Most current Image Database Systems use manual descriptors for each image in the

database [9]. Manual coding of these features is fraught with problems - not least of these

is that each image must be manually indexed before being incorporated into the database.

This is a very time-consuming and laborious exercise which makes this approach a rather

unattractive prospect for most potential users. In an [DBMS it is essential to at least

11

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

partially automate the data capture and indexing operations. Automated indexing requires

automated (or operator assisted) feature extraction and (potentially semantic) interpretation

which, in turn, requires a combination of an efficient visual query interface, pattern

recognition primitives and robust similarity measures.

Content-based retrieval relies heavily upon computer vision and pattern recognition

techniques to formulate efficient indexes. A typical Image Processing sub-system for a

retrieval by content DBMS is shown below in fig 2.2. This system attempts to extract

image features and their spatial relationships (they might be roads on a map or tumours in

a medical image, for example) to form an index which allows two images to be matched

using a metric similar to that of a human.

Raw Image
	 Image Features

	
Image Knowledge Structures

Image Analysis
-)	 and	 --)

Pattern Recognition

T
Selection of Algorithims

and
Data Structures

Image Structuring
and	 -)

Image Understanding

I
Selection of Index

and
Knowledge Structures

Spatial Reasoning
and

Image Retrieval

I
Domain Knowledge

Fig. 2.2 Operations performed by the Image Processing System.

The sophistication of the access mechanism in a DBMS must match the sophistication

of the data contained therein and applications involving image data demand an innovative

approach to a variety of issues. For example, a comprehensive description of all of the

image entities and their interrelationships would permit us to pose fairly sophisticated

queries to the system. However there are several issues at stake here:

• The data models must accommodate complex image descriptors which invariably

involves memory intensive hierarchies. This memory grows exponentially with the

number of features used in the index. Comparing these models in the retrieval stage

is often very computationally expensive. Can we afford this?

• Does the similarity measure support more complex image descriptions? Similarity

measures frequently 'fall apart' as the dimensionality of the metric increases.

• How robust are the descriptors? Low-level (and comparatively simple) indices

frequently out-perform more sophisticated ones [101111 11121113].

12

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

The image database must be large to justify the use of the relatively expensive

technology required by these methods. Small to medium databases, or even large ones

with good text descriptors, can be manually viewed with a good fast browse of 'thumbnail'

images (reduced versions of size, say 100 x 100, where 50 to 100 can be simultaneously

displayed on a screen) and this may be sufficient in many cases.

The key issues to be addressed are: feature representation, similarity measures, data

organisation and query languages.

2.5. Shape and Feature Representation in an Image Index.

The level at which features are represented can have a marked effect upon the

performance of the index. Real world images typically contain noise and occluded objects

within a scene and, ideally, the index would support a matching mechanism which could

make a provision for this. The features can be represented at several levels of

sophistication - these are discussed below.

2.5.1. Global and local features for indexing

The levels at which the image may be represented by the index range from full-scene

descriptors [14] to elemental primitives [15][1 6]. Full-scene descriptors do not require

that objects be isolated from within the image and do not suffer from some of the

difficulties typically encountered during this phase. However, global features are far more

susceptible to occlusion than local features and image recognition of occluded (or

touching) objects is beset with problems [17] .

This can be circumvented by characterising images in terms of local rather than global

features[15] - the more primitive the model, the more robust the representation. However,

the data models are far more complex for local features and this, in turn, introduces other

problems - see 2.8. Examples of local features are line and curve segments of the object

boundary and points of maximal curvature change, for example [18] .

[16] uses primitive local features, such as edges, to construct domain specific models

which make up the model-base. The model-base is compiled off-line with the aid of a

domain expert who interactively refines the model objects. This scheme seems to work

best for images which have a high degree of formality in their pictorial representation

such as circuit diagrams and topological maps, for example.

13

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

2.5.2. Spatially dislocated features as indices.

In this scheme only the object information is extracted from the image - their

interrelationships are ignored. A query supported by this might be 'Find all images that

contain one or more objects present in the input image'. Once isolated from the

background (either automatically or, as in [10][19][20], interactively) the salient

characteristics of the object must be fused within the index. Niblack et al define the

objects in terms of area, circularity, eccentricity, major axis orientation and a set of

algebraic moment invariants [10]. Note that this technique cannot deal with occluded

objects.

2.5.3. Object/position descriptors as indices.

Here the spatial inter-relationships of the image entities are embodied within the index

as ordered sets of shapes or graph structures. Such an index might support the query 'Find

all images with this object in this position'. Finding the relations among objects has two

problems: the spatial relations are not usually precisely defined and the number of such

relations may become too large for a practical indexing scheme[10].

The structuring of the data in such an index is dealt with more fully in 2.9.

2.5.4. Low level features as indices.

In many applications, low-level image properties such as colour [13] [11][12],

texture/11/[21], and spatial derivative primitives [16] have a broad, intuitive applicability

and can be very efficient as indices to an image database. These features do not suffer

from the drawbacks associated with the previous two techniques and, recently, some fairly

encouraging results have been reported. The success of these techniques can be attributed

to the fact that there is no need for specific image objects to be identified within a scene.

Considerable research activity has focused on ways to characterise and recover qualitative

descriptions of such attributes from within images for indexing purposes.

The QBIC IDBMS, currently under development by IBM [101111], has used colour,

texture and shape features as indices and reports that the most favourable results to date

have been achieved using colour spectra histograms as the index. It must be said here that

such a coding scheme produces a highly ambiguous representation of the image, and its

efficacy is probably a result of its simplicity.

14

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

2.6. Easing the Burden of Object Recognition for Index Construction.

The root of the problems associated with content-based retrieval mechanisms lie with

the inherent inadequacies of existing computer vision models. Object recognition, in

particular, has proven to be a particularly challenging problem and a robust, non-domain

specific solution has yet to surface. Isolating those features which correspond to the type

of query metric that a human might employ is not easy. However, if the automatic object

recognition phase of the indexing mechanism can be 'short circuited' then far more

encouraging results can be achieved.

We have already discussed how low-level features and full-scene descriptors can be

used to form image indices with the need for an object recognition phase.

Sometimes, for domain specific applications, we will have a priori knowledge of the

objects present within all the images in the database. In such cases we can use a pre-

compiled code-book of these icons, often called a model base, to derive the appropriate

codes for the object entities within an image. Such models relieve the burden of object

recognition and can improve the performance compared with more open-ended and less

constrained systemsR5M6].

2.6.1. Interactive object recognition.

One alternative to fully-automatic object recognition is 'to put a human in the loop'

and use manually selected object descriptors. Ordinarily, this is a very time consuming

operation and simply not practical for large image data bases. To speed up this process,

many researchers have proposed the use of interactive tools to help the user to select

features for the index quickly and simply. NiblacknOff19] and Samandi[20] present an

interactive method for outlining important image objects semi-automatically. The

outlining mechanism is steered by user cues which are entered through a mouse.

A further advantage of this technique is that once an object is separated from the

background it may be normalised so as to effect similarity retrieval invariant of size, scale

and rotation artefacts.

2.6.2. Indexing CAD drawings

Within a CAD drawing most, if not all, of the image entities are derived from icons

defined within a drawing package - these icons are usually represented as distinct codes

15

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

which can be extracted comparatively easily from the drawing data. Thus, objects may be

coded without the need for the recognition phase and some quite encouraging results have

been achieved with circuit and plant layout drawings, for example [22].

2.7. Similarity Measures for Image Retrieval Systems

This metric forms the basis of the retrieval decision mechanism and should facilitate a

degree of fuzzy-matching across all images within the database. Obviously, this metric,

which embodies both aspects of shape similarity and position similarity (if, indeed this is

included in the index), should correspond to a human beings notion of similarity. This is

not at all a straight-forward matter for real world images and is complicated by contextual

sensitivity and subjective interpretations of the users visual perception. Mumford

[23][24] has pointed that retrieval by shape similarity, for example, is a formidable

problem.

Matching images for database retrieval systems requires a robust similarity measure. It

is generally held that the matching of objects using similarity based on several features

will be one of the most common and fundamental operations [2]. Techniques to judge

similarity among different patterns will, to a large extent, depend upon the nature of the

application. [2] concludes 'What is needed is the development of a general theory of

similarity that will be useful across several applications'.

The number of similarity metrics increases with the number of features embodied

within the index. Thus, the errors arising from the mismatch between a machines' and a

humans' notion of similarity are compounded. As a consequence, many similarity

measures 'fall-apart' as the dimensionality of the index increases. This probably accounts

for the relatively superior performance of simple metrics over more complex ones VOL

The robustness of the similarity measure is entirely dependent upon the space in which

the comparison is undertaken. Each image is represented as a point in this space and the

distance between the two points should correspond to a human beings notion of visual

similarity. The object of the retrieval mechanism is to recover those images which are

closest to the target point defined by the query. The following similarity measures have

been used:

16

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

Index Root Distance Measure

Colourp3M0] [12] Euclidean distance in weighted RGB space. Weights depend

upon quantised colour spectrum of input image.

Texture[10] Euclidean distance in weighted three-dimensional space of

texture components. 	 Weights depend upon the variances of

each texture component.

Full Scene [89] Euclidean distance in the global feature space learnt by a

neural network.

Shape [10] Weighted Euclidean feature space represented by the shape

moments.	 [10] reports that the distances in this space do not

correspond particularly well to a human beings perception.

Fig. 2.3 Similarity measures for different feature attributes.

2.8. Query Processing.

Once the set of features for objects and images has been computed for the indexes then

queries may posed to the database. A query might be initiated by a user in an interactive

session by specifying an object or set of object attributes and requesting images with

objects 'like the query object'. For example, images can be requested that contain the

object whose colour is similar to the colour of an indicated object, or to the colour selected

from a colour-picker menu [10].

The nature of the query type for an image database retrieval scheme depends upon the

perspective of the application domain:

• A video editor might wish to access specific shots or scenes, based on a rough

description or sketch.

• A Geographic Information System (GIS) user would pose complex special purpose

queries to locate a particular shape that has the desired features etc.

• An image archiver requires rapid browsing and scanning (possibly by the use of

user defined filters) regarding content and features, for example.

17

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

Most researchers in the field regard query-by-example as the most promising way

forward for image data retrieval [2]. Queries of this sort may be initiated as sketches or

interactively via a user menu.

2.8.1. Query by sketch and images

The schemes adopted by [10][25][26] filter out important line segments so that the

normalised query image is reduced to a kind of binary cartoon-like outline drawing. This

is sub-divided into a number of patches and each patch compared with the database image

(which has been pre-processed with the same transformation) through a logical binary

correlation operator. Kato[26] does not represent the processed images as indexes but

performs the appropriate transformations at search time. This means that the search times

can be very long for large databases.

Rickman[27][28]j89] uses a neural network transformation to produce an index

from a query image. The neural network learns the transform which preserves most

information about each image within the database. This technique learns 'global' features

which characterise the distribution of image types within the database - such 'full scene

descriptors' avoid the need for the problematical object recognition phase but are sensitive

to translation, scale and rotation artefacts.

2.8.2. Query by colour.

The colour key could be isolated from a query image or chosen via a user interface

through a 'colour pickerVOL However, matching images solely through their colour

spectra can produce ambiguous results.

2.8.3. Query by subjective descriptions.

A users description of an image is highly subjective. Kato [25][26] presents an image

coding scheme that can embody some of the users subjective interpretation into the query.

He employs a mixture of text descriptors and pictorial information that are fused together

to form the query. The text descriptors are chosen from a list of adjectives (such as

'cheerful', 'soft', 'elegant' etc.) and weighted accordingly.

However, entering the subjective features for each and every image in the database is

laborious and the subjective impression of each image may vary from user to user. Kato

18

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

points out that there is a degree of correlation between the subjective interpretation and the

colour spectrum histogram of an image. Once the mapping between these two domains is

known the subjective label can be assigned automatically by looking at the colour

spectrum histogram. The relationship between the colour spectrum histogram and the user

selected keywords (and their weightings) is found during a learning phase where the user

is asked to ascribe keywords to a number of images. Multivariate analysis is used to

calculate the mapping between the colour domain and the subjective description domain.

A similar technique is used to map graphics features (spatial frequency, local

correlation and contrast, for example) to the users notion of similarity. Here the user is

asked to group together a number of images into distinct clusters and the mapping

between the subjective interpretation of similarity and the graphics features calculated

through multivariate analysis. This method has been used successfully with both Art and

Trade mark databases.

2.9. Data Representation and Organisation

The primary objective of image retrieval in an DBMS is that it supports rapid

selection of images fulfilling the query criteria. To this end it is imperative that the

representational models which describe the image objects and their relationships be

structured in a manner which permits indexing and similarity measures to be performed

efficiently. Efficient data representation is the key to effective memory management in

Visual Information Management Systems - high performance data representations and

structures are essential. Examples of structures for image data are pyramids and quad-

trees. In these data models the image is represented by an ordered, or partially ordered set

of shapes or by a graph structure which reflects the spatial relationships of the objects. It

has been shown that indices which support a hierarchy of feature descriptors enable more

effective searches than non-hierarchical ones. Grosky [15] points out that models based

on hierarchical features are both more adaptable and more efficient that models based on

complete image objects. Generally speaking, specific representations of indices within

these data structures support compression, retrieval of occluded and non-occluded objects

based on shape and searches for contained and overlapping features.

Two prevailing data models are used in current systems: relational and object-

oriented - in conventional data-base practice the latter is gradually gaining popularity over

the former. This is because object-oriented management systems can nest various type

19

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

constructors (arrays, lists, tuples) to any level which permits data structures to be defined

with a richness that is not possible in relational models. For example, in an image many of

the objects being modelled will, in turn, be parts of the representational data. This type of

recursive data model can be represented rather neatly using an object oriented approach

which might be used, say, to define image regions that are labelled as domain entities as

attributes for other entities.

Each image within the database corresponds to a point in a multi-dimensional space.

Since image queries are typically based on a large number of queries, the data structure

which accommodates the image description should support multi-dimensional indexing

and similarity matching. The main multi-dimensional indexing structures used at present

are:

• R*-Trees [29] and R-Trees [30](31].

• Linear Quad-trees [32].

• Grid-Files [33].

These data structures all been used successfully for text databases. However, most

multi-dimensional indexing methods explode exponentially for high dimensionalities [34].

Whilst most of these structures may be efficient for text searches, they cannot be readily

exploited for image queries which might have as many as 20 dimensions. Linear quad-

trees, in particular, suffer from this and are not efficient as image indexes. Niblack et al

[10] reports that R*-Trees seem to be the most robust for high dimensions.

Since data hierarchies are very sensitive to the number of dimensions employed for

the indexing metric, the feature extraction method must be such that only a few features

are sufficient to differentiate between objects.

In many of the application domains for IDBMS, data must be represented in multiple

scales to cater to the needs of users requiring different levels of abstraction. If data is not

explicitly represented in multi-scales, they need to be computed as and when they are

requested. Such interpretations and data handling depend upon the semantics of the

domain.

The richness and scope of information contained within an image means that several

alternative interpretations are quite possible. Feature extraction, labelling, decisions made

in processing, and assignments of values made by humans are all examples of

interpretation. Generally, interpretation carries with it some amount of ambiguity, error,

and uncertainty. To be effective, the data model should go some way toward supporting

20

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

alternative interpretations of data, views, ambiguity and uncertainty within a database.

This challenging issue is unlikely to be solved in the very near future [2].

The index allows the features to be extracted from the image prior to its inclusion in the

database so that the matching phase can take place in rapid fashion. The upshot of this is

that the indexes must be instantiated before matching and the ranking of these

representations and cannot take the context of each users preference into account. This

problem is especially pressing in large and unconstrained collections of images.

Figure 2.4 outlines some typical IDBMS and illustrates the current research trends in

this increasingly active field.

2.10. The role of Neural Networks in IDBMS.

Any efficient image retrieval scheme for an DDBMS must represent the images as

indexes. These indexes must capture the salient features within each image and enable

them to be compared in a rapid and flexible manner. However, extracting indexing

features has proved to be an extremely difficult process to automate using conventional

image processing techniques as those features deemed to be important to a human are

often not amenable to deterministic analysis.

Neural networks have received much attention as information processing architectures

and have been applied to a wide range of computer vision problems [35]. They consist of

large arrays of comparatively simple processing elements, or 'neurons', which interact in

parallel to learn a mapping from a problem to a solution in a non-deterministic manner. In

this respect both the architectures and the learning mechanism resemble the processing

topologies known to exist in biological systems.

Rickman[2711281189] shows how an array of neural networks may be used to extract

features which form the basis of an automatic indexing mechanism for an IDBMS. The

neural network represents each image with respect to a number of features learnt during a

training phase. The feature exists as a point in multi-dimensional feature space and the

index represents the length of the vector between the image and this feature. The neural

net transform (from image to index) preserves the relative relationships between the

images in the original domain - the similarity between any two images is given by the

21

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

System

Description

Query Data

Mod el

Index

Method

Index Extraction Data

Structure

Applications Ref

PICDMS:

Picture DBMS

using dynamic

stacked images

and gridded

data

Command language

ADD

(IMAGE FIDD FIX

(8,0) DIFF = BAND4

+ BANDS

Stacked

image

Field name

with current

location

pre-defined or

manual

,

Flat file

(3D matrix

of stacked

images)

Image

processing

36

IIDMS:

Intelligent

image database

system using 2-

D string as

iconic index

iconic query-by-

pictorial-example by

drawing pictorial

query

Relational string Automatic or

Manual,

sigma-tree Image

processing

9

Visual structure

database

Symbolic query

Car in front of house

entity-

relationship

diagram

attributes manual quad-tree

and entity-

relationshi

p records

cartography 37

GR1M_DBMS:

Automatic

extraction of

objects and

semantics using

pattern

recognition and

image

processing with

fuzzy match

Command languages

RETRIEVE

IMAGES

(hospital/0.9)

CONTAINING

(double_bedroom/1.

0)

attributed

relational

graphs

predefined

attributes as

cluster

indexes

automatic tree with

cluster

indexes

CAD/CAM 38

I-See:

Software

environment

emphasises

precompilation

and query by

image content

Iconic query as guide

to search,

Symbolic query

SHOW cities

WEST_OF city name

= 'Pittsburg'

object

oriented

automatic using

image analysis

and Al techniques

Image

processing

39

IDB:

Image

Archiving by

content

Match example

image by similarity

retrieval

object

oriented

attributes automatic using

image analysis

and Al techniques

Medical

Image

database

40

QVE/QBD Query by visual

example (graphic

features and colour)

and subjective

descriptors.

relational attributes

and

subjective

descriptors

mapped to

attributes

automatic using

image analysis

and multi-variate

analysis

Art

Archiving.

Trade mark

databases.

25

26

QBIC Query by visual

example (shape,

colour and texture)

and text descriptors

'starburse attributes image analysis

and interactive

/semi-automatic

image processing

R*-Tree Pictorial

Archiving

10

Fig. 2.4 Some typical IDBMS and their characteristics.

22

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

Euclidean distance between the indices. This neural net has been shown to provide a fast

and fuzzy matching mechanism for a retrieval-by-content DBMS.

Sanger [41] has shown that, when trained with a broad range of image types, such a

neural network learns feature primitives which are almost identical to the 'retinal fields'

found to exist within mammalian visual systems. These fields, located within the primary

visual cortex, are used to encode images for subsequent processing stages 'higher up' in the

cortex. This observation seems to validate the thrust of this approach. Indeed, other

researchers have proposed the use of such fields for image coding systems [16][42]

(though these implementations are not neural network based).

2.11. The Nature of Queries in a Typical Commercial Pictorial Archive.

There is a strong inter-dependence between the criteria used for selecting an

appropriate index and the nature of the queries put to a practical IDBMS. We might, for

example, have an indexing scheme based on texture that can match images with a 100%

success rate. But if users are unable to frame their queries in terms of texture then the

retrieval mechanism supported by the index scheme is as good as useless. At this juncture

it would be useful to analyse the kind of queries that might be posed to a typical

commercial pictorial archiving agency.

Enser [43], investigated 2,722 queries put to a commercial archive of over 10 million

pictures (of assorted types) with a view to assessing the potential for both manual and

automatic indexing schemes meeting the needs of prospective IDBMS users.

2.10.1. Characterisation of requests

Enser divides the queries into 4 categories according to the 'uniqueness' of the subject

matter being requested. The concept of uniqueness allows a particular occurrence of a

request for a visual representation to be differentiated from every other occurrence of the

same entity type. The 'uniqueness' or 'non-uniqueness' of any subject matter is further

refined by additional qualifiers supplied with the request. The categories are defined

below in fig.2.5.

23

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

Category Definition Example Proportion of
Total Requests

42%1 Non-unique with
no added refiners

Paddle Steamers

2 Non-unique with
added refiners

Shell Shock after WWI 27%

3 Unique with no
added refiners

George VI 6%

4 Unique with
added refiners

George VI Broadcasting 25%

Fig. 2. 5 Categorisation of query types for a commercial Image Archive.

A random walk through the list of request reveals the following queries:

Query Category

13D-glasses

Assassination 1

Tightrope walkers 1

Wanted posters 1

Girlies in nice frocks 2

Milkman in the rubble 2

Boxing babies 2

Old preachers 2

Jarrow march 3

Eaton beagling pack 3

Dalai Lama 3

Norman Tebbit 3

MacMillan in sport preferably shooting 4

John Lennon - c.1988 4

Mao Tse Tung, Red Army 1936- 1938 4

Hitler addressing crowds 4

Fig. 2.6 Typical queries for a commercial picture archive.

It is evident from the nature of these requests that pattern matching techniques are

unlikely to arrive at an index that would support such free-form queries. Indeed, for

many of the requests, even manually selected indices would not allow the browser to

navigate freely through such an unconstrained database. This work suggests that most user

queries are so application specific and subjective that to attempt automatic feature

extraction using present technology would be folly.

24

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

Enser concludes that '... the indexing of commercial photographic material is of low

utility. However, for subject-specific collections, the application of indexing terms

[whether entered manually or derived automatically] are afar more viable prospect.'

Though this report is somewhat sobering for a researcher striving to automate the

image indexing mechanism, it does shed some light on the type of queries that an indexing

scheme should support. The growing research interest and investment into DBMS would

seem to counter the claims made by Enser. The number of research papers published in

this area has been escalating very rapidly over the past few years and this clearly attests to

the very real need for DBMS in a world where rapid and flexible access to electronic

images will become increasingly important.

2.12. Discussion

The cost of electronic data storage media continues to fall as the speed and

sophistication of data transmission technologies continues to rise - DBMS are now a

viable prospect. However, the methods to access electronic images in a flexible and

convenient way have not been developing at the same rate. This mismatch between these

inter-dependent technologies has created a very pressing need for practical retrieval

mechanisms for DBMS.

DBMS technology will only really come to the fore when efficient, fast and user

friendly access mechanisms become available. It is generally agreed that such mechanisms

are likely to incorporate some facility for retrieval by content which requires that the

salient features must, somehow, be extracted from each and every image within the

database to allow two images to be compared. This could be performed either manually or

automatically. The former is laborious, time consuming and unlikely to provide an

attractive solution to the broad spectrum of potential users. The latter requires image

interpretation techniques which have yet to achieve the level of sophistication to make

them a practical prospect. There is a general consensus that image retrieval by content will

only become a practical prospect when general purpose automatic feature extraction is

possible. Fortunately, work is currently underway which is making progress in this

direction and we are now beginning to see the first image retrieval by content systems

meet the market place [44].

25

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

The most promising results for automatic indexing for retrieval-by-content systems to

date have been achieved using colour, texture, shape and 'full-scene' feature types. None

of these approaches have attempted to isolate specific object features or their spatial

relationships automatically. Their success is due to the fact that the features used are

relatively crude. As the indices which act as scene descriptors become more sophisticated

(in an attempt to support richer user queries) then following problems begin to manifest:

• Current pattern recognition practices are not capable of supporting robust general

purpose scene descriptors.

• Hierarchical index structures which support multi-level searches grow

exponentially with the number of features. At present, such structures can only

practically support about 20 features. This does not permit a particularly rich

description of real world images.

• Similarity measures begin to fall apart for multi-dimensional indices.

Indexing could be performed manually, but, for a large database, this is simply not

practical. In any event, retrieval from fairly small databases is probably best tackled by

implementing efficient browsing mechanisms which allow the user to peruse sets of

'thumbnail images' efficiently rather than retrieval-by-content schemes.

Feature based indexing for retrieval of information is one of the main differences

between DBMS and conventional databases. The computational requirements for

processing images and video will push existing computers to their limits. Parallel

processing, pipeline architectures, neural networks and other similar approaches for feature

extraction need to be studied to facilitate fast insertion and query processing in DBMS.

Some specific problems that need to be addressed here are:

• The use of pictorial objects as indices.

• Selection of appropriate low-level attributes as indices.

• High dimensional features for indexing.

• Query formulation.

• Dealing with uncertainty and ambiguity to support fuzzy queries.

• Applying measures for similarity.

• Determination of basic pictorial operations on features and images to generate new

indices.

• Managing complex objects within index data hierarchies.

26

Chapter 2 The State-of-the-art in Image Database Retrieval Systems.

In 1992 the National Science Foundation of America made the following

recommendations regarding the development of IDBMS technologies [2]:

Researchers from image processing and computer vision, knowledge representation

and knowledge-based systems and databases must work closely to develop Visual

Information Management Systems. It is also believed that such systems should be

developed in the context of applications that will be of immediate interest in industrial,

medical or scientific areas. Without concrete applications and ambitious implementation

projects, most of the important and difficult issues are likely to be ignored. Considering

the inter-disciplinary nature of the research, it is strongly recommended that the NSF fund

a few major research efforts in this area.'

27

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

Chapter 3

The Fundamentals of Image Coding using Neural
Networks.

3.1. Introduction

In this chapter we aim to show how a simple neural network architecture and

associated learning rule can be used as the basis of a very effective coding mechanism for

our image retrieval system. We introduce the neural network as an adaptive information

filter which can learn the important features within a database of images. Each image may

be described with respect to this feature set allowing them to be represented in a very low

dimensional bound to facilitate fast and fuzzy pattern matching for our retrieval

mechanism.

We give a potted overview of the fundamental issues in the development of neural

networks. We highlight some of the factors pertinent to our coding scheme and present an

appropriate architecture and learning law for our type of application. We indicate that the

coding transform required by our scheme has much in common with a classical statistical

analysis technique called Principal Component Analysis (PCA). However, PCA is

computationally expensive and not well suited to high dimensional data such as a large

database of images, for example.

We show how a learning law, found to exist in 'real-life' neurons can be developed and

implemented on a single layer feed-forward linear neural network to produce a very

efficient approximation of PCA. This type of learning paradigm is particularly suitable for

our image retrieval mechanism. Much of the mathematical formalisms, insights and

theoretical foundations presented in this chapter are applied in a practical context in

chapter 4, which, effectively, forms a 'sister' chapter to this one.

28

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

3.2. Neural Network Research - Some Key Issues.

3.2.1. The 'curse of dimensionality' and the blessing of the neuron.

The real world is a jungle of information in which the sheer scale of the stimuli is

dizzying and its scope vast. If sense is to be made of this glut of data we must

compromise and take in only that information deemed important for the task at hand and

process it as efficiently as possible.

Fortunately, such stimuli are highly correlated and contain much redundant data which

may be discarded with no loss of information but with a huge increase in processing

power. In a living animal it is the brain which performs this filtering process, sifting out

needless redundancy to free up information pathways.

In an attempt to emulate some of these desirable filtering and data processing

properties, computer scientists began to take a closer look at the micro structure of the

brain. What they found, especially in regard to the contrast between processing

topologies found in the brain and a standard serial computer, has largely paved the way

and motivated the current enthusiasm for so-called neural network research.

3.2.2. The evolution of the species.

In 1943 McCulloch and Pitts [45] introduced a simple electrical model of a basic

neuron which, they proved, was capable of performing any computation that a standard

digital computer could perform. This model is shown below in fig. 3.1

Input	 Output

Fig. 3.1. A McCulloch and Pitts neuron

29

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

The model computes a weighted sum of its inputs and outputs a '1' or '0' according to

whether this sum is above or below a certain threshold II.

In 1962 Rosenblatt [46], drawing on the McCulloch and Pitts theme, developed the

perceptron and associated learning rule which enabled the weights to develop iteratively so

that the desired computation could be performed (provided that what you desired lay

within the bounds of what was possible with a perceptron; more about this later).

We may regard the perceptron as a sort of adaptive filtering network which, through a

learning process, can attune to input the channels which are important for the neural

calculation. It is this learning process which gives neural networks their remarkable ability

to adapt to the nature of the problem at hand in a non-deterministic fashion. This is where

their promise lies.

In the case of the perceptron, the stimulus for learning comes from a teacher where the

output of the node is compared against the known answer. This is called supervised

learning. Here the neuron is trained with a representative sub-set of problem/solution pairs

and, hopefully, if the training set, architecture, learning paradigm and network

functionality are correct, the net will be able to generalise and solve problems not yet

encountered. This mixed bag of parameters has kept neural network researchers busy for a

long time and probably will for a long time to come.

A trained neural network will perform a transformation on its input: the precise nature

of this transform changes iteratively (and, with luck, converges) during the training

process and is dependent upon the nature of the problem domain and the functionality of

the node. To understand how learning influences the nature of this transformation in the

perceptron it is useful to consider the following simple case: We have a set of P N-
dimensional	 patterns	 in	 the	 pattern	 domain,	 (X X 	1 , 2'	 ,x) I	 where

Xi = (x ,x12 , 	 9x1/V) etc. In this example the data-set consists of two distinct pattern

classes and the role of the neural network is to develop a nodal transformation that will

filter one class from another unambiguously. To this end we might require that the output

of the node to go to '-1' for one class and 1+1' for the other. These desired responses
(1 , 2. „Cp), one for each pattern in the training set, are supplied by the teacher. The

objective of the training is to correlate the input pattern with the desired response.

30

0

•

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

During the training phase the weights are adapted according to the discrepancy

between the actual and desired output from the neuron in an attempt to bring the former in
line with the latter. Here the weight vector W = (Ivo w2 ,.... wN) forms an N-dimensional

hyper-plane which, we hope, will separate the two classes in pattern space. This is shown

below in fig. 3.2 for N=2. The binary threshold unit activates such that any pattern one

side of this plane elicits a 1 +1 1 from the node and a 1-1 1 if it lies on the other. This hyper-

plane is often referred to as a decision plane.

Hyper-plane

Node 0/P = +1

0
FO

- •0	 , A
H' •

•

Node 0/P = -1

Fig. 3.2. Weight vector forms a hyper-plane which separates classes in pattern space.

The output of the node is given by:

= Sgri(EXiiWij
j=1

During training the decision-plane is moved in the pattern space according to the
discrepancy between the actual output O i and the desired output C i . The weights are

updated as:

W. =W.1	 AWY

Where:

is the new value of the jth weight after training on the i th pattern.

xu	 is the jth element of the i th training pattern.

= cc(i	(3

(1

(2

31

{Node 1
	 learns

feature:

Node 2
learns
feature:

.:

Image to be Coded
Is Presented to the
Trained Network

Node Respons(

	 >65%

5%

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

Rosenblatt ensures that a degree of confidence is attributed to the positioning of this

decision plane by including a margin which guarantees that the points lie at least a fixed

distance from the decision-plane. The learning law now becomes:

i\w = ag(Nk —C i yi)C ix4 	(4

Where:

8	 is the unit step function.

is the size of the input vector.

is the margin size.

yi =
j=1

This is the perceptron learning rule and has been proved to converge by Minsky[47].

3.2.3. A simple coding scheme using neural networks.

We have shown how a simple perceptron can learn to filter a data-set containing two

distinct, linearly separable data-types, through a supervised learning scheme. Let us have

a closer look now at how a perceptron might be used as the basis of a coding mechanism

for our image database retrieval system. The basic architecture is shown below in fig.3.3.

Image Code = [0.65, 0.05]

Fig. 3.3. A simple coding architecture using neural networks.

The output of the node forms one element of the code. In this simple example each

pattern is represented by a 2 element vector. The objective of the training is to adapt the

weights to demarcate the patterns as effectively as possible, rather like the scheme shown

in fig. 3.2. The code should support rapid fuzzy matching of images across the database.

32

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

An appropriate Neural Network Transformation (NNT), from image at the input to

code at the output, should preserve the relative relationships of the patterns in the original

domain.

Let us suppose that the contents of the database consist of a number of distinct

distributions of images and the objective of the training is to position the hyper-plane to

demarcate them as effectively as possible, rather like the scheme shown in fig. 3.2.

Since the perceptron is a Binary Threshold Unit (in that its output is either 'on' or 'off)

it will produce a one-of-N code (in this case N=2) whose contents are dependent upon

which side of the hyper-plane the pattern is lying. Whilst this code will provide excellent

inter-class distinction it does not furnish us with much information regarding the extent of

similarity between images in the database. If the code is to allow us to retrieve images

based on a measure of similarity, then a simple binary threshold device such as perceptron

will not suffice. This argument is extended in the context of Logical Neural Networks in

5.4.3.

A more appropriate NNT would be one that reflected the distance from the hyper

plane so that the node output preserved the relative relationships in the original pattern

domain. This is frequently referred to as a conformal mapping. In any event, it is highly

unlikely that our database will contain notionally distinct classes of data required for

supervised learning. This raises an interesting issue and one worthy of a more detailed

investigation.

3.2.4. What perceptrons cannot do.

The perceptron learning rule is good for the data shown in fig.3.2 which can be

partitioned effectively by a hyper-plane. Unfortunately, many problems arise where this is

simply not the case as Minsky and Papert pointed out in their damming book 'Perceptrons'

[47]. They showed that a single-layer perceptron could not even perform the, by now

infamous, Exclusive-OR function. Rosenblatt retorted that multi-layer perceptrons had

the potential to form arbitrary decision boundaries which could circumvent the problem of

linear inseparability between classes in the pattern space. This is shown below in fig. 3.4.

However, the perceptron learning rule cannot be applied to multi-layer configurations as

it does not make a provision for updating the weights in the intermediate layers.

33

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

Enthusiasm and research funding waned and neural network research went into hibernation

for about 20 years.

Structure Type of
Decision Regions

Exclusive-OR
Problem

Classes with
Mesned Regions

Most General
Region Shapes

prrz

.0

Single-layer

Abounded
Half plane

by
hyperplane

•nn

® ®

v.ere" /

lei

Ili, A
Two-layers

4.

11111101t0

110.

Convex
open

Of

closed
regions

r
CI	 °

0 oA
Cr4refA0

40P ,

ir

.
Three-layers

S
.411110.
ItN14,

41105,72„....71,

Arbitrary
(Complexity
limited by

number of nodes) 6,

eer ;,•4,
"corlo

*	 y

4.	^

r
I
1

Fig. 3.4.	 Relationship between decision regions and

network topology for perceptron architectures.

During this time a few die-hard researchers were quietly working on this problem and

independently hit upon a method which allowed the weights in the hidden layers to be

updated. This method, generally referred to as backpropogation, heralded something of a

Renaissance for neural network research which we are still enjoying today.

Backpropogation may be viewed as a generalisation of the perceptron learning rule for

multi-layer non-linear neurons. This multi-layer architecture and associated learning law

addresses many of the objections raised by Minsky and Papert[47] regarding the

perceptrons' inability to cope with problems which are not linearly separable. Like the

perceptron learning rule, backpropogation adjusts the weights of the network in an attempt

to reduce the errors at the output of the node.

3.2.5. Backpropogation for image coding

Our own requirement may be framed in the context of an encoder problem where a

high dimensional input vector is to be described by a low dimensional output vector. This

type of problem is something of a benchmark test for the backpropogation learning

algorithm and has been studied extensively[48]. One particularly interesting architecture

pertinent to our application has been proposed by Cottrell et al [49]. Their model is used

for image compression which is effectively what we are attempting to do with our coding

34

Output layer is
clamped to input
pattern during
training

Image Code is Read off
	> from activity of hidden

layer nodes after training

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

process, the difference being that our code will not be used to reconstruct the images,

merely to compare them in a lower dimensional bound.

Their architecture is a three-layer affair where the input and output layers have the

same dimensionality. This is shown below in fig. 3.5. The network is trained as an auto-

associator where the input and output nodes are clamped to the pattern presented to the net

and the weights adjusted to minimise the output error using the standard backpropogation

algorithm [48]. Because the training is auto-associative it requires no teaching input

(unlike standard backpropogation) - this is often referred to as Self-Supervised training.

Input Pattern

Fig. 3.5. A neural network architecture for image coding using backpropogation.

The input pattern passes through an information bottle-neck because it must be

described by a relatively small number of hidden units and the reconstruction on the output

layer is based on the activity of these units. The output function of these units is a simple

sigmoid which limits the dynamic range of their activity. This so-called squashing

function also introduces some non-linearity into the NNT.

Cottrell shows that this technique is quite capable of producing a code with a

performance similar to that achieved by a classical statistical information filtering

technique called Principal Component Analysis (PCA). However, backpropogation is

typically rather slow and this application is no exception. Learning in backpropogation is

motivated by gradient decent - that is, the problem is defined in terms of an energy

landscape, the lowest point of which represents the optimal solution. The iterative solution

manifests as the system gradually descends into a lower energy state during training. Baldi

and Hornick [50] show that the training is very slow because this energy landscape has

many plateaux on it. Cottrell suggests that it would be more practical to calculate the

Principal Components directly using conventional techniques than to use Backpropogation

to come up with the same solution. In conclusion then, whilst this technique is useful in

35

II

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

that it sheds some light on the internal processes occurring within a neural network, it

really does not provide us with a practical solution for image coding.

3.3. PCA and its Relationship to Our Coding Scheme.

PCA is a common method for analysing statistical data. In communications theory it is

known as the Karhunen-Loeve transform and has been applied to the coding and

characterisation of facial images by Kirby and Sirovich/51 .] and Turk and Pentland/52].

PCA has also been studied extensively in the context of pattern recognition by

0j45311541155]. PCA is also closely related to least squares methods in data clustering,

factor-analysis, singular value decomposition and matched filtering. Linsker[56] notes

that performing Principal Component Analysis is equivalent to maximising the

information content of the output signal of a neuron in situations where the data has a

Gaussian distribution.

0

Fig 3.6.	 PCA transforms original data to a set of orthogonal bases

which maximises the variance of a Gaussian data set.

The linear transformation produced by PCA effectively defines a new set of basis

vectors where the projection of the data on these new axes maximises the variance of data

set. This can help to sift out extraneous data to ease the burden of subsequent processing

operations within a more manageable domain than the original. Fig.3.6 shows that such a

transformation can highlight salient characteristics within the data. The resemblance

between the transform produced by PCA and that required of our Neural Network

Transformation is very striking.

The first Principal Component produces a linear transformation which rotates the axes

so that the variance of the projection of the data points onto this axis is maximised. The

second Principal Component is constrained to be orthogonal to the first and the

36

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

transformation again maximises the variance of the projection subject to this constraint.

The third Principal Components produces a similar transformation orthogonal to both the

first and the second and so on. Generally speaking, successive Principal Components

capture progressively less important artefacts within the data with the first Principal

Component having the highest variance, the second the next highest and so on.

For a data set with a finite range of characteristics, dimensionality reduction is

achieved by virtue of the fact that relatively few Principal Components are needed for a

faithful description of the data.

The Principal Components are found from successive eigenvectors of the

autocorrelation matrix of the complete data set. This is very a computationally expensive

calculation and simply not feasible for anything but very simple data. It is certainly not a

practical prospect for our coding scheme.

3.4. Unsupervised Learning in Neural Networks

3.4.1. What features should our coding network learn ?

The form of feature archetypes learnt during the training phase can have a marked

effect upon the performance of the code. How is this?

Consider the image universe as represented by the contents of the database. Because of

the nature of this database several clusters of data will tend to form in the universe (though

the precise nature of such clusters may be quite arcane to an outside observer). Where the

clusters are dense, that is, where there are a large number of images with similar features,

we want the selectivity of the matching mechanism to be high so that we might distinguish

between a large number of images. However, high selectivity in dense clusters may not

afford us with sufficient generality to distinguish between images where the universe is

sparsely populated. These two factors must be resolved if the code is to produce an

efficient matching metric. Additionally, as we have already stated, the node should also

preserve the relative distance measures between the patterns in the original space. The

degree of similarity between the features learnt by the neural net (which, in the case of the

perceptron model, form a hyper-plane) and the image presented to it, may be regarded as

the length of the vector between them in pattern space. If the neural network has the

37

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

appropriate functionality and is properly trained then the output can be made to give an

indication of the length of this vector. These vector lengths form the basis of the code for

that image. This is shown in fig. 3.7.

Class B
	

Pattern Space	 Class D

Class C

Class A

Feature Learnt
by node.

Node 0/P = 1 - Length of vector between feature
archetype and I/P Pattern

Fig. 3.7. Length of vector between learnt feature and image forms basis of code.

To maximise the selectivity of the code we should maximise the variance of the length

xlf of this vector for the complete data set. That is:

AllPatterns

I(wi —,7) 2 =max.	 (6

Selecting the training data to achieve this will enable us to encode the greatest number

of images with optimum selectivity. The reader will recognise this as the thrust of PCA.

Given that the nature of the pattern space occupied by the database is not well suited to

supervised learning, we must now turn our attention to a form of learning which does not

require a teaching input. This is termed unsupervised learning.

3.4.2. Hebb's law - a biological paradigm for unsupervised learning.

A common objective of any pattern recognition scheme is to determine good

representations for data and remove redundancy. In the absence of a teacher, an

unsupervised system must promote learning where there is a large amount of information

within the data set and discourage learning where there is a high level of redundancy.

A good example of how biological mechanisms extract correlations from the input data

in an 'unsupervised' fashion is to be found in the well-known Pavlov's Dog experiment. In

this experiment, summarised below in fig. 3.8, the dog learns to associate the bell with the

food and, after a short time, will begin to salivate when the bell rings.

38

UNCONDITIONED STIMULUS

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

UNCONDITIONED
	

UNCONDITIONED
sTimuLDS (PLATE
	

RESPONSE (DOG
OF FOOD)
	

SALIVATES)

CONDITIONING
	

CONDITIONED
STIMULUS
	

RESPONSE (DOG
(SELL RINGS)
	

SAUVATES)

CONDITIONING
	

CONDITIONED
STIMULUS
	 RESPONSE (DOG

(DELL RINGS)
	

SALIVATES)

Fig. 3.8 Pavlov's dog and unsupervised learning.

In 1949 Hebb [57] formalised this learning paradigm (though not mathematically) in a

way which allowed it to be implemented on a neural network architecture. This learning

law causes the weights to change in response to events which occur simultaneously within

a node, effectively correlating the input and output activity. In the case of the 'Pavlov's

dog' experiment, the relationship between the bell and the food stimulus are strengthened

so as to induce salivation when only the bell stimulus is present. In a neural network, the

connection strengths are modulated according to the degree of correlation between the

input and the output. Referring to the perceptron model outlined in 3.2.2 , Hebb's

learning rule becomes:

L\wq CC	 (7

Notice the similarity between this and the perceptron learning rule given in equation

(3; the difference being that the former does not require a teaching input whilst the latter

does.

For a single linear node the learning rule becomes:

=	 (8

Where:

a is the Learning Rate

39

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

yi = E
1

xuw;
j=

For an N dimensional pattern.

If certain aspects of the data set occur with significant frequency then the system

begins to learn these with increasing conviction and the system behaves as a data correlator

for the entire data set.

3.4.3. Learning to forget

One of the shortcomings of Hebbian type learning is that if the learning process is

allowed to continue unchecked, the node will eventually saturate so that every feature

within the data set is embodied into the model solution. Such a node provides no

discriminatory information for our coding scheme. To prevent this, some constraint must

be introduced to limit the learning process. This limiting is usually achieved by regarding

the learning capacity of the system as a fixed resource so that learning certain important

aspects of the data set causes other, less important, aspects to be discarded or 'forgotten'.

Hence, all Hebbian type learning rules have the following form:

Aw4 = cqx„yi ,wi]	 yi, wi	 (10

Learning Term	 Forgetting Term

Since all learning is manifest in the weights of the neural network, it follows that in

order to limit the learning resource we must impose a fixed constraint upon the weights.

3.4.4. Constrained Hebbian learning - a generalised approach.

Oja [54] indicates how we may derive a generalised learning rule given a learning rule

and a constraint function. Consider first the unconstrained update rule:

w1,1
	 (11

Where:

W1,1
	 is the jth weight the prior to the update.

t+1,j
is the unconstrained weight vector after the update.

Following the update, the weights must now be normalised to satisfy the constraint:

(9

40

111 [W t,1 aXiiY i W 1,2 ± aXi2Yi 5 	 ,WIN aXiNYi

Wt+1,j = (12

T(a) = T(a.0)+ a—
ST

+ a2 82w (13
Oa

If a is small we can ignore

j+ocxj.iyi

a=0	
84/2

terms in a2

a=0

and above which gives:

(14W t+1, j
111 WO Wi,2 	

ST
wt,N ± a-

Soc CC=0

(17

(18

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

Where T is a function which normalises the weights so that the constraint is satisfied.

The value of this function can be estimated after the complete update by using a Taylor

series expansion at a=0. That is:

Since we know that prior to the update the constraint must be satisfied this becomes:

W	 iiy
(15W 1+1,j = ST

a=0
+ a-

Sa

Re-arranging and making the approximation that aw,+, .
ST

aw, . —
ST

yields:
Sa	 Oa

=

	 ST	
(16

I	 ,IN 2If we impose the constraint yw,,. = 1 then —
ST

=)71 and the learning law becomes:
i=1	 50C

2
= W 1,j ± (XX i,j)) CCY W

or, more generally:
2

Wt+1,/ = WI,] C",,JYt — 13Yi W i,j

Where:

is the learning rate.

is the forgetting rate.

The learning law is motivated by the interplay between the level of correspondence

between image artefacts and their differences - this is the upshot of the constrained

learning resource and the action of the 'forgetting' term in equation (18. The act of

learning a feature with a high correspondence to the archetype already learnt by the node

increases the propensity of the system to learn a maximally similar or dissimilar one.

+

41

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

Since learning occurs most strongly when there are large positive and negative responses

we can see that such a scheme will tend to increase the variance of the node.

3.4.5. The relationship between constrained Hebbian learning and Principal

Component Analysis.

This learning law has been studied extensively by Oja [54][55], Sanger[41],

Linsker[56] and others. This has revealed some very interesting properties:

i. Weights have been proven to converge to the Principal Component of the

Training data with probability 1 154].

ii. After convergence the variance of the node output for the training set is

maximised. Linsker [56] has shown that for zero mean data with a Gaussian

distribution the node preserves the maximum amount of information within the

data set. This is highly desirable for our coding scheme. In fact, this is just a re-

interpretation of PCA.

iii. The learning rule requires only local data for the update; that is, no knowledge of

the response to the other patterns need be stored. This makes it economical both

in terms of memory and computational complexity.

3.4.6. Implementing a multiple Principal Component system on a neural

network.

This learning paradigm produces a transformation which is directly equivalent to

Principal Component Analysis and successive nodes should learn successive Principal

Components of the data set.

Sanger [41] suggests a method which allows successive Principal Components to be

calculated on a single layer, multi-node architecture.

The learning rule for a single node system is given in equation (19. To induce the

system to learn orthogonal features in successive nodes, the weighted output yi of unit i is

subtracted from the input before it reaches unit i+1:

42

Zero mean input
patterns

Chapter 3 -The Fundamentals of Image Coding using Neural Networks.

A14)4/
=
	 , 2	

(19

Where:

Aw ii is the change on the j th weight of the i th node after the learning update.
1<1

= X - Eyj wij	 Orthogonalises inputs to successive nodes (20
i=1

1 P
= X -	 Xki	 Ensures that the inputs have zero mean	 (21

P k=1
i=N

Y; = Exw4	 (22
i=1

The architecture to support this learning law is shown in fig. 3.9.

0/P Node 1.	 0/P Node 2.
A	 A

Fig. 3.9. Network architecture to support Sanger's learning rule.

Sanger proves that this technique provides a transformation which is directly

equivalent to (though only an approximation of) PCA. The rule is particularly interesting

as the nodes converge in parallel so that successive nodes can work towards a solution

without requiring convergence in earlier nodes - though later nodes cannot converge

before earlier ones.

3.5. Non-Linearities and Multiple-layer Networks - Are they
Appropriate?

Bourland and Kamp [58] investigated the effects of non-linearities in neural networks

performing dimensionality reduction with specific reference to the architecture proposed

by Cottrel et al [49] and discussed in 3.2.5. They laid down a theoretical framework

43

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

which showed that non-linearities in these nodes are useless and that 'optimal parameters

can be derived from purely linear techniques'. They conclude that '... in general, training a

non-linear unsupervised network to approximate non-linear functions is very difficult'.

This is because the non-linear function space is very much larger than its linear counterpart

so that fitting a function to data in this domain is very much harder than the linear case.

We varify this with some practical tests and discuss this in more depth in chapter 4.

3.5.1. Is one layer enough ?

Since the advent of backpropogation, which allowed multi-layered neural networks to

be trained successfully, many neural network researchers have regarded single layer nets

as rather trivial structures whose performance could invariably be improved with the

addition of a few 'hidden layers' of nodes. In fact, hidden layers will only provide us with

arbitrarily complex, and presumably more appropriate transforms (see fig. 3.4), if the

nodes themselves are non-linear. This is because a multi-layer linear topology will still, at

the end of the day, only produce a linear function - a product of linear transformations is a

linear transformation. In chapter 4 we provide experimental evidence which suggests that

a linear function is adequate for our system. We may conclude that there is nothing to be

gained from the addition of extra layers of nodes. This is rather gratifying as training

multi-layer architectures is typically a complex and protracted affair.

3.6. Discussion

A neural network is basically an adaptive information filter which can be used to

extract the salient characteristics of a data set during a training phase. We show how such

a device can be used to transform an ensemble of images into a very low dimensional

bound which enables then to be compared in a more manageable domain than the original.

This Neural Network Transformation provides the basis of our coding mechanism.

For a device with such an enigmatic reputation, the basic architecture of a conventional

neural network is remarkably simple: the output of the node is just the weighted sum of its

inputs. The weight determines the importance that an input has in defining the solution to

a particular problem with respect to the complete data set. The weights are adapted

iteratively in a training phase during which the entire data set is presented to the node.

These weights effectively form a hyper-plane which demarcates important regions within

44

Chapter 3 - The Fundamentals of Image Coding using Neural Networks.

the pattern space; the relationship between the input pattern and this hyper-plane is given

by the output of the node.

Our matching metric requires that images close together in the pattern space yield

correspondingly similar codes in the much smaller code space. We point out that this

criteria is not satisfied by a neural network trained as a classifier, such as the binary

threshold perceptron. However, a 3-layered perceptron, configured as an auto-associator

and trained using backpropogation can produce a dimension reducing transform very

similar to Principal Component Analysis. This is, in essence, the coding transform that we

require but excessive training times render this method as impractical as a classical

implantation of PCA for large images.

In an attempt to circumvent some of these practical difficulties, we investigate a class

of unsupervised learning paradigms found to exist in 'real-life' neurons called Hebbian

Learning. This learning law adapts the weights to correlate the input and output activity of

the node and is shown to be produce a transformation which is directly equivalent to,

though only an approximation of, PCA. A neural network which approximates PCA will

provide an optimal transform to preserve the maximum amount of information within the

data set if the data has a Gaussian distribution within the pattern space. The

approximations inherent in the derivation of the learning law means that the learning rate

can have a profound effect upon the performance of the code. If the learning rate is small,

the approximation is accurate, the weights will converge to the Principal Components of

the data set but will take a long time to get there. If the rate is high, convergence will be

quicker but the approximation is less accurate and the resultant transformation may not be

optimal. These issues are taken up in chapter 4.

45

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

Chapter 4

An Empirical Study of the System Parameters for a

Sum-of-weights type Neural Network.

4.1. Introduction

In this chapter we investigate the factors effecting the performance of a practical

retrieval-by-image-content system. Initially, we work with a database of machine printed

fonts which permits an objective appraisal of the performance of a neural network based

scheme. Extensive practical tests and computer simulations are used to corroborate the

arguments presented throughout both this chapter and chapter 3.

Much of the chapter is given over to the investigation of the learning rule developed in

Chapter 3. The rate at which the neuron learns can have a profound effect upon the

performance of the system. We investigate how the order of presentation of training data,

its size and the size of the data set affect the choice of the learning rate. The performance

is also dependent upon the diversity of images within the database - we investigate the

extent of this relationship. We show how the code length and nodal transformation may

be optimised with respect to the contents of the database. The nodal transformation is

changed by re-training the system. This is, typically, a lengthy process and not always

strictly necessary, dependent upon the extent of the novelty of the new images. We take a

close look at the factors affecting the need for re-training.

This system works well; but is it optimal? We provide some theoretical and empirical

evidence to show that, though the system is extraordinarily simple, further enhancements

are unlikely to improve upon its performance.

We demonstrate how the coding scheme developed here may be used as the basis of an

'intelligent' video editing system.

46

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

4.2. An Image Coding Scheme using Constrained Hebbian Learning

4.2.1. Does this strategy produce a conformal mapping?

A single neuron trained using the learning strategy presented in 3.4.6 can be used to

transform a data set into a more compact and manageable dimensional bound than the

original whilst still preserving its salient characteristics. Consider the set of 16x24 bit

binary characters, shown in fig. 4.1, in which an 'A' font is gradually, and evenly, merged

to a 'B' over 25 images. Image index '12' may be regarded as half way between an 'A' and

a 'B'.

The data set could best be represented by a scalar (from the output of a single node) if

the pure 'A' and 'B' elicited maximal equal and opposite responses with image index '12'

yielding a zero response. Since the images are merged linearly, the code produced by the

node output should also change linearly from image index '0' through to '25'.

The response of the trained node to this data set is shown in fig 4.1. We can see that,

for learning rates less than 0.0025, the node performs well as a dimensionality reducer.

The node response is not completely linear however and exhibas a siig,t‘tiy sinusoidaC

characteristic which does not quite preserve the distance relationships in the original

domain. This effect is most marked where the magnitude of the node output is large. We

can also see that the learning rate has an effect upon the performance of the node where

learning rates in excess of 0.0025 cause the system to converge to non-optimal solutions.

At this point it may be instructive to investigate how some of the system parameters

influence the learning rate so that we might choose the most appropriate ones for our

particular application.

47

1
0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8

-1
Learning Rate.

Normalised
Node 0/12 1'U12 13 14 15 16 17 18 19 20 21 22 23 24

Image Index

passes to
convergence.

(<0.1% Difference)

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

Data set consists of 'A' font merged to 'B' over 25 Images.

More 'A than 'B'.	 ---> More than 'A'.

0 1 2345 678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Image Index

— 0.0075 4
— — — 0.0050 3
	 	 0.0025 4

Final solution sensitive learning rate.

Fig. 4.1 A single constrained Hebbian node as a dimensionality reducer

4.2.2. Learning rate and the dynamic behaviour of the constrained Hebbian

node.

Setting the learning rate in neural network systems is seldom an arbitrary affair. In the

derivation of the update rule for constrained Hebbian learning, given in equation (18, we

can see that several assumptions have been made, notably in equations (14 and (16 , which

render it valid only as long as a —> 0. As a becomes large, higher order effects will

begin to feature in the system dynamics which could upset the performance of the

network. Of course, this could be circumvented rather easily by setting a very small but

this incurs commensurately long training times which are not always practical. Some

compromise must be met here.

4.2.3. A practical test to assess the performance of an image retrieval

mechanism.

The following test provides an objective measure of the performance of an image

retrieval mechanism. The data set, shown below in fig. 4.2, consists of 10 classes of

machine printed 16 by 24 bit binary characters 'A' to 'K' (not including 'I') with 10

characters per class.

48

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

Fig. 4.2 Data set for retrieval experiments

The complete data set is presented to the network during training until convergence,

deemed to occur when the respective outputs for all given patterns changes by less than

0.1% for subsequent presentations of the data set. The code is taken to be the output of the

node after convergence.

Images are matched against a target image, similar but not identical to those already

contained within the database, by retrieving those images whose codes are closest in the

Euclidean sense to the target code. The number of images extracted from the database for

each target corresponds to the number of examples in each class, in this case 10. The

object of the retrieval mechanism is to retrieve all images from the same class as the target

and no other class. An error is defined as a class mismatch between the target and any one

of the 10 retrieved images. The test is repeated for 10 examples each of 10 target classes

(corresponding to the classes contained within the database). The total number of errors is

defined as the number of mismatches for the complete data set. Thus, the maximum total

error for this data set is 100 x 10 = 1000.

4.2.4. How does order of presentation affect training?

The learning rate may be viewed as a method of diffusing the context of a particular

pattern across the data set. This prevents the network from learning localised anomalies

arising from a particular ordering of the data set. As an example, consider training the

node with two classes of 'A' and 'B' characters in the two orders shown below:

49

Node attempts to sort
	

Node attempts to sort
A's into 2 classes here
	

B's into 2 classes here

Data Set: A A A A ABBBBB	 Worst case order
-->

Node attempts to sort A's and B's
into 2 classes across whole data set. >

Learn Rate = 0.002
	

Learn Rate = 0.001

0.6 -

0.55	 , •

0.6

0.55

0.5

0.45

0.4

Interleaved class

— — Non Interleaved class

	 Randomised class

Std Dev of

Node	 0.5

0.45

0.4

Learn Rate =0.0005

0.6

0.55

0.5

0.45

0.4

2 3 4 5 6 7 8 9 10

Training Pass No.

0 1 2 3 4 5 6 7 8 9 10	 0 1 2 3 4 5 6 7 8 9 10	 01

Training Pass No.Training Pass No.

Fig. 4.4 Effect of training data order on convergence and variance of the Node.

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

DataSetABA B ABA B ABA Best case order

Fig. 4.3. Effect of training set order on learning performance.

Figs. 4.4 and 4.5 show how the performance of the system is effected by the ordering

of the training data. An interleaved and non-interleaved class presentation may be regarded
as (A,, A , C" ..A2 ,B2 , C2 ,..) and (A I , A2 , A3 ,... B i , B2 ,B3 ,...) respectively.

Bearing in mind that the objective of constrained Hebbian learning is to maximise the

standard deviation of the node, fig. 4.4 shows that low learning rates will prevent the

system from converging to non-optimal localised solutions arising from a particular

ordering of the data set. This set of graphs also indicates that learning is most effective

when consecutive training patterns are maximally dissimilar. Training in a practical

system should reflect this.

50

Interleaved class

— — Non Interleaved class

	 Randomised dais

1	 1	 1	 1

1 2 3 4 5 8 7 8 9 10

Training Pass No.

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

Learn Rate = 0.002	 Learn Rate = 0.001

R	 650	 650-

e
E 630	 630

t
r	 '•

r r	 6 10	 610
-,./...

I	 •o• 590 - .	 590

3
r	 .

• a	
570	 570

I	 550	 I . 	 550

0 1 2 3 4 5 6 7 8 9 10	 0

Training Pass No.

Learn Rate = 0.0005

0 1 2 3 4 5 6 7 8 9 10

Training Pass No.

Fig. 4.5 Effect of training data order on performance of a single node coding system.

However, fig. 4.5, which shows the actual performance of a practical retrieval

mechanism for this test, indicates that the standard deviation of the node does not provide

such a concrete measure of the performance for this data set as theory would suggest. This

result is contrary to the thrust of PCA which maximises the variance of the node in an

attempt to optimise the amount of information captured by the transformation developed

during training - frequently referred to as mutual information. It is reasonable to suppose

that a transform which maximised the mutual information per se would yield the most

effective coding scheme for that data set. Reasonable, but not quite correct. Linsker [56]

shows that maximising the variance will only maximise the mutual information if the data

comes from a Gaussian distribution; if this is not the case then PCA produces a sub-

optimal information preserving transform. It is apparent from the results presented in fig.

4.5 that our data set does not satisfy this criteria. In fact, the performance of the retrieval

mechanism seems inversely proportional to the standard deviation within the limited range

of parameters of this test. The implication of this result is that the Standard Deviation

does not provide a clear picture of the potential performance of the code for constrained

data sets. This makes it difficult to optimise the system parameters for our scheme. As the

database becomes more diverse, so that the distribution of images tends to a Gaussian, the

standard deviation provides an increasingly accurate indication of retrieval performance.

4.2.5. Dimensionality and learning dynamics.

An investigation of how the learning mechanism responds to the dimensions of the

training set might allow us to match the learning rate to the nature of the problem at hand.

The objective of this and the next few tests is to attempt to avoid the rather ad hoc

approach to system parameter selection which has often dogged neural network

applications in the past.

51

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

The test data consists of 3 sets of images, derived from the data set shown in fig. 4.2,

which are identical in every way except that the images for subsequent sets are scaled up

(in area) by a factor of 4. In this experiment the learning rate is chosen so that the system

converges rapidly, but asymptotically, to a stable solution. The test is repeated for the

remaining two data sets, adjusting the learning rate until the convergence profile is

identical to the first. Note that the Standard Deviation is obtained from the normalised

output of the node to permit some comparison between the data sets. The results are

shown below in fig. 4.6.

Data Set

Dimension

Learning

Rate

No. Passes to

Convergence

Standard

Deviation

Retrieval

Errors.

64 x 96 0.00006 8 0.5966 625

32 x 48 0.000235 6 0.5967 626

16 x 24 0.000975 5 0.5965 1	 626	 ,

Fig. 4.6 Effect of pattern size on convergence and performance of code.

These results show that the system scales up very well - its performance is insensitive

to the size of the images being encoded. They indicate that the learning rate should be

changed according to the size of the images within the database - if the image size is

doubled (in area) then the learning rate should be halved and so on.

4.2.6. Data set size and learning dynamics.

The objective of this test is to observe how the encoding scheme behaves as the data set

increases. To allow a fair comparison between data sets, we must attempt to de-couple

data set size from diversity by ensuring that, as it grows, the diversity remains fixed. This

is achieved by fixing the number of classes of characters contained within the database,

changing only the number of characters per class. In this test the relative errors are
No. of Errors defined as 	 . The results are shown below in fig. 4.7.

Max. possible Errors

52

Std Dev

of Node 0.5 I
e

0	 2	 4	 6	 8 10

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

0.65 Learning Rate = 0.00025
	

Learning Rate = 0.0005	 Learning Rate . 0.001

../"....../•-------
,	 .•••••	 /	

••••n,‘„. 	0.6
.	 • •/' •	 /

..•

	

...0 10 classes	 /	 ,
0.55	 • t

	

of 5 Chars.	 /

— 10 Classes

of 10 Chars.

0.45	 	 10 classes
of 20 chars.

0.4 f	 III	 I	 I	 I	 I

0	 2	 4	 6	 8 10 12 14 16 18 20	 0	 2	 4	 6	 8 10

No. Training Passes

Fig. 4.7 Effect of data set size on convergence and variance of the node.

These results show that large database systems will converge more rapidly than smaller

ones but are prone to settle into non-optimal solutions (if we regard an optimal solution as

one which yields the highest Standard Deviation). This is because, for large data sets, the

learning must be 'spread' over a larger area to ensure that the node extracts global rather

than local characteristics from the ensemble. This follows from the discussion detailed in

4.2.4. Thus, to maintain the same performance the learning rate must be lowered as the

database expands.

The test outlined in 4.2.5., which matched the learning rates required to achieve

equivalent performance, is repeated for a range of data sets. Results, shown in below fig.

4.8., indicate that the learning rate should be made inversely proportional to the size of the

database; that is, if we double the size of the database then the learning rate should be

halved.

Data Set Size Learning

Rate

No. Passes to

Convergence

Standard

Deviation

Relative Retrieval

Errors.

10 Classes of 5 0.00004 102 0.6375 0.5760

10 Classes of 10 0.00002 97 0.6019 0.6350

10 Classes of 20 0.00001 91 0.5963 0.6595

Fig. 4.8 Effect of data set size on performance of a single node coding system.

4.3. A Multi-Node Coding Scheme using Constrained Hebbian Learning.

It is rather optimistic to expect the vast amount of information contained within an

image database to be represented adequately by a scalar valued code. We must expand our

53

No. Training PassesNo. Training Passes

0.6

0.5

Std Dev
0.4

of Node
0.3

0.2

0.1 	

1	 2	 3	 4	 5	 6	 7	 8	 9 10

700

600

r 500r

400

a
r 300

a	 200

100

1	 2	 3	 4	 5	 6	 7
	

8	 9 10

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

scheme to a vector code, achieved by increasing the number of nodes within the system so

that the output from each node forms an element of that vector.

Fig. 4.9 indicates how the system converges for a range of learning rates. We can see

that the number of passes required for convergence is directly proportional to the learning

rate for multi-node systems - this is especially evident in node 9.

0.6 	

Sid Dew of 0.4 . .
Node

0.5

0.2 02

Learning Rate = 0.001	 Learning Rate= 0.0005

061,	

0.5—

0.4	
`S,. • ---

0.2

Learning Rate = 0.00025

	

0.6
	

Node 1

	

0.5
	 Node 2

0.4	 Node 3

0.3 "
	 ..	 	"—= rt.1:</liee

Node 6

Node 10

50	 100	 150
	

200

No. Training Passes

0.1 	 -01
0	 10	 20	 10	 40	 50	 0	 10	 20	 30

0.1
40	 50	 0

Fig. 4.9. Convergence for multi-node constrained Hebbian learning.

For a data set with a Gaussian distribution, the standard deviation of the node gives an

indication of the amount of information that the node is contributing to the description of

that data set.

Successive nodes provide progressively less information until the addition of

additional nodes hardly furnishes us with any extra information at all. For this particular

data set 6 nodes seems to be optimum. The relationship between the standard deviation,

code performance the number of nodes is shown in figs. 4.10 and 4.11 respectively. The

latter shows that extending the system beyond 6 nodes reaps meagre rewards.

No. of Nodes In System
	

No. of Nodes in System

Fig. 4.10. Variation of standard deviation
	 Fig. 4.11 Relationship	 between

of 0/P with node index for a 	 number of nodes and code

constrained Hebbian system. 	 performance.

54

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

The degree of similarity between the breaks in the response profiles in figs. 4.10 and

4.11 suggests that the standard deviation could be used to select the optimum number of

nodes for any given data set.

A graphical representation of the weights after convergence, i.e. the Principal

Components of the data set, are shown in fig 4.12. The darker areas indicate regions of

high negative importance (i.e. large negative weights) and the lighter ones regions of high

positive importance (i.e. large positive weights). The grey areas do not contribute

significantly to the node output. These 'masks' exhibit recognisable characteristics

prevalent within the database which become less distinct for successive nodes. Nodes 7 to

10 are, ostensibly, remarkably similar (except that node 10 is the approximate inverse of

node 7) which consolidates the findings shown in figs. 4.10 and 4.11.

Fig. 4.12. First 10 Principal Components (ordered left to right) for data shown in fig. 4.2

4.4. Database Contents and System Performance.

4.4.1. Matching code length to diversity of database.

The results presented in 4.3 suggest that the number of nodes, corresponding to the size

of the code, can be optimised with respect to the nature of images within the database.

The objective of the following tests is to show how the code length can be matched against

the diversity of images within the database. In the first test, the diversity of the data base

is increased by adding a further 10 examples of a new class of characters into the database

and re-training the system from scratch. The results are presented below in 4.13.

55

0.6

0.5

Std. Dev. 0.4

of Node
0.3

0.2

0.1

Relative

Retrieval

Errors

0.8

0.7

0.6

0.4

0.3

0.2

0.1

\•	 •

k s n\

\
•

•
••

5 Classes of 10

— — 10 Classes of 10

	 15 Classes of 10

— 20 Classes of 10

•

•••	 • ..

Std. Dev. 0.4

of Node
0.3

0.2

0.1

10 Classes of 5

— — — 10 Classes of 10

	 10 Classes of 15

— 10 Classes of 20

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

1	 2	 3	 4	 5	 6
	

7	 8	 9	 10
	

1	 2	 3	 4	 5	 6	 7	 8	 9 10

No. of Nodes
	

No. of Nodes

Fig. 4.13.	 Variation of performance with code length (i.e. number of

nodes) for progressively diverse databases.

It is instructive to see how the performance of the system is affected if we add images

similar to those already contained within the database. To this end, the earlier test was

repeated but, instead of adding images from new classes, we add further examples of

images already contained within the database. The results are shown below in 4.14.

0.7

0.6

0.5
Relative

Retrieval 0.4

Errors
0.3

0.2

0.1

1	 2	 3	 4	 5	 6
	

7	 8	 9 10	 1	 2	 3	 4	 5	 6
	

7	 8	 9 10

No. of Nodes
	

No. of Nodes

Fig. 4.14.	 Variation of performance with code length (i.e. number of nodes) for

progressively larger databases of constant diversity.

Not surprisingly, we can see from the results that the more diverse the data set the

larger the code required to achieve the same level of performance. Fig. 4.14 shows that

performance of the code is not markedly effected by adding images similar to those

already within the database. Of course, the size and diversity of a database are inexorably

linked and it is likely that adding an image will have some effect upon its diversity.

Fig. 4.13 indicates that, as the database becomes increasingly diverse, the

improvement in performance afforded by additional nodes becomes increasingly marginal.

This suggests that as the database becomes sufficiently rich in image types, the nodes will

begin to learn a set of generalised feature primitives which are capable of describing global

image archetypes. Such primitives are common to a broad range of images.

56

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

This is the thrust of the Hadamard Transform and Discrete Cosine Transform (DCT)

[59] which use a fixed set of local masks which are weighted and superimposed to

reconstruct an image. The potential for coding here lies in the fact that only the weighting

coefficients for each mask need be recorded of which relatively few are required for a

faithful rendering of the original. We can see that this technique has the same 'feel' as our

own coding mechanism. However, the primitives in our own coding scheme adapt to the

contents of the database whereas those for the Hadamard and DCT remain fixed. In an

attempt to represent the images in a lower dimensional bound, PCA attempts to extract

both spatial and ensemble correlations from the data set. It utilises second order statistics.

By contrast, DCT and the Hadamard Transform, for example, do not take ensemble

characteristics into account and rely only on first order statistics. Thus, our coding

mechanism is likely to produce higher performance codes than either of these methods,

especially if the data base contains sets of highly correlated image types.

It is worth pointing out here that any coding strategy only becomes economic if there

are 'recurring themes' that occur within the data. These represent redundancy and

redundancy gives us scope for dimensionality reduction which, in turn, provides coding

potential. They manifest as ensemble themes or as spatial artefacts. Such themes might

be characterised by the class of data within the data base (such as letters, faces or finger-

prints, for example) or, at a more fundamental level, by virtue of the fact that meaningful

real-world images contain common spatial primitives and such as continuous line

segments or areas of constant luminance, for example.

This latter case was investigated by Linsker [56] using a neural network and learning

law practically identical to the one proposed for our system. He showed that when trained

with a broad range of image types, the weights converge to feature primitives which

characterise the general underlying characteristics common to all image types. This work

is exciting in that these artefacts bear a remarkable resemblance to the so-called 'retinal

fields' found to exist within mammalian visual systems. These fields, located within the

primary visual cortex, are used to encode images for subsequent processing stages 'higher

up' in the cortex. This seems to validate the approach of our own coding methodology.

57

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

4.4.2. The need for re-training.

The proposed coding strategy represents each image in terms of its relationship to a

feature, or set of features, which characterise the spread of images within a database. As

images are added to or removed from the database it is likely that the distribution of

patterns will change. This, in turn, will alter the nature of the features which permit

optimal descriptions of the images therein. If the contents change significantly then the

nodes will have to be re-trained to re-define the coding transform. The question we wish

to address at this juncture is: 'As the database changes, both in size and diversity, when

does it become necessary to re-train the system ?'.

The following example is illuminating: If we had a database of 1000 faces, for

instance, it is quite likely that practically all of the salient features which characterise a

face would be adequately represented by the existing data set. Consequently, adding a few

more faces to the database is unlikely to change the coding transform significantly and the

new images could be coded without re-training. If we wished to add a different class of

images to the database, however, then the need for re-training is more pressing. For

instance, if we added several images of horses to the facial database then it is unlikely that

a horse could be adequately described in terms of features extracted from human faces

(although a few exceptions do spring to mind!).

4.4.3. Re-training for a database containing limited image types.

In this test a 6 node system node is trained with the data set shown in fig. 4.2 until

convergence (learn rate = 0.00004; where convergence is deemed to occur when respective

node responses differ by less than 0.1% on successive passes). The contents of the

database are then changed but its diversity fixed by keeping the number of classes of

characters within the database constant. Note that the node is not re-trained; the new

images are coded using the existing weights.

The relative retrieval errors and the standard deviation of the first node, which appears

to give the best indication as to the potential performance of the code, are shown below in

fig. 4.15. The training times required for re-training using the existing weights and

'starting from scratch' are also shown.

58

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

.
Data Set Size

.

Relative
Errors
(no re-
training)

Relative
Errors
(with re-
training)

Std Devn
of node 1
(no re-
training)

Std Devn
of node 1
(with re-
training)

Passes to
converge
(no weight
initialisation)

Passes to
converge
(with weight
initialisation)

10 Classes of 5 0.2120 0.2080 0.5985 0.5839 33 94

10 Classes of 10 0.1940 - 0.5685 - - 46

10 Classes of 15 0.2231 0.2249 0.5687 0.5899 16 33

10 Classes of 20 0.2278 0.2278 0.5675 0.5744 14 35

Fig. 4.15 Effect of re-training for expanding database of constant diversity.

This shows that the relative performance of the code remains remarkably constant as

the database expands, provided that the images that are added are similar to those images

trained into the node. Indeed, if the new images are similar to the existing ones then the

improvement in performance afforded by re-training is quite marginal. This is rather

convenient as it does away with the need for 'on-line' training which is likely to be quite a

time consuming process. A practical expedient would be to re-train the system during a

'down-time' at regular intervals.

For the increase in performance that it produces, the amount of re-training required

under these conditions is comparatively large . This is because the learning process is

motivated by the difference between the actual weights and the weights representing the

optimal feature. If the new images are very similar to the existing ones then the

differences which motivate the learning are comparatively small and a large fraction of the

total training time is spent near the asymptotes of the learning curve.

4.4.4. Re-training for a database containing unlimited image types.

The experiment outlined above in 4.4.3. is repeated here but instead of adding images

from classes already within the database, we add images from completely new classes in

blocks of 10 per class (in this case we gradually add characters 'L' to 'V' not including '0'

in blocks of 10). The results are shown below in fig. 4.16.

59

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

Data Set Size Relative
Errors
(no re-
training)

Relative
Errors
(with re-
training)

Std Devn
of node 1
(no re-
training)

Std Devn
of node 1
(with re-
training)

Passes to
converge
(no weight
initialisation)

Passes to
converge
(with weight
initialisation)

5 Classes of 10 0.1840 0.1640 0.5820 0.5868 46 49

10 Classes of 10 0.1940 - 0.5685 - - 46

15 Classes of 10 0.3027 0.2767 0.5276 0.5321 53 69

20 Classes of 10 0.3135 0.2980 0.4916 0.4419 27 87

Fig. 4.16 Effect of re-training for expanding database of increasing diversity.

These results show, as we might expect, that as the database becomes more diverse, the

efficacy of the retrieval mechanism begins to drop off. Because the additional images are

from different classes to those already contained within the database, the existing weights

are likely to produce sub-optimal codes. The results bear this out.

Under these conditions retraining will improve the performance of the retrieval

mechanism more than the case mentioned in 4.4.3 but the performance without re-training

is still quite good. This suggests that the node has learn a set of image primitives which

can be used to describe a broad class of image types, even those not seen during training.

The greater the diversity of the database, the more likely it is that the node will begin to

learn such primitives. Under these conditions the effects of re-training become

increasingly marginal. As the database becomes increasingly diverse the transform

developed by the nodes will tend to the Hadamard Transformation [59].

Note that the standard deviation does not provide a 'hard and fast' indication of the

potential performance of the code. The implication here is that, as we add images to the

database we have no clear notion of the degree of improvement that re-training will bring.

However, a rather crude approach might be to re-train the node once the standard

deviation dropped by a certain percentage.

4.5. Non-Linearities - A Practical Assessment of Their Worth.

4.5.1. Non-linearities and the prospect for improved performance.

It is generally true to say that a non-linear transform will elicit more 'interesting' and

'useful' features from a data set than a linear one. This is particularly true of classifier

systems where we need to isolate those features which provide an 'all-or-nothing' type

response as a class membership function.

60

Sigmoid Coeff=0.1

— — — Sigmoid Coeff=0.5

	 Sigmoid Coeff=1.0

— - — • Sigmoid Coeff=2.0

— • - — sigmoid Coeff=5.0

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

However, the neural network transformation required by our coding scheme is not that

of a classifier system; rather we require our nodes to exhibit a graded response which

preserves the relative distance relationships in the original domain (this point is discussed

in 4.2.1 and in 5.3.1 in the context of a logical neural network). It is common practice to

insert a sigmoidal transfer function at the output of sum-of-weights to impart some non-

linearity into the response. These non-linearities allow arbitrarily complex decision

surfaces to be formed with multi-layer architectures (by contrast, a linear transformation

will only ever produce a planar decision surface, irrespective of the number of layers). A

range of non-linearities based on the hyperbolic tangent function is shown below in fig.

4.17. the actual transfer function is given by:

maxoutput
x tanh

output x sigmoid_coef
fssgmout() = tanh(sigmoid_coeff)	 maxoutput

This constrains the output of the node to lie within the limits of its linear counterpart.

(23

fig. 4.17. Non-linearities used for experiments in 4.5.1.

To observe the effect of this non-linearity we can repeat the experiment outlined in

4.2.1. with equation (23 applied to the output of the node (both in the coding and training

phase). The results are shown below in fig. 4.18.

61

Image Index

1212!13 14 15 16 17 18 19 20 21 22 23 24

*amok' Coo4f31.1

— — Sigmeld Coef141.5

	 SIgmeld Cooff.1.0

— • SiswnoW Cao2.0

- - — sigmold Cooff.0

0 1 2 3 4 5 6 7 8 9 1

0 1 2 3 4 5 6 7 8 9 10 11 12/1 14 15 16 17 18 19 20 21 22232424
/.	 Passes to

Learning Rate, convergence,
(<0.1%

0.0075	 90
---0.0050 	 89
	 0.0025	 9

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

Data set consists of 'A' font merged to 'B over 25 Images.
More 'A' than 'B'.	 More 'B' than 'A'.

larRa.MIBBSESEN• • nII0 LI# •
it It. LL.

1

0.8

0.6
0.4

Normalised	 0.2
Node	 0
0/13 -0.2

-0.4

-0.6

-0.8

-1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Image Index

I •

i

fig. 4.18.	 Increasing non-linearity changes node from a

dimensionality reducer to a classifier.

These show that as the non-linearity is increased (by changing the coefficient from 0.1,

a near-linear response to 5.0, a near step response) the node begins to function more like a

classifier, dividing the data set cleanly in half.

Fig. 4.19 indicates that the learning in non-linear nodes is highly sensitive to learning

rate and increases the likelihood that the system will settle into a false minima. It is rather

interesting to note that the system takes much longer to settle into a sub-optimal solution

even thought the learning rate is higher.

Data set consists or A' font merged to 'B' over 25 images.
More 'A' than B. 	 ritmnB) Mcrtrw'B.lathaniA".B3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Image Index

1

0.8

0.6

0.4

Normalised	 0.2
Node	 0

0/P -0.2

-0.4

-0.6

-0.8

-1

fig. 4.19.	 Increasing the non-linearity makes the system sensitive

to the learning rate. (shown here with sigmoid = 2.0).

62

Difference)

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

So, how does this non-linearity effect the performance of our code? The experiment

described in 4.3 is repeated for a 6 node system (deemed to be optimal for this particular

data set) with a range of non-linearities. The results are shown in fig. 4.20 - note that for

sigmoids > 2.0 the retrieval errors were in excess of 500 throughout training during which

the system failed to converge.

R

0
E

t
r

F
r

I
o

a
r

V
S

a

425

375

325

275

225

-

- P S -
,i ' ',

•	 s''_	

XS.

s

1

1
Y.

-

•	 •••nn 0

...." •• n••

	

S5

--	 •"'"' '.....,-.	 s•- --5

Linear

— — — Sigmold Coeff=0.5

	 Sigmold Coeff=1.0

— • Sigmoid Coeff=1.5

— - - — Sigmold Coeff=2.0

S.. -

I
' - - • - n:":. ;.- ar24:-tr.......

175
10
	

20
	

30
	

40
	

50

Training Pass No.

fig. 4.20.	 Effect of non-linearity on convergence and performance of

code (shown here with learn rate = 0.00025).

It is interesting to note that a small non-linearity does not effect the performance of the

code to any great extent but does assist in the training phase as convergence tends to be

speeded up a little. This is because the non-linearity has a tendency to 'push' the output of

the node to the limits and in so doing 'pushes' it that little bit faster toward a solution. The

fact that this non-linearity has only a marginal effect upon the performance of the code

surprises this author a little.

Following the arguments presented by Bourland and Kamp [58] in chapter 3, we

suggested that non-linearities were not particularly advantageous for the coding scheme.

Whilst our own results corroborate this reasoning in that they show that non-linear

transforms offer no improvement in performance, they do indicate that a degree of non-

linearity is useful in that it improves the convergence of the system. This seems to counter

the argument forwarded by Bourland and Kamp which implied that training times are

likely to increase for non-linear systems.

63

10

9

8

7

Std. Dev.	 6

of	 5..

node 0/P	 4

3

2

1

0

Node 1

Node 2

Node 3
Node 4
Node 5

Node 10

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

4.6. An Intelligent Video Editing System using the Neural Network
Coding Scheme

The coding scheme investigated in this chapter can be used as the basis of an intelligent

video editing system. Video editors are frequently required to access sections of a video

sequence that contain a particular scene - this is, of course, just a re-interpretation of a

retrieval by image content system. It is illustrative here to show how our coding scheme

performs for a typical sequence of 'newsreel' footage. The video editor selects a particular

scene and requests that the system retrieve those scenes that bear the closest resemblance

to the target.

4.6.1. Methodology

In the following example, a single frame of broadcast news footage is grabbed and

stored each second. The image is converted to 8-bit grey level, shrunk from 512 x 512 to

128 x 128 and stored on disc; in a practical system the images need not be stored since the

network could be trained on the 'raw' video. This was repeated for 400 images - the

complete database is shown in Appendix A (the apparent poor resolution of these images

is a product of the printer used here. They are best viewed at a distance).

Ten nodes were trained on all 400 images with the learning rate set to 0.0001. The

convergence of each node is shown below in figs 4.21 and 4.22. The latter indicates that

the training times increase approximately linearly with the number of nodes.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 BOO

Pass No.

Fig. 4.21. Standard deviation of nodes during training.

64

2345

800 -

700

600
No.	 500

Passes to
400

converge
300

200

100

1
•	 4	 •	 I 	 I

6 7 8 9 10

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

Node No.

Fig. 4.22. Convergence times for nodes during training.

The output of each node was quantised to 8 bits so that the code for each image was

80 bits.

4.6.2. Results

A set of target scenes were selected from the database and 25 frames with the closest

match retrieved. The targets were chosen to present something of a challenge to the

retrieval mechanism (for example, the head and shoulders of the news-reader appear

frequently throughout the footage with only the relatively small inset in the top right hand

corner to distinguish it from other frame sequences). The results are shown below in figs.

4.23 to 4.27; in each case the target image and the image with the closest score is shown

in the top left of the diagram as image index 0. The retrieved images are ordered left-to-

right and top-to-bottom.

0

5

10

15

20

Fig. 4.23. Target image index:60. Retrieved images 60,61,63,62,65,67,66,64,69,68,70

,156, 158,157,164,163,159,34,360,33,35,11,47,13,46.

65

10

15

20

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

Fig. 4.24. Target image index: 89. Retrieved images: 89,100,98,92,99,96,94,91,95,97,

93,90,101,323,327,326,324,325,328,220,217,330,329,221,224.

Lii-SARt	 1.::&a.t&Cia; Liatiati
EZ7M1	 Ei"';'m9,91

10

	 tew

15

20

A

Fig. 4.25. Target image index: 166. Retrieved images: 166,169,187,167,188,210,211,

168 ,170,190,189,261,338,337,350,262,339,107,352,351,144,143,106„40,254.

66

10

15
-

20

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

Fig. 4.26. Target image index: 299. Retrieved images: 299,304,305,302,303,300,301

,377,378,322,1 14,117,321,379,115,157,156,159,158,116,144,357,143,254,391.

Fig. 4.27. Target image index: 306. Retrieved images: 306,308,312,314,307,311,310,

309,313,231,246,230,247,140,104,242,160,341,141,384,113,264,265,163,111.

67

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

4.6.3. The effect of the number of nodes on the performance of the editing

system.

Reducing the number of nodes is beneficial because it speed up both the search and the

training times. The next test gives some indication of the relationship between the number

of nodes and the performance of the editing system.

Here image index 89 is used as the target (see fig 4.24) and the previous test repeated

whilst increasing the nodes from 1 to 10. Image index 89 is particularly apt for this test

since the only artefact which differentiates it from other shots of the news readers' head is

the small caption insert in the top right hand side of the frame. The sequence beginning

with index 89 continues for 13 successive frames, whereupon a different sequence begins.

The object of the retrieval mechanism is to recover all 13 of these frames and no others.

The results are shown below in fig. 4.28 where the confidence of the retrieved images

runs left-to-right. Note that image index 89 is always the first to be retrieved, regardless

of the number of nodes and is shown as the first image of the retrieval sequence. Both the

8 and 10 node systems recovered all 13 of the target frames. It is evident that an 8 node

system is perfectly adequate for this particular data set.

4.7. Discussion

Neural networks are frequently regarded by the uninitiated as a kind of computational

panacea. It is all too easy to get the impression that one merely has to 'throw' data at an

off-the-shelf architecture, leave the neural network to 'get on with it' and come back a

short while later to find the problem solved. In reality though, this is simply not the case

and a neural network practitioner must typically ponder long and hard over a host of

frequently baffling network parameters before even beginning to tackle the problem at

hand. Such parameters might include network topology, nodal transformation function,

learning law and its associated parameters such as the learning rate, which we have already

touched upon. This is not an easy task and the selection process is often closer to alchemy

than it is to science. Even then, there is no way of knowing that the solution found by the

neural network is an optimal one. This is tantamount to saying that neural networks can be

used to solve a problem provided that you already know what the solution is! This is not

an issue for supervised learning systems where we have some idea of the classification

boundaries but is a problem for unsupervised learning systems where there is no a priori

68

OC,NI r1 NO•zr am..•nn•
1n1

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

69

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

knowledge of notional data organisation. This state of affairs is unacceptable for a

practical system where the neural network is to be trained by an operator with only modest

expertise. Throughout this chapter we have attempted to address this problem with a view

to automating the selection of the network parameters for the neural network and

constrained Hebbian learning law introduced in chapter 3. To this end we have

investigated how the parameters need to be adjusted as the database changes. The number

of nodes and the learning rate are two particularly important parameters in our network.

The learning rate is critical and the surest way to guarantee good performance is to set

it very low. Unfortunately, this means that training times are very long and some

compromise must be met here. Work outlined in this chapter indicates how the learning

rate may be set and changed to suit the nature of the data base.

The size of the learning rate determines the extent localisation of the learning process

within the training ensemble. If the rate is set high then the system has a propensity to

learn local features dependent upon a particular ordering of the data during training. Such

a system is likely to converge to sub-optimal solutions. A small learning rate will 'spread'

the context of the learning across the data set. We show that the learning should be made

inversely proportional to the size of the data set.

The size of the images does not effect the performance of the code - we show that the

learning rate should be made directly proportional to the size of the images within the

database. Of course, this is rather a simplistic notion as larger images tend to contain more

information than smaller ones and this would undoubtedly degrade the performance of the

system. Note that this system requires that the size of the images be normalised so that

they all have the same dimensions.

To a limited extent, the standard deviation of the node activity across the data set can

provide a metric to help us assess the efficacy of the retrieval mechanism; though the

relationship is a loose one and does not always hold true. Indeed, we point out that

situations can arise whereby the system can settle into a solution which exhibits a higher

standard deviation but with a lower performance. Since low learning rates will always

maximise the standard deviation we can conclude that an optimal PCA may not necessarily

provide the best retrieval performance for a given data set. The performance will only be

optimised if the data has a Gaussian distribution in the pattern space. Fortunately, most

70

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

images exhibit Gaussian like statistics and the performance may be reckoned to be near

optimal for a large and sufficiently diverse database.

Successive nodes learn features with decreasing significance. For any given data set

there comes a point where the inclusion of additional nodes provides little or no additional

information. Thus, it is possible to optimise the code length with respect to the contents of

the data base. For a database of moderately diverse image types (so that the distribution

tends to that of a Gaussian) the standard deviation can be used to select the optimal

number of nodes which occurs where successive nodes exhibit standard deviations of the

same order of magnitude.

As the diversity of the database increases, the nodes begin to learn generalised image

primitives such as continuous line segments, for example. The upshot of this is that the

need for re-training is less pressing as these primitives are pertinent to a very broad range

of images.

One of the great strengths of our coding scheme lies in its ability to adapt to the

changing nature of the database. As new images are added to the database there will come

a time when the nodes need to be re-trained although the degradation in performance is

gradual and, where the database contains a broad range of image types, almost

imperceptible. This begs the following question: 'When should we re-train the system?'

Our experimental results indicate that the rate of decrease of the standard deviation of the

first node can give a very rough idea of the resultant drop in performance, although the

relationship is, again, a loose one. Sometimes the standard deviation can drop by a large

amount and the improvement in performance that re-training brings be comparatively

small. This is dependent upon the changing distribution of images in the pattern space.

We have looked at the effect of the nodal transformation and show that a simple linear

node will capture most information within the data set. These results are backed up

theoretically by Bourland and Kamp [58] who conclude that non-linear transforms will not

outperform linear ones for this type of application. However, whilst our own results show

this to be the case they do indicate that a small non-linearity can speed up the training

times significantly.

Summing up then, we can see that a simple single layer linear (or near linear) neural

network can be used as the basis of our coding mechanism. The transform provided is

71

Chapter 4 - An Empirical Study of the System Parameters for a Sum-of-weights type Neural Network.

equivalent to PCA but is less expensive both in terms of memory and computation time.

The price that we pay for this is that a learning rate needs to be set which is not an easy

task and it is better to err on the side of a small value.

Finally, we show how this coding scheme can form the basis of an 'intelligent' video

editing system which facilitates very rapid access to frames with similar scene content.

In chapter 6 we introduce a completely novel learning law which is also directly

equivalent to PCA yet requires no learning rate to be set. In this respect it is a more

attractive prospect than the system described here.

72

Chapter 5 - Logical Neural Networks.

Chapter 5

Logical Neural Networks

5.1. Introduction.

The objective of this chapter is to show how a single layer Logical Neural Network

(LNN) can be used as the basis for a very simple coding scheme and to contrast its

performance with the sum-of-weights paradigm discussed in chapters 3 and 4.

We introduce the WISARD architecture and investigate, both through mathematical

analysis and experimental results, how the network parameters effect the performance of

the code. Such parameters include tuple size and mapping strategy, training methodology

and the number of nodes used. We show how a very basic unsupervised LNN coding

mechanism can be used to retrieve images from a database of machine printed characters.

5.2. Why use Logical Neurons ?

Architectures for sum-of-weights type neural models abound and most current research

in the field of neural networks is centred around implementing learning paradigms on such

topologies. One of the great shortcoming of these architectures, however, is their

problematical implementation in hardware where the high degree of interconnectivity

required for all but trivial problems is simply not practically feasible. It is fair to say that

the inherent parallelism which renders these architectures so powerful is rarely utilised.

This represents something of a dilemma for the image processing community as large scale

problems require prohibitively long training times where the neural network paradigm is

implemented on a serial machine. LeCun et al [60] reports that training a standard

backpropagation net on 7291 16 by 16 binary characters for an OCR system takes over 2

days on a Sun4 workstation. This is not a problem if training can be performed 'off-line'

but obviously falls short of the criteria required for adaptive 'on-line' systems.

73

Response from
discriminator 1.

Input Retina

Response from
discriminator 2.

n-tuple

Site addressed by bit
pattern in n-tuple.

Chapter 5 - Logical Neural Networks.

Bledsoe and Browning [61] introduce a pattern recognition technique which can be

supported very neatly using standard RAM like memory components. Such architectures,

often referred to as weightless or Logical Neural Networks, may be trained extremely

rapidly and offer an attractive prospect for hardware realisable neural network

architectures. Such a scheme has been employed by the WISARD [62] neural network

which, to date, remains one of the few neural network architectures which can be trained

on high resolution images (i.e. 0.25 million pixels) at video frame rates and certainly the

only one which can do it at a modest cost. A typical WISARD system is shown in fig.5.1

5.3. The WISARD architecture.

LNN nodes consist of networks of relatively sparsely connected Boolean operators

which are mapped onto a binary input retina. The precise functionality of each operator

in the node is determined by a small sample of bits within the input pattern - each n-bit

sample is called an n-tuple. These functions can be readily realised using standard VLSI

RAM components so that every combination of binary elements within the n-tuple form

an n-bit address to each location within the system memory. The memory requirements

grow exponentially with tuple size and, as a consequence, these nets are typically sparsely

connected with tuple sizes varying from between 2 and 8. The response from each

function is summed in a discriminator to give an overall response from the pattern on the

input retina.

Discriminator

Fig. 5.1 A typical WISARD system

Classically, the WISARD architecture is used as part of a supervised learning system

where one discriminator is dedicated to each class of input pattern and training affects only

the contents of the discriminator assigned to that class . Data is presented to the network

during training and a '1' written to the sites addressed by the pattern within each tuple in

74

Chapter 5 - Logical Neural Networks.

the assigned discriminator. During the training phase a generalised representation of the

prescribed class is built up within each discriminator.

After training has been completed, a pattern is presented to the network and the

combination of binary elements within each tuple addresses a site in the system memory

which may or may not have been filled during the training phase. The contents of the

site addressed by each tuple within the discriminator is summed to form the response to

that pattern. If the input pattern shares some of the same features as the class assigned to

that discriminator during training then it will evoke a response from the system. The

larger the extent of the shared features, the larger the response. If successfully trained, the

system can give a high response to unseen data. It is this ability to generalise which gives

these nets powerful recognition properties.

The tuple size and the assignment of the tuples to specific sites within the input retina

can have a profound effect upon the behaviour of the network. As a prelude to the

application of a WISARD type network to our particular problem it is worth investigating

how the tuple size and the nature of the pattern domain is likely to affect the performance

of the system.

5.4. How does the tuple size affect the performance of a Logical Neural
Network ?

5.4.1. The nodal transformation of an n-tuple

An LNN node is not simply a digital implementation of a sum-of-weights node - its

transfer function is more akin to the so-called 'sigma-pi' units described by Rumelhart [48]

whose output is the weighted sum of the products of certain input lines. Such nodes can

elicit higher order statistics from the input data than a basic sum-of-weights node and

yields a distinctly non-linear type transfer function.

Gurney [63] gives the transfer function of a simple single 2-tuple node after training

as:

y = so, (1— x1)(1— x2) + so, (1— x1)x2 + slo xi (1— x2) + s1 x1 x2	 (24

Where:

y is the node output.

75

Chapter 5 - Logical Neural Networks.

x, is value of binary input on 1st line of the tuple.

x2 is value of binary input on 2nd line of the tuple.

s 	 the value at the site addressed when x1 =0 and x2=0.

(set to 1 if pattern occurred during training).
sol is the value at the site addressed when x1 =0 and x2=1.

etc.

Equation (24 shows that an n-tuple node will extract n th order statistics from the input

data - the behaviour of the node becomes increasingly non-linear as the tuple size grows.

It is generally true to say that for most pattern recognition tasks a non-linear node will

extract more 'interesting' (and less trivial) features from a data set and it is instructive to

appraise the potential of such nodal transformations in the context of our particular

application.

5.4.2. Response profiles and tuple size - an analysis.

How does the response of a discriminator vary when presented with patterns not

present in the training set?

Consider a D dimensional binary pattern, P, where every element within the pattern is

assigned to an n bit tuple. There are Din, 2n bit memories within the discriminator.

After training with a single presentation of P a '1' will be written to a single site within

each memory (see fig.5.1). Presenting P to the trained net addresses each and every '1'

set during training and the response of the node is Din. Normalising the response gives:

yo = 1	 (25

If pattern PI , a Hamming distance of 1 from P, is presented to the network, one of the

tuples will fail to address a filled site and the response of the discriminator drops by n/D.

So that:

yl =1— ilD	 (26

Where:

Y1	is the normalised response of the node to a pattern Pi which is 1 bit

different from the training pattern P.

n	 is the tuple size.
D	 Is the dimension of pattern P (and PI)

76

• 0.5

(28

(29

(30

Tuple
Size

-

Chapter 5 - Logical Neural Networks.

If pattern P2 (a Hamming distance of 2 from P) is presented then, as before, the first

bit difference will bring about a n/D change in the discriminator but the second bit

difference may occur in the same tuple as the first (so the response remains 1-n/D) or in a

different tuple in which case the response drops by a further n/D. The probability that the

second bit difference occurs in a different tuple as the first is 1- n/D. Then:

y2 =1—n1D— nl D(1— D)	 (27

Where:
y2 is the response of the node to a pattern P2 which is 2 bits different from the

training pattern P.

Generally, for very large D, node response to a pattern P h which is Hamming distance

h from training pattern P may be approximated by:

yh =1— nID Eci — nIDr

Using the identity:

ah
= 	

1=1	 1 — a

Yields:

yh (1— nID)h

This function is plotted below in fig. 5.2.

1

s •

•

N

256	 512

Hamming Distance from Training Pattern

Fig. 5.2 Response profiles for n-tuple nodes

77

'A class
discriminator

'B' class
discriminatorR

e
S

p.
o
n
S
e

-

Chapter 5 - Logical Neural Networks.

Fig. 5.2 gives an indication of the ability of the node to generalise. A low tuple size

restricts the number of features that may be represented within a function and good

generalisation is achieved through a coarse representation of the pattern feature space. As

the tuple size grows, the feature space becomes increasingly fine-grained and the localised

response of the node to images close-by in the pattern space, or its selectivity, becomes

more pronounced. Thus, the generalisation ability of the net (the ability to respond to

unseen inputs) is achieved at the expense of its selectivity (the ability to respond

unambiguously to a given class). This trade off between selectivity and generalisation is

dictated by the tuple size. It is problem specific and is typically resolved, to the chagrin of

many researchers in the field, more by empirical means than by any set methodology

(rather akin to the problem of selecting the number of hidden nodes in a backpropagation

network, for example). Do the requirements of our coding scheme provide us with any

clues to help select the optimum tuple size?

5.4.3. The contrasting roles of image classification and coding systems.

Consider the idealised response profiles of a classifier scheme for 2 classes {A1,A2,A3)

and (13 1 ,B 2,B 3) shown in fig.5.3. The objective of the system is to determine if the

pattern presented to the net belongs to either of the training pattern classes. The output of

the discriminator will respond with a '1' if the appropriate class is presented and a '0'

otherwise.

Ai	 Al A3 .	 B2 B3	 B 1

Position in pattern space

Fig.5.3 The idealised response of a 2 class classifier.

Suppose now that this net is to be used the basis of a coding scheme to indicate the

relative positions of each of the patterns in the pattern space. The response of each

discriminator forms an element of the code. The codes for the training data are thus:

A 1 = [1,0]

A2 = [1,0]

A3 = [1,0]

78

R
e
S
P
o
n
S
e

Chapter 5 - Logical Neural Networks.

B 1 = [0,1]

B2 = [0,1]

B 3 = [0,1]

This code does not furnish us with a great deal of information regarding the relative

positions of the patterns in pattern space and it is apparent that the criteria for training nets

to behave as classifiers is not particularly suitable for our coding requirements. A

fundamental requirement of the coding scheme is that the coding transformation learnt by

the node preserve the relative relationships between the patterns in the original domain

(i.e. a conformal mapping). A node trained as an optimal classifier will not do this.

If we change the tuple size to 1 then the output of the node is linearly proportional to

the hamming distance from the training pattern - this is shown in fig.5.3. A coding

scheme based on this tuple size will better reflect the hamming distance between the

patterns in the original space (whether or not this corresponds to a human beings notion of

'distance' in pattern space is quite another matter however).

Al	 A2 A3 .	 132 B3 	B 1 sl

Position in pattern space

fig. 5.4 Response profile of a 2 class, 1-tuple system with one training example.

Such a scheme yields the following codes:

A 1 = [0.92,0.35]

A2 = [0.78,0.58]

A3 = [0.6,0.72]

B 1 = [0.45,0.92]

B 2 = [0.43,0.97]

B3 = [0.22,0.66]

The Euclidean distance between the codes for each pattern better reflects their position

in the original pattern space and is more suited to our requirements.

79

-

	I

Chapter 5 - Logical Neural Networks.

5.4.4. The effect of tuple size for a simple coding scheme.

The objective of the following test is to determine how the tuple size affects the

performance of a coding mechanism where the code is taken to be the output from a

single discriminator - i.e. it is scalar. The data set, is identical to that shown in fig. 3.9. The

tuples are mapped randomly onto the complete retina (see 5.6) and the discriminator

trained with one presentation of a single pattern, chosen from the data set. After training

each pattern within the data set is presented to the net and the output of the discriminator

normalised to floating point number where 0� code.� 1. The test outlined in 4.2.3 was

repeated for a LNN.

The discriminator was then cleared and trained with a different pattern from the data

set and the results recorded. This procedure was repeated with each pattern as the training

prototype and the best results shown below in fig. 5.5.

RE
e r
t r
3 o
i r

e s

V

a

I

680

660

640

620

BOO

580

560

540

520

500

2	 3	 4	 5	 6	 7	 8

Tuple Size.

Fig. 5.5 Effect of tuple size on code performance.

These results suggest that the higher order nodal transformations produced by larger

tuple sizes do not preserve the relative topological relationships between images in the

pattern space and thus are not well suited to this simple scalar valued coding scheme.

Fig.5.5 indicates that a sum-of-weights type linear network (or a trivial 1-tuple

discriminator node which merely measures the Hamming distance between training pattern

and target) will provide a better basis for the simple coding scheme described. This

consolidates the hypothesis outlined in 4.4.3 which concluded that a linear sum-of-weights

node might be more suited to this particular application than a non-linear one.

However, as the number of nodes increases, so that the code becomes a vector instead

of a scalar, other factors come into play which warrant the use of larger tuple sizes. This is

discussed in 5.7.

80

R
e
S
p.
o
n
S
e

A1 A2 A 3 	B1 B2 B3	 Ai A2 A3	 BBB3

Position in pattern space
	

Position in pattern space

_

R
e
S
p.
o
n
S
e

Chapter 5 - Logical Neural Networks.

5.5. Training and System Performance

One of the great strengths of the neural network approach to pattern recognition over

more deterministic methods lies in their ability to generalise through a learning phase. The

neural net is able to do this because a generalised representation of the candidate class is

built up within the node during training. Seen in this light one, could argue that the

results reported in 5.4 were not representative of the capabilities of a neural network

system as we considered a very trivial case - that is, a discriminator trained with one

pattern. Such a discriminator could hardly be said to contain a generalised representation

of the data set characteristics.

5.5.1. Training and tuple size - an analysis

The response a discriminator after training may be viewed as the superposition of

individual profiles for each training pattern - this is shown in Figs. 5.6 and 5.7. The tuple

size has a profound effect upon the shape of the profiles and consequently determines the

extent of the training required by that node. Figs. 5.2 and 5.6 shows that the distinct

response profiles associated with larger tuple sizes will restrict the area of influence of a

discriminator in pattern space and thus will remove inter-class ambiguities. However,

these sharp profiles render the scope of the class domain impractically small and this must

be extended by careful training on several class prototypes which reflect the intra-class

diversity.

Fig. 5.6 2 class response profile with

a single training example

Fig. 5.7 2 class response profile with

multiple training examples.

81

Chapter 5 - Logical Neural Networks.

The sharp profiles produced by large tuple sizes can cause local anomalies in the

response of that node (the 'wells' in the profile in fig. 5.7) and training for these systems

must be more comprehensive than for small tuple sizes (where the 'wells' are shallower).

The reduced functionality of small tuple discriminators means that there are fewer sites

to fill during training and such nets are prone to saturation where the discriminator exhibits

a high response for the whole data set with a subsequent loss in selectivity.

Matching the extent of the training to the nature of the problem is typically solved

through heuristics which poses something of a stumbling block for neural network

practitioners and is especially difficult in applications where the notion of class

membership is fuzzy, such as in unsupervised learning systems, for instance. A

mathematical analysis of the training process may provide some insights that might help to

resolve this approach.

Consider an ensemble of binary patterns with an average bit density y - that is, there are

on average ny Ts and n(1-y) 'O's in each n bit tuple within the discriminator. During

training, a '1' is written to the site addressed by the pattern in each tuple. The probability,

PA ,of site A being addressed within a function is given by:

PA = ir(1—Yrr	 (31

Where:

r is the number of 'Ps in the n bit address.

For a '1' to be written to an unfilled site after T training presentations 2 conditions must

be satisfied:

i. The site was unaddressed during the previous T-1 training examples.

ii. The site is addressed by the Tth training pattern.

Thus, the number of sites filled in an n-tuple containing r Boolean function after T

training examples, S T, is given by:

2" -1 T

ST = EE(1—P„,)-Ii'm	 (32
m=0 t=1

Where:

Pm is the probability of the m th site in the function being addressed.

82

(33

(34

(35

1S 0.9a
t 0.8

0.7
U 0.6
3 0.5
a 0.4

t 0.3
i 02
O 0.1

50
	

100

No. of training patterns

Fig. 5.8 Saturation vs training with

average image density=0.1.

2-Tu le

- - -
4-Tuple	 _ -.- " - - _ _

-
--—

6-Tuple	 ..-- -----

—

../
,- 	 _ ..- -

S
a
t
U
r
a
t
i
o
n

1

0.9
0.8
0.7
0.6
0.5

0.4
0.3
0.2
0.1

0

Chapter 5 - Logical Neural Networks.

For a 3 tuple:

Po =Y0(1—Y)3

Pi =Y1(1—Y)2

etc

From the identity in equation (29, (32 becomes:

r-1/

ST = E (1 — (1 — Pm)7.)

m=o

So that:

2"-1

ST = 24 — E(1 — Pm)T

m=0

Normalising gives:

1 2.-1
ST =1-- E(1- Pm)T

This function is plotted in figs. 5.8 to 5.11 for various tuple sizes and image densities.

These graphs confirm that low tuple sizes require less intensive training than higher tuple

systems and are prone to saturation, especially where the average density of the data set

approaches 0.5. It is evident that low density images warrant higher tuple sizes than high

density images to achieve the same degree of generalisation after training.

50	 100
No. of training patterns

Fig. 5.9 Saturation vs training with

average image density=0.3

83

S1
a 0.0

0.0

• 0.7

0.6

0.5a
0.4

0.3

0.2

O 0.1

n 0

Fig. 5.10

Chapter 5 - Logical Neural Networks.

2-7uple

4-7uple

6-7uple

.	
.

e

50

No. of training patterns

Saturation vs training with

average image density=0.5

a 0.8

U 0.6

a 0.4

0.2

O

•

0

0.5	 Training
Image OA	patterns
density

Fig. 5.11 Saturation vs training with

a 4 tuple discriminator.

100

101

5.5.2. Training by image shifting for a practical coding scheme

We can see how training affects the performance of the coding transformation by

repeating the experiment outlined in 5.4.4 but presenting several shifted versions of the

pattern during the training phase. In this experiment the pattern is translated in the x and y

planes before presenting it to the input retina - one complete training cycle for a pattern

consists of the following translations:

- - -

Ty°. Ax = +5% "

-
A Y 	

Fig. 5.12 Image shift during 1 training phase.

Patterns are truncated at the borders of the retina and the locations not occupied by the

new pattern position are filled with 'O's.

The performance of a retrieval mechanism based on this training regime is shown in

fig. 5.13

84

A 1-Tuple
• 2-Tuple

4-Tuple

• 6-Tuple
O 8-Tuple

A

Chapter 5 - Logical Neural Networks.

680

660e E
t	 640

r 620
„u 600

V	 580

a
560

540

Fig. 5.13

1-Tuple

—	 2-Tuple

	 4-Tuple

— • 6-Tuple

- - — 8-Tuple

0	 1	 2	 3	 4	 5	 6	 7	 8	 9 10

Training Phases

Variation of retrieval performance with training intensity for

shifted patterns with randomly mapped tuple sites.

Fig. 5.13 indicates that, for a single node system, training does not increase the

efficacy of the coding mechanism and that no improvement can be made upon a simple 1-

tuple system with a single training pattern presentation. This result provides more

empirical backing to the hypothesis put forward in 5.4.3. It is interesting here to note that

the training image which gave best retrieval performance for a given tuple size and

training intensity (i.e. for the results given in fig. 5.13) did not remain constant but

changed as the system parameters were altered (although recurring images tend to

produce best results).

The standard deviation of the code produced by the scheme outlined above is shown

below in fig. 5.14. this diagram suggests that the standard deviation of the code provides

no hard and fast clues as to its performance and that choosing the training patterns to

maximise the variance of the node output will not always result in an optimum coding

scheme (although, generally, higher variances will tend produce better results). Each point

corresponds to the best performance achieved for a given number of training passes and a

particular tuple size.

0680	 0

t
eE) 4sao e..1

660

- ler• r 620 —

•• soo
3 580 —

Sa

540

560

0.12	 0.14	 0.16	 0.18	 0.2	 0.22	 0.24	 0.26	 0.28	 0.3

Standard deviation of code across dataset

Fig. 5.14 Relationship between standard deviation of code

and its performance for randomly mapped tuples.

85

Chapter 5 - Logical Neural Networks.

5.5.3. Training by adding noise to an image for a practical coding scheme

In this experiment the discriminator is trained with several presentations of the same

pattern where successive presentations corrupted with a fixed amount (4%) of random

noise. This noise tends 'spread' the image in the feature space and produces a more

generalised version of the image. This technique has been exploited by Aleksander [64] in

his GRAMS with favourable results. Is it applicable to our system?

The best achievable results (after repeating the experiment with each pattern as a

training prototype) are shown in fig. 5.15. This shows that generalising a pattern with

noise spreading during training can produce better results than both training with shift and

no training at all for a single node system but the improvement is quite marginal.

680
R 660	 . 8-Tuple
e

----.

\•...."--.	 ----"-

4 E 640 \	 '	 —2	 _..-7.-----z-- - - 	. ---	 ...6-Tuple,..	 . 	
L	

•	 —er

3 620	 7	 -.,	 4-Tuple
3--
i r	 600

- ' - - - - -2-Tuple
O 580	 - - 'e r	 560 	

3 X_—L--s '
1-Tuple

No. of training presentations

fig. 5.15 Variation of retrieval performance with training intensity

for noisy patterns with randomly mapped tuples.

As with earlier experiments of this type lower tuple sizes give the best results. The

standard deviation of the code produced by the scheme outlined above is shown in

fig.5.16. (as in fig.5.14 each point corresponds to the best performance achieved for a

given number of training passes and a particular tuple size).

S540a
1	

520
500	 4	 111111144

0	 1	 2	 3	 4 5	 6 7 8 9 10

86

• 1-Tuple
O 2-Tuple
• 4-Tuple

0.0 •	 0 8-Tuple•

R E

660

e r 640

t r 620

3 o 600

i r
580e s

• 560

a	 540

1

Chapter 5 - Logical Neural Networks.

520

0. 2	 0.14	 0.16	 0.18	 0.2	 0.22

Standard Deviation of code across data set

Fig. 5.16 Variation of retrieval performance with standard

deviation of code for noisy training data.

Fig. 5.16 indicates that for noisy training patterns there is a distinct correlation between

the standard deviation of the code and its performance - although the relationship is only a

loose one. This provides a rough metric to help find the pattern and training schedule

which optimises the performance of the code (note that this relationship does not hold so

reliably for higher tuple sizes but this is academic as lower tuple sizes produce the best

results anyway).

5.6. Mapping the Tuples onto the Image.

5.6.1. Why do some tuple mappings perform better than others?

On the classical WISARD system operated in a supervised training mode, mapping the

tuples randomly onto the retina tends to produce the best results[62][65]. Why is this?

Meaningful real-world images contain many localised artefacts brought about by low

luminance variance or continuous line segments across an image, for example. These

artefacts mean that there is typically a high degree of localised image correlation within

the data which will only be extracted if the tuples themselves are mapped locally onto the

retina. It is possible to see the extent of localised correlation within the data set by

observing the amount of information gleaned from various mapping strategies. This can

be measured by recording the frequency of occurrence of tuple patterns for each tuple

across the whole data set. The information, or entropy, H of each tuple is given by:

1 2x-1"

H =	 LP; ln 2 Pi
n i=0

Where:

(36

87

0.8

0.75
	 , ,

o 045

OA
Local mapping

..........

--::-- ----

b
I	 055

i
n t 05
f

M
p 0.7e

a
er

065
n

06 RandomRandom mapping
Disparate mapping

Chapter 5 - Logical Neural Networks.

H	 =	 The average information per bit within the tuple.

Pi	 =	 Probability that site i is addressed by the tuple.

n	 =	 Tuple size.

A low entropy means that the tuple has extracted correlated pattern characteristics from

the data. The average entropy per bit for local, random and maximally disparate tuple

mappings for the data set given in 4.2 is shown below in fig.5.17. This indicates that the

local mapping will elicit the higher order correlation inherent within local image artefacts.

2	 3	 4	 5	 6	 7	 8

Tuple Size

Fig. 5.17
	

Average entropy for mapping strategies for the

data set shown in fig. 4.2.

Bearing in mind that the primary objective of most pattern recognition tasks is the

extraction of highly correlated features, it seems, at first sight, counter-intuitive that the

best results should be achieved by de-correlating these artefacts through random mapping

of the tuples. Why should this be the case?

Consider a 3-tuple system designed to distinguish between the letters 'E' and 'F', shown

in fig.5.18. In this example the discriminator has been trained with just a single

presentation of the letter 'E'.

88

Chapter 5 - Logical Neural Networks.

Discriminator trained with 'E'

'Local' tuple mapping.

'Random' tuple mapping.

Fig. 5.18 The effect of mapping tuples in a simple discriminator system.

The only feature which enables us to distinguish between the two classes is the two

right-most pixels in the last row of the retina. The object of the mapping should be to

maximise the effect of this discriminant feature. The first mapping will concentrate the

effect of this feature in just one tuple so that the response of the discriminator trained on

'E' to the letter 'F' is: Response.„„-1. The second mapping scatters the effect of the

distinguishing features amongst 3 tuples so that the response is now: Responsemax-3.

Thus, in this example a 'random' mapping will improve the differential response of the

system.

Figs. 5.19 and 5.20 compare the results obtained with local and random tuple maps for

the experiments outlined in 5.5.2 and 5.5.3 confirms this analysis.

As a corollary to this result, it is reasonable to suggest that the most effective mapping

would be one where the local effects within an image are completely de-correlated (i.e.

they influence as many tuples as possible). Such a mapping may be achieved by

maximising the Euclidean distance between the sites assigned to a tuple across the retina.

Fig. 5.21 demonstrates the performance of a code resulting from such a mapping and

shows an improvement over random mapping.

89

• . p • . -;.• • _• • ,-
• "•••

• ' •	 .-e --' -

1-Tuple

— 2-Tuple

	 4-Tupte

• 6-Tuple

— - - 8-Tupie

,..„...,,--. ..

..... •	 _,....,1 •,.. ---

•,/'

	 1-Tuple

2-Tuple

	 4-Tuple

..... - 	 6-Tuple
- - - 8-Tuple

..	 -I

0	 1	 2	 3	 4	 5	 6	 7	 8	 9 10

R

r

V

a

740

700

660

620

580

-

•

540

740

• 700

r r
660

If

• 17 620

a 8 580

540

	 1-Tuple

— — — 2-Tuple

	 4-Tuple

— - — 6-Tuple

— - - - 8-Tuple

Chapter 5 - Logical Neural Networks.

740

et	
E 7®

r„-
r 660 -

r , ..•
1

co• 620	
..../ • .r.- _

r

v

a
580

\

\

540

0	 1

	

tliiiIII-	 1	 I

4	 5	 6	 7	 8	 9 102 3

Training Phases

Fig. 5.19 Retrieval performance for locally mapped tuples and shift training.

Training Phases

Fig. 5.20 Retrieval performance for randomly mapped tuples and shift training.

0	 1	 2	 3	 4	 5	 6	 7
	

8	 9 10

Training Phases

Fig. 5.21 Retrieval performance for disparately mapped tuples and shift training.

It is worth nothing that, apart from a 2 tuple system with 1 or 2 training passes

(according to the mapping used), a single tuple system will still outperform higher tuple

ones.

5.6.2. The tuple as a feature extractor - what's going on ?

The question we hope to address here is as follows: In a classical WISARD system do

large tuple systems outperform small tuple ones simply because they extract higher order

features from the data set? On the face of it this seems a reasonable assumption because

90

Increase
Tuple Size 41/211,

op,.
Classification ambiguities
in Small Feature space. 411;1110

Chapter 5 - Logical Neural Networks.

the role of any pattern recognition system is to represent highly correlated features in a

smaller and so more manageable domain. Since large tuple sizes can indeed extract higher

order statistics from the data set it is natural to assume that this property is responsible for

the improved performance. However, we have already seen that it is necessary to de-

correlate local features by appropriate mapping of the tuples for the system to perform

well and this raises an interesting dichotomy.

To help resolve this we offer the following conjecture: In a classical WISARD

implementation, large tuple sizes are useful not because they extract higher correlations

from the data but because they offer improved prospects for inter-class orthogonality.

This is demonstrated in fig. 5.22. This improved separation between classes comes about

because the feature space within the discriminator is a vastly expanded version of the

original pattern domain - the size of this domain grows exponentially with tuple size. This

is often referred to as [0,1] n space and an excellent review of its properties is given by

Kanerva [66].

Classification ambiguities
resolved in larger Feature space.

Fig. 5.22 Inter-class orthogonality is improved in larger feature space.

Kanerva shows that, as the tuple size grows, most of the features that can be

represented within that tuple become maximally orthogonal to all other features in the

features space. This means that there is improved separation between inter-class

candidates; though this is achieved at the expense of generalisation (the intra-class

candidate separation).

The high degree of correlation between local image artefacts in real world images

means that much of the [0,1] n space is un-addressed which in turn reduces the potential

inter-class orthogonality that may be achieved by the recognition system. The full [0,1]n

space can only be utilised if the entropy of the data set is 1. For a tuple with mean entropy

H per bit across the data set the actual size of the [0,1] n space reduces from 2" to 2H'

(where H�. 1). By mapping the tuples randomly onto the retina we can reduce these

91

Chapter 5 - Logical Neural Networks.

localised correlations, thus increasing H with a commensurate improvement in

performance.

5.6.3. Mapping tuples to maximise the discriminant information.

Where images contain a large amount of common data (such as a large expanse of

white background, for example), the relative performance of a system which monitors all

of the retina will be degraded. This is because areas of the image which provide no class

discriminant information are given the same emphasis as areas which do. The requirement

to maximise the effect of the discriminant information has been discussed by Tattersall

[67] et al.

An indication of the potential discriminant information within a single element on the

input retina can be found by measuring its entropy, H, across the data set. If the pattern

'seen' by the tuple remains fixed across the whole data set then H=0 and it contributes

nothing to the classification process. It is worth noting, however, that the entropy is just a

first order measurement and does not furnish us with the information potential between

elements on the retina (frequently called relative entropy [68]). In view of the fact that an

image is characterised by a set of correlated elements, it is not surprising that the entropy

only gives us an upper-bound as to the amount of information contained within the retina

element (the reader will recall that the PCA transform produced by the sum-of-weights

nodes discussed in chapter 3 took both spatial and ensemble correlations into account).

Filtering out low entropy sites within the retina forces the system to regard only those

sites which contain highly discriminant information during the coding transformation. The

experiment outlined in section 5.5.3 is repeated here with a range of entropy filtered

masks. The results are shown below in figs. 5.23, 5.24 and 5.25.

These results show that the performance of the system can be improved if areas which

contain no discriminant features are filtered out prior to the coding process. However, if

this filtering is too severe then areas of fine detail are lost and the efficacy of the code

degraded. It is curious to note that training with noise improves the performance of small

tuple systems with a high degree of entropy filtering yet degrades it where the filtering is

relatively light.

92

680

640
....

600

	 1-Tuple

2-Tuple

	 4-Tuple

- —6-Tuple

— - - 8-Tuple

680

t	 640

r 600

r 560

a	 52o _a

•	 •-•

520

560

480 480

	 1-Tuple

2-Tuple

	 4-Tuple

	 6-Tuple

— - - - 8-Tuple

480

600

560

Chapter 5 - Logical Neural Networks.

Fig. 5.24

0 1 2 3 4 5 6 7 8 9 10

Training Passes

Fig. 5.23
	

Retrieval performance with

noise training and H>0.25

entropy filter.

0 1 2 3 4 5 6 7 8 9 10

Training Passes

Retrieval performance with

noise training and H>0.5

entropy filter.

0 1 2 3 4 5 6 7 8 9 10

Training Passes

Fig. 5.25
	

Retrieval performance with noise

training and H>0.75 entropy filter.

5.7. A Multi-Node encoding Scheme using Logical Neural Networks

The results presented so far in this chapter help to underpin some of the general

principles governing the performance of a simple coding scheme using a single LNN node.

Such a scheme represents each image as a scalar and it is, perhaps, a little hopeful to

expect the vast amount of information contained within an image to be adequately

conveyed by such a condensed representation. An important point to bear in mind at this

juncture is that the role of the code is not to represent the absolute information within an

image but rather the relative information that allows one image to be discriminated from

the next.

93

Chapter 5 - Logical Neural Networks.

The concepts governing the relationship between the number of nodes and the

performance of the code have already been touched upon in chapter 4. It is helpful now to

frame these in the context of an LNN system.

5.7.1. Matching the size of the code to the diversity of the database

The number of nodes required by the system is dependent upon the diversity of images

within the database. A database of constrained image types requires fewer nodes than an

unconstrained one to achieve the same level of performance. The following tests show

how the performance of the code is affected by the diversity of the database. In the first

test the database consists of just the first 4 classes of the data set shown in fig. 4.2 (that is,

'A' to 'D') with the number of examples of each class varied to investigate how the size of a

database of fixed diversity (that is, just 4 classes) alters the efficacy of the retrieval

mechanism. The discriminator was trained with one presentation of an image from within

the database - each image was selected as a training candidate and the one which yielded

fewest errors chosen for the test. The relative number of errors is defined as the actual

number of retrieval mismatches normalised by the maximum possible number of errors

(see 4.2.6). The results, shown below in fig. 5.26, represent the best possible performance

of the system.

R R
0e

•

E .2

1	 r
3 r 0.15a i

t	 oe	 0.1
yr

v a s 0.05

• 1
0 	
20 32 40 48 56 64 72 80 loo

No. Images in Database

Fig 5.26 Retrieval performance for a database of fixed diversity.

The object of the next test is to determine how the diversity of the database affects the

retrieval performance. The procedure outlined above was repeated but with the number of

examples per class fixed (at 10) and the number of classes varied (from 4 to 10). The

results are shown below in fig. 5.27.

0.25

94

1 tuple

— — — 2-tuple

	 4-tuple

— • 8-tuple

Chapter 5 - Logical Neural Networks.

0.6
R R
e e E 0.5

, t1	 r	 0.4
ra r
;0.3-

t ' 0
i e r	 0.2

V
3 Sa	 0.1-e

I
0 	 I

40	 50	 60	 70	 80	 90	 100

No. Images in Database

Fig 5.27 Effect of database diversity on retrieval performance

The object of the first test is to show that, for a database of fixed image types, the

retrieval mechanism is relatively insensitive to its size. This helps to frame the results

presented in fig. 5.27. This indicates that it is the diversity of image types and not

necessarily the number of images within the database which impairs the performance of

the code (although, of course, these two factors are linked to a certain extent for a practical

database).

Assuming, then, that the database contains a 'theme' or set of 'themes' what is the most

economic code that can be used? The following tests show how the retrieval mechanism

improves as the number of nodes is increased for a range of randomly mapped tuple sizes.

Apart from using multiple nodes instead of just a single node the tests are identical to those

outlined in 5.4.4. In this case, each node is trained with a single presentation of one image

selected from within the database. The retrieval errors are recorded and the discriminator

cleared and re-trained. This procedure is repeated for each and every image in the

database and the best results presented below in fig. 5.28.

650
R 600
e 550

E
t	 500
r r 450

rI	 400
o

e 350
r

3 300
s

a	 250
I	 200

150
1	 2 3 4 5 6 7 8 9 10

No. Nodes

Fig. 5.28	 Variation of retrieval performance with number of nodes

for the database shown in fig.4.2. (no shift training).

95

Chapter 5 - Logical Neural Networks.

Fig. 5.28 shows that, for systems containing more than a single node, larger tuple sizes

will tend to improve the performance of the code. This is because, in the higher

dimensional [0,1] 1 space produced by large tuple sizes, it is easier to select orthogonal

training candidates for successive nodes. This was discussed in 5.6.2. Thus, although the

expanded feature space can disrupt the conformal mapping required by our code, it does

enable more information to be packed in the code because successive code elements are

un-correlated. At some stage the benefits afforded by this expanded feature space are

offset by the breakdown in the conformal mapping incurred by the non-linearity of large

tuple sizes (see 5.4.3). For this particular data set a 4-tuple gives optimum performance.

5.7.2. The effect of training in a multi-node coding scheme

In 5.6.2 we showed that, although training did indeed improve the performance of a

single node system for larger tuple sizes, in general, it still could not improve upon that for

a 1-tuple system without training (the exception being a 2-tuple system with a single shift

train phase, shown in fig. 5.21). However, since the size of the feature space becomes

more important than the conformality of the transform for multi-node systems we can see

that training is likely to improve the performance of such systems.

The experiments outlined in 5.5.2, which demonstrated the effect of training in a single

node system, are repeated now for a multi-node scheme and the results presented in figs.

5.29, 5.30, 5.31 and 5.32 for 1, 2, 4 and 8 tuples respectively. These confirm that training

the nodes by shifting the training exemplar will enhance the performance of multi-node

systems, provided that a 1-tuple system with less than 3 nodes is not used. It is interesting

to note that all of these systems (barring the case mentioned earlier) exhibit optimum

performance when trained with either 2 or 3 passes of the data set.

Node 0

— - - Node 1

— Node 2

	 Node 3

— - - Node 5

	 Node 9

	

600	 600-

	

R 550	 550 ..----/---'
e E 500	 500
t

3 450-	 , - - 450
3 --.. _ _ -

	

F 400	 400 -- -
i.--- - -	 ,

o 300	 •..	 ,	 350--.
e	 ..	 /,- 	 --

3 300	 	 	 -- ../	 -...,'	 300V	 •n-• --"-- ----•...„.._	 „„ --, —•	„....	 — _55•...--*
S ----	 250 .— -	

-.......,......,
a	 250	 ..„... - ..„,

------	 — -
--

---- „ ss	_ .--	 200 	 .-200 ,... _ . . 3, ___. ,	 .„ s .
1	

,. .. —	 . .. „
1 i •

	

150	 	 150 .----4
O 1	 2	 3	 4	 5	 0	 1	 2	 3	 4	 5

No. Train Passes	 No. Train Passes

Fig. 5.29	 Effect of shift training on a

1-tuple multi-node system.

Fig. 5.30 Effect of shift training on a 2-

tuple multi-node system.

96

300

100

-••••

250

o
.

•

r
200

• s so
a

'•	 •	 _...•	 •

_	 -

1:ruple

— 2-Tuple

	 4-Tuple

8-Tuple

a

1

Fig. 5.34

Chapter 5 - Logical Neural Networks.

700

i r
4000e
300r

V

a
1
,	 200

700
Node 0

— - - Node

600 — — Node 2

-	 -	 500 — Node 3

— - - —	 - - -__	 „ _ ..--•". 400	
— - - Nod. 5

,- -- — ,.... ..-...	 --,.„
.... ..- — — -.	 •••-.--------"--,„	 ..--	 „,...----S...--

00	 '''' •••• •n•'

....."..........-.......	 300	 .-----**--.---„ -
	 Node 9

____	 _	 .___	
_

..... ,„ :...::„..	 _	 _	 -	 • 	 , , „ -	 200

100	 I	 I	 I	 1100

O 1	 2	 3	 4	 5

No. Train Passes

Fig. 5.31	 Effect of shift training on

4-tuple multi-node system

• 1	 2	 3	 4
	

5

No. Train Passes

Fig. 5.32 Effect of shift training on

8-tuple multi-node system.

14uple

—	 2-tuple

- - - - 4-tUple

	 -	 8-tuple

1	 2	 3	 4	 5

No. Train Passes

Fig. 5.33 Effect of shift training for a 10 node system

Fig. 5.33. shows that for a 10 node system a 4-tuple scheme with 2 shift training cycles

will give the best retrieval performance for this particular data set. By way of comparison,

the performance achieved with noise training for a multi-node scheme are given in fig.

5.34. Shift training seems to produce better results than training with noisy exemplars -

this is probably because such a training strategy imparts a degree of translational

invariance into the system.

2	 3	 4	 5	 6	 7	 8
	

9	 10

No. Training Passes

Effect of noise training for a 10 node system (4%

noise added per training pass)

97

100

* o • 0
• • 9) • t

• • •
• 0	 0

•
o

200

3

•

rs 150a

Chapter 5 - Logical Neural Networks.

5.8. An unsupervised Coding Scheme using a Logical Neural Network

The results presented thus far have shown the best possible results that may be

achieved by the system. These have been found by training all possible patterns into the

network and selecting those results which yielded fewest errors. In a practical

environment the optimum training configuration for each node cannot be found by trial

and error as the database is unlikely to contain a data set structure that permits retrieval

'errors' to be so easily defined.

Figs. 5.29 to 5.32 demonstrated that for a fixed number of nodes there is a certain

degree of training which tends to improve results after which the performance begins to

drop off. How can we determine the optimum extent of training?

Fig. 5.35 shows that there is a loose correlation between the standard deviation of the

first node and the retrieval errors induced by the code for a given tuple size with shift

training (as in fig.5.14 each point corresponds to the best performance achieved for a given

number of training passes and a particular tuple size). A suitable regime might therefore be

to continue the training phase until the standard deviation of the first node begins to drop

off.

1-Tuple

•	 2-Tuple
300 o	 4-Tuple

•	 8-Tuple
e

250

01	 0.15	 0.2	 0.25	 0.3

Standard deviation of first node

Fig. 5.35 Relationship between standard deviation of first code element and

retrieval performance for a 10 element code with shift training.

This technique can also be used to select the most appropriate training pattern - deemed

to be that pattern which, when trained into the discriminator, produces the highest

variance. This does not quite result in optimum performance (compare figs. 5.33. and

5.39) but does allow us to go some way towards an automated system.

98

r

1.1 (37Corrnab=

Chapter 5 - Logical Neural Networks.

However, it is apparent from fig. 5.35 that the variance of the node cannot be used to

select the optimum tuple size. This highlights an important and enigmatic issue common

to LNN research, namely; 'How can we match the tuple size to the nature of problem

domain ?' At present, to the chagrin of this researcher, this can only be resolved through

empirical observation.

We have shown already that, for a multi-node system, larger tuple sizes will improve

the efficacy of the retrieval mechanism. This is because the expanded feature space makes

it easier to select un-correlated training candidates for successive nodes. However, after

selecting that image which gives the best standard deviation for the first node, simply

selecting that image for training into the second node which is least correlated with the

first is not sufficient. This image must be both maximally un-correlated with the first yet

still produce a high standard deviation across the data set.

The following automatic training scheme is proposed:

i.	 Train each pattern from within the data base into the first node. Training consists

of a single training presentation of each pattern.

Present each pattern from the database to the trained node. Record the standard

deviation of each training candidate.

Select that pattern which gave the largest standard deviation and train the node as

before.

iv. Shift the pattern (as described in 5.5.2), train the node and record the standard

deviation of the node across the whole data set.

v. Continue training until the standard deviation begins to drop off. Record the

optimum number of training passes and re-train the first node.

vi. Repeat steps i. to iii. for subsequent nodes (ignoring any patterns already trained

into the previous nodes).

vii. Measure the RMS correlation of the node to earlier nodes. Where:

AllPatterns
inDatabase

E(op. — opa)(ont,,-0Pb)

b

99

Chapter 5 - Logical Neural Networks.

Corrnab =	 Correlation between nodes a and b.

• Standard deviation of node a.Cr a

Crb

•	

Standard deviation of node b.

opai

•	

Response of node a to image i.

opbi

•	

Response of node b to image i.

opa

•	

Mean response of node a.

opb

•	

Mean response of node b.

and:
a

Corrn2aj

RMS Corrna	
a

viii. Select training pattern which has highest standard deviation yet is least correlated

with patterns trained in previous nodes. That is:

(1-RMS Corrn a) * Std. Dev. a is maximum.

ix. Train this pattern into the node as in iv. to v.

x. Continue for each and every node.

Figs. 5.36 to 5.40 show the results for this training strategy for a range of shift training

phases and tuple sizes. These results show that as training increases, a coding scheme with

large tuple sizes will outperform one with small tuple sizes. This is because the increased

feature space associated with large tuple sizes renders the discriminator less prone to

saturation - this was discussed in 5.5.1.

It is worth noting that although a 10 node, 8-tuple system with 3 shift training phases

will yield the best response, a 6 node, 4-tuple system with 1 shift training phase performs

almost as well with less than 4% of the memory requirements. These results also show a

curious consistency for the performance to plateau off somewhat for systems using more

than 6 nodes. This seems to suggest that the data set can be represented adequately by a

set of 6 prototypes (where each prototype is assigned to a node) with all subsequent

prototypes providing little in the way of additional descriptor information. This notion

appears to hold true irrespective of training intensity or tuple size. It is interesting to note

that this effect was also observed for the sum-of-weights node, discussed in 4.3 which

100

R 700
e v
t	 600
3 r

r 500

r 400

a	 300

200

1 2	 3	 4	 5	 6	 7

No. Nodes

8	 9 10

1-tuple

- - - - 2-tuple

— — 4-tuple

	 - ---8-tuple

R 700

E
L 600

i• r500

• r 400

3sa	 300

200

1-tuple

- - - - 2-tuple

— — 4-tuple

8-tuple

700

600 \

N.

r 500

400

a	 300

200

700

E600

3 500

3 400

a	 300

200

1-tuple

- - - - 2-tuple

— — 4-tuple

8-tupfe

2	 3	 4	 5	 6	 7
	

8	 9
	

10

No. Nodes

Retrieval performance with 3

shift training phases.

Fig 5.39

Chapter 5 - Logical Neural Networks.

suggests that both the Logical and sum-of-weights type neural networks are performing

similar operations.

Fig 5.36
	

Retrieval performance for scheme outlined in section

5.8 with no training.

1	 2	 3	 4	 5	 6	 7
	

8	 9 10
	 2	 3

	
4	 5	 6	 7	 8	 9	 10

No. Nodes
	 No. Nodes

Fig 5.37
	

Retrieval performance with
	

Fig 5.38 Retrieval performance with 2

1 shift training phase.	 shift training phases.

R 700

er
t	 60°
rr

r 500
o

Annr --v
a	 300

200
1 2	 3	 4	 5	 6	 7

	
8	 9 10

No. Nodes

Fig 5.40 Retrieval performance with 4

shift training phases.

101

Chapter 5 - Logical Neural Networks.

5.9. Discussion

Throughout chapter we have shown how a simple single layer Logical Neural Network

can be used as the basis of a coding scheme for an image retrieval mechanism.

We have shown that the requirements of a coding scheme contrast markedly to those of

a classification system. Section 5.4.3 highlights this point and reaches the somewhat

surprising conclusion that, for a single node system, a 1-tuple discriminator will

outperform larger tuple systems. This is because one of the main criteria for our coding

scheme is that it preserve the relative relationships between the patterns in the original

domain - that is, that nodal transformation of the neural network must be conformal.

Larger tuple sizes exhibit increasingly non-linear transfer characteristics and will not

produce this conformal mapping. Section 5.4 provides some mathematical and empirical

evidence to corroborate this hypothesis.

Increasing the number of nodes offers the prospect of improved code performance.

The economy of this, and indeed any code, is increased if the elements within the code are

un-correlated. Because the feature space for small tuple systems is considerably smaller

than for larger ones (the feature space grows exponentially with tuple size) it becomes

increasingly difficult for the domains occupied by the training archetypes within the

feature space not to encroach upon each other. The upshot of this is that successive code

elements (from the output of the nodes) become increasingly correlated. This severely

degrades the performance of the code. As the number of nodes is increased, the expanded

feature space afforded by large tuple sizes becomes more important than the conformal

mapping produced by the smaller ones - this is demonstrated in sections 5.6.2 and 5.7

Section 5.6 demonstrated that an LNN will perform best if the tuples are mapped to

completely un-correlated areas within the image retina. Typically, the tuples are mapped

randomly onto the retina to help de-correlate localised image artefacts. However, in 5.6.1

we presented a novel mapping strategy which can improve upon this technique. Here the

tuples are mapped onto the retina such that the mean Euclidean distance between the tuple

sites is maximised. This technique is applicable to any LNN system and is particularly

beneficial for low-dimensional images. (e.g. the data set shown in fig. 4.2).

Unlike other neural network architectures, WISARD type networks only require one

pass of the data set during the training phase. This is frequently referred to as 'one-shot'

102

Chapter 5 - Logical Neural Networks.

training. Whilst this affords us with some obvious speed advantages during training it

does mean that every pattern exerts the same influence on the nodal transformation

regardless of its context to the data set. This tends to render the learning process in

WISARD systems as somewhat brutal since worthless features are given the same weight

as important ones which is obviously going to degrade its performance. This is not the

case with more conventional neural network models where the learning rate tends to

spread the effect of a pattern across a wide section of the data set so that a kind of

'relative' learning takes place. This is in marked contrast to the kind of 'absolute' learning

found in WISARD systems.

Some efforts have been made to circumvent this problem: Tattersall et al [67] biases

the learning in favour of areas of high information content within the retina. Kerrin [69]

has regarded the learning potential of a single tuple as a fixed resource so that frequently

occurring features are learned at the expense of less important ones during a normalising

phase.

We can conclude from this that WISARD systems come to the fore when training

times are the prime concern and where the nature of the training data is such that only one

pass is possible (such as in 'real time' training, for instance).

In our particular application, the data base cannot be regarded as a volatile data set

since we can gain access to every pattern relatively easily during the training phase.

Additionally, since 'off-line' training is unlikely to incur too many operational difficulties,

a more refined training methodology using multiple presentations of the data set might

perhaps prove more effective than simple 'one-shot' learning for this type of application.

This issue is taken up in chapter 6.

In 5.5.1 we presented an analysis which helped to explain why large tuple systems

require more extensive training than those with small tuple sizes. Section 5.5.2 indicated

that there was a degree of correlation between the standard deviation of the code and the

best level of training required by that node. The correlation is a loose one (and not really

applicable to 1-tuple systems) but it does provide us with a rough metric with which to

judge the extent of training most suited to a particular data set and topology. Additionally,

the standard deviation of the code can be used to select the most appropriate training

archetype (chosen from the data set) for any particular discriminator.

103

Chapter 5 - Logical Neural Networks.

We also show that for a multi-node system working on the data set given in fig.4.2,

training by shifting the image on the retina will outperform training with noisy exemplars.

In section 5.8 we combined all of the insights gleaned from this chapter and applied

them to an automatic coding scheme for a simple database of machine printed characters.

For this data set a 10 node, 8-tuple system with 3 shift training passes gave the best

performance. The results achieved using these parameters are remarkably similar to the

results obtained with the sum-of weights node in Section 3.5.2 of this thesis. The

performance of these two systems, shown in figs. 3.19 and 5.38, indicate that, after

training, there is little to choose between the two techniques. This suggests that the sum-

of-weights nodes and LNN nodes are performing the same underlying processes. The

training strategy here was completely automatic but in 5.7.2 we experimented with each

every image as possible training exemplar in an attempt to get some idea of the best

possible performance from the system. The results achieved using this exhaustive search

method (which cannot be implemented for a practical system) were better than any

technique used throughout the rest of this thesis. This shows that the performance of these

systems is sub-optimal. We touched upon this in 3.3.5 where we concluded that coding

transformations of these type required by our scheme will only produce optimal transforms

where the distribution of the patterns is Gaussian.

The training strategy in the LNN implementation is a little crude as each pattern in the

data base must be trained into all of the discriminators and the entire data set presented to

each discriminator. Thus, the processing time grows linearly with the number of nodes

and as a square of the size of the database. However, because they can be easily be

implemented in hardware LNN's can be trained extremely rapidly and this shortcoming is

not as serious as it would be for other neural network models. Nevertheless, these

drawbacks suggest that it would perhaps be worthwhile investigating some other

paradigms for Self Organising Logical Neural Networks to see if these processing

overheads could be significantly reduced. This is the objective of the work described in

chapter 6.

104

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

Chapter 6

A Novel Self Organising Learning Law for Image
Coding.

6.1. Introduction

In this chapter we trace the development of a completely novel learning paradigm for a

Self Organising neural network. The learning law began life as an adjunct to the work on

LNN's described in chapter 5 of this thesis.

We give a brief overview of existing Self Organising learning paradigms for LNN's

and assess their suitability for our own particular application. We take an empirical look

at the underlying principles governing Self Organisation in LNN's and discuss how these

might be implemented using a learning law. We go on to develop a mathematical

formalism for this law and prove that the dynamic system governed by such a law will

converge to the Principal Components of the data set.

Closer inspection of the form of the learning law reveals that it need not be restricted to

just LNN's. We develop a form of the learning law which can be supported on a sum-of-

weights type node and contrast the performance of this implementation with a LNN.

We set out to determine whether Self Organising LNN (SOLNN) architectures are

more appropriate for our particular application than their sum-of-weights type

counterparts, both in terms of speed of training, memory requirements and optimality of

solution. We question the validity of LNN's for our particular application since the very

attributes which render LNN's attractive, namely, speed of training for supervised learning

systems and non-linearities that can be put to good use in classifier systems, are no longer

applicable to unsupervised dimensionality reducing networks. We point out that LNN's

are slightly more restrictive than their analogue counterparts and not particularly suited to

our application. We compare the performance of three different Self-Organising neural

network coding schemes for our image retrieval system.

105

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

6.2. An Overview of Self -Organisation in Logical Neural Networks.

LNN's are trained, typically, through supervised learning and comparatively limited

research has been carried out on their application to Self Organising

systems/691170117111721179]. So that we might frame the work presented here in a better

light, it is useful to review a cross-section of the existing SOLNN architectures and discuss

their relative merits with respect to dimensionality reduction and image coding.

6.2.1. The Feature Sensitive Node.

Kerin [69][73] presents a Single Layer SOLNN, based around so-called Feature

Sensitive Nodes (FSN's) which bear many similarities to Grosburg's ART network [74].

This architecture consists of an array of discriminator type nodes which attempt to group

the input data into notional clusters.

The discriminator is similar to that presented in 5.3 except that the sites addressed by

each tuple can take on positive or negative integer values. These sites are initially zero

and incremented or decremented during training. If a node has been selected for training

on a particular pattern then the site addressed by each n-tuple is incremented by an amount

S and the remaining 2 n-1 sites are decremented by an amount W. The relationship

between S and W sets the relative importance of the appearance or non-appearance of

features (represented by a particular n-bit pattern on the n-tuple) in classifying the pattern

as belonging to a particular class.

The FSN's respond to the frequency of occurrence of features within the patterns seen

during training and compete for learning stimulus using a winner-take-all strategy where

only the discriminator with the largest output undertakes any learning. The output of the

node is defined as the sum of the thresholded sites addressed by the pattern at the input.

The site output is thresholded to 0 if the site value is less than zero else it is thresholded to

1. Sometimes, according the to ratio of S/W the contents of each site across all tuple

addresses is less than zero. Under these conditions the node will not contribute to the

output of the FSN under any condition and is referred to as a 'dead' node. Dead nodes are

discounted from the response of the FSN. The output from the FSN is normalised with

respect to the number of live (i.e. not 'dead') nodes.

106

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

The winner-take-all strategy is further enhanced by ensuring that learning is only

activated if the pattern has a high correspondence to an existing class (where one node is

assigned to each class). Patterns which fail to score enough to be assigned to any of the

existing nodes are assigned to a new node within the network. The threshold which

determines this level of correspondence is set by the user. In this respect the learning

algorithm is very similar to the Leader Algorithm used in classical clustering analysis.

Because this method is, essentially, a clustering algorithm, it is not particularly well

suited to our type of application. This has already been discussed in section 4.5 and 5.4.3.

In any event, the system classifies patterns according to the frequency of occurrence of

features within any given data class which does not necessarily capture the most effective

discriminant information within a data ensemble. For example, the FSN will receive the

largest learning stimulus for low entropy features common to all patterns, regardless of

class - such features contain little or no discriminant information. Thus, this method is

unsatisfactory for data sets which have a large DC component.

This technique requires the user to adjust several parameters to optimise the

performance of the system. To do this we must have some metric to gauge the

performance of the system. This is just not possible for our particular application. Indeed,

this is true of many Self Organising systems and it is often the case that one must have

some idea of the inherent structure within the data to ensure that the net is behaving as it

should. Note that this is not the case with the nodes presented in 3.5 since they do not

attempt to cluster the data, merely to reduce its dimensionality. Ideally, for a practical

system we would like its operation to be completely autonomous which is not possible

where a large number of data dependent network parameters need to be set by the user.

6.2.2. Tamboratzis' SOLNN

Tamboratzis presents a SOLNN which responds to the frequency of occurrence of

tuple features seen during training [71] . Like Kerins' FSN's, the sites store integers which

are incremented or decremented during training.

In 3.3.3 we saw that learning in Self-Organising systems is a direct consequence of

nodes which compete for a limited learning resource. To ensure that the resource

constraint is satisfied, the process of learning data within the network requires that we

must relinquish other, less important, data already learnt by that node. In Kerins' system

this was achieved by incrementing the site addressed by the tuple feature and decrementing

107

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

all other sites. In Tambouratzis' Network the constraint is satisfied by decrementing the

site whose feature is most orthogonal to the one addressed. In this node the sites are not

permitted to become negative and sites to be decremented are scanned, gradually

decreasing the Hamming distance, until a non-zero site is encountered whereupon it is

decremented.

These nodes preserve the relative distance relationships between the clusters in the

input space (popularly referred to as a 'topological' relationship) through a process of

localised lateral interaction between the nodes. This is analogous to the topological feature

maps presented by Kohonen [75][76]. Each of the nodes lie on a 1-dimensional array and

learning occurs in the neighbourhood of the node with the highest response to a given

input pattern. As learning proceeds the size of the neighbourhood is gradually decreased

so that the nodes settle into a stable solution in a fashion similar to simulated annealing in

Boltzman Machines [48].

This method has been most effective in clustering the very same character data set

used throughout this thesis (see fig. 4.2, for example).

The size of the feature map array must be specified a priori and, since the network

reflects the topological relationships within the data, it is often the case that, for a given

data set, some nodes do not contribute during data classification. Some experimentation is

required to optimise the size of this array so that the memory requirements of the system

can be minimised. The precise configuration is data dependent.

Again, like Kerins' FSN's, this is a clustering network where learning is motivated by

the frequency of occurrence of features rather than by the discriminant information

conveyed by that feature. It too requires extensive experimentation in order to select the

best system parameters for any given data set. Consequently, it is not particularly

appropriate for our application.

6.2.3. Allinsons' logical Kohonen clone.

The popularity of Kohonens' topological feature maps has spawned Logical Neural

Network implementations of this topology and associated learning paradigm. Allinson

[70][77] presents a network, shown below in fig.6.1, in which each site within a

discriminator contains an array analogous to a feature map.

108

Symbol Table Tokens

Training Pattern on Input Retina

Symbol Table Output Feature Map.

Activity Bubble on output feature map
formed from sum of tokens in symbol
tables addressed by the tuple.

00 01 10 11

Topic addresses symbol table.

Training shifts tokens from corresponding elements
in non-addressed to addressed symbol tables.
Update element determined by extent of activity
bubble on the output feature map.

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

Fig. 6.1 Basic architecture for Allinsons Self Organising Logical Neural Network.

A fixed number of single bit tokens are placed (at random initially) within elemental

feature maps addressed by each tuple. These elemental feature maps are referred to as

symbol tables. The activation level in each level of the output feature map is just the sum of

the corresponding elements in the symbol tables addressed by each pattern. 'Activation

bubbles' will tend to form in the output feature map, the highest of which is selected for

update. The winning element and its neighbourhood are updated by filling empty sites in

the update area of the addressed symbol tables with single tokens. A learning constraint

keeps the number of tokens fixed and is imposed by shifting tokens from corresponding

elements in other symbol tables across the tuple addresses. To prevent learning saturation

due to DC components in the input ensemble, tokens are only shifted from symbol tables

addressed by tuples with the same number of black and white pixels as the input.

This rather enigmatic learning law has been shown to cluster binary images quite

effectively [77]. However, since each site within every tuple must contain a symbol table

with the same dimensions as the output feature map, it does require large amounts of

memory.

Tokens are shifted around during training and this requires an extensive search of the

[0,1] n feature space during each data presentation - this means that training times are likely

to be very long. Indeed, all of the method described here suffer from this drawback since

the normalisation process required by the learning constraint involves a search of the [0,1]n

space so that training times increase exponentially with tuple size.

109

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

6.2.4. A further logical implementation of a Kohonen feature map.

Another example of a Kohonen-type feature map implemented on a Logical Neural

Network architecture is presented by Ntourntoufis [72]. In this model each node within

the 2-dimensional feature map is represented by a discriminator output. The sites within

the discriminator take on positive or negative real-values. Like the two previous models,

the update occurs in the region of the node in the feature map with the highest response.

The effect of the learning is spread out in the feature space as well by incrementing sites

commensurately with the Hamming distance from the addressed site. The further the

Hamming distance, the lower the learning stimulus. A cut-off point occurs beyond which

the learning stimulus is zero. Beyond this, for a limited Hamming distance, sites are

decremented by a small amount (this bears some resemblance to the site update strategy

used in Kerins' FSNs and Tamboratzis' scheme).

As it stands, this learning rule makes no provision for normalisation. As a

consequence, sites values can continue to increase unchecked which means that the system

may not converge to a stable solution. This is quite a drawback.

6.2.5. On the formalism of learning paradigms for LNNs.

By and large it is true to say that the development of SOLNN learning paradigms (and

to a lesser extent unsupervised learning in LNN's) has been motivated more by pragmatic

considerations than through an analysis of the fundamentals governing the learning

dynamics within such systems. This has come about because:

i. The WISARD system remains on of the few hardware realisable neural networks

to date and certainly the only one which can be trained on large patterns (in

excess of 0.25 million bits) at video frame rates at a modest cost. The impressive

performance of the WISARD system has come about more through the

application of sound engineering principles to tackle real world problems than by

a slavish analysis of the learning dynamics. To an extent, the results achieved to

date (especially with regard to the earlier work in this field) seem to validate the

thrust of this approach.

ii. The highly non-linear transform produced by the tuple operator renders formal

analysis extremely difficult. Indeed, this is also true of many of the sum-of-

110

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

weights nodes and researchers in this area often limit analysis to simple linear

nodes.

Nevertheless, the propensity of LNN researchers to steer away from the fundamental

issues has tended to colour the nature of the work carried out to date. As a result many of

the proposed architectures and associated learning laws have an ad hoc feel about them

where the processes going on within the discriminator are not well understood.

Consequently, it is difficult to asses those factors which control the efficacy of the learning

mechanism such as convergence to optimal solutions, training data constraints and

saturation problems. This dearth of theoretical foundation has dogged the development of

robust learning strategies for LNN's.

In its basic form, the success of the WISARD lies with the simplicity of its 'one-shot'

training methodology. It is not a sophisticated learning rule, by any means, but what it

lacks in sophistication it makes up for in speed. Unfortunately, the crudeness of one-shot

learning is not well suited to more complex learning techniques such as Self Organisation;

here we are forced to opt for a more thorough approach to training where we cannot

ignore the context of a pattern with respect to the complete data set.

The success of the n-tuple technique is a direct result of the expanded [0,1] fl space.

However, it is frequently true that the more complex training strategies require a search of

this space (in the normalisation stage of the SOLNN's presented earlier, for instance). This

can be rather time consuming. Thus, what was once a blessing is now a curse and the very

attributes which make LNN's attractive for one type of learning system render them

unfeasible for another. This begs the following question 'Is Self Organisation in LNN's

really more effective than in their sum-of-weights type counterparts, both in terms of

speed of training, memory requirements and optimality of solution?'. In this chapter we

hope to go some way toward answering this question in the context of our application.

How suited are existing SOLNN architectures to our image coding scheme? We have

seen that these architectures all act as data clustering systems rather than dimensionality

reducers. It must be said that clustering is a limiting case of dimensionality reduction but

the granularity of the clusters means that we will not get sufficient selectivity from the

code (compare this with the classifier/dimensionality reducer argument presented in 5.4.3).

In an attempt to confront these issues we aim to show how we can develop, from first

principles, a Hebbian based learning paradigm for LNN's which is suitable for our coding

scheme. This work is presented below.

111

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

6.3. Hebbian learning for Logical Neural Networks.

The role of a discriminator in an LNN based coding scheme is to partition the entire

pattern space, represented by the spread of images within the database, so that we might

encode each image in a manner which provides optimum selectivity. Hebbian Learning,

which correlates the input and output activity of a node, produces a code which will

convey the maximum amount of information across the database. For an image database

whose contents form a Gaussian distribution in the pattern space this may be achieved by

maximising the variance of the discriminator output. Let us take a closer look at how we

might implement a Hebbian learning scheme within a Logical Neural Network.

In its basic form, Hebbian learning will accentuate learning when the output of the

system is large and regulate it where it is small. In a simple LNN this can be

implemented by updating the sites according to the magnitude of the discriminator output

so that:

ASiteaddre„ed = 13 y	 (38

Where:

13

	
is a constant

Y	 is the discriminator response to a given pattern:

However, in common with the unconstrained Hebbian Learning law outlined in 3.3.2,

the system will quickly saturate as the predominance of an output with a particular polarity

induces a learning runaway where all of the sites begin to take on the same polarity.

Added to this, we have seen that it is probable that some tuples provide almost no

discriminant information at all and should not contribute to the learning process. How

can we regulate learning in those tuples where the discriminant information is low?

6.3.1. Discriminant features in Self Organising Logical Neural Networks.

The decision surface learnt by a LNN during training may be regarded as the

aggregate of the micro-decision surfaces learnt by each tuple within the discriminator. In

order to develop a global decision surface, we must attempt to form good micro-decision

surfaces within the functions of a single tuple. It is the job of the learning law to position

this decision surface during training.

112

Micro-decision surface

Increasing +Ve Response Increasing -Ve Response

Frequency

of
occurrance

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

The most effective micro-decision surface is a partition which intersects frequently

occurring but orthogonal features. This is shown below in fig.6.2. A learning law which

partitions the data in this fashion will tend to maximise the variance of the discriminator

output - this will improve the selectivity of the code. In an LNN, a feature may be

regarded as a site within a RAM addressed by a tuple. The frequency that a particular site

has been addressed during training gives a good indication as to where a partition might

best be placed locally.

Tuple Sites 10001 00110101011 10011011 11011111 1.0001001101010ifIloolio1l 11011111

Maximum Hamming Distance.

Frequently occurring opal and opposite
	

A large DC component provides a poor

tuples offers good prospect for decision
	 prospect for decision surface.

surface.

Fig. 6.2 Contrasting good and bad micro decision surfaces within a tuple.

In Tambouratzis' model the decision surface is constructed by incrementing the site

addressed by the tuple and decrementing the site furthest from it in the Hamming space.

It is not enough to partition the image space by simply attributing equal and opposite

values to frequently occurring sites either side of this boundary as this gives no indication

as to the co-occurrence of good partition features across the whole discriminator. Rather,

learning should attempt to position the decision boundary to provide good local partitions

with the constraint that they have a high co-occurrence with other local partitions across

the discriminator. In Tambouratzis' model this is achieved by updating discriminators in

the locality of the one with the highest response. It follows that a site should be updated

(in the direction of the discriminator output) when:

i. The partition within the tuple is good. That is, both the site addressed and

a site some Hamming distance from it have a high frequency of occurrence

across the data set.

113

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

ii. The output of the discriminator is large, indicating a high co-occurrence

with other partitions.

We can determine the potential efficacy of a local partition surface by applying a

simple metric, 8(a,b), to each and every pair of sites, a and b, within a tuple prior to

training. This is given in eqn. (39

H(a,b) j
2

0(a,b) = Pa . Pb.(

11 13° — 411+8

Where:

(39

Pa

Pb

H(a,b)

8

is the probability that site a is addressed. That is:

Pa=(No. of times site 'a' is addressed)/(Total No. training patterns).

is the probability that site b is addressed.

is the Hamming distance between sites a and b.

is a small positive value to stop the function from going to infinity.

This function will give a high value when sites a and b are:

i. Addressed frequently.

ii. Addressed with approximately the same frequency

iii. Orthogonal in Hamming space.

Only those sites whose partition metric exceeds a threshold are considered for

update. This is rather similar to the scheme proposed by Tattersall et al [67] . The

learning runaway problem, discussed in Section 3.3.2, can be alleviated by updating the

partition functions in pairs so that incrementing the addressed site infers that the other site

in the partition pair is correspondingly decremented and visa versa. This learning law may

now be encapsulated as:

i. Run through entire data set and record the frequency of occurrence of each

site within the tuples.

ii. Calculate the partition metric of each and every pair of sites within the

tuples. If the largest metric within a tuple exceeds a threshold then flag

that pair as a partition pair eligible for update. Only one pair is selected

per tuple.

iii. Seed each and every partition pair with a +1 and -1, selected randomly.

114

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

iv. Present an image to the discriminator.

v. If a tuple addresses one site of a partition pair then update them as

If Discriminator 0/P < Of

ASitepartition addressed	 -1

ASitepanition not addressed	 +1

)

If Discriminator 0/P >

AS itOpartition addressed

AS itepartition not addressed 	-1

)

)

vi. Repeat step v. for each and every image within the database.

vii. Scan each partition pair within the discriminator.

If partition site > Of

Clip site value to +1

)

If partition site < 0 (

Clip site value to -1

)

viii. Repeat steps iv. to vii. until convergence.

Note that step vii. truncates the site values to prevent the magnitude of the site values

from increasing as training proceeds.

It is instructive to compare the performance of this system with the sum-of-weights

type node outlined in 3.4.4. The data set for this test, identical to that used in 4.2.1.

(consisting of an 'A' font merged to a 'B' font over 25 images), was presented to the

discriminator and the sites trained using the learning law described above. The 4-tuple

discriminator converged after just 4 passes through the data set. The results are shown

below in fig.6.3.

115

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Image Index

Image Index

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

Data set consists of 'A' font merged to 'B' over 25 images.

More 'A' than 'B'.	 More 'B' than 'A'.

80

60

40

20

Discriminator 0
Output	 -20 0 1 2 3 4 5 6 7 8 9 10 11 12 13	 5 16 17 18 19 20 21 22 23 24

-40

-60

-80

Fig. 6.3 Response of a single 4-tuple node trained using the learning law in 6.3.1

Although these results do compare favourably with those presented in 4.2.1., the

learning law is rather inelegant and has an ad hoc feel about it. This is due partly to the

pre-requisite that only partition sites earmarked during the initialisation phase are

considered for update during the training phase. This sifting process relies only on local

information and does not take into account the co-occurrence of other features within the

discriminator. The learning law does correlate the co-occurrence of partition pairs during

the update but some information is undoubtedly lost which will impair the performance of

the code. In any event, selection of the partition metric threshold is unlikely to be a

straightforward process. This is a distinct disadvantage for a practical system which is to

be used with only a moderate level of expertise.

In an attempt to circumvent some of these difficulties we now turn our attention to an

entirely novel learning law.

6.4. A New Self Organising Hebbian Learning Law from First Principles.

6.4.1. Developing the learning law.

A simple 1 tuple system to support the Hebbian learning is shown below in fig. 6.4. It

consists of an array of real valued memory elements which are addressed by the binary

image presented to the input retina. Location 0 to each memory is addressed by a 'white'

pixel and location 1 by a 'black'. The sites can take on positive or negative real values and

are initially filled, at random, with '-l's and '+1's.

116

Node Memory

Node Response
to Pattern j

y. = Ei . S +	 (11 . SJ	 mi	 01

SON Addressed when xNj = 0

Input Retina Holds
	 SIN Addressed whenx N; = 1

Binary Input Pattern j

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

Fig. 6.4 Basic architecture for the Self Organising Logical Neural Network.

The thrust behind Hebbian learning is to update the addressed site commensurately

with the strength of the node response. This can be achieved by adding the node response

to a particular image to the sites addressed by that image. For the architecture shown in

fig. 6.4 the learning law becomes.

= Y- Y,x4
	 (40

ASo, =
	

(41

The output of the node is given by:

= S„x4 + ES°, (1—x,)	 (42
8=1	 1=1

Where:

ASii is the update on the site of the site addressed when the i th pixel in j th image

is 1 (i.e. black).

ASoi is the update on the site of the site addressed when the i th pixel in j th image

is 0 (i.e. white).

is the node response to the j th image.

is the value of the i th pixel in the j th image

xij=1 for a black pixel.

xii=0 for a white pixel.

is the dimensionality of the images within the database.

is a constant to limit the dynamic range of the sites.

117

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

However, such a learning law will tend to accentuate the effect of those areas within

the image which have a large DC component and contain no discriminant information. A

predominance of a pixel 'colour' across all images will cause the output to saturate

exponentially rapidly. Such a node will give the same response to each and every image

within the database. This can be circumvented by forcing the mean of the node response to

zero so that the total update for all of the sites addressed by a tuple is zero. Thus, a site

which is addressed by every image within the data base will contain zero after one pass of

the data set and will not contribute to the output of the node. This update strategy will

filter out unwanted DC components from within the data set [78][79].

After one pass through the data set the new site values become:

P

yE(Yi-37)xi;
	 (43

j=1

P

Sw = y (yi-y)(1-xy)
	

(44
J=1

Where

is the mean response of the discriminator to the entire data set. That is:
_ 1 P
Y =— EYJ	 (45

P ,=,

is the number of patterns in the training set.

The complete training cycle may be summarised as:

i.	 Clear down the discriminator by setting each memory location to 0.

Seed the node by writing a 1 to those sites addressed by an image chosen

arbitrarily form the database.

Present each pattern to the discriminator and record the response of the

discriminator.

iv. Clear down the discriminator as in stage i.
v. Re-present each pattern to the node and add the normalised, mean-

corrected response to the site addressed by that pattern.

vi. Repeat stages ii. to vi. until convergence.

118

(47

(48

(49

xli -nil X1p

X Np MN iT
(523.1k = 2y[Sil 	•• SIN][xkl

	 • x]

Since x 1.i is binary valued this is equivalent to:

x11 —

= 27[S11 ••
SIN][xkl Mk .. X kp Mk]

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

6.4.2. Analysing the learning law for a 1-tuple system.

A fraction of the mean-corrected output of each node is added to the addressed site on

each training presentation. Thus, after one pass through the complete data set, the sum of

the sites values addressed by each tuple is zero, i.e. for a 1-tuple system:

+ go; = 0	 (46

Then from equations (42 and (46:

N

yi =	 Sii (2x4 —1)

Combining equations (45 and (47

1 N—ESu E(2xii —1)
P	 =1

So that:

y -y=2E.Sli (x ii —m4)
g.1

Where:

m i 	 is the mean number of black pixels in the i th element in the retina across the

complete data set. That is:
mi _1 EP xy

(50
P)=1

Substituting equation (49 into (42 gives the new value of the site addressed by the

black pixels after one complete pass through the data set as:
N	 P

:5", k = 27E S„ x4 (x, — mi)
	

(51

In matrix notation the state equation for the learning rule becomes:

X N1 MN

(53

119

_

x 11 — mi

_xNi — inn,

(55

(56

(57

(58

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

The vector state equation for this learning law can be written as:

§ i = 2yS i Q	 (54

Where:

§i	 is the new site vector [S'11 •• gm] after a complete training cycle.

Si	 is the site vector [S11 • • SIN] prior to the training cycle.

Q	 is the auto correlation matrix of the data set. That is:

-r11 -m

Q=
XN1 - MN

-

..	 X1 p - rill

• • X Np - MN _.

Since the update of the sites addressed by the white pixels is directly equivalent to the

update of those sites addressed by the black pixels we can write:

§ 0 = 27S0Q

or

§ 0 = —27SIQ

Empirical tests have shown that setting y as:
2

7 = p

IllY1
J.1

will limit the dynamic range of the site values so that —1 � Sc, � 1 and —1 � S1 � 1.

Learning rules with state equations of the type shown in equation (56 have been

thoroughly investigated and proven to converge to the eigenvectors of the auto correlation

matrix of the data set [41][53][56]. This update rule, based on Hebbian type learning, is

directly equivalent to PCA and has some rather interesting features which render it a more

attractive prospect for our coding scheme than both classical and existing neural network

implementations of this transformation [781179].

i. Unlike classical PCA our technique does not require the direct

computation of the auto correlation matrix nor its eigenvectors which is

impractical for high dimensional data sets.

ii. Unlike existing sum-of weights type neural network implementations of

PCA, no implicit approximations are made in the derivation of the state

equation for the leaning rule.	 The problems associated with this

120

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

approximation have been discussed in 3.4.2. The upshot of this is that the

learning rule does not require a learning rate to be set which, in turn, leads

to faster and more accurate convergence.

iii. Most neural network paradigms are sensitive to the order of presentation

of the data set and are prone to settle into false minima, especially if the

learning rate is set too high (see 4.2.4). Because this learning rule does

not implement the system updates until all of the data has been presented,

it does not suffer this drawback and consequently will not converge to

localised solutions. This is, in fact, a reinterpretation of axiom ii above.

It is evident that equations (54 and (56 are effectively equivalent to each other since the

update of the S i sites is inexorably bound to the update of So. One could argue, and with

good reason, that the memory requirements of this system could be halved simply by

considering update on the S 1 sites only. Whilst this is undoubtedly true for the simple 1-

tuple system, the notion that the white and black elements address distinct memory

locations allows the learning law to be applied to systems with larger tuple sizes.

6.4.3. Extending the novel learning law to larger tuple sizes.

The learning law developed in 6.4.2 can be readily applied to systems with larger tuple

sizes, and although the non-linearities induced by these higher order systems render the

proof of convergence somewhat incomplete, the system dynamics are, ostensibly, still the

same. Bearing in mind that these non-linearities will degrade the conformality of the

transformation produced by the node (see 5.4.4), one might ask why we should even

consider employing larger tuple sizes. This point has been dealt with in some depth in

5.6.2 which concluded that the greatly expanded feature space (often referred to as [0,1]"

space) afforded by larger tuple sizes can assist in orthogonalising learning in subsequent

nodes for multi-node systems. As the tuple size increases the degradation of the

conformality of the mapping will begin to offset the advantages afforded the expanded

feature space.

All existing learning laws using LNN's require some scanning of this feature space in

an attempt to normalise the response of the node. As the tuple size grows then the time

taken to scan this space increases exponentially. This is rather unfortunate as one of the

prime reasons for using Logical Neurons in the first place is their potential for rapid

training. However, the learning law developed here does not suffer this drawback since a

site update does not require information from any of the other sites within the tuple.

121

OA

OA

0.4

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

Normalisation is achieved automatically by virtue of the fact that the mean of the total

update within any tuple is forced to zero - this is implicit in the learning law. Since the

number of tuples decreases with tuple size and, recalling that the training time is

dependent only upon the number of tuples within a discriminator, it is apparent that, for

this learning algorithm, training times actually decrease as the tuple sizes gets larger.

The learning law for any tuple size is exactly the same as the 1-tuple outlined in 6.4.2

The effect of larger tuple sizes on the nodal transformation can be seen by repeating the

test described in 4.2.3 using the learning law developed here with a range of tuple sizes.

The results are shown below in fig 6.5. In these experiments the tuples are mapped to

maximise the mean Euclidean distance between the sites assigned to each tuple. This

mapping strategy produces the best results - the reason for this is discussed in 5.6.3.

Data set consists of 'A' font merged to 'B' over 25 images.

More 'A than 'B'.) More 'B' than 'A'.rag An555,5,55WAY.=7:=

.„}„,	 A:A t JO • 	 ••• 11 Alb

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 2223 24
Image Index

•-•-•27.

N •
N `,

,

sks'

Normalised Node
0/P	 0 	 11111111 I.

0 1 2 3 4 S 6 7	 9 	 LS 16 17 18 19 20 21 22 23 21
-02

	

-0.4	

Image Index

'"ws\
-0.6

-OA	 No. Passes to convergence. n

:—	 1-Tuple	 5

	

— — — 2-Tuple 	 6
	 4-Tuple	 9

	

8-Tuple	 7

Fig. 6.5 Variation of node response with tuple size for a single node Logical Neuron.

These results shown that as the tuple size increases, the node begins to behave more

like a classifier than a dimensionality reducer. It is evident that the relative distance

relationships between images in the original pattern spaces are not preserved as the tuple

size increases. This effect is most pronounced where the output of the discriminator is

large.

122

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

6.4.4. Extending the learning law to multi-node systems.

Successive nodes in a multi-node Self Organising Neural Network should learn

orthogonal features within the data set. In the sum-of-weights network, outlined in 3.4.6,

this was achieved by subtracting a fraction from the input dependent upon the magnitude

of the output and the weight on the input line on 'earlier' nodes. Sanger[41] has shown

that this strategy produces a transform analogous to Gram-Schmitt orthogonalisation.

Unfortunately, this technique cannot readily be applied to logical nodes as their inputs

must be binary to address the sites within each tuple - we cannot remove fractions of the

input for presentation to successive nodes. One rather crude, but nevertheless quite

effective, expedient is to employ a 'winner-take-all' type learning scheme where only the

node with the largest output is considered for update. In this scheme nodes compete for

learning stimulii and orthogonalatilty is achieved by virtue of the fact that a single node

will learn a feature type specific to that node and no other. The automatic normalisation

implicit in the learning law prevents the range of feature types learnt by that node from

becoming excessively broad (where the same node responds maximally to each and every

input image). Apart from this restriction, the learning law is identical to that presented in

6.4.2, except that each node must be seeded differently to induce competitive learning

between the nodes. Note also that learning (and the calculation of the mean output of the

node etc) is only engaged for 'winning' images.

This winner-take-all type learning paradigm has the advantage that training times are

not directly dependent upon the number of nodes used since only one node participates in

the learning process. This is not the case with the learning law outlined in 3.4.6.

An image coding scheme using the SOLNN and accompanying winner-take-all

learning law developed here was tested on the data set presented in fig. 4.2. Note that the

tuples are mapped to maximise the mean Euclidean distance between the sites assigned to

each tuple. The results are shown below in fig.6.6.

123

1-Tuplo

— — — 2-Tuple

	 4-Tuplo

— - -- • 6-Tuplo

--- - - — 8-Tuplo

Mean

Std. Dev

of

Node

0/P

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

2	 3	 4	 3	 6	 7
	

$	 9	 10

No. of Nodes

Fig. 6.6 Variation of code performance with number

of nodes for Database shown in fig. 4.2

1	 2	 3	 4	 5	 6	 7
	

a	 9	 10

No. of Nodes

Fig. 6.7	 Effect number of number nodes on the mean standard

deviation of node responses for database shown in fig. 4.2

The convergence times for a broad range of system parameters using this data set is

shown below in fig. 6.8. Convergence is deemed to occur when the RMS error of

discriminator outputs for respective input patterns on successive learning cycles is less

than 0.1%.

Tuple Size No.	 of	 Nodes
1 2 3 4 5 6 7 8 9 10

1 33 17 15 13 13 13 12 16 17 12

2 31 18 17 14 17 18 29 23 20 20

4 24 17 16 19 13 12 12 15 20 11

6 65 20 14 13 17 15 21 22 21 21

8 30 21 24 17 17 24 22 20 20 20

Fig. 6.8 Variation of Convergence times (in data set cycles) with system parameters.

124

2000

e .isoo

• 1600

O

3 1400

a

V.
1200

▪ loos

3

•

soo

1-7uple

— 2-Tupla

	 4-TuF4a

•••• • — • 6-70pie

— - - —13.7uple

•n•• IP, a-

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

These results show that larger tuple sizes can improve upon the performance of the

winner-take-all implementation of the LNN learning law. Unfortunately however, since

there is no correlation between the data in figs. 6.6 and 6.7, it is difficult to select the

optimum tuple size for any given data set using the standard deviation of the node

response. Thus we are blighted by a problem which affects nearly all n-tuple learning

systems, namely: 'How can we match the tuple size to the nature of the problem ?' There

appears to be no easy solution.

Fig. 6.8 confirms that convergence times (in number of cycles of the training data) are,

in general, dependent neither on the number of nodes in the system nor the tuple size.

Again, it is difficult to highlight any relationship between these parameters which might

help us to optimise the system performance.

6.4.5. Effect of database diversity on the performance of a winner-take-all

implementation of the learning law.

It is useful to observe how the performance of the system developed in 6.4.4 changes

as the contents of the database become more diverse. To this end, the experiment

presented in 6.4.4 was repeated with the number of classes of characters increased to 24.

The relationship between the number of nodes and system performance and the standard

deviation of the node response is shown in fig. 6.9 and 6.10 respectively.

..........
600

2	 3	 4	 5	 6	 7
	 a
	

10

No. of Nodes

Fig. 6.9	 Variation of code performance with number of nodes. Database

consists of 10 examples each of 24 classes of characters.

125

1 Tuple

- 2-Tuple

	 4-7uple

- •	 6-7upla

— -. — 8-7uple

......, .	 • • ••••.	 \..
•-••••	 .• sso \

•••.	 •• \
• ••••n •

• •

\ 	
'•••••	 •••• •

•••••	 •••••

\ 	 >4 : ...••• • "
%

2	 3	 4	 5	 6	 7
	

8	 9	 10

No. of Nodes

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

0.3

0.25

Mean

Std. Dev

of
0.2

Node
0.15

0/P

0.1

0.05

Fig. 6.10 Effect number of number nodes on the mean standard deviation of responses.

Database consists of 10 examples each of 24 classes of characters.

Convergence times for this data set are given below in fig. 6.11.

Tuple Size No.	 of	 Nodes
1 2 3 4 5 6 7 8 9 10

1 28 21 17 16 39 35 34 33 37 40

2 45 21 30 27 29 37 28 29 31 28

4 192 26 25 31 56 20 35 53 21 29

6 62 42 30 61 30 46 56 82 31 22

8 31 41 29 25 34 35 35 53 46 56

Fig. 6.11 Variation of convergence times (in data set cycles) with system parameters.

Database consists of 10 examples each of 24 classes of characters.

6.4.6. What tuple mapping gives the best performance for the learning law ?

In Section 5.6 of this thesis we saw how different tuple mappings onto the input retina

affected the performance of discriminator based LNNs. We concluded that the best

performance could be achieved by de-correlating local image artefacts. This can be done

rather simply by mapping the tuples to maximise the mean Euclidean distance between

sites monitored by any one tuple. It is worth re-confirming this for the learning law

developed here. Fig. 6.12 does indeed show that this mapping strategy produces the best

results (note that a 6-tuple is the optimum tuple size for this data set).

126

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

700 —

R
e
t

H

I sooe
v

I400

E 300 ..
r
r
0 200

r
s

100 	

1 Tuple

	 6-Tuple Max. Euclidean Distance Map
— - — • 6.Tupk Local Map

—.. - — 6-Tupk Random Map

I	 I	 I

s.... . „ „ .
.. '

I	 1-	 I	 I	 I	 I
2	 3	 4	 5	 6	 7	 5	 9	 10

No. of Nodes

Fig. 6.12 Comparing the performance of different mappings for a 6-tuple system.

6.5. Applying the Learning Rule to a Sum-of-Weights Node.

The essence of our learning rule is pleasantly simple: during training we add a fraction

of the mean corrected node output to the site addressed by that tuple. The mean of the

node output is subtracted from the output prior to this update so that, after one training

cycle, the sum across the 2n sites addressed by an n-tuple is zero. The upshot of this for a

1-tuple system is that the contents of the sites addressed by 'black' and 'white' pixels are

equal and opposite. One could argue that, because the value of the 'white' sites is

inexorably bound to the value of the 'black' sites, only one of these sites is required. In

this case the polarity of the of the site could be re-created by multiplying a single element

memory by '+1' if the pixel is 'black' and '-1' if the pixel is 'white'. Such a node is directly

equivalent to a standard sum-of-weights node - this is shown below in fig.6.13.

IS EQUIVALENT TO:

Fig. 6.13 A 1-tuple system is equivalent to a sum-of-weights node for our learning law.

127

(61

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

For a single node system the learning law becomes:

(59W 0+1 = W i,t

Where:

wi,t

Wi,t+1

X0-

Y

is the value of the site before the update.

is the value of the site after the update.

is the value of the ith pixel in the jth image.

is the response of the j th image obtained from stage ii.

is the mean value of the node responses from stage ii. That is:

= YplY;	 (60
J=1

is the number of images within the database.

is a regulating term obtained from the node responses.

y

A comparison between the weights developed using this learning law for a 1-tuple

system and Sangers' learning law, given in 3.4, reveals that both methods converge to the

same solution with the exception that the weights are not normalised in the same way. In

Sangers node, the sum of the square of the weights is equal to 1 whilst in the novel
learning law —1 (Site value) 1.

6.5.1. Why is a sum-of-weights implementation preferable to a 1-tuple system ?

The advantages of a single node sum-of-weights node over a 1-tuple LNN system are

two-fold: firstly, the memory requirements are halved and, secondly, we are no longer

restricted to binary images. This latter point is quite significant as, typically, a large

amount of image information is lost in converting a grey-level image to a binary one.

In the sum of weights implementation of the learning rule presented in 3.5, orthogonal

learning for multi-node systems achieved by removing a portion of the input to successive

nodes according to the magnitude of the node response in 'earlier' nodes in the system.

This technique is described in more detail in 3.5.2. This orthogonalisation technique is

very effective but cannot be applied to an LNN scheme because the inputs on the tuples

must be binary to form meaningful addresses to the sites. In an attempt to circumvent this

problem we resorted to a 'winner-take-all' type learning system which is comparatively

crude. However, since the inputs to the nodes on our revised sum-of-weights type node

128

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

can take on any value between -1 and +1 we have the potential to develop a more

sophisticated orthogonal learning scheme. This avenue is worthy of further investigation.

6.5.2. Orthogonal learning in a sum-of-weights implementation.

For Sangers' neural network architecture [41], presented in 3.5.2, the input to

successive nodes is regulated both by the magnitude of the node output and the value of a

particular weight in earlier nodes. In this training scheme the weight vector lies on a valid

trajectory toward a stable solution at each presentation of data. Such an update scheme

cannot be supported by our node however because the weights only take on meaningful

values at the end of a training cycle. Prior to this, the weight is not representative of the

transformation learnt by the discriminator and cannot be used to calculate the orthogonal

input to successive nodes. Essentially, we can only calculate the inputs to nodes further

down the 'learning chain' if we have access to the weight vectors of nodes further up the

chain at the end of the previous training cycles. There are two ways round this problem:

i. Consider a system where node 1 is the first node in the learning chain (learning

the first principal component). We begin by presenting a complete training cycle

to all the nodes but adapting the weights on odd numbered nodes. During this

time learning is frozen on even nodes and the static weights used to calculate the

orthogonal inputs to odd nodes. At the end of the training cycle the weights are

representative of the transform learnt by these nodes and may be used to calculate

the orthogonal inputs to the even nodes. The orthogonalising input is given below

in equation (62. Learning is then suspended on odd node and the training process

repeated for even nodes. Thus learning must be suspend on every alternate node

at each pass through the data set so that the weight vector on the node preceding

the one undergoing learning is fixed to calculate the orthogonalised input on the

next node.

ii. We could buffer the value of the weight vector from each node (barring the first

which does not receive an orthogonalised input) from the last training cycle and

use this to calculate the orthogonalised input, given below in equation (62.

Both methods converge to the same solution. Method ii has twice the memory

requirements of method i but converges twice as fast. The most appropriate method can

be matched to the users requirements; in all the following simulations method ii has been

used.

129

(

Y jk Yk)

gk

(62
Xijk+1 = Xijk—Wa

(63

(64

650
	

0.3

0.2
Std. Dev of
Node 0/P

0.1-

0.-1 t	 a	 I	 II

e E 550

r r 450

e r 350

a 250

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

The orthogonalised input is given below:

Where:

xijk+ , is the value of the i th pixel from the jth image to the k+/ th node in

the system.

	

k	
is the value of the i th pixel from the jth image to the kth node.

y

is the value of the i th weight on the kth node.

	

yjk	 is the response of the kth node to the jth image.

	

Yk	 is the mean response of the kth node.
That is: y k = yp y ik

i=1

2
Ck	 = Wk

t=1

is the number of pixels in each image. The images must be

normalised so that N is constant across the whole data set.

The architecture to support this learning rule is shown in fig 3.9.

6.6. Some Practical Results for the New Learning Law.

The tests outlined in 4.2.3 are repeated here for the learning law developed in 6.5.2.

Comparing these results with those achieved by Sangers' learning law, given in figs. 4.10

and 4.11, show that the performance of the two schemes is remarkably similar. However,

the learning law presented in this chapter does not require a learning rate to be set and this

is a distinct advantage for a practical system.

1 2 3 4 5 6 7 8 9 10	 1 2 3 4 5 6 7 8 9 10

No. Nodes in System
	

No. Nodes in System

Fig. 6.14 Variation of code performance and standard deviation of node output with

number of nodes for a sum-of-weights implementation of the new learning law

130

70

60

50
Passes to
Converge 40

(RMS Error 30
<0.1%) 20

10

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

o
	

I	 VII
	

1

1	 2	 3	 4	 5	 6	 7	 8	 9 10

No. Nodes in System

Fig. 6.15 Variation of convergence times with number of nodes for a sum-of-weights

implementation of the new learning law

6.6.1. When should we re-train the neural network?

The great strength of our coding scheme lies in its ability to adapt to the changing

nature of the database. Each of the images is coded with respect to a set of features learnt

by the network. These features characterise the distribution of images within the database.

If the contents should change, then the transform learnt by the network is likely to be sub-

optimal and the neural network will have to be re-trained. Since re-training is, typically, a

rather lengthy process, it is useful to investigate how the performance of the retrieval

mechanism is effected where images are added to the database without re-training.

In 4.4.3 we argued that if the additional images are similar to the class of images

already contained within the database, then the need for re-training is not particularly

pressing. If, however, these images differ significantly then the degradation in

performance is marked. In following experiment, a 6-node neural network was trained on

the images shown in fig. 4.2 using the learning law outlined in 6.5.2. The data set

consisted of 10 classes of 10 machine printed fonts. The object of this experiment is to

observe the effect of adding images to an existing database. The following image sets

were added (in sets of 20 at a time) to the database and the retrieval performance

measured with and without training:

• Similar image types - a further 2 examples each of the 10 classes of fonts already

present within the database. (i.e. add 2 different A's, 2 B's 	 2 K's, measure the

performance and repeat).

• Different image types - a further 2 examples each of 10 classes of fonts not found

within the database (i.e. add 2 each L's, 2 M's....etc., measure the performance and

repeat).

131

- Without re-training

_ - - - With re-training

Added Images different
from existing database
contents.

, • " ` • ..,,	 •

Added Images similar
----------	 to existing database

contents.

20	 40	 60	 80
	

100

0.35

Relative 0.3

Retrieval
Errors

0.25

0.2

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

The results are presented below in fig. 6.16. In this test relative errors are defined as
No. of Errors

Max. possible Errors'

No. Images Added to Database.

Fig. 6.16 The effect of re-training on an expanding database.

These results confirm the conclusions drawn in 4.4.3 and 4.4.4 of this thesis.

6.7. Comparing the Performance of Four Learning Systems Discussed in
this Thesis.

In this section we present an objective comparison between the following learning

laws:

i. Sangers Learning Law presented in Section 3.4.6 of this thesis (see Section 4.3

for practical tests).

ii. A 6-tuple LNN implementation of the Hebbian learning law presented in Section

6.2.3.

iii. A sum-of-weights implementation of the Hebbian learning law presented in

Section 6.5.2.

iv. A 6-tuple LNN implementation where the training exemplars are selected from an

exhaustive search of the database images. This training strategy is outlined in

Section 5.8.

Tests were repeated for two data sets:

a. The data base shown in fig. 4.2, consisting of 10 examples each of 10

characters.

b. A data base of 20 examples each of 20 character classes ('A' to 'V' not

including '0' or 1').

132

120 —

100

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

The results for data set a. are shown in figs.6.17, 6.18 and 6.19. Those for set b. are

shown in figs.6.20 and 6.21 respectively. Note that the training times for the strategy

outlined in 5.8 increase exponentially with the database size and linearly with the number

of nodes and are significantly longer than the other 3 methods. This is shown for data set

a. in fig 6.19.

—Singers learning law an surn-of-weights node (see Section 3.4.6).

— • — • Novel learning law co suin•of_weights node (see Sectim 63.2).

	 Novel learning law cal a 6-tuple node (see Section 6.4.4).

— - Exemplar search learning law on a 6-tuple node with 3 shift

trainig phases (see Section 5.8).

2
	

5	 6	 7
	 5	 6	 10

No. of Nodes

Fig. 6.17 Comparing the performance of 4 learning laws for data set a.

San gers learning law on sum-of-weights node (see Section 3.4.6).

— - — • Novel learning law on sum-of weights node (see Section 632).

	 Novel learning law on a 6-tuple node (see Section 6.4.4).

140

Passes to	 a° —
Convergence
(Total RMS 60

error <0.1%)

40 —

1".
	 was/	20

.••••
"".

I	 I

1	 2	 3	 4	 5	 6	 7	 8	 9	 lo

No. of Nodes

Fig. 6.18 Comparing convergence times for 3 learning laws using data set a.

133

\ 'S

woo

5500
5.

5000

3 4500

a

5.

4000

2000

1500

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

10000

9000

8000

7000

No. passes 6000

for training 5000

4000

3000

2000

1000

1 1	 1	 I	 I	 1

2	 3	 4	 5	 6	 7	 9	 9	 10

No. of Nodes

Fig. 6.19
	

Training times for the exemplar search training

algorithm using data set a. (see Section 4.8)

—Sangera learning law on sum-of-weights node (see Section 3.4.6).

— - — • Novel learning law on sum-of_weights node (see Section 63.2).

	 Novel learning law on a 6-tuple node (see Section 6.4.4).

— - Exemplar search learning law on a 6-tuple node with 3 shift

trainig phases (see Section 5.8).

2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 18

No. of Nodes

Fig. 6.20 Comparing the performance of 3 learning laws for data set b.

Sanger! learning law on sum-of-weights node (see Section 3.4.6).

— - — • Novel learning law on sum-of weights node (see Section 63.2).

	 Novel learning law on • 6-tuple node (see Section 6.4.4).

1 000

R ocio _

t Boo —
r

700 —

C

3 6(4 —
a soo

400 —	 —

3 300 —

O 200 —

• ioo—
........... - ••.

I I	 I	 I	 I	 I	 I	 I	 I	 I	 I -1 - I

2	 3	 4	 5	 6	 7	 9	 9	 10 11	 12 13 14 15

No. of Nodes

Fig. 6.21 Comparing convergence times for 3 learning laws for data set b.

134

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

6.7.1. Comparing our coding scheme with a mask matching system.

In essence, our coding scheme attempts to represent the images in a more manageable

domain than the original to support rapid fuzzy matching across a very large database.

Searching this new domain is undoubtedly quicker, but is it really more effective than

comparing raw images using Hamming distance, for example?

The NNT is just an information filter which sifts out redundant data from an ensemble.

The important issue here is: Does the information that the NNT filter out actually impair

or improve the performance of the matching mechanism? In the following test we

repeated the experiment outlined in 6.7 using the data set. a. Csk‘o\Nn in fig. 4.1.) 'InA

matched the images through Hamming distance on the 'raw' images rather than using the

codes. The best performance figures for this, and the previous tests is shown below in

fig.6.22 (note that a floating point number is taken to be 4 bytes long and that each

element of the code has been quantised to 8 bits).

The results show that a coding scheme using the novel learning law on 6 x 6-tuple

nodes will outperform all other techniques presented here. The price that we pay for this

is the increased memory requirements for the system. However, training times are

significantly less than for Sangers' learning law (and, to a lesser extent, the other coding

schemes) and this is a distinct advantage for a practical system. The mask matching

scheme does not require any training but each comparison takes 8 times longer than all of

the coding schemes. Thus, whilst the training is inconvenient, the overhead is only

incurred intermittently whereas, for the mask matching scheme, the extended searching

times are introduced each time a query is posed to the system. This is not desirable.

Matching/Coding Method Retrieval
errors

Memory
for code

(bits)

Comparisons
for each

match (bits)

Training times
@asses of data

set)

Memory
for

training
(bytes)

Mask match - Hamming
distance.

217 0 384 0 0

Code match - Sangers learning
law on 6 sum-of-weights nodes

197 48 48 97 9216

Code match - Novel learning
law on 6 sum-of-weights nodes.

221 48 48 20 9216

Code match - Novel learning
law on 6 x 6-tuple Logic nodes.

178 48 48 17 98304

Code match - Exemplar search
on 6 x 6-tuple Logic nodes.

204 48 48 6000 3072

Fig.6.22. Comparing mask and code matching strategies for an image retrieval system.

135

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

It is also important to note that the Hamming distance matching strategy can only be

performed on binary images. The same holds true of the Exemplar search and LNN

implementation of the novel learning law. This is something of a drawback as important

information will be lost during thresholding which is likely to impair the performance of

the code.

6.8. Is a 1-tuple Coding Scheme Really Performing Mask Matching ?

WISARD practitioners often cite the 1-tuple case as a trivial one because, under these

conditions, the NNT is equivalent to a mask matching operation. This is only true in

WISARD (or indeed any LNN) where the sites are restricted to binary values. If,

however, the sites can take on real values then the matching takes places in a weighted

Hamming space and this affords us with rather more sophisticated matching metrics.

In our coding scheme for a 1-tuple system, the Hamming space is weighted with

respect to the amount of information conveyed by any single tuple. If the pixel has a high

DC component across the data set then it is not considered during the matching phase.

Conversely, if the pixels conveys a large amount of information then the weight of that

pixel during matching is biased accordingly. This probably accounts for the improved

performance of the coding over the mask-matching systems.

6.9. Discussion.

Training a neural network is, typically, a rather hit and miss affair because the solution

is often sensitive to both the learning rate and the order of presentation of data. In a

conventional neural network system, the surest way of guaranteeing that the net will learn

the optimal features is to set the learning rate very low. This incurs long training times

which are not viable for a practical system. A higher learning rate will cause the neural

network to converge faster but may cause it to converge to a sub-optimal solution.

Selecting the best learning rate is no simple matter and usually requires an expert with

recondite knowledge of the system dynamics. This is simply not practical for a system

which is to be operated with only a modest level of expertise.

136

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

In an attempt to circumvent this difficult parameter selection phase, we have developed

an entirely new and 'user-friendly' neural network learning law. It does not require a

learning rate to be set, is insensitive to the order of presentation of the data set, and will

always converge to a near-optimal solution.

We have shown that this learning law, though quite different in form, produces exactly

the same transformation as the learning law developed by Sanger/41J, outlined in chapter

3 of this thesis. Sangers learning law makes several approximations which become

increasingly invalid as the learning rate grows; this has been outlined by Oja[54].

However, no such approximation are made in the derivation of this learning law and, as a

consequence, it does not suffer from this drawback. We show that the performance of

these two nodes is remarkably similar for a database of machine printed fonts.

We showed how a variant of this learning law could be supported by both an n-tuple

and a sum-of-weights type node.

As the number of nodes is increased in an n-tuple implementation, the expanded

feature space afforded by larger tuple sizes can de-correlate the information conveyed by

successive nodes. This was discussed in Section 5.9. This offers the prospect of improved

performance over sum-of-weights type networks, though there are no apparent ground

rules for matching the tuple size to the nature of the problem (number of nodes, type of

data being coded etc.). In addition, n-tuple systems suffer the following draw-backs:

• The memory requirements of an n-tuple system are 2 11 times that of a simple sum

of weights type node.

• The n-tuple requires a binary input. Consequently grey-level images must be

thresholded before being presented to the network. This operation typically

destroys some of the information conveyed by an image. Note that binary data

was used for the tests throughout this section and this shortcoming was not a

problem.

Results presented in this section indicate that n-tuple nodes converge much faster than

their sum-of weights counterparts.

137

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

Our scheme codes each image with respect to a set of features learnt by the neural

network. These features characterise the distribution of images contained within the

database. As images are added to the database then these features may change and the

neural network may require re-training to optimise the performance of the retrieval

mechanism. We show that if the images to be added to the database are similar to the class

of images already contained within the database then there is no marked decrease in

performance and that training is not particularly pressing.

Conversely, if the images are significantly different from those already contained

within the database then the performance of the retrieval mechanism is degraded. In this

case training will improve the performance quite considerably.

The optimum number of nodes depends upon the diversity of the images within the

database. Increasing the number of nodes will generally improve the performance of the

system, though the law of diminishing returns comes into play here; the improvement

afforded by additional nodes decreases to the point where the addition of further nodes has

a barely tangible effect. The standard deviation of the node output can be used to optimise

the number of nodes within a system.

For the sum-of-weights type neural networks more nodes usually means longer

training times. It is interesting to note that training times for the n-tuple node are

remarkably insensitive to the number of nodes.

Training times are also dependent upon the number of images within the database; as

the database becomes more extensive then training times become longer. Training times

for n-tuple nodes are considerably less than sum-of-weights types nodes for relatively

large databases. However, as the database becomes increasingly diverse the sum-of-

weights type nodes begin to outperform n-tuple implementations.

As the database becomes larger and more diverse, the improvement afforded by

additional training continues to diminish. In fact, for very diverse databases, the %mutes

learnt by the node stay remarkably constant and do not change appreciably. This is

because, for a highly diverse set of images, the nodes begin to learn image primitives

which characterise a very broad range of image types. Such primitives might include

oriented line segments, for example. This has been noted by a number of researchers

[56][80][81][82]. In fact, the second order statistics afforded by PCA, which take both

138

Chapter 6 A Novel Self Organising Learning Law for Image Coding.

spatial and ensemble correlations into account, become less and less significant as the

distribution of the data set becomes more diverse. Eventually, the performance of PCA

approaches that of a transform which considers only first order spatial statistics. These

first order transforms, such as DCT or the Hadamard Transform, are considerably easier to

calculate than PCA.

Many researchers have shown that the features learnt by PCA type nodes trained on a

diverse set of images resemble the so-called receptive-fields found to exist within

mammalian processing systems . This seems to give some biological plausibility to our

own approach. However, the fact that such features remain constant for highly diverse

databases (the mammalian receptive fields are similarly fixed) raises an interesting issue.

Once we know what these features are, do we really require the learning mechanism

provided by the neural network?

Our work indicates that for a completely unconstrained database, a learning

mechanism is not strictly required once we know the form of the so-called receptive fields

(whether it be the contents of the RAM in the case of an n-tuple system or the weight

vector in a sum-of-weights type node). In this case the image code could be found from

the output of a node with fixed weights. This is rather gratifying as the training of neural

networks is fraught with problems, not least being the time taken to train the system. This

prospect opens up several very exciting avenues of research which are outlined in the next

section.

139

Chapter 7- Discussion and Conclusions.

Chapter 7

Discussion and Conclusions.

7.1. Defining the Problem

The broad objective of this work has been to achieve retrieval of images from large

unconstrained databases using image content. The problem is typified by the need to

locate a target image within a database where no numerical indexing terms are available.

Here, retrieval is based upon important features within in an image and uses sample

images or user sketches to specify a query. A typical query might be framed as "Find all

images similar to this one", for example.

Existing methods to retrieve images from such databases rely on either a manual search

of the entire data-base or an automated search of manually (or interactively) entered image

descriptors. Both of these techniques require considerable human input; in the former this

overhead is incurred every search session, and in the latter each time an image is added to

the database. Such methods are extremely time consuming and this has had a profound

effect on both the appeal and feasibility of Image Database Systems for typical end users -

for most they are simply not a practical prospect. This type of application is by no means

uncommon and potential users include: office and library applications, printing,

publication and advertising, security, medicine, Geographic Information Systems,

education and training, arts archiving, entertainment and broadcasting. These

communities produce large amounts of visual information and have all expressed a need

for flexible, convenient and robust retrieval mechanisms.

Image retrieval by content will only become a practical prospect when general purpose

automatic feature extraction is possible. This relies heavily upon computer vision and

pattern recognition to formulate efficient indexes. However, extracting indexing features

has proved to be an extremely difficult process to automate using conventional image

processing techniques. The aim of this project has been to show how neural networks can

provide a practical, flexible and robust solution to this difficult problem.

140

Chapter 7- Discussion and Conclusions.

The retrieval mechanism developed here is intended for large, non-specific databases.

Retrieval from fairly small databases is probably best tackled by implementing efficient

browsing mechanisms which allow the user to peruse sets of 'thumbnail images' (reduced

versions of size which can be simultaneously displayed on a screen) efficiently rather than

retrieval-by-content schemes.

Neither does our retrieval scheme attempt to address the problems associated with the

more subjective type of user query. Such queries might be framed as "Retrieve all images

of Hitler addressing crowds". A system to support this class of request is beyond the scope

of this research and one must caution against over optimistic expectations for subjective

image retrieval in the near future.

7.2. Existing and Previous Work

The general area of image retrieval is now receiving considerable attention world wide.

The recent surge in the volume of research papers covering this type of application clearly

attests to the growing interest in this embryonic and active area.

Image retrieval by content is being investigated using colour signatures and shape

descriptors of discrete objects within a scene, for example [11][12031120]. The latter

technique suffers from the need for interactive object detection using manual front ends.

Colour signatures are not robust as images with identical signatures can have markedly

different scene content. Contending methodologies include graph matching based on

feature extraction of cloud images[83] and satellite images of the upper atmosphere/20J,

for example. Neither of these technique attempt automatic feature extraction and both are

specific to very narrow classes of problems.

The main comments on the current position regarding Image Retrieval [2][4][78][84]

are:

• There is a significant and on-going requirement for image retrieval and,

whilst existing systems are targeted at various specific problem domains,

there is a need for a more general purpose and robust approach.

• It is highly improbable that existing strategies (i.e. colour signatures and

shape descriptors) will scale to more general applications.

141

Chapter 7- Discussion and Conclusions.

• Neural Networks, as demonstrated in this report and by other researchers

[44], offer the prospect of a more robust and flexible image coding

strategy.

7.3. Basic Thrust of the Neural Network Coding Scheme.

Neural networks consist of large arrays of comparatively simple processing elements,

or 'neurons', which interact in parallel to learn a mapping from a problem to a solution in a

non-deterministic manner. The thrust of this project was to develop Neural Network

Transforms (NNT's) for image retrieval. The neural network represents each image with

respect to a number of feature archetypes learnt during a training phase. These archetypes

characterise the distribution of images within the database and exist as a points in multi-

dimensional feature space. The index represents the length of the vector between the

image and the archetype.

The array of neural networks is trained on the entire database until convergence. Each

image is then presented to the networks and the response of each node taken as an element

of the index vector. The Neural Network Transform, from image to index, preserves the

relative relationships between the images in the original domain so that the index can be

used as the basis of the similarity metric. High dimensional images can be compared

through their low dimensional codes. Images whose codes have the shortest Euclidean

distance between them may be deemed to be most similar in the original pattern space and

this forms the basis of the retrieval mechanism.

This research area is clearly being approached from a 'bottom-up' strategy. The initial

successes will be with very specific databases and will then move towards the more

general area of image retrieval. Our own approach to date has been centred on global,

'full-scene' features for the image indices for the retrieval and matching mechanism. We

believe that the techniques developed to date could be adopted for formulating indices

from more local features in due course.

Local features provide more comprehensive and robust scene descriptors and have the

potential to support a degree of invariance to translation, scale and occlusion, for example.

However, practical methods to embody these comparatively complex scene descriptors

within a suitable data structure to support efficient matching have yet to surface. Global

descriptors are not afflicted with this drawback and much of their efficacy may be

attributed to their underlying simplicity.

142

Chapter 7- Discussion and Conclusions.

7.4. What Kind of Neural Transformation Do We Want ?

Our matching metric requires that images close together in the pattern space yield

correspondingly similar codes in the code space. This criteria is optimally satisfied by a

single layer linear NNT.

However, the neural network community have, by and large, tended to regard such

architectures with low esteem because of their comparatively limited functionality. This

scant regard for the capabilities of the humble linear neuron has arisen because most

neural network applications have tended to be centred around multi-layer classifier

systems trained through unsupervised learning, as in the ubiquitous backpropogation

training algorithm for multi-layer perceptrons, for example. In this context it is true that

the linear transformation is somewhat lacking in that it will not cluster data into notionally

distinct classes and the fact that multi-layer linear topologies do not provide any

computational advantage. However, unlike a non-linear NNT, its linear counterpart does

have a distance preserving property which is more important for unsupervised learning

systems. Theoretically, a linear NNT will capture most information within a data set [56]

(by contrast, a non-linear NNT, will destroy some information). Whilst the work carried

out in this project corroborates this, it does indicate that a small amount of non-linearity

during training can speed up the learning process considerably and still preserve the

relative distances between the images in the original domain.

7.5. Developing a Suitable Learning Law for the Coding Scheme.

We have shown how a single layer linear neural network and accompanying learning

law can be used as the basis for our coding scheme. The learning law investigated initially

was developed by Sanger/41J, Oja[54] and Linsker[56] and is directly equivalent to

Principal Component Analysis (PCA). PCA is a statistical analysis technique which

isolates salient characteristics within the data set and enables it to be represented in a lower

dimensional bound. The classical realisation of PCA is very computationally expensive

and not suited to high dimensional data sets but can be implemented very efficiently on

neural network architectures. In this context the neural network is acting as an information

filter. However, the learning laws, developed by Sanger et al are only an approximation

of PCA.

143

Chapter 7- Discussion and Conclusions.

The accuracy of the approximation is determined by the rate at which learning is

undertaken within the system. If the learning rate is small, the approximation is accurate,

the weights will converge to the Principal Components of the data set but will take a long

time to get there. If the rate is high, convergence will be quicker but the approximation

less accurate and the resultant transformation may not be optimal. The approximations

inherent in the derivation of the learning law means that the learning rate can have a

profound effect upon the performance of the code.

The size of the learning rate determines the extent of localisation of the learning

process within the training ensemble. A small learning rate will 'spread' the context of the

learning across the data set. We show that the learning rate should be made inversely

proportional to the size of the data set.

We also show that the learning rate should be made inversely proportional to the size

of the images within the database. The size of the images does not effect the performance

of the code.

Training a neural network is, typically, a rather hit and miss affair because the solution

is often sensitive to both the learning rate and the order of presentation of data. Selecting

the best learning rate is no simple matter and usually requires an expert with recondite

knowledge of the system dynamics. This is simply not practical for a system which is to

be operated with only a modest level of expertise.

In an attempt to circumvent this difficult parameter selection phase, we have developed

an entirely new and 'user-friendly' neural network learning law. It does not require a

learning rate to be set, is insensitive to the order of presentation of the data set and will

always converge to the Principal Components very rapidly.

We have shown that this learning law, though quite different in form, produces exactly

the same transformation as the learning law developed by Sanger et al. However, no

approximations are made in the derivation of this learning law and, as a consequence, it

does not suffer from the drawbacks mentioned earlier. We show that the performance of

the two learning paradigms is remarkably similar for a database of machine printed fonts.

Successive nodes learn features with decreasing significance. For a given data set

there comes a point where the inclusion of additional nodes provides little or no additional

144

Chapter 7- Discussion and Conclusions.

information. The optimum number of nodes depends upon the diversity of the images

within the database. Increasing the number of nodes will generally improve the

performance of the system. The improvement afforded by additional nodes decreases to

the point where the addition of further nodes has a barely tangible effect on the

performance of the retrieval mechanism. For a database of moderately diverse image

types (so that the distribution tends to that of a Gaussian) the standard deviation can be

used to select the optimal number of nodes which occurs where successive nodes exhibit

standard deviations of the same order of magnitude.

For the sum-of-weights type neural networks more nodes usually means longer

training times. We have shown that, for a database of unconstrained image types, training

times increase approximately linearly with the number of nodes. Training times are also

dependent upon the number of images within the database; as the database becomes more

extensive then training times become longer.

Summing up then, we can see that a simple single layer linear (or near linear) neural

network can be used as the basis of our coding mechanism. The transform provided is

equivalent to PCA but is less expensive both in terms of memory and computation time.

7.6. Logical Neural Networks for Coding Images.

The relative popularity of LNN architectures in the UK may be attributed to the early

successes of the WISARD system. Indeed, the appeal of these structures is peculiarly

parochial and LNN's are regarded as something of a 'dark horse' by researchers outside of

the UK, who, by and large, tend to focus their research interest on sum-of-weights type

nodes. WISARD is such an attractive prospect because it stands alone in its capability for

rapid training and ease of implementation in hardware. Unlike sum-of-weights nodes it

requires only one pass through the training set during training and can be readily scaled up

to very large problems. WISARD can be trained on video images at video frame rates - no

other current neural network architecture can match this performance.

For a single node system, a 1-tuple discriminator, which produces a linear NNT, will

outperform larger tuple systems. This is because larger tuple sizes exhibit increasingly

non-linear transfer characteristics and will not produce the conformal mapping required to

preserve the relative distances between the images in the pattern space.

145

Chapter 7- Discussion and Conclusions.

A Logical Neural Network will perform best if the tuples are mapped to completely

un-correlated areas within the image retina. Normally, the tuples are mapped randomly

onto the retina to achieve this. We present a novel mapping strategy which can improve

upon random mapping. Here the tuples are mapped onto the retina such that the mean

Euclidean distance between the tuple sites is maximised.

As the number of nodes is increased in an LNN, the expanded feature space afforded

by larger tuple sizes can de-correlate the information conveyed by successive nodes. As

the number of nodes grows the increased feature space afforded by large tuple sizes

becomes more important than the conformal mapping produced by the smaller ones. This

offers the prospect of improved performance over sum-of weights type networks, though

there are no apparent ground rules for matching the tuple size to the nature of the problem

(number of nodes, type of data being coded etc.).

WISARD is classically trained through unsupervised learning where one pattern class

is assigned to each discriminator. Following this methodology, we initially experimented

with training single patterns from within the database into individual discriminators by

shifting and adding noise to the original. A key issue here was to find the most

appropriate training pattern (and training strategy) which optimised the performance of the

code.

The standard deviation of the node activity provides a rough metric with which to

judge both the best training archetype and the extent of training required for any particular

discriminator, though the result may be sub-optimal. The processing time for this scheme

grows linearly with the number of nodes and as a square of the size of the database.

However, because they can be easily be implemented in hardware LNN's can be trained

extremely rapidly and this shortcoming is not as serious as it would be for other neural

network models.

We introduce novel Self Organising learning strategy for LNN's which is functionally

identical to the paradigm developed for sum-of-weights type nodes mentioned earlier.

Training times for this learning law are remarkably insensitive to the number of nodes and

are considerably less than that required by sum-of-weights types nodes for relatively large

databases. As the database becomes increasingly diverse the sum-of-weights type nodes

begin to outperform LNN implementations.

146

Chapter 7- Discussion and Conclusions.

7.7. An Objective Appraisal of LNN's for our Coding Scheme.

The novel learning law (developed as an alternative to Sanger's learning paradigm for

sum-of-weights type nodes) was initially intended for use in LNN's. However, since it

became apparent that the law could be supported readily on sum-of-weights type nodes,

we were forced to evaluate the efficacy of LNN's in the light of our own particular

application. An objective appraisal of their applicability to our coding scheme might be

helpful here.

The beauty of the WISARD system lies with its simplicity. When more sophisticated

training algorithms are implemented on LNN structures however, their advantages, most

notably their ease of implementation in hardware and rapid training times, are gradually

eroded. It is easy to loose sight of this fact and to stick doggedly to LNN's even though

they may no longer be readily supported in hardware nor well suited to the problem at

hand.

Our particular coding scheme requires a Self-Organising learning law. In such

systems, the context of each pattern to the complete data set is particularly important. This

can only really be implemented through multiple presentations of the data set. The 'one-

shot' learning process employed in classical WISARD systems is rather crude since

worthless features are given the same weight as important ones. This is not the case with

more conventional neural network models where the relationship between any single

training pattern and its context to the entire training set is taken into account over

successive training presentations. In our particular application the data is not volatile since

we can gain access to every pattern relatively easily during training. A more refined

methodology, using multiple presentations of the data set in an 'off-line' training phase,

would prove more effective than simple 'one-shot' learning here.

The relative importance of any one feature (such as a pattern of bits occurring within

a single tuple) must be represented fairly explicitly for Self Organised learning. This

requires that each site take on multiple values and is a characteristic of all Self Organising

LNN's (in a WISARD system the site values are usually binary). Since the memory

requirements of an n-tuple system are 2 n times that of a simple sum of weights type node,

LNN topologies for Self Organising systems, require comparatively large amounts of

memory.

147

Chapter 7- Discussion and Conclusions.

The learning capacity in Self Organising systems must be regarded as a fixed resource

- the very act of learning something means that another, less important, item of data must

be relinquished. As a consequence, some scanning of the feature space is required in order

to normalise the learning resource in LNN's. Since the feature space grows exponentially

with tuple size, this scanning operation can incur considerable overheads during training.

Fortunately, this normalisation phase is implicit in the novel Self Organising LNN learning

law developed here and no scanning of the feature space is required. This is the only Self

Organising learning law for LNN's which does not suffer this drawback.

One of the great advantages of n-tuple systems is that higher tuple sizes produce

increasingly non-linear transforms which can help to cluster the data in classifier systems.

However, for small numbers of nodes, our coding scheme works best where the NNT is

linear (i.e. a 1-tuple) and the non-linearities produced by larger tuple systems are not

particularly advantageous. Larger tuple sizes can help when a large number of nodes are

used but matching the tuple size to the nature of the problem domain can only be

performed through 'trial and error'. There is no apparent concrete relationship between the

tuple size, the standard deviation of the node output and the performance of the retrieval

mechanism.

Though much work has been undertaken on applying LNN's to grey-level data, these

architectures really come to the fore with binary data. Unfortunately, thresholding grey

level images will, typically, destroy large amounts of information within the image. This

is undesirable. Sum-of-weights type nodes can accept grey level data and this is a distinct

advantage for our particular application.

Sanger shows that a multi-node training scheme can be implemented by forcing

successive nodes to learn orthogonal features. Orthogonal learning is induced by

removing fractions of the features learnt by earlier nodes from the input to successive

ones. Such an orthogonalising strategy cannot be easily implemented on LNN's because

the input must be binary. Thus we are forced to adopt the more crude 'winner-take-all'

type learning scheme which can impair the performance of the code.

WISARD is usually used as a classifier and trained through supervised learning.

However, our own requirement necessitates the use of unsupervised learning and

comparatively limited research has been undertaken in this area for LNN's. It is not

apparent that the very attributes which render WISARD such an attractive prospect for are

at all applicable for our coding system (a dimensionality reducer trained through

148

Chapter 7- Discussion and Conclusions.

unsupervised learning). In conclusion, this author feels that sum-of-weights type nodes

are more suited to our coding scheme than LNN's.

7.8. When do we Need to Retrain the System?

The NNT optimises the performance of the code with respect to the changing contents

of the database. As new images are added to the database there will come a time when the

nodes need to be re-trained, although the degradation in performance is gradual and, where

the database contains a broad range of image types, almost imperceptible. The need for re-

training is dependent upon the changing distribution of images in the pattern space.

Our coding scheme works best when there is a theme which runs through the database,

such as a database of facial images, for example. The more specific the theme, the greater

the 'computational advantage' of our NNT.

We show that if the images to be added are similar to the class of images already

contained within the database then there is no marked decrease in performance and that

training is not particularly pressing. Conversely, if the images are significantly different

from those already contained within the database then the performance of the retrieval

mechanism is degraded. In this case training will improve the performance quite

considerably.

The Neural Network Transform attempts to extract second order statistics from the

data set. These statistics take both spatial and ensemble characteristics into account in an

attempt to represent the images in a lower, and so more manageable domain.

As the database becomes larger and more diverse, the improvement afforded by

additional training continues to diminish. In fact, for very diverse databases, the features

learnt by the node stay remarkably constant and do not change appreciably. This is

because, for a highly diverse set of images, the nodes begin to learn spatial image

primitives which characterise a very broad range of image types. Such primitives might

include oriented line segments, for example. In fact, the second order statistics afforded

by PCA, which take both spatial and ensemble correlations into account, become less and

less significant as the distribution of the data set becomes more diverse. Eventually, the

performance of PCA approaches that of a transform which takes into account only first

149

Chapter 7- Discussion and Conclusions.

order spatial statistics. These first order transforms, such as the Discrete Cosine

Transform, are considerably easier to calculate than PCA.

We have used global features for our current coding scheme where each neuron covers

the entire image. However, a neuron can be trained on much smaller localised patches

within each image. When trained with a broad range of image types such neurons begin to

attune to local feature primitives which are almost identical to the 'retinal fields' found to

exist within mammalian visual systems. These fields, located within the primary visual

cortex, are used to encode images for subsequent processing centres 'higher up' in the

cortex. This degree of biological plausibility, to a considerable extent, validates the

approach that has been adopted here and provides evidence of a long-term solution to the

problem since retrieval by content is clearly a function of human information processing.

Other researchers have proposed the use of such fields for image coding systems

[41][42][56][85] . The fact that such features remain constant for highly diverse databases

(the mammalian receptive fields are similarly fixed) raises an interesting issue. Once we

know what these features are, do we really require the learning mechanism provided by the

neural network?

Our work indicates that for a completely unconstrained database, a learning

mechanism is not strictly required once we know the form of the so-called receptive fields

(whether it be the contents of the RAM in the case of an LNN or the weight vector in a

sum-of-weights type node). In this case the image code could be found from the output of

a node with fixed weights. This is rather gratifying as the training of neural networks is

fraught with problems, not least being the time taken to train the system. This prospect

opens up several very exciting avenues worthy of further investigation.

7.9. A Coding Scheme Based on Fixed Local Transforms

For large, diverse databases the learning mechanism afforded by our (localised) neural

network is no longer required. Indeed, it would be more efficient to implement the NNT

on an appropriate off-the-shelf, hardware based image processor card. Similar transforms,

often referred to as 'wavelets', have been noted by other researchers [42][79][80][82][85].

We propose the application of these local transforms as the basis of our coding scheme.

These first order local transforms have several attractive features:

150

Chapter 7- Discussion and Conclusions.

• Simplicity of implementation.

• Guarantee that performance is close to optimal for a large database.

• Local features permit scale invariance through a hierarchical processing

structure and are better at isolating important component objects within a

scene that global ones. Processing 'up' through higher layers enables

extended features to be isolated. Thus, we can extract features at several

resolutions which provides much scope for compact scene descriptors for

the indices.

• Spatial filtering operations which convolve the image with a simple mask

operator are very common in image processing applications. As a

consequence, hardware capable of performing these mask operations

extremely rapidly is available at a modest cost. Since our receptive field

can be regarded as just such a mask then there is potential for a very rapid

coding algorithms here.

We propose the following strategy:

i. Train a neural network on a very diverse set of (grey level) images to isolate a

fairly extensive set of local receptive fields. Several banks of neural networks are

trained on different resolutions of the images to isolate receptive fields for a

number of processing hierarchies.

ii. The features learnt by the network are transferred to a mask which can be

programmed into a proprietary hardware-based convolution processor. This

processor will reside as a plug-in board within a PC, for example.

iii. Convolve each image with these masks, starting with the lowest resolution (i.e. the

smallest). Record the output from each mask in each position of the image. Those

masks with the largest output capture most information regarding localised image

artefacts and may be deemed to be the most appropriate descriptor for that

particular image entity.

iv. This convolution takes place at several scales, progressing up through the

processing hierarchies to 'look' for larger local features. As soon as the output of

151

Chapter 7- Discussion and Conclusions.

the node for any region within the image is less than the weighted-mean of the

mask output at the layer below then the movement up through the processing

hierarchies stops.

v. The highest output (scaled with size) is recorded as a significant feature within a

scene. An object or image entity may be defined in terms of the most significant

receptive fields and the processing plane in which the processing 'stopped'. This

plane number permits a degree of scale invariance.

We believe that a thorough investigation of correlation between the masks outputs will

be necessary. This degree of so-called lateral interaction between the local receptive fields

would permit more economic descriptions of the scene.

The hierarchical nature of the processing suggests that this type of system could be

supported by an array of parallel processors, such as transputers, for example. A

feasibility study needs to be undertaken here to ascertain the most appropriate 'off-the-

shelf processor card for our proposed PC based demonstrator.

7.10. Epilogue.

Neural networks are frequently regarded by the uninitiated as a kind of computational

panacea. It is all too easy to get the impression that one merely has to 'throw' data at an

off-the-shelf architecture, leave the neural network to 'get on with it' and come back a

short while later to find the problem solved. In reality though, this is simply not the case

and a neural network practitioner must typically ponder long and hard over a host of

frequently baffling network parameters before even beginning to tackle the problem at

hand. Such parameters might include network topology, nodal transformation function,

learning law and its associated parameters such as the learning rate etc. This is not an easy

task and the selection process has, in past, often been closer to alchemy than to science.

Neural networks do, however, offer a computational strategy for solving

mathematically intractable problems where no analytical solution is likely to be

forthcoming in the foreseeable future. Thus, they are an enabling paradigm for many

problems such as the image retrieval task outlined here.

152

Chapter 7- Discussion and Conclusions.

Neural networks have definitely fired the imagination of potential users but it is fair to

say that they have yet to live up to their promise. Public confidence in neural network

technology will match public curiosity when the current limitations of these devices are

addressed in order to provide robust, efficient and, above all, practical solutions to real

world problems. This will only come about with further research and ambitious,

demonstrator-based projects.

153

Bibliography

Bibliography

1. Rickman. R. 'British Library Research and Development/Brunel University Report on

the SPIEllS&T Conference on Storage and Retrieval from image and video databases.

San Jose, USA.Feb 1993'. Feb. 1993.

2. Jain R, Report on the National Science Foundation Workshop on Visual Information

Management Systems', Redwood City, California, U.S.A. Feb. 24th to 25th, 1992.

3. IEEE Computer Special Issue on 'Image Database Systems' Eds. Dec. 1989.

4. Chang. S. K, 'Image Information Systems: Where do We Go From Here ?'. IEEE

Trans. on Knowledge and Data Engineering. Vol. 4, No. 5, Oct 1992.

5. Salton. G, and McGill. M. J, 'Introduction to Modern Information Retrieval'.

McGraw-Hill. 1984.

6. Tamura. H, and Yokota. N, 'Image Database Systems: A Survey'. Pattern

Recognition. Vol.17 No.1, pp.29 - 43, 1984.

7. Chang. S. K, 'Pictorial Information Systems Design' McGraw-Hill. 1989.

8. Dyson. M. C. 'How do you describe a symbol ? The problems involved in retrieving

symbols from a database'. Information Services and Use. Vol. 12. pp. 65 - 76. 1992.

9. Chang. S. K, Yan. C.W, Dimitroff. D.C. and Arndt. T,'An Intelligent Image Database

System'. IEEE Trans on Software Enginerring. Vol SE14 No. 5 pp. 681 - 688. May

1988.

10. Niblack. W, Barber. R, Equitz. W, Glasman. E, Petkovic. D, Yanker. P, Faloutsos. C,

The QBIC Project: Querying Images by content using colour, texture and shape'

IBM Internal Research Report. IBM Research Division, Almaden Research Centre,

San Jose, CA. USA. Feb. 1993.

11. Niblack. W, Barber. R, Equitz. W, Glasman. E, Petkovic. D, Yanker. P, Faloutsos. C,

The QBIC Project: Querying Images by content using colour, texture and shape'.

Proc. Int. Conf. on Storage and Retrieval for Image and Video Data Bases. San Jose,

CA, USA. SPIEllS&T Feb. 1993. (In Print).

154

Bibliography

12. Arman. F, Hsu. A. Chiu. M. Y., 'Feature Management for Large Databases'. Proc.

Int. Conf. on Storage and Retrieval for Image and Video Data Bases. San Jose, CA,

USA. SPIEllS&T Feb. 1993. (In Print).

13. Swain M, ' Interactive Indexing to Image Databases'. Proc. Int. Conf. on Storage

and Retrieval for Image and Video Data Bases. San Jose, CA, USA. SPIEIIS&T Feb.

1993. (In Print).

14. Rickman. R and Stonham T. J. 'Similarity Retrieval form Image Databases - Neural

Networks can Deliver'. Proc. Int. Conf. on Storage and Retrieval for Image and

Video Data Bases. San Jose, CA, USA. SPIEllS&T Feb. 1993. (In Print).

15. Grosky. W. I. and Jiang. Z 'A hierarchical approach to feature indexing'. Proc. Int.

Conf. on Storage and Retrieval for Image and Video Data Bases. San Jose, CA, USA.

SPIEIIS&T Feb. 1992.

16. Gevers. T and Smeulders. A. W M, 'Enigma: An Image Retrieval System' Int. Conf.

on Pattern Recognition (ICPR) Vol. 2 pp697 - 700. The Hague, The Netherlands.

IAPR/IEEE. 1992.

17. Grosky. W. I. and Mehrortra. 'Index-Based Object Recognition in Pictorial Data

Management'. Computer Vision, Graphics and Image Processing. Vol. 52 No.3

pp.416-436. 1990.

18. Mehrotra. R and Grosky. W. I. 'Shape Matching Utilizing Indexed Hypotheses

Generation and Testing'. IEEE Journal of Robotics and Automation. Vol. 5. No.1 pp.

70 - 77. 1989.

19. Daneels D, Van Campenhout D, Niblack W, Equitz W and Barber R, 'Interactive

Outlining: An Improved Approach'. Proc. Int. Conf. on Storage and Retrieval for

Image and Video Data Bases. San Jose, CA, USA. SPIEIIS&T Feb. 1993. (In Print).

20. Samadini R, Han C, 'Computer Assisted Extraction of Boundaries from Images'.

Proc. Int. Conf. on Storage and Retrieval for Image and Video Data Bases. San Jose,

CA, USA. SPIEllS&T Feb. 1993. (In Print).

21. Tamura. H, Mori. S. and Yamawaki. T,Texture features corresponding to visual

perception'. IEEE Trans. on Systems, Man and Cybernetics Vol 8 No. 6. pp. 460 -

4773. 1978.

155

Bibliography

22. Wakimoto. K, Shima. M., Tanaka. S and Maeda. A. 'Content-Based Retrieval Applied

to Drawing Image Databases'. Proc. Int. Conf. on Storage and Retrieval for Image

and Video Data Bases. San Jose, CA, USA. SPIEllS&T Feb. 1993. (In Print).

23. Mumford. D. 'Mathematical Theories of Shape: Do they model perception ?'.

Geometric Methods in Computer Vision. Vol. 1570. pp. 2 - 10. SPIE. 1991.

24. Mumford. D. 'The problem with robust shape descriptions.' Proc. First Int. Conf. on

Computer Vision. pp. 602 - 606, London. U.K. IEEE. 1987.

25. Kato. T, Kurita. T , Otsu. N. and Hirata. K, 'A sketch retrieval method for a full

colour image database'. Proc. IAPR International Conference on Pattern Recognition

(ICPR). pp. 530 - 533. The Hague, The Netherlands. IAPR. Sept. 1992.

26. Kato. T,' Database architecture for content-based image retrieval'. Proc. Int. Conf.

on Storage and Retrieval for Image and Video Data Bases. San Jose, CA, USA.

SPIEllS&T Feb. 1992.

27. Rickman R. M. and Stonham. T. J. 'Coding facial images for database retrieval using

a Self Organising neural network.' IEE Colloquium on Machine Storage and

Recognition of Faces. London. Digest 1992/017. Jan. 1992.

28. Rickman R. M. and Stonham. T. J. 'Image retrieval from large databases using a

neural network coding scheme.' in Jones. K. P.(Ed.) Proc. conf. Informatics 11: The

Structuring of information. pp. 147 - 159. York. March 1991.

29. Beckman. N, Kriegel. H. P, Schneider. R and Seeger. B. The R*-Tree: an efficient

and robust access method for points and rectangles'. Proc. ACM SIGMOD, pp. 322 -

331, May 1990.

30. Gutman. A 'R-Trees: a dynamic structure for spatial searching'. Proc. ACM

SIGMOD, pp.47 - 57. June 1984.

31. Jagadish. H. V. 'Spatial Search with polyhedra'. Proc. Sixth IEEE Int. Conf. on Data

Engineering. Feb. 1990.

32. Samet. H. 'The design and Analysis of Spatial Data Structures'. Addison-Wesley,

1989.

33. Nievergelt. J, Hinterberger. H. and Sevick. K. C, The grid-file: an adaptable symetric

multikey file structure'. ACM TODS, Vol. 9 No. 1 pp.38 -71. March 1984.

156

Bibliography

34. Hunter. G. M and Steiglitz. 'Operations on images using quad-trees'. IEEE Trans. on

PAMI. PAMI Vol. 1. No.2. pp.145 - 153. April. 1979.

35. Maren. A. J, Harston. C. T. and Pap. R. M, (Eds.)' Handbook of neural computing
applications. 'San Diego, Academic Press. 1990.

36. Chock. M, Cardenas. A. F and Klinger. A. 'Database structure and manipulation

capabilities of a picture database management system (PICDMS).'IEEE Trans.

Pattern Analysis and Machine Intelligence Vol. PAMI-5, pp. 484 -492. 1984.

37. Klinger. A and Pizano. A. 'Visual Structures and databases'. in Visual Database

Systems pp. 3 - 25. Amsterdam. North Holland. 1989.

38. Rabitti. F and Stanchev. P,'GRIM _DBMS: a Graphical IMage Database Management

System.' in Visual Database Systems. Amsterdam, The Netherlands. pp. 415 - 430.

North-Holland. 1989.

39. Fierens. F, Van Cleyneenbreugle J. , Suetens. P and Oosterlinck. A 'A software

environment for image database research'. Journal of Visual Language Computing.

Vol. 3 pp 49 -68. 1992.

40. Kofkis. P, Karmirantzos. A, Kavaklis. Y and Ourphasnoudakis. S.'Image archiving by

content: An object oriented approach'. Proc. SPIE Medical Imaging IV: PACS
System Design and Evaluation. Vol. 1234, 1990.

41. Sanger. T. D. 'Optimal Unsupervised Learning in a Single Layer Feedforward Neural

Network'. Neural Networks. Vol. 2 pp. 459 - 473. 1989

42. Koendric. J. J and Doomn van, A. J.'Receptive field families'. Biological Cybernetics

Vol. 63. pp.291 - 298.1990.

43. Enser. P. G. B. 'Query Analysis in a Visual Information Retrieval Context'. Research

Report. Department of Library & Information Studies. University of Brighton. U.K.

1992.

44. Dowe. J. 'Storage and Retrieval in Multi-Media Environments'. Proc. Int. Conf. on

Storage and Retrieval for Image and Video Data Bases. San Jose, CA, USA.

SPIEIIS&T Feb. 1993.

157

Bibliography

45. McCulloch, W. S. and Pitts 'A Logical Calculus of Ideas Immanent in Nervous

Activity'. Bulletin of Mathematical Biophysics Vol. 5, pp.115-133.1943. Re-printed

in Anderson and Rosenfeld [86].

46. Rosenblatt, F. 'Principles of Neurodynamics'. New York: Spartan. 1962.

47. Minsky, M. L. and Papert, S.A. ' Perceptrons'. Cambridge: MIT Press. 1967.

Partially re-printed in Anderson and Rosenfeld [86].

48. Rumelhart, D. E. and McClelland, J. L. and the PDP Research Group. 'Explorations

in Parallel Distributed Processing'. Vol.l. Cambridge: MIT Press. 1986.

49. Cottrell, G. W., Munro, P. and Zipser, D. 'Learning Internal Representations from

Gray-Scale Images: An example of Extensional Programming'. Ninth Annual

Conference of the Cognitive Science Soc. Seattle. pp. 462-473. Hillsdale: Erlbaum.

1987.

50. Baldi, P. and Hornick, K. 'Neural networks and Principal Component Analysis:

Learning from Examples without Local Minima'. Neural Networks Vol. 2. pp.53-58.

1989.

51. Kirby, M. and Sirovitch, L. 'Applications of the Karhunen-Loeve Procedure for the

characterisation of Human Faces'. IEEE Trans. on Pattern Recognition and Machine

Intelligence. Vol. 12 No.1 pp 72 - 73. Jan 1990.

52. Turk, M. and Pentland, A.'Face Processing: Models for Recognition'. in Proc. 8th

SPIE on Intelligent Robots and Computer Vision.1989.

53. Oja, E. 'Subspace Methods for Pattern Recognition'. Letchworth: Research Studies.

1983.

54. Oja, E. 'A Simplified Neuron as a Principal Component Analyser'. Journal of

Mathematical Biology Vol.15. pp.267-273. 1982.

55. Oja, E. 'Neural Networks, Principal Components and Subspaces'. International

Journal of Neural Systems. Vol. 1 pp.61-68. 1989.

56. Linsker, R. 'Self-Organisation in a Perceptual Network'. Computer. March 1988, pp.

105-117.

57. Hebb. D. 0. The Organisation of Behavior'. New-York:Wiley. (1949). Re-printed

in [86].

158

Bibliography

58. Bourland, H. and Kamp, Y. 'Auto-Association by Multi-Layer Perceptrons and

Singular Valued Decomposition'. Biological Cybernetics Vol. 59. pp 291-294. 1988.

59. Clark, R. J. Transform Coding of Images' Academic Press. 1985.

60. LeCun. Y, Boser. B., Denker. J. S. et al 'Backpropagation Applied to Hand-written

Zip Code Recognition'. Neural Computation: Vol 1. pp. 541 - 551. 1991

61. Bledsoe. W., Browning., 'Pattern Recognition and Reading by Machine'. Proc.

Eastern Joint Conference. pp. 225 - 232. 1959.

62. Aleksander. I., Stonham. T. J. 'A Guide to Pattern Recognition using Random Access

Memories'. Computer and Digital Techniques. Vol. 2 pp 29 - 40. 1979.

63. Gurney. K. N. 'Training Nets of Hardware Realisable Sigma-Pi Units'. Neural

Networks. Vol. 5. pp. 289 - 303. 1992.

64. Aleksander. I. Weightless Neural Tools : Towards Cognitive Macro structures'.

CAIP Neural Networks Workshop. Rutgers University, New Jersey, USA . Oct.

1989.

65. Ullman. J. R. 'Experiments with the N-Tuple Method of Pattern Recognition'. IEEE

Trans. on Computers. Dec. 1969.

66. Kanerva. P. 'Sparse Distributed Memory'. M.I.T. Press. 1988.

67. Tattersall. G. P., Sixsmith. M. J. 'Speech Recognition using n-tuple Techniques' .

British Telecomms. Technical Journal. Vo.2 No. 8 pp. 50 - 60. 1990.

68. Watanabe. S. ' Knowing and Guessing - A Formal and Qualitative Study'. j. Wiley

and Sons.' 1969.

69. Kerin. M. A., Stonham. T. J. 'A Self-Organising strategy for Digital Neural

Networks'. Journal of Intelligent Systems. Vol. 2 Nos. 1-4., pp. 291-311, 1992.

70. Allinson. N. M., Brown. M. T. and Johnson. M. J. ' [0,1]n Space Feature Maps -

Extensions and Hardware Implementation.' Proc. 1st TEE Conference on Artificial

Neural Networks, London. pp. 261 - 264. Oct. 1989.

71. Tambouratzis. G., Stonham. T. J. 'Implementing Hard Self-Organising tasks using

Logical Neural Networks'. Proc. International Conference on Artificial Neural

Networks (ICANN - 92), Brighton, U.K. Vol 1. pp.643-647. Sept. 1992.

159

Bibliography

72. Ntourntoufis. P. 'Self-Organising Properties of a discriminator based Neural

Network'. Proc. IJCNN, San-Diego, USA. Vol. 2. pp.319-324. June 1990.
,

73. Kerin. M. A., Stonham. T. J. 'Self-Organisation and Autonomous Learning in

Logical Neural Networks'. Ph.D. Thesis. Dept. Electronic Engineering, Brunel

University, Uxbridge. June 1991.

74. Carpenter. G. A. and Grossberg. S 'A Massively Parrallel Architecture for a Self-

Organising Neural Pattern Recognition Machine'. Computer vision, Graphics and

Image Processing. Vol. 37. pp. 54-115. 1987.

75. Kohonen. T. 'Self-Organisation and Associative Memory'. Springer Verlag,

Hiedelberg. 1984.

76. Kohonen. T. ' Self-Organised formation of Topologically Correct Feature Maps'.

Biological Cybernetics. Vol. 43 pp.59-69. 11984

77. Allinson. N. M., Johnson. M. J. and Moon. K. J.' Digital Realisation of Self-

Organising Maps.' Neural Information Processing Systems Vol 1. pp. 728 - 738. Eds.

Touretzky. D. S. , Morgan Kauffman Publishers, 1989.

78. Rickman. R. and Stonham. T. J. 'A Self-Organising Logical Neural Network for

Binary Data.' Proc. International Joint Conference on Neural Networks (IJCNN),

Beijing, China, Vol. 2 pp. 745-752. Nov. 1992.

79. Rickman. R. and Stonham. T. J. 'A Novel Learning Law for a Self-Organising Logical

Neural Network'. Wieghtless Neural Network Workshop. York. U.K. April 1993.

80. Daugman J. 'Complete Discrete 2-D Gabor Transforms by Neural Networks for Image

Analysis and Compression'. IEEE Trans. on Acoustics, Speech and Signal

processing,. Vol. 36. No. 7. July 1988.

81. Unser. M and Eden. M 'Multiresolution Feature Extraction and Selection for Texture

Segmenation'. IEEE Trans. on Pattern Recognition and Machine Intelligence. Vol.11

No. 7. pp. 717-728. Jul. 1989.

82. Hancock. P. J. B, Baddeley. R. J and Smith. L. S The principal components of

natural images'. Network Computations in Neural Systems. Vol. 3 No. 1. pp.61 - 70.

1992.

160

Bibliography

83. Kitamoto. A., Zhou. C., Takagi. M., 'Similarity Retrieval of NOAA Satellite Imagery

by Graph Matching'.Proc. Int. Conf. on Storage and Retrieval for Image and Video

Data Bases. San Jose, CA, USA. SPIEIIS&T Feb. 1993. (In print).

84. Petrie. J. H 'An overview of image processing and image management systems and

their application'. British Library Research Paper No. 40. Series 621.38' 0414.

1988.

85. Watson. A. B. The Cortex Transform: Rapid Computation of Simulated Neural

Images.' Computer Vision, Graphics and Image Processing. Vol. 39. pp 311 -327.

Academic Press Inc. 1987.

86. Anderson, J. A. and Rosenfeld, E., eds. 'Neurocomputing: Foundations of Research'.

Cambridge: MIT Press. 1988.

161

Appendix A - Video Database.

APPENDIX A

Database for the 'Intelligent' Video editor.

000

010

020

030

040

050

060

070

080

090

0	 1	 2	 3	 4	 5	 6	 7	 8	 9

Fig. A.1 Images 0 - 99 in Video Database

162

100

110

120

130

140

150

160

170

180

190

:51:7#;PAM

Appendix A - Video Database.

0	 1
	

2	 3	 4	 5	 6	 7	 8	 9

Fig. A.2 Images 100 - 199 in Video Database

163

200

210

220

.441:k4a0r6

ak.
wee,

"Pt

<*•$.,!4:41i

230

240

250

260

270

280

290

Appendix A - Video Database.

0	 1	 2	 3	 4	 5	 6	 7	 8	 9

Fig. A.3 Images 200 - 299 in Video Database

164

300

310

320

330

340

350

360

370

380

390

Appendix A - Video Database.

0	 1
	

2	 3	 4	 5	 6	 7	 8	 9

Fig. A.3 Images 300 - 399 in Video Database

165

Appendix B - A Selection of the authors papers.

APPENDIX B

A selection from the autors papers:

'A Novel Learning Strategy for Self-Organising Weightless Neural Networks'. Proc.

Wieghtless Neural Network Workshop. York. U.K. April 1993 	 167

'Similarity Retrieval form Image Databases - Neural Networks can Deliver'. - Proc. Int.

Conf. on Storage and Retrieval for Image and Video Data Bases. San Jose, CA, USA.

SPIEIIS&T Feb. 1993. (In Print) 	 172

'A Self-Organising Logical Neural Network for Binary Data.' - Proc. International Joint

Conference on Neural Networks (IJCNN), Beijing, China, Vol. 2 pp. 745-752. Nov.

1992 	 182

'Coding facial images for database retrieval using a Self Organising neural network.' -

Proc. IEE Colloquium on Machine Storage and Recognition of Faces. London. Digest

1992/017. Jan. 1992 	 189

'Coding images for database retrieval using neural networks.' - Proc. 3rd NERVES Int.

Workshop on Neural Networks. Grenoble. France. March. 1991 	 193

166

Appendix B - A Selection of the authors papers.

A Novel Learning Strategy for Self-Organising Weightless Neural Networks

Rick Rickman and John Stonham
Neural Networks and Pattern Recognition Group

Department of Electrical and Electronic Engineering
Brunel University, Uxbridee, Middlesex UB8 3PH. UK.

e-mail: Richard.Riclunan@brunel.ac.uk

Abstract
We present a novel Self Organising learning algorithm for weightless neural nerwork
architectures. The learning algorithm does not require a learning rare to be set and
converges to the optimal solution very rapidly. In its simplest form. that is a 1-tuple
implementation, the system is proved to converge to the Principal Components of the data set
with probabiliry I. As the tuple si:e is increased the node performs progressively non-linear
transformations of its input. We discuss the practical implications of such non-linearities and
show how the learning law can be used as the basis of a coding mechanism for an image
database retrieval system.

1	 Introduction
Central to the thrust of any pattern recognition task is the notion of dimensionality reduction. The efficacy of
a dimensionality reducing scheme rests with its ability to extract the salient features from an ensemble of
data_ The motivation behind the factors affecting the selection of such features has much in common with a
classical statistical technique called Principal Component Analysis (PCA). Saneer[9],0ja[5][6] and
Linsker[3] have shown that an approximation of PCA can be implemented very efficiently using a single-
layer sum-of-weights type Self Organising linear neural network.

The update strateey for these architectures is based on an unsupervised Hebbian-type learning law which
adapts the weights to correlate the input and output activity of the node. How can we implement such a
learning law on a Weightless neural network architecture?

2	 Hebbian Learning for Weightless Neural Networks
A simple 1-tuple system to support the Hebbian learning is shown in figure 1. It consists of an array of real
valued memory elements which are addressed by the binary pattern on the input retina. Location 0 to each
memory is addressed by a 'white' pixel and location 1 by a 'black'. The sites can take on positive or negative
real values and are initially seeded by writing a '1' to those sites addressed by a pattern chosen arbitrarily
from the training set.

The thrust behind Hebbian learning is to update the site commensurately with the strength of the node
response. This can be achieved by adding the node response to the sites addressed by the training pattern.
However, such a learnin g law will tend to accentuate the effect of those areas within the training data which
have a large DC component and contain no discriminant information. This can be circumvented by forcing
the mean of the node response to zero so that the total update for all of the sites addressed by a tuple is zero.
Thus, a site which is addressed by every pattern will contain zero after one pass of the data set and will not
contribute to the output of the node. This update strategy filters out unwanted DC components.

167

Node Memory

= node response
to Pattern i

14-

=	 s, + E (i-x

SW Addressed when xx, 0

Input Retina Holds
	 SL, Addressed when r,, =

Binary Input Pattern j

(1

(2

Appendix B - A Selection of the authors papers.

Figure 1. Basic architecture for the Self Organising WeiOuless neural network.

After one pass throu gh the data set the new site values become:

P

= Y lYj 5$.4
1=1

P

= Y ElY; -Y)(1-xw)

Where

is the mean response of the discriminator to the entire data set.
is the number of patterns in the trainin g set.
limits the dynamic ranee of the sites. Empirical tests have shown that setting y as:

1=1±11/A2 j=1 "

%-ill limit the dynamic ranee of the site values so that —15. (50 .51) � 1.

The complete training cycle may be summarised as:

i.	 Clear the discriminator by setting each memory location to 0.
Seed the node by writing a 1 to sites addressed by an image chosen arbitrarily form the database.
Present each pattern to the discriminator and record the response.

iv. Clear down the discriminator as in stage i.
v. Re-present each pattern to the node and add the normalised. mean-corrected response to the site

addressed by that pattern.
vi. Repeat stages ii. to vi. until convergence.

This learning rule has been proven to converge to the ei genvectors of the auto correlation matrix of the data
set (i.e. its Principal Components) with probability 1 [8].

This update rule has some rather interesting features:

•	 Unlike classical PCA this technique not require direct computation of the auto correlation matrix
nor its eigenvectors which is impractical for high dimensional data sets.

168

More 'A' than
	

lore 'B' than 'A'.

-571-4-2EBBBB.B1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Image Index
•

0 1 2 3 4 5 6 7 8 9 1011'12 14 15 16 17 18 19 20 21 22 23 24

No. Passes to '-\N
	 Image Index

-O.	 convergence.

-O.
—

1 Tuple 5
— — 2-Tuple 6
	 	 4-Tuple 9

78-Tuple

Appendix B - A Selection of the authors papers.

• Unlike existing sum-of weights type neural network implementations of ?CA. no approximations
are made in the derivation of the leanin g rule [4]. The learning rule needs no explicit learning
rate and convergence is faster and more accurately.

• The learning rule does not implement the system updates until all of the data has been presented
and will not converge to localised solutions dependent upon a panicular ordering of the riltnset.

• In many Self Organising Wei ghtless neural network systems several sites within every n-tuple
must be scanned on each training presentation to normalise the response of the node [1][2][4].
This can be time consuming. Normalisation in this learnin g law is implicit in the update
mechanism and only one site need be accessed within each n-ruple on each trainin g presentation.

After one pass through the data set So+S /= 0 for a 1-ruple system. Thus. the memory requirements of this
system could be halved simply by considering updates on the S 1 sites only. However, the notion that the
white and black elements address distinct memory locations allows the learnin g law to be applied to systems
with larger tuple sizes. Althou gh the non-linearities induced by these higher order systems render the proof
of convergence somewhat incomplete for tuple sizes greater than 1. the system dynamics are. ostensibly, still
the same.

3	 Does the code preserve the relationships between the images in the Pattern space?
Consider a training set of 16x24 bit binary characters. shown in figure 2 in which an 'A' font is gradually,
and evenly, merged to a 'B' over 25 images. Ima ge index '12' lies as half way between an 'A' and a 'B. A
node trained to extract most information from the data will give a maximum equal and opposite response for
image indexes 0 and 25 and zero response to index 12. Since the images are merged linearly the code
produced by the node output should also change linearly from image index '0' through to '25.

The node was trained using the learning al gorithm until convergence (deemed to occur when the respective
node responses to each pattern differ by less than 0.1% of their former value). The results are shown below
in figure 2.

Data set consists of 'A' font merged to 'B' over 25 images.

1

0.8
0.6

Normalised 0.4
Node	 0

00/P
-0
-0.

Figure 2.	 Variation of node response with ruple si:e for a single node Weightless Neuron.

169

— 1 Tuple
—— — 2-Tuple
	 4-Tuple
—- — • 6-Tuple
— — 8-Tuple

a
1 40

•..
3

1 10

70

60

20

10
4	 5 6

No. of Nodes

Appendix B - A Selection of the authors papers.

A 1-tuple node behaves well as dimensionality reducer and its near linear response to successive images
shows that it preserves the relative distances between the patterns in the original domain. As the tuple size
increases, the node begins to behave more like a classifier.

4	 Extending the learning law to multi-node systems.
Successive nodes in a multi-node Self Organising neural network should learn orthogonal features. In a

nix learnin g scheme nodes compete for learning stimuli and orthogonality is achieved by
virtue of the fact that a sing le node will learn a feature type specific to that node and no other. The automatic
normalisation implicit in the learning law prevents the range of feature types learnt by that node from
becomin g excessively broad (where the same node responds maximally to each and every input image).
Apart from this restriction, the learning law is identical to that presented above, bearing in mind that.
initially, each node must be seeded differently to induce competitive learning between the nodes.

5	 A Practical Implementation of the Learning Law.
The learning algorithm developed here can be used as the basis of a neural network coding scheme for an
image database retrieval by content system [7]. Each image is coded by presenting it to an array of nodes
which have been trained to extract the salient features which characterise the spread of images within the
database. The response of each node forms an element of the code. The images are transformed into a very
succinct code which facilitates rapid fuzzy matching of ima ges within the data base.

The following test provides an objective measure of the performance of the retrieval by content mechanism.
The data set, shown in figure 3. consists of 10 classes of machine printed 16 by 24 bit binary characters 'A'
to X' (not includin g 'I') with 10 characters per class.

The complete data set is presented to the network during training until convergence, deemed to occur when
the respective outputs for all given patterns changes by less than 0.1% over subsequent presentations of the
data set. The code is taken to be the output of the node after convergence.

Figure 3. Data Set for Retrieval Experiment
	

Figure 4. Variation of code petformance with
number of nodes for database shown in figure 3.

Images are matched a gainst a target image, selected from the database, by retrieving those images whose
codes are closest in the Euclidean sense to the target code. The number of images extracted from the

170

Appendix B - A Selection of the authors papers.

-

database for each target corresponds to the number of examples in each class, in this case 10. The object of
the retrieval mechanism is to retrieve all images from the same class as the target image and no other class.
An error is defined as a class mismatch between the target and any one of the 10 retrieved images. The test
is repeated for each and every image within the database as the target. The total number of errors is defined
as the number of mismatches for the complete data set. Thus, the maximum total error for this data set is
100 x 10= 1000.

The results are shown in figure 4. These show that a neural network trained using the learning algorithm
presented here can be used to transfer the images into a low dimensional bound - the node behaves rather like
an information filter. The information within a set of data from any bounded domain may be represented by
a finite number of nodes - the more correlated the data, the fewer the number of nodes required. SuccPssive
nodes provide progressively less information, until the addition of additional nodes hardly furnishes us with
any extra information at all. Fi gure 4 indicates that extending the system beyond 6 nodes reaps meagre
rewards for the dataset in fi gure 3.

6	 Discussion
Dimensionality reducing and classifier systems have contrasting requirements. In our coding scheme a 1-
tuple best preserves the relative distances between the patterns in the original domain. This enables high
dimensional images to be compared using low dimensional codes. As the node the tuple size is increased the
node begins to behave more like a classifier and tends to cluster the training data. In such a system the
distance preserving nature of the transform is degraded as the nip le size grows.

The size of the feature space in n-tuple systems increases exponentially with tuple size. This expanded
feature space enables successive nodes to learn more ortho gonal features. Thus, for multi-node systems, a
large tuple size helps to ensure that successive nodes do not learn information conveyed by other nodes. This
becomes more important as the number of nodes is increased. There comes a point where the advantages
afforded by the expanded feature space for large tuples is offset by the distance preserving qualities of small
tuples. The results shown in figure 4 bear this out.

A variant of this learning law may also be supported by conventional sum-of-weights type nodes [7].

7	 References
1. Allinson. N. M.. Johnson. M. J. and Moon. K. J.' Digital Realisation of Self-Organising Maps.'

Neural Information Processing Systems Vol 1. pp. 728-738. Eds. Tourealcy. D. S.,Morgan Kauffman
Publishers, 1989.

2. Kerrin. M. A., Stonham. T. J. 'A Self-Organising strategy for Digital Neural Networks'. Journal of
Intelligent Systems. Vol. 2 Nos. 1-4., pp. 291-311. /992.

3. Linsker. R. 'Self-Organisation in a Perceptual Network'. Computer. March 1988, pp. 105-117.
' 4. Ntourntoufis. P. 'Self-Organising Properties of a discriminator based Neural Network'. Proc. IJCNN,

San-Diego. USA. Vol. 2. pp.319-324. June 1990.
5. Oja. E. 'A Simplified Neuron as a Principal Component Analyser'. Journal of Mathematical Biology

Vol.15. pp.267-273. 1982.
6. Oja, E. 'Neural Networks, Principal Components and Subspaces'. International Journal of Neural

Systems. Vol. 1 pp.61-68. 1989.
7. Rickman. R. and Stonham. T. 3.' Similarity Retrieval from Image Databases - Neural Networks can

Deliver.' IS&T/SPEE International Symposium on Electronic Imaging: Science and Technology (Sub
group: Storage and Retrieval for Image and Video Databases.). San Jose. USA. Jan 1993. (in print).

8. Rickman. R. and Stonham. T. J. 'A Self-Organising Logical Neural Nenvork for Binary Data.' Proc. Int.
Joint Conf. on Neural Networks (LICNN), Beijing. China, Vol. 2 pp. 745-752. Nov. 1992.

9. Sanger. T. ' Optimal Unsupervised Learning in a Single Layer Linear Feedforward Network'. Neural
Networks. Vol. 2 pp.459-473. I989a.

171

Appendix B - A Selection of the authors papers.

Similarity retrieval from image databases - Neural Networks can deliver.

Rick Rickman and John Stonham

Neural Networks and Pattern Recognition Group
Department of Electrical and Electronic Engineering

Brunel University, Uxbridge, Middx UB8 3PH, U.K.

ABSTRACT

We address some of the problems of accessing database Images which do not contain any indexing information and
investi gate methods of automating search strategies which currently rely on human operators to match the tar get against a
number of ima ges in the database. Such problems might include the extraction of facial photographs from a library given a
suspect or the registration of new Trade Marks whose uniqueness must be assured. The object of the retrieval mechanism is to
narrow down the search space for final perusal by the human operator.

We present a Neural Network based coding scheme to retrieve images from a database according to the degree ci
similarity with a target image. The code represents each ima ge with respect to a set of feature archetypes learnt by the Neural
Network during a training phase. We Introduce a novel Neural Network learning law which performs an extremely efficient
implementation of Principal Component Analysis and maximises the amount of information conveyed by the code. We present
results usin g a database of machine pnnted fonts and discuss how the image size, the database diversity and code length affect
the efficacy of the retrieval mechanism.

1.0 INTRODUCTION

Image retrieval and matchin g mechanisms are seen as an important aspect of database systems design and considerable
attention has been focused on strategies which enable images to be extracted from a large data base according to a measure of
similarity %%kb a target 1 -2 . We address some of the problems of accessing database images which do not contain any indexin;
information and investigate methods of automating search strategies which currently rely on human operators to match the
target against a number of ima ges in the database.

Any system which attempts to retrieve an ima ge from a database %%here no indexing information is available mu.'
decompose each image into its characteristic set of features. Extracting features which characterise an image has proved to te
an extremely difficult process to automate using conventional mace processing techniques as those deemed to be important to a
human operator are often not amenable to deterministic analysts. For this reason most schemes which attempt this lcind ci
matching rely on human operators to analyse the image and select the feature codes manually from a library of predefined
image entities. In this case the description of the ima ge is dependent upon the extent of the code book. This is something of a
drawback which can only be circumvented by limiting the diversity of images within the database or by continually updatinz
the code-book. Despite efforts to standardise the description of ima ges. such systems are often prone to subjective
interpretation. In any event, manual codin g of database images is invariably a time consuming and costly exercise.

Neural Networks avoid the need for prescriptive descriptions of image artefacts by learning the salient features during a
learnin g phase analogous EC the type of learning found in biological processing systems. We propose a scheme which employs
an array of Neural Nem orks to transform an image into a very succinct code %%hitch facilitates rapid fuzzy machine of images
within the data base.

PRINCIPAL COVPONENT ANALYSIS FOR IMAGE CODING. „

Central to the thrust of any pattern recogniuon task is the notion of dimensionality reduction. The pattern domain
typically contains large amounts of data ‘Ahich presents a formidable processing task if the features within the image are
regarded as isolated entities. In meaningful real-world ima ges hoss ever. there exist si gnificant correlations between features of

172

Appendix B - A Selection of the authors papers.

both a spatial nature and with respect to the contents of the database which allows the image to be represented in a much lower.
and so more manageable. domain. Any image coding scheme should attempt to extract these correlations in order to capnne
the underlying trends within the data - the higher the degree of correlation the more succinct the code. The efficacy of a system
which attempts ID encode the images within the data base rests with its ability to extract these features.

The motivation behind the factors affecting the selection of such features has much in common with a classical image
processing technique called Principal Component Analysis (PCA) 3 . The object of PCA is to extract the most important
features, or Principal Components, from an ensemble of data so that a replica of any of the data items can he reconstructed
from a linear recombination of these features in the appropriate proportions. Dimensionality reduction is achieved by virtue cl
the fact that most of the information within an image is contained within the first few Principal Components and relatively few
are required for a faithful reconstruction of the image. PCA can be used as a coding mechanism by storing the proportion of
the most significant principal components of that image as an element within the code - the greater the number of componens
used the more complete the representation of that ima ge. The number of Principal Components required is dependent upon the
diversity of the data set - a hi ghly correlated data set requires very few Principal Components.

A similar technique. employin g Karhunen-Loeve Transformations, has been used to encode human faces with limited
4

SUCCeSS .

PCA requires that we calculate the Ei genvectors of the autocorrelation matrices of the data set. These calculations are
extremely computationally expensive which renders such a method impractical for all but small sets of trivial images.
However. Sanger 5 ,0ja 6.7 and Linskers have shown that an approximation of PCA can be implemented very efficiently using a
Neural Network topology if the size of the input domain is lar ge and the number of Principal Components small. Such
Networks can learn discnminant features automatically and provide a mechanism for self evolving coding topologies.

0 PRINCIPAL COMPONENT ANALYSIS WITH NEL'RAL NETWORKS

We propose a coding scheme which employs an array of Neural Networks TA learn the Principal Components of the set

of images within the database. This is shown below in fie.l. If the it has been trained successfully then presentation of an
image containing a feature learnt by a Network will evoke a response from that node. The magnitude of that response indicates
the extent of the feature present within the ima ge. To a large extent the Principal Components will preserve the relative
distance relationships between the ima ges so that ima ges whose codes are closest in the Euclidean sense are correspondingly
close in the original pattern domain. This provides the basis of our matchin g metric.

Fig .]. A Simple Neural Network Based Ima ge Codin g Scheme

The basic functionality or each node within this array of Neural Networks, shown in fig.2, is remarkably simple: the
output of the node is just the wei ghted sum of its inputs. The weight determines the importance that an input has in defining
the solution to a particular problem with respect to the complete data set.. The wei ghts are adapted iteratively in a training
phase dunng which the enure data set is presented to the node. A learnin g law, found to exist in 'real-life' neurons, adapts the
weights to correlate the input and output activity of the node. After conver gence, which typically requires several passes
through the data set, the node de‘elops a transformation directly equivalent to. thou gh only an approximation of, PC.A 6. The
accuracy of this approximation is determined by the rate at which learnin g is undertaken within the system. If the learning

173

Appendix B - A Selection of the authors papers.

rate is small, the approximation is accurate, the weights will converge to the Principal Components of the data set but will take
a long time to get there. If the rate is high, convergence will be quicker but the approximation is less accurate and the
resultant transformation may not be optimal 9 . The approximations inherent in the derivation of the learning law means that
the learning rate can have a profound effect upon the performance of the code. The surest way to guarantee good performance
is to set it very low. Unfortunately, this means that training times are very long. This is not a problem where the database
remains fixed, so that the coding transformation remains constant, but is not practical where the transformation is optimised to
adapt to the changing nature of the database.

Input Image	 Node Weights	 Node Output
x I tv

Fig.2. Functionality of a basic linear Neural Network.

Cottrell") presents a Neural Network architecture that will perform a codin g transformation analogous to PCA but
excessi ,.e training times render this method as impractical as a classical implementation of PCA. The learning law developed
by Sanger5 will learn faster than Cottrell's and has been used successfully as the basis of a coding scheme for an image
database retrieval system". Nevertheless, selecting an optimum learning rate for a particular application is typically a hit and
miss affair requinng extensive trial and error testing before settlin g on a preferred value (indeed, this seems to be symptomatic
of most Neural Network architectures). This state of affairs is unacceptable for a practical database system where the Neural
Network must be trained In situ by an operator with only a modest level of expertise. In an attempt to alleviate this problem
we have developed a completely novel Neural Network learnin g law which does not require any parameters to be set by the
user yet converges extremely rapidly9.

-1 .0 A NOVEL NEURAL NETWORK LEARNING LAW WITH NO PARAMETERS

Learninv rule for a sincle node system

The basic structure and output function for the proposed Neural Network used in our coding scheme is identical to that
shown in fig.2. The database is assumed to contain grey level images whose pixel luminosities have been normalised
between . -1. for black. and *--1 . for w hite. The complete training cycle for a sin gle node system is outlined below:

i. Seed the wei ghts of the node with an image selected randomly from within the database. Each wei ght monitors
one pixel within the input image so that the number of wei ghts corresponds to the number of pixels in the image.
Note that the dimensions of all images MUSE be normalised before presenting them to the network.

Pass the entire contents of the database to the node and record the response of the node to each image.
iii. Reset all of the wei ghts in the site to O.
iv. Re-present each ima ge and update the weights in the node according to the following learning law:

= '•I:

	

v —n

	
(I

1	 1:	 I

Where:

is the %alue of the site before the update.

174

Date set consists of 'A' font merged to 	 over 25 images.

1

0.8

0.6

0.4

Normalised	 0.2

Node	 0

0/P -0.2

-0.4

-0.6

-0.8

-1

O 1 2 3 45 67 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Image Index

O 1 2 3 4 5 6 7 8 9 10 11 12	 14 15 16 17 18 19 20 21 22 23 24

Image Index

Appendix B - A Selection of the authors papers.

A.1.1
	

is the value of the site after the update.

is the value of the ith pixel in the jth image.

Y,
	 is the response of the jth image obtained from sta ge ii.

is the mean value of the node responses from stage ii. That is: .7 = Yp 1Y,

IC	 is a regulating term obtained from the node responses from stage ii. ic =	 ly j I
/.1

is the number of images within the database.

v. Repeat stages ii to iv until the system converges.

This algonthm has been proved to converge to the Principal Components of the data set with probability 19.
Throughout training the dynamic ran ge of the weights is automatically limited by 1C so that -15weights � I. A large weight
indicates that a particular pixel within an image contributes a large amount of information to the code across the entire data
set. Similarly, a pixel value close to zero indicates that the pixel contributes no information at all. It is instructive to see how
a single node coding scheme trained using the learning law outlined above can produce a scalar valued code which preserves
the relative distance relationships in the original pattern domain. Such a code will permit very rapid fuzzy matching of images
from within the database.

4.2 Does the code preserve the relationships hetueen the imaees ?

Consider the set of 16x24 bit binary characters, shown in fig.3 in which an 'A' font is gradually, and evenly, merged f.0

a 'B' over 25 images. Image index '12' may be regarded as half way between an 'X and a 'B. It is intuitively obvious that the
data set could best be represented by a scalar from the node output if the pure 'A' and 'B elicited maximal equal and opposite
responses with image index '12' yielding a zero response. Since the images are mer ged linearly the code produced by the node
output should also change linearly from ima ge index '0' through to '25.

The node was trained using the learning al gorithm outlined in 4.1 and converged after 4 passes, where convergence is
deemed to occur when the respective node responses to each pattern differ by less than 0.1% of their former value. The
results are ;how n below in fi g . 3.

Node converges utter 4 passes of the data set.

Fig.3. Test to show how the code presen es the relative distances between the Mines in the ori ginal pattern space.

175

(4)

(5)

Appendix B - A Selection of the authors papers.

The node behaves well as dimensionality reducer and its near linear response to successive images means that the
code produced by the output could be used to match one image against another according to a measure of similarity. The
resulting transformation is not completely linear however and exhibits slightly sinusoidal characteristics which does not quite
preserve the exact distance relationships between the patterns in the original domain. This effect is most pronounced where
the magnitude of the node output is large but the coding transformation is still adequate for our matching algorithm.

4.3 Learning rule for a multinle node svstern

It is obviously rather hopeful to expect the vast amount of information contained within an image database to be
represented adequately by a scalar valued code. Thus, we must expand our scheme to a vector code, achieved by increasing
the number of nodes within the system so that the output from each node forms an element of that vector, similar to the
scheme outlined in fig.l.

Our learning paradigm produces a transformation which is directly equivalent to Principal Component Analysis and
successive nodes should learn successive Principal Components of the data set_ The first Principal Component, equivalent to
the weight vector in a single node system, produces a linear transformation which maximises the variance of the node activity
across the data set. The second Principal Component is constrained to be ortho gonal to the first and the transformation again
maximises the variance of the output of the second node subject to this constraint. The third Principal Components produces a
similar transformation orthogonal to both the first and the second and so on. Generally speaking, successive Principal
Components produce ever decreasin g node variances and capture pro gressively less important artefacts within the data.

We can induce successive nodes to learn pro gressively ortho gonal features by detuning the impetus for learning in
subsequent nodes where the response of former nodes is lar ge. This can be implemented by regulating the input to successive
nodes as:

Xuk-1 = Xyk wa,(

Where:

X _.	 is the value of the i th pixel from the jut ima ge to the k—/ th node in the system.

is the value of the ith pixel from the j th image to the kth node.

is the value of the i th wei ght on the k th node.

Y4	 IS the response of the kth node to the / Eh image.

is the mean response of the kth node. That is: Ya = Yp Yik

= IV,

is the number of pixels in each ima ge. The images must be normalised so that N is constant across
the whole dataset.

The architecture to support this learnin g rule Is shown in tig.4

176

IV •

BBB' 13
C= MCC
DDOllaDo_
ZUEZ_EZE__7E
_AFF FF

G:OGGG'i GG
4F:ti

jtT.T.IT

• •
• Ile •

Appendix B - A Selection of the authors papers.

Fig.4. Functional Architecture to support learning in a multi-node system

It is important to note here that the weight vector used in equation (4) is not the value of the weight vector during the
iteration but the value after the previous complete training cycle outlined in steps ii. to iv of section 4.1. This means that one
node must complete a pass through the training set in order to calculate the effect of orthogonalisation on the inputs to
subsequent nodes. This may be implemented in one of two ways: a) by buffering the weight vectors from the previous update
and using this value to calculate the orthogonalised input to the next node; or b) pass the complete data set to the first node.
suspend learning on that node whilst passing the complete data set to the second node and so on. Method a) requires twice as
much memory as method b) but will converge faster as the nodes learn concurrently. The speed up factor is most marked
when the time to bring the ima ge files into the system memory is significant. Our simulations adopt method a).

5.0 RESULTS

4.1 Data set used in simulations

The following test provides an objective measure of the performance of an ima ge retrieval mechanism. The data se:_
shown in fi g.4, consists of 10 classes of machine printed 16 by 24 bit binary characters 'A' to 'K' (not including T) with 10
characters per class.

The complete data set is presented to the network during training until convergence, deemed CO occur when the
respective outputs for all given patterns changes by less than 0.1% over subsequent presentations of the data set. The code is
taken to be the output of the node after convergence.

Fig. 5 Data Set for Retrieval Experiments

177

03

0.25

0.2

Std. De• of
0.13

Node 0/P

0.1

0.05

0 	

2 3 4 5 6 7 I 9 10 11 12 13 14 15

Node No.

650

600

E 550

3 500

I' 450

O 400
•

F 350
•

300a
230

200

2 3 4	 6 7	 9 10 11 12 13 14 13

o. Node, In S.stem

Appendix B - A Selection of the authors papers.

Images are matched against a target image, selected from the database, by retrieving those images whose codes are
closest in the Euclidean sense to the target code. The number of images extracted from the database for each target
corresponds to the number of examples in each class, in this case 10. The object of the retrieval mechanism is to retrieve all
images from the same class as the target image and no other class. An error is defined as a class mismatch between the target
and any one of the 10 retrieved images. The test is repeated for each and every image within the database. The total number
of errors is defined as the number of mismatches for the complete data set. Thus, the maximum total error for this data set is
100 x 10= 1000. In the following experiments the relative retrieval error allows a comparison between the performance of
the retrieval mechanism for different sized databases and is defined as: (Actual Retrieval Errors/Maximum Possible Retrieval
errors).

The data set used in these simulations is binary. However, the method is equally applicable to grey scale images.

12._yariadatLigssicksadarmancLuaugminufjacks,v.

The relationship between the standard deviation, code performance the number of nodes is shown in figs. 6 and 7
respectively. Successive nodes provide progressively less information until the addition of additional nodes hardly furnishes
us with any extra information at all. Fig. 6 shows that extending the system beyond 6 nodes reaps meagre rewards.

Fig. 6. Effect of number of nodes on code performance. Fig. 7. Relationship between variance and node number.

For a data set with a Gaussian distribution, the standard deviation of the node gives an indication of the amount of
information that the node is contributing to the description of that data set - PCA will maximise the amount of image
information conveyed by the code s. The degree of similarity between the breaks in the response profiles in figs.6 and 7
suggests that the standard deviation could be used to select the optimum number of nodes for any given data set.

5.3 The Need for Re-training - Adding images similar to contents of existing database.

The proposed coding strategy represents each image in terms of its relationship to a feature, or set of features, which
, characterise the spread of images within a database. As images are added to or removed from the database it is likely that the
distribution of patterns will change. This, in turn, will alter the nature of the features which permit optimal descriptions of
the images therein. If the contents change significantly then the nodes will have to be re-trained to re-define the coding
transform. The question we wish to address at this juncture is As the database changes, both in size and diversity, when does
it become necessary to re-train the system ?'

In the following test a 6 node system node is trained with the data set shown in fig. 5 until convergence, deemed to
occur when the difference between node responses on subsequent passes is less than 0.1%. The contents of the database are
then changed but its diversity is kept fixed by keeping the number of classes of characters within the database constant. Note
that the node is not re-trained: the new images are coded using the existing weights. The results are shown in fig.8. The
training times required for re-training using the existing weights and 'starting from scratch' are also shown.

178

Appendix B - A Selection of the authors papers.

Data Set Size
Relative
Errors
(no re-
training)

Relative
Errors
(with re-
trainin g)

Passes to
converge
(training from
reset weights)

Passes to
converge
(training from
existing weights)

10 Classes of 10 0.2150 - 42 -

10 Classes of 12 0.2361 0.2367 75 37

10 Classes of 14 02464 0.2408 43 29

10 Classes of 16 0.2387 0.2344 50 30

10 Classes of 18 02466 0.2391 49 15

10 Classes of 20 0.2460 0.2395 45 25

Fig. 8. Effect of re-training for expanding database of constant diversity.

These results show that the relative performance of the code remains remarkably constant as the database expands
provided that the images that are added are similar to those images trained into the node. Indeed, if the new images are
similar to the existing ones then the improvement in performance afforded by re-training is quite marginal. This is rather
convenient as it does away with the need for 'on-line' trainin g which is likely to be quite a time consuming process. A
practical expedient would be to re-train the system during a 'down-time at regular intervals.

5.4 The Need for Re-training - Adding images dissimilar to contents of existing database

The experiment outlined above in 5.3 is repeated here but instead of adding images from classes already within the
database we add images from completely new classes in blocks of 10 per class (in this case we gradually add characters 'L.' to
V not including '0' in blocks of 10). The results are shown below in fig. 9.

Data Set Size
Relative
Errors
(no re-
training)

Relative
Errors
(with re-
training)

Passes to
converge
(training from
reset wei ghts)

Passes to
converge
(training from
existing weights)

V

12 Classes of 10 0.2508 0.2208 50 45

11 Classes of 10 0.3143 0.2679 74 46

16 Classes of 10 0.3406 0.29872 36 40

18 Classes of 10 0.3256 0.27892 67 60

,	 20 Classes of 10 0.3270 0.2700 70 55

Fig. 9. Effect of re-trainin g for expanding database of increasing diversity.

These results show, as we mi ght expect, that as the database becomes more diverse the efficacy of the retrieval
mechanism begins to drop off. Because the additional images are from different classes to those already contained within the
database the existing weights are likely to produce sub-optimal codes. The results bear this out.

Under these conditions retraining will improve the performance of the retrieval mechanism more than the case
mentioned in 5.3 but the performance without re-trainin g is still quite good. This suggests that the node has learn a set of
image primitives which can be used to describe a broad class of ima ge types. even those not seen during training. The

179

Appendix B - A Selection of the authors papers.

greater the diversity of the database, the more likely it is that the node will begin to learn such primitives. Under these
conditions the effects of re-training become increasingly marginal.

5.4 The effect of image size on oerformance of system

To observe the effect of the image size on training and code performance, the test outlined in 5.2 was repeated for a 6
node system with a scaled up versions of the same datasei The characters were expanded to 32x48 bits and 64x96 bits
respectively. The retrieval performance, the number of passes to convergence and the standard deviation of the node output
are identical to the results shown in 5.2. This shows that the performance of the code is insensitive to the size of the images
within the database.

6.0 CONCLI ISIONS

The results presented in this paper indicate that a Neural Network can form the basis of a coding scheme to facilitate a
fast and fuzzy retrieval mechanism for image databases. The Neural Network is shown to produce an extremely efficient
implementation of PCA which preserves the maximum amount of information contained within an image.

Unlike most Neural Network paradi gms, the learning law introduced here does not require user selection of any system
parameters which is a distinct advanta ge where the system is to be used by operators with little, or no, Neural Network
expertise.

Success y.e nodes learn features with decreasing significance. For a given data set there comes a point where the
inclusion of additional nodes provides little or no additional information. Thus, it is possible to optimise the code length with
respect to the contents of the data base. For a database of moderately diverse image types (so that the distribution tends to
that of a Gaussian) the standard deviation can be used to select the optimal number of nodes which occurs where successive
nodes exhibit standard deviations of the same order of magnitude.

As the diversity of the database increases, the nodes begin to learn generalised image primitives such as continuous
line se gments. for example. The upshot of this is that the need for re-training is less pressing as these primitives are pertinent
to a very broad ranee of images.

One of the great strengths of our coding scheme lies in its ability CO adapt to the changing nature of the database. As
new images are added to the database there will come a time when the nodes need to be re-trained although the degradation in
performance is gradual and, where the database contains a broad ran ge of image types, almost imperceptible.

Linskers has investigated a Neural Network learning paradigm which produces the same transformation as our own
learning law, although the laws themselves are actually quite different. He showed that, when trained with a broad range of
image types, the weights converge to feature primitives which characterise the general underlying characteristics common to
all image types. This work is exciting in that these artefacts bear a remarkable resemblance to the so-called 'retinal fields'
found to exist within mammalian visual systems. These fields, located within the primary visual cortex, are used to encode
images for subsequent processin g stages 'higher up' in the cortex. This seems to validate the approach of our own coding
methodology.

70 ACKNOWLEDGEMENTS

This research was funded by the British Library Research and Development Department, contract M0921.

8.0 REFERENCES

I.	 Managing Image Data Bases IFFF Computing Magazine pp. 3 - 62. Dec 1989.
'.	 Chang. Shi-Kuo 'Principles of pictorial information systems design'. Prentice Hall International. 1987.
3.	 Op. E. 'Subspace Methods for Pattern Recognition'. Letchworth: Research Studies. 1983.

180

Appendix B - A Selection of the authors papers.

4. Kirby, M. and Sirovich, L. 'Application of the Karhunen-Loeve Procedure for the Characterisation of Human
FacesUEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.12 No.1, Jan 1990.

5. Sanger, T. ' Optimal Unsupervised Learning in a Single Layer linear Feedforward Nenvore. Neural Networks.
Vol. 2 pp.459-473. 1989a.

6. Oja, E. 'A Simplified Neuron as a Principal Componetu Analyser'. Journal of Mathematical Biology Vol.15. pp.267-
273. 1982.

7. Oja. E. Neural Networks, Principal Components and Subspaces'. International Journal of Neural Systems. VoL 1
pp.61-68. /989.

8. Linsker, R. l'elfOrgculisation in a Perceptual Network'. Computer. March 1988, pp. 105-117.
9. Rickman, R. and Stonham, T. J. 'A Self Organising Logical Neural Nenvork for Binary Data'. Int. Joint Conf. on

Neural Networks. Beijing. Nov. 1992.
10. Cottrell, G. W., Munro, P. and Zipser, D. 'Learning Internal Representations from Gray-Scale Images: An example

of Extensional Programming'. Ninth Annual Conference of the Cognitive Science Soc. Seattle. pp. 462-473.
Hillsdale: ErIbaum. 1987.

11. Rickman, R. and Stonharn, T. J. 'Coding facial inzages for Database retrieval using a Self Organising Neural
Network'. IEE Colloquium on Macnine Storage and Recognition of Faces. Digest No. 1992/017. Jan. 1992.

12. Baldi, P. and Hornick, K. 'Neural Networks and Principal Component Analysis: Learning from Examples without
Local Minima'. Neural Networks Vol. 2. pp.53-58. 1989.

13. Clark, R. .1. Transform Coding of Images' Academic Press. 1985.
14. Bourland, H. and Kamp, Y. 'Auto-Association by Multi-Layer Perceptrons and Singular Valued Decomposition'.

Biological Cybernetics Vol. 59. pp 291-294. 1988.

181

Appendix B - A Selection of the authors papers.

A Self Organising Logical Neural Network
for Binary Data

R. M. Rickman
T. J. Stonham

Neural Networks and Pattern Recognition Research Group
Dept. Electronic Engineering

Brunel University
Uxbridge

Middx UB8 3PH
UK

Abstract A novel Self Organising Neural Network architecture is introduced which is
shown to extract the Principal Components from binary data sets with very short training
times. The net performance is insensitive to order of presentation of the data set, does not
require a learning rate to be set and will not setrle into false minima. The system can be
readily expanded to perform non-linear transformations of the data through an efficient
implementation of sigma-pi type units.

The network is based upon an array of RAM like memory elements and can be realised in
hardware so that extremely rapid training times are a viable prospect.

1.0 Introduction

The feature extraction mechanism lies at the heart of any pattern recognition system. The original
pattern domain is typically too large in which to undertake the recognition process and it is the task of the
feature extraction phase to isolate the salient features which characterise the data set and represent them in a
smaller and so more manageable domain.

Self Organisin g Neural Networks are capable of attuning to important features within a data set and
can automatically develop a transformation, throu gh a training phase, which maps the original pattern into a
very compact representation so that subsequent pattern matching may be carried out with comparative ease.

Sanger [IL Oja[2], Linsker[3] and others have demonstrated how a simple linear Neural Network can be
used to extract the Principal Components of a data ensemble. The Principal Components represent an
optimal linear co-ordinate transformation which maximises the variance of the node response to the training
data and so accentuates its discriminant features. Principal Components correspond to the eigenvectors of the
autocorrelation matrix of the data and dimensionality reduction is achieved by virtue of the fact that relatively
few Principal Components are required to represent each pattern within the set. Sangers work shows that a
Self Organising Neural Network Node can perform a very efficient approximation to Principal Component
Analysis (PCA) where the input patterns are large and the number of PC's small.

One of the g reat shortcomings of the sum-of-wieghts type PCA nodes, and indeed MOSE Neural
Network paradigms, is that they are sensitive to the various network parameters which must be carefully
honed to suit the data set. To a certain extent it is possible to circumvent these problems by optin g for very
low training rates which incurs very long training times.

An entirely novel Self Organising Neural Network architecture based on RAM like memory elements
is presented which makes no assumptions regarding the underlying statistical nature of the data (except, of
course, that there are features to extract) and can be trained extremely rapidly to encode binary data sets.

182

Node reponse
to pattern j

Yi

Appendix B - A Selection of the authors papers.

2.0 A Logical Solution to Self Organisation

The proposed Self Organising architecture, shown below in fig. 2.0, consists of an array of real valued
memory elements which are addressed by the binary pattern on an input retina. Location 0 to each memory
is addressed by a 'white' element on the retina and location 1 by a 'black'. The output of the node is simplythe sum of the sites addressed by the pattern.

Fig. 2.0 Basic architecture for the Self Organising Logical Neuron.

The objective of the training is to fill the sites so that the variance of the node response to the
complete data set is maximised. This may be achieved by updatin g the sites commensurately with the
strength of the node response. However, such a learning law will tend to accentuate those areas within the
pattern which have a lane DC component and thus contain no discriminant information. This can be
circumvented by forcing the mean of the node response to zero so that the total update for a pair of sites
addressed by every pattern in the data set is zero. Training the network consists of the followin g phases:

i.	 Clear the network by writing a '0' to every memory location.
Seed the node by writing a '1' to those sites addressed by a pattern chosen
arbitrarily from the data set.
Present each pattern to the node and store its response. Repeat for all patterns.

iv. Clear down the network as in stage i.
v. Re-present each pattern to the node and write the normalised, mean-corrected

response to the sites addressed by that pattern.
vi. Repeat sta ges ii to vi until convergence.

'3.0 Analysis of the Learning Rule

After initialisation the response of the node to pattern j is g iven by:

yi = Zb i x ij -	 1-Xij
	 (1

Where:
xii is the value of the binary element i in the jth pattern.

Xjj = 1 for a 'black element (binary 1).
xij = 0 for a 'white' element (binary 0).

IN is the value stored at the memory addressed by the ith element when it is 'black'.

wi is the value stored at the memory addressed by the ith element when it is 'white'.
N is the dimensionality of the input pattern.

183

(8

(9

(10

(11

x1 rm

l-.7k =2y{b i	bNi[x id-m k	xkp-mk}

Nrm N

(12

Appendix B - A Selection of the authors papers.

After one pass through the complete data set the new value of the ith site is:

tik YE(Yj —Y) Xkj
	

(2

W iC = YE(Yj --Y)(1 -Xki)
	

(3
j-1

Whe.re:
y is a constant to limit the dynamic range of the site values._
y is the mean response of the node for all P training patterns.

— 1
Y	 Lyj 	 (4

j.i

For the j t h pattern (yi-) will be added to either the bi or wi sires and after a complete training cycle:

w i	-bi	 (5

Then from (5 and (1

yi = Eb i (2x ij - 1)	 (6
i=1

Combining (6 and (4

—	 N P
y =	 b 1 Z(2x..- 1)	 (7

1 = 1	 .1=1

so that:

y i - y =2/, b i (x-• - m•ij
i=1

1,Vhere:
mi is the mean number of 'black elements in position i across the training set.

1
m i	 EXij

Substituting (8 into (2 gives the new value of the site after one pass through the training set:
N	 P

1;sk = 211 b i E X ki (X -

i=1	 j=1

In matrix notation the state equation for the learning rule becomes:

x 1 1-m 1	 xip-mi

1:7k = 2y[b i	by} [x ici	 xkp]

xN1-171N	 x Np-m N

Since Xij is binary valued:

Which can be written in vector form as:
B = 2y B Q
	

(13
Where:

184

Appendix B - A Selection of the authors papers.

B' is the new site values	 bd after one training cycle.
B is the old site values [b	 b lq] before training.
Q is the autocorrelation matrix of the data set:

1TX 1 p-171 1	X 1 1-En 1	 X 1 pr-M 1

Xsp-MN XN1-MN	 X isrp-M N

Because the 'black' and 'white' elements are mutually exclusive to each other the Q matrix holds for the
'white' site update too (see equation (3).

W=2yWQ	 (14
From (5:

= -2yB Q	 (15

Setting y =	 1 JYjJ will lirnit the sites to -1 5_ 1-.;; 1

Learning rules with state equations of the type shown in equation (14 have been thoroughly
investigated and proven to converge to the eigenvectors of the autocorrelation matrix of the data set
(10113114]. This learning rule is directly equivalent to the classical statistical technique Principal
Component Analysis (PCA) but requires neither the direct computation of the autocorrelation matrix nor the
eigenvectors which would otherwise be impractical for high dimensional data sets.

Additionally, unlike existing sum-of-weights type neural network implementations of PCA, no
implicit assumptions are made regarding the statistical nature of the data set or approximations made in the
derivation of the state equation for the learning rule. The upshot of this is that the learning rule does not
require a learning rate to be set which in turn leads to faster and more accurate convergence.

MOSE neural network paradigms are sensitive to the order of presentation of the input data and are prone
ED settle into false minima (especially if the learning rate is set too high). Because this learning rule does not
implement the system updates until all of the data has been presented to the net it does not suffer from this
drawback and consequently will not converge to localised solutions.

It can be seen that equations (14 and (15 are effectively equivalent to each other and as such the update
of the 'white' sites is inexorably bound to the update of the 'black'. One could argue then that the memory
requirements of this system could be halved simply by considering update on black elements only. Whilst
this is undoubtedly true, the notion that the 'white' and black' elements address distinct memory locations
allows the learning law to be developed further to accommodate non-linear transformations.

4.0 A non-linear implementation of the learning rule

The learning rule outlined in (14 will perform a linear transformation of the input data to maximise the
variance of the node response across the data set. The resulting conformal transformation will preserve the
relative relationships between the patterns in the input and output domains. A coding scheme based on this
transformation enables images to be compared in a very low dimensional bound and provides the basis of a
very fast and fuzzy retrieval mechanism for large databases of non-indexed images[5].

However, a linear learning law will not extract any of the higher order features from the data set which
are required for 'clustering' data, for instance. The above learning law can be modified to perform highly

185

f.c ;3= ,Brz Wit ;At 7•1: 	 mr•;..1 mr:arsie:Ai virs • Irr:,
• 5-

Appendix B - A Selection of the authors papers.

non-linear transtormauons using a tecnnique uevelopeu Uy ruciwcu IUC4 CL Lai Lt.•

The learning law outlined earlier maps one binary pixel E0 one site memory, so that a 'black' element
will address one part of the memo ' y and a 'white' the other. Non-linearity can be introduced into the model I-
collecting these address lines into fixed n sized bunches or 'n-tuples'. These n-tuples address a 2 n location
memory which stores a site value in the same fashion described earlier.

Thus, a data SCE of 16 bit patterns would require 8 x 2-tuples (each tuple addresses a 4 location
memory) or 4 x 4-tuples (each tuple addresses 16 location memory) and so on. Each address line within the
tuple is mapped randomly onto the pattern and as in the earlier 1-tuple system the output of the node is
simply the sum of the sites dressed by each tuple. It is easy to show that such a mapping will perform a

transformation similar to the so-called sigma-pi nodes [7] and can elicit non-linear statistics from the input
data - the order of the non-linearity increases with tuple size and it is possible to exercise considerable control
of the nature of the features extracted by the node.

These non-linearides render the learning law given in (14 somewhat incomplete but the 'essence' of the
system dynamics are still the same.

5.0 Testing the performance of a 1 node system

The object of this test is to show how a single node of the type discussed can condense an ensemble of
high dimensional data to a single, scalar valued code. The tests permit a comparison between the
performance of a linear, 1-tuple node and the sum-of-weights type PCA node outlined in [1]. The test also
aims to show how the ruple size affects the linearity of the mapping and highlights the difference between
conformal and 'clustering' type transformations in Self Organising systems.

Fig 5.1 Data set used to test the performance of the Self Organising Nodes

The data set, shown in fig. 5.1 consists of a 16x24 bit binary 'A' character gradually (and evenly)
merged to a 'B' character over 25 images. Because the change of the 'A' to the 'B' is linear across the data set
we would expect an idealised conformal mapping to produce the code shown in fig. 6.3.

6.0 Results for a Self Organising Logical Node

The node was initialised by filling those sites addressed by a pattern, chosen arbitrarily from the data
set, with a random seed value where -15seedSl. The complete data set is presented to the network and the
node response to each pattern stored (see equation (1.). After all of the patterns have been presented. the sites
are cleared to zeros and the patterns presented again. The stored response from each pattern is normalised and
added to the site value addressed by the appropriate input pixel (see equation (2.). This procedure is receated
until convergence - deemed to occur when:

P
ZA(:. < 0.0001

J=1

Fig. 6.1 shows the performance of the network for different tuplc sizes. Fig. 6.3 sho u.s the
performance of a sum-of-weights type PCA node (outlined in [1]) for the same training set and indicates how
the training rate for such nodes must be carefully chosen to avoid convergence to non-optimal solutions.

186

120

100.

60.

c
8. 20.----

•
...

,
7 -20.

-40.
z 	.

4-tuple

Tuple Size No. Cycles to Converge
8	 7
6	 6
4	 9
2	 6
1	 5

-60.

-100:

-120 	
0	 2	 4	 -6

--„
2-tuple

1-tuple

8	 10	 114	 1	 1I6	 I8	 20
Image Index

21.2 24

1	 2	 3	 4	 5
Tuple Size

-10

...... a= 0.000O5
a= 0.001
a= 0.005

-20

lc/
eiike
15 dtbizte

144
.........

5

o

10
Train Rate a No. Cycles to converge

0.005
0.031
0.00005	 100

Appendix B - A Selection of the authors papers.

Fig 6.1 Response of Self Organising Logical Node to 'A' (index 0) ID 'B' (index 24) data set.

Fig. 6.2 Effect of tuple size on norrnalised standard deviation of Self Organising Logical Node.

4	 6	 8	 10	 12	 14	 16	 18	 20
'maze Index

Fig. 6-3 Effect of training rate on performance of sum-of-weights type PCA Node.

24

187

Appendix B - A Selection of the authors papers.

7.0	 Conclusions

This work shows that the simple architecture and training algorithm outlined in section 2.0 can perform
very efficient calculation of the Principal Components of a binary data set. Unlike the more conventior
sum-of-wieghts type PCA nodes this scheme does not require any training parameters to be set so that the netwo
can be trained very rapidly without the danger of settling into so-called 'false-minima' (shown in fig. 6.3). The
false-minima occur because the node tends to extract localised pattern relationships which are dependent upon tl
order of presentation of the training data. In the proposed model the sites are not updated until all of the training da
has been presented and this problem is alleviated.

A basic 1-tuple system will perform a linear transformation of the input to the output domain. Such
conformal mapping is required for pattern coding systems, for instance. The system can be made to operate in
non-linear fashion by increasing the tuple size - a larger tuple size will extract increasingly higher order statics fro
the data set. In this case the node will tend to cluster the data set into distinct regions within the output doma
which is useful for pattern classification tasks.

The system can be realised readily in hardware using RAM-type memory structures which offers the prospe
of very rapid training times.

References

[1] Sanger T. D. (1989) 'Optimal unsupervised learning in a single layer linear feed forward
Neural Network '. Neural Networks Vol. 2, pp 459 - 473.

[2] Linsker R. (1988) 'Self Organisation in a perceptual Network'. Computer, 21. pp105-117.

[3] Oja E. (1982) 'A simplified neuron model as a Princial Component Analyser ' Journal of
Mathematics and Biology, 15. pp 267 - 273.

[4] Oja E. (1989) 'Neural Networks, Principal Components and Subspaces' Int. Journ. Neural
Systems Vol.' No.1 pp.61 - 68.

[5] R. Rickman, T. J. Stonham (1992) 'Coding Images for Data Base Retrieval using Neural
Networks'. IEE Colloquim on. "Matching Storage and Recognition of faces ".London 1992.

[6] Aleksander I.,Stonham T. J. (1979) 'A guide to pattern recognition using Random Access
Memories '. IEE Proc. on Comp. and Di gital Techniques 1979 Vo1.2, pp 29 - 36.

in	 Gurney K. N. (1992) 'Training Nets of Hardware Reali:able Sigma-pi Units' Neural
Networks 5 pp 289 - 303.

188

Input image
presented

ID system

411.-

Appendix B - .4 Selection of the authors papers.

CODING FACIAL IMAGES FOR DATABASE RETRIEVAL USING A SELF ORGANISING
NEURAL NETWORK

R. M. Rickman and T. J. Stonham

We address some of the problems of accessing database images which do not contain any indexing
information. More specifically, we investigate methods of automating search strategies for facial
images which currently rely on human operators to match the target against a number of ima ges in the
database. Such problems might include the exn-action of facial photographs from a library given a
suspect. The object of the retrieval mechanism is to narrow down the search space for final perusal by
the human operator. This work shows how an automatic feature extraction system based on a Self
Organising Neural Network topology can provide the foundations for a facial image database retrieval
system.

Thrust of the Coding Scheme

The objective of the this research is to develop a self-evolving coding scheme which codes each
image with respect to a set of feature archetypes which characterise the spread of images across the
database. To extract the most salient database archetypes each image must be decomposed into a set
of characteristic features. This decomposition process is a principal concern in the design of any non-
indexed image retrieval system and poses some difficult problems as such features are rarely amenable
to deterministic analysis [1]. Neural Networks avoid the need for prescriptive descriptions of image
artifacts by learning the salient features during a training phase [2].

We propose a coding scheme which employs an array of Neural Networks which can learn
important features across the database [3][4]. Presenting an image to a trained Neural Network will
evoke a response if the input image contains features similar to those learnt by that node. The
magnitude of the response indicates the extent of the feature present within the image. Thus, a simple
coding scheme could be designed by using the output of each Net to form an element of a similarity
vector. Images with close similarity vectors could then be deemed to be similar. Each image in the
data base is coded with respect to a set of salient features which characterise the diversity of its
contents. Such a scheme is shown in fig. 1.

Code forfor image = [0.65 , 0.46, 0.05 J

Fig. 1 A simple Neural Network Image Coding Scheme

Rick Rickman and John Stonham are part of the Neural Networks and Pattern Recognition Group
Department of Electrical and Electronic Engineering, Brunel University, Uxbridge, Middlesex.

189

Appendix B - A Selection of the authors papers.

This codin g process transforms the image into a succinct code which enables images to be
compared in a very low dimensional bound with the deeree of fuzziness approaching that of a human
operator.

Each node within the Network is trained on orthogonal features which maximises the variance of
the output. Such a feature enables geatest number of images to be encoded with optimum selectivity.

Principal Components and Neural Networks

The motivation behind the factors affecting the choice of features learnt by the Neural Network has
much in common with a classical image processing technique called Principal Component Analysis
(PCA) [5]. The object of PCA is to extract the most important features, or Principal Components,
from an ensemble of data so that a replica of any of the data items can be reconstructed from a linear
combination of these features. Each image can be represented by the proportion of the Principal
Components. Relatively few Principal Components are required for an accurate reconstruction of the
image - the number of Principal Components required is dependent upon the diversity of the data set.

An approximation of PCA can be implemented very efficiently using a Neural Network topology if
the size of the input domain is large and the number of Principal Components small [6] [7]. Such
Networks can learn discriminant features automatically and provide a mechanism for self evolving
coding topologies.

For a linear Neural Network node the output is the weighted sum of the input vector:

y=
i

Where y is the output of the node, xi is the i th input and ci the i Eh weight for a D dimensional image.

To induce Self Organisation the node learns input features which have a high correlation to the
weight vector (ie when the output is large) . this is known as Hebbian Learning. Thus:

Ac i = a.x,.y

Where Aci is the incremental change on the i th weight and a is the learning rate («I).

As learning proceeds, the weight vectors begin to rotate in the direction of the Principal
Components. To prevent saturation during training the learning resource is constrained so that

This yields the Self Organising learning law:

AC i = CC.X i. y - y 2 .c1

For a single node the weights converge to the first Principal Component of the input data. To
induce orthogonal learning across the nodes, those features learnt by previous nodes are discounted
from the learning process in subsequent ones. If the inputs do not have zero mean then the node tend
to learn the mean components of the input ensemble rather than the discriminatory features. To
correct for this, the mean of each input line to the node must be subtracted from the input prior to
presentation to the network.

190

Fig. 3
Target Corrupted
with:

15% Noise
+ 10% Artifacts

Fig. 4
Target Corrupted
with:

15% Noise
+ 10% Artifacts

Appendix B - A Selection of the authors papers.

Coding and Matchint: Proced.:re

Tne codin g phase 711:: be sJnimartsed a fo.os-

1 . Train the Neural Net or to extract the Conipor.ents :-rorn the trnaze data base. Dunna
trainin g images are extracted from the cat:: base anc Dresentec to the Neural Network. Trainin2
continues until the netv. orks converg e to :he pr.n.::pa...:o.mponents of the system.

Each image within the database is presented to the trained Network and the node output
recorded as an element of the discriminant code. The number of elements of the discriminant
code corresponds to the number of nodes used in the system.

The objective of the retrieval mechanism is to narrow the search space for the operator down to a
manageable size and to retrieve those ima g es whose codes are closest to the input . The retrieval
mechanism may be summarised as follows:

3. Encode the input ima ge as in 2.

4. Scan all image codes within the database. Retrieve those ima ges with the minimum least
squares difference between corresponding code elements.

Result

The test database contained 500 32x59 binarised facial ima ges of male Caucasians. The input test
images consisted of an ima g e from within the database corrupted both with noise and meaningful
image artifacts (i.e. a change in hair style and facial features painted onto the original ima ge). The
objective of the retrieval mechanism was to extract the original uncorrupted image from the data base -
ten images with the closest match are displayed. The system consisted of 8 nodes and output from
each quantised to 8 bits and assigned to one element of the match code (ie each image is represented by
a 64 bit code).

Fig. 2
Target Corrupted
with:

25% Noise

VP
Ima ge
	

Decreasing order of match ->

Original
Image

191

Appendix B - A Selection of the authors papers.

Conclusions

Results show that the sum-of-wei ghts PCA Neural Network nodes can be used very effectively to fin
the optimal discriminant features within low dimensional ima ges. These features form the basis of
coding scheme which can perform rapid fuzzy matching of ima ges within a database.

References

[1] Managing Image Data Bases. IEEE Computing Magazine December 1989 pp. 3 - 62.
[2] R. Lipman Pattern Classification Using Neural Networks' MFF Comms. Magasine

Nov. 89 pp 47- 63.
[3] R. Rickman, T. J. Stonham 'Coding Images for Data Base Retrieval using Neural Networks'.

3rd NERVES Neural Network Workshop Jan '91, Grenoble, France.
[4] R. Rickman, T. J. Stonham 'Images for Data Base Retrieval using Neural Networks".

Research report
Nov '91. Dept. Elec. Eng., Brunel University, Uxbridge, Middx.

[5] M. Kirby, L Sirovich 'Application of the Karluinen-Loeve Procedure for the Characterisation
of Human Faces'. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.12 No.1,
Jan '90.

[6] T. D. Sanger ' Optimal unsupervised learning in a single layer linear feed forward Neural
Network . Neural Networks Vol. 2, pp 459 - 473.

[7] E. Oja 7Veural Networks, Principal Components and Subspaces' Int. Joum. Neural Systems
Vol.1 No.1 pp.61 - 68.

192

Appendix B - A Selection of the authors papers.

CODING IMAGES FOR DATA BASE RETRIEVAL
USING NEURAL NETWORKS

R. M. Rickman T. J. Storzham

Dept. Electronic Engineering
Brunel University

Uxbridge
Middlesex UB8 3PH

UK

Abstract. We address some of the problems associated with systems which
retrieve images from large data bases according to a measure of similarity with a
target image. The efficacy of these systems rests with the ability of the scheme to
extract and encode those features which characterise the image.

Neural Networks offer great potential in this area as they can 'learn' the salient
features within the image automatically. We show how an array of Neural
Networks may be used to encode an image to facilitate a very rapid fuzzy match of .
images within the data base and discuss the factors affecting training of these
networks. The coding scheme proposed employs a digital Neural Network
architecture which utilises standard RAM technology so that a practical system is a
viable prospect. Preliminary results are presented and propects discussed.

Introduction

Image retrieval and matching mechanisms are seen as an important aspect of data base
systems design and considerable attention has been focussed on strategies which enable images to
be extracted from a large data base according to a measure of similarity with a target image [1] [2].
Two potential applications of such a system are the extraction of facial photographs from a criminal
library given a target image and the registering of new trade marks whose uniqueness must be
assured_

Comparing the 'raw' target image with each and every image within the data base is
computationally expensive and impractical where the data base contains many images. The
searching mechanism can be made considerably faster by representing the salient features within
each image as a code so that a match can be made by comparing the extent of shared features
represented by the codes. Images whose code have a high degree of correlation with the target
image can be extracted from the data base for perusal by the human operator. The objective of the
system proposed here is to narrow down the search space for the operator to a manageable size.

The efficacy of any system which attempts to encode the images within the data base rests
with its ability to extract the salient features and represent them as a consistent code which permits
fuzzy matching of images with a degree of intolerance to position, scale lighting and other real
world artifacts.

Extracting those features which characterise an image has proved to be an extremely difficult
process to automate using conventional image processing techniques as those features deemed to
be important to a human operator are often not amenable to deterministic analysis and defy
prescriptive programming methodologies. For this reason most schemes which attempt this kind
of matching rely on human operators to analyse the image and select the feature codes from a

193

Liput image
presented
to system

Node 2

with
feanrc

Respccse of
node 2
65%

Appendix B - A Selection of the authors papers.

library of predefined image entities. Tne descridtion of the image is dependent upon the extent of
the code book and the coding process can be a time consuming and costly exercise.

Neural Networks have received much attention as processing architectures which learn to
extract the characteristics of a data set presented during training. These architectures offer
self-evolving coding capabilities which can give a constant response to a numerically indeterminate
data set. We propose a scheme which employs an array of Neural Networks to transform an image
into a very succinct code which facilitates rapid fuzzy matching of ima ges within the (Eta base.

Neural Networks as Dimensionality Reducers

Central to the thrust of any pattern recognition task, whether by a Neural Network or through
more conventional techniques is the notion of dimensionality reduction. The pattern domain
typically contains large amounts of data which presents a formidable processing task if the features
within the image are regarded as isolated entities. In meaningful real-world images however, there
exist significant correlations between features of both a spatial nature and with respect to the data
set which allows the image to be represented in a much lower dimensional space. This reduced
representation allows subsequent recognition phases to be undertaken in a manageable domain.
The image coding scheme should attempt to extract these correlations within the pattern space and
capture the Underlying trends within the data - the higher the degree of correlation the more succinct
the code.

Neural Networks are successful as pattern recognition architectures because the nodes which
sample the input domain interact in a way which extracts the inherent correlations that exist within
the data base. Hebbian learning, for instance, increase the activity the activity between nodes ..
which sample coincidental features and decrease the activity between nodes which sample disjoint
features. In this way higher order relationships between several entities within the image can be
represented in the activity of just a single node in a completely non-deterministic manner. The
representation of an image in a lower dimensional bound may be regarded as a Neural Network
Transformation whose parameters are dependent upon the Ci2r1 set and where the transformation is
learnt..

Code for image = [0.05 , 0.65 , 0.46]

Fig. 1 A simple Neural Network Image Coding Scheme

The coding scheme proposed here, outlined in Fig.1, consists of an array of Neural
Networks where the output from each net forms an element of the code. The network is trained
on images from within the data base so that each builds an individual generalised internal
representation of a feature protctype which acts as a discriminant function that reflects the spread of
characteris—Ss across the data base. This discriminant function ma y be considered optimal if the
variance of the node response is maximised across the data set and is statistically independent from
the response of the other nodes. The objective of the training is to form a diverse set of prototypes
which represent the principal feature components with minimal overlap in pattern space.

194

PCA forms new bases from
eigenvectors which
moimises the viriss= of
projection. This Zazkes it easier to
differentiate hem= image
classes A and B.

Appendix B - A Selection of the authors papers.

Coding Images using Principal Component Analysis

Principal Component Analysis (PCA) is a well established technique which attempts to
extract those features from an ensemble which most accurately reflect the characteristics of the data
set [3].

This technique forms a set of orthogonal basis vectors (one for each Principal Component)
on which the projection of the pattern space forms optimal discriminant functions with respect to
the data set. PCA isolates the most significant eigenvectca- of the co-variance matrix of the training
set. Any image within the data base can be reconstructed through a linear recombination of these
eigenvectors in the appropriate proportions. Dimensionality reduction is achieved by virtue of the
fact that most of the information within an image is contained within the first few eigenvectors and
relatively few components are required for a faithful reconstruction of the image. The most
significant principal components are those which provide optimal discriminant information and.
thus have the highest variance across the data set_ This is shown in fig. 1 PCA can be used as a •
coding mechanism by storing the proportion of the most significant principal components of that
image as an element within the code - the greater the number of components used the more
complete the representation of that image.

Fig. 2 Optimal Discriminant properties of PCA-

A similar technique [4], employing Karlaunen-Loeve Transformations, has been used to
encode human faces with limited success.

Unfortunately the classical implementation of this technique is computationally very
expensive where the input domain is large and this renders it impractical for all but trivial images.
However the work of Sanger [5], Oja [6] and others has shown that an approximation of PCA can
readily be implemented in Neural Network topologies which are considerably more efficient if the
size of the input domain is large and the number of principal components required is small.

Implementing PCA in Neural Network Topologies

Training in these networks is self organised and motivated by liebbian type 'learning on a
simple 'sum-of-weights' linear node. Unlike many self-organised trainin w schemes, however, it is
not a winner-take-all type network where only one node learns aspects of the input pattern. The
feature learnt by a node is deemphasised prior to training on subsequent nodes within the network
to induce orthogonality in the components learnt by each node within the network. These networks
have been proved to converge so that the weights of each node approximate progressively smal!er
principal components of the data set. Coding is achieved by presenting an image to the trained
network where the output of each node gives the proportion of the principal component learn by
that node.

195

Appendix B - A Selection of the authors papers.

Neural Networks - A Logical Persr ective

The PCA Neural Network model discussed earlier, and indeed the vast majority of Neural
Network paradigms, are based around analogue nodes whose output is a function of the weighted
sum of the input signals. Such systems are dogged with hardware implementation problems as
relatively few nodes can be connected within a network_ For this reason it is unlikely that a PCA
type coding scheme using analogue nodes will ever become a practical reality.

However, considerable research effort by Aleksander and others [7] has been invested in the
development of Logical Neural Network architectures which do not suffer these implementation
drawbacks. Logical Neural Network nodes consist of networks of relatively sparsely connected
Boolean functions which sample a binarised input space. These nodes can be realised using
existing RAM/VLSI technology and practical, real-time, parallel systems are a viable prospect_ A
typical system is shown in fig. 3.

Logic function
	

discriminator

,

Fig. 3 A simple Logical Neural Network system

Each logical function within the net samples a group of binary elements within the input
space - this group of samples is called a tuple. Every combination of binary elements within the
tuple address individual locations within the system memory. The memory requirement of these
systems grows exponentially with tuple size and consequently the nets are characteristically
sparsely connected with triple sizes typically varying from between 2 and 8. A system may contain
many of these functions which sample the input space where the response of each function is
combined in a discriminator to form a node which can sample a large input domain. If properly
mapped onto the pattern space, higher tuple sizes will elicit increasingly higher order statistics from
the training data which will result in a more efficient code.

Data is presented to the network-during training and the sites within the logic functions
addressed by the input tuples are stored within the net memory. As training proceeds a
generalised representation of the class is built up within the sites of the system memory. It is this
ability to generalise that gives these architectures powerful recognition properties. An 'unseen'
pattern will evoke a high response from the system if it shares the same features which characterise
the the training data for that discriminator.

However, adopting a logical node implementation of the PCA paradigm means that the
mathematical framework which provides proof of convergence to the principal components is no
loneer applicable. Indeed, the mathematical formalisms which are employed to analyse the

196

Appendix B - .4 Selection of the authors papers.

behaviour of analogue nodes are not readily transferred to logical node analysis and descriptions
of Logic Neural Network dynamics are typically very illusive. Thus, the type of learning in a
logical node can no longer be said to be directly equivalent to PCA but instead is motivated by the
same factors which enable significant discriminant features to be extracted from the data set.

Tuples and System Performance

The tuple size can have a marked effect on the performance of the net and its ability to
generalise. A low tuplc size restrict the number of features that may be represented within a
function a good generalisation is achieved through a coarse representation of the pattern features.
Because of this reduced functionality the net has fewer sites to fill during training and the network
is more prone to saturation where information previously trained into the net is overwritten as
training proceeds.

Meaningful real-world images contain much correlated local information with respect to local
feature entities within the image (such as low variance luminance levels and continuous line
segment information , for example) which can greatly assist in reducing the dimensionality further,
resulting in a more efficient code. This information can be extracted by mapping the tuples locally
similar to the retinal fields found in biological visual processing topologies. The mapping of
logical nets is often random because those correlated artifacts with low variance across the data set
tend to promote saturation during training but this shortcoming can be easily circumvented.

An indication of the coding advantage afforded by local mapping of the nrples can be
investigated by measuring the entropy of each function across the data set. Entropy gives a
measure of the correlation between the features monitored by that function and is given by:

across func
H =

i=3

Where Pi is the relative frequency of occurrence of a function within a tuple across the data
set.

A low entropy for that mple means that there is a poor spread of features across that topic and
indicates that it contributes little discriminant information. Fig. 4 shows that local mapping can,-
potentially, produce a more efficient code. It indicates too that the improvement afforded by higher
mple sizes is more marked when the mapping is localised This highlights the fact that higher tuple
sizes extract higher local correlations from the data..

Although the correlated data extracted through local mapping does indeed produce a more
efficient code it can also lead to a poor distribution of features during training. This means that a
narrow range of functions prevail throughout training and these dominate the response of the net
whilst providing poor discriminant information. Entropy provides a measure of the usefulness of
the features monitored by the topics and enables us to bias then accordingly during training.

One way of implementing this is to train only on those features with a sufficiently high
entropy. Fig. 5 shows those areas of high entropy for a data base of 500 binarised facial images.
It is intuitively appealing that areas of potentially good discriminatory data for this data base form
the outline of a face. It should be noted, however, that isolated tuples of high entropy do not per
se guarantee that effective discriminant features will be learnt by that node.

The &mires are only optimal if there is a strong correlation across both the image and the
data base. This scheme has the advantage in that it can substantially reduce the number of
features to be learnt ,which lowers system memory requirements, whilst increasing the
convergence dine during training.

	 --1

197

Info as. tupfe map in face data bait

T.pla a

3

Tape maapploa daersety

Appendix B - A Selection of the authors papers.

Fig.4 Varion of average information 	 Fig-5 Areas of high information content for
rail:tired to code an image and tuple size- 	 images across a data base of faces.

Preliminary results

At this stage of the work the training procedure did not automatically extract discriminant
features from within the data base. Rather, each node was trained on a seperate exemplar image
selected manually from the data base. Training amounted to presenting several shifted versions of
the image to the assigned node, similar to the training scheme used in [7]. This formed a
generalised internal representation of each exemplar within the trained node. After training, every
image within the data base was presented to the nodes. The output of each node corresponds to the
proportion of features that the image shares with the generalised exemplar image.

Each image within a data base of 500 32 x 59 binarised facial phorouaphs was encoded by
presenting it u) an array of 8 trained networks. The output from the networks was ordered and a 3
bit ranking index attributed to each element of the code so that the images are represented as 24
bits codes.

An image from within the data base was corrupted both with noise and meaningful artifacts (
a change in hair style, for example), coded, and matched against those in the data base. The
matching straieu retrieved those images with the closest rank. The results are shown in Mg. 6.

Conclusions

Neural networks have the potential to provide very powerful codin g mechanisms which permit
rapid fuzzy matching of images for data base retrievaL An important adjunct to this work is the
development of a localised self organising network to extract important image components which
characterise the contents of the data base. Such schemes have been successfully implemented
using analogue nodes and work is underway to apply similar learning rules to logical nodes.

As it stands the system described is intolerant to changes in scale, position and rotation. Neural
network topologies have been shown to perform invariant recognition but it is unlikely that such
networks will cope well with high dimensional images [8]. Gabor filters have been used very
successfully as a pre-processor to impart a degree of independence to scale, position and rotation
artifacts for invariant recognition tasks [9]. These filters exhibit some of the characteristics of the
processing structures found in mammalian visual systems and hold much promise as a front end to
the Neural Network coding scheme described here.

198

Maze corrupted wit!
.0% meaningful
usage data Images retric;ed from data base Cm order of match).

image

inage corrupted
with 30% noise

Appendix B - A Selection of the authors papers.

Fig. 6 Marrhing corrupted image with origional in a data base of 500 facial images

This research was supported by British Library Research Contract No. M0921.

References

[1] Managi47 Image Data Bases. IEEE Computing Magazine December 1989 pp. 3 - 62

[2] Shi-Kuo Chang 'Principles of pictorial information systems design '. Prentice Hai
IntemaonaL

[3] E. Oja 'Subspace methods for pattern recognition '. Research Studies Press.

[4] M. Kirby, L. Sirovich 'Application of the Karhunen-Loeve Procedure for the
Charac:erisation of Hunan Face.?. IEEE Trans. on Pattern Analysis and Machine
Intelligence, VoL12 No.1, Jan '90.

[5] T. D. Saager ' Optimal unsupervis-ed learning in a single layer linear feed forward Neural
Network '. Neural Networks VoL 2, pp 459 - 473.

[6] E. Oja Neural Networks, Principal Components and Subspaces' Int. Journ. Neural
Systems Vol.1 No.1 pp.61 - 68.

[7] L Aleksander, T. J. Stonham 'A guide to pattern recognition using Random Access
Memories ME Proc. on Comp. and Digital Techniques 79 VoL2, pp 29 - 36.

[8] K. Fukoshima, S. Miyake, T. Ito ' Neocognitron: A Neural Network Model for a
mechanism of visual pattern recognition.'

[9] a Oja 'Distortion tolerant feanue extraction with Gabor functions and topological coding
pp 301 - 304. Proc. conf. ENNC Paris July '90.

199

	DX175224_1_0001.tif
	DX175224_1_0003.tif
	DX175224_1_0005.tif
	DX175224_1_0007.tif
	DX175224_1_0009.tif
	DX175224_1_0011.tif
	DX175224_1_0013.tif
	DX175224_1_0015.tif
	DX175224_1_0017.tif
	DX175224_1_0019.tif
	DX175224_1_0021.tif
	DX175224_1_0023.tif
	DX175224_1_0025.tif
	DX175224_1_0027.tif
	DX175224_1_0029.tif
	DX175224_1_0031.tif
	DX175224_1_0033.tif
	DX175224_1_0035.tif
	DX175224_1_0037.tif
	DX175224_1_0039.tif
	DX175224_1_0041.tif
	DX175224_1_0043.tif
	DX175224_1_0045.tif
	DX175224_1_0047.tif
	DX175224_1_0049.tif
	DX175224_1_0051.tif
	DX175224_1_0053.tif
	DX175224_1_0055.tif
	DX175224_1_0057.tif
	DX175224_1_0059.tif
	DX175224_1_0061.tif
	DX175224_1_0063.tif
	DX175224_1_0065.tif
	DX175224_1_0067.tif
	DX175224_1_0069.tif
	DX175224_1_0071.tif
	DX175224_1_0073.tif
	DX175224_1_0075.tif
	DX175224_1_0077.tif
	DX175224_1_0079.tif
	DX175224_1_0081.tif
	DX175224_1_0083.tif
	DX175224_1_0085.tif
	DX175224_1_0087.tif
	DX175224_1_0089.tif
	DX175224_1_0091.tif
	DX175224_1_0093.tif
	DX175224_1_0095.tif
	DX175224_1_0097.tif
	DX175224_1_0099.tif
	DX175224_1_0101.tif
	DX175224_1_0103.tif
	DX175224_1_0105.tif
	DX175224_1_0107.tif
	DX175224_1_0109.tif
	DX175224_1_0111.tif
	DX175224_1_0113.tif
	DX175224_1_0115.tif
	DX175224_1_0117.tif
	DX175224_1_0119.tif
	DX175224_1_0121.tif
	DX175224_1_0123.tif
	DX175224_1_0125.tif
	DX175224_1_0127.tif
	DX175224_1_0129.tif
	DX175224_1_0131.tif
	DX175224_1_0133.tif
	DX175224_1_0135.tif
	DX175224_1_0137.tif
	DX175224_1_0139.tif
	DX175224_1_0141.tif
	DX175224_1_0143.tif
	DX175224_1_0145.tif
	DX175224_1_0147.tif
	DX175224_1_0149.tif
	DX175224_1_0151.tif
	DX175224_1_0153.tif
	DX175224_1_0155.tif
	DX175224_1_0157.tif
	DX175224_1_0159.tif
	DX175224_1_0161.tif
	DX175224_1_0163.tif
	DX175224_1_0165.tif
	DX175224_1_0167.tif
	DX175224_1_0169.tif
	DX175224_1_0171.tif
	DX175224_1_0173.tif
	DX175224_1_0175.tif
	DX175224_1_0177.tif
	DX175224_1_0179.tif
	DX175224_1_0181.tif
	DX175224_1_0183.tif
	DX175224_1_0185.tif
	DX175224_1_0187.tif
	DX175224_1_0189.tif
	DX175224_1_0191.tif
	DX175224_1_0193.tif
	DX175224_1_0195.tif
	DX175224_1_0197.tif
	DX175224_1_0199.tif
	DX175224_1_0201.tif
	DX175224_1_0203.tif
	DX175224_1_0205.tif
	DX175224_1_0207.tif
	DX175224_1_0209.tif
	DX175224_1_0211.tif
	DX175224_1_0213.tif
	DX175224_1_0215.tif
	DX175224_1_0217.tif
	DX175224_1_0219.tif
	DX175224_1_0221.tif
	DX175224_1_0223.tif
	DX175224_1_0225.tif
	DX175224_1_0227.tif
	DX175224_1_0229.tif
	DX175224_1_0231.tif
	DX175224_1_0233.tif
	DX175224_1_0235.tif
	DX175224_1_0237.tif
	DX175224_1_0239.tif
	DX175224_1_0241.tif
	DX175224_1_0243.tif
	DX175224_1_0245.tif
	DX175224_1_0247.tif
	DX175224_1_0249.tif
	DX175224_1_0251.tif
	DX175224_1_0253.tif
	DX175224_1_0255.tif
	DX175224_1_0257.tif
	DX175224_1_0259.tif
	DX175224_1_0261.tif
	DX175224_1_0263.tif
	DX175224_1_0265.tif
	DX175224_1_0267.tif
	DX175224_1_0269.tif
	DX175224_1_0271.tif
	DX175224_1_0273.tif
	DX175224_1_0275.tif
	DX175224_1_0277.tif
	DX175224_1_0279.tif
	DX175224_1_0281.tif
	DX175224_1_0283.tif
	DX175224_1_0285.tif
	DX175224_1_0287.tif
	DX175224_1_0289.tif
	DX175224_1_0291.tif
	DX175224_1_0293.tif
	DX175224_1_0295.tif
	DX175224_1_0297.tif
	DX175224_1_0299.tif
	DX175224_1_0301.tif
	DX175224_1_0303.tif
	DX175224_1_0305.tif
	DX175224_1_0307.tif
	DX175224_1_0309.tif
	DX175224_1_0311.tif
	DX175224_1_0313.tif
	DX175224_1_0315.tif
	DX175224_1_0317.tif
	DX175224_1_0319.tif
	DX175224_1_0321.tif
	DX175224_1_0323.tif
	DX175224_1_0325.tif
	DX175224_1_0327.tif
	DX175224_1_0329.tif
	DX175224_1_0331.tif
	DX175224_1_0333.tif
	DX175224_1_0335.tif
	DX175224_1_0337.tif
	DX175224_1_0339.tif
	DX175224_1_0341.tif
	DX175224_1_0343.tif
	DX175224_1_0345.tif
	DX175224_1_0347.tif
	DX175224_1_0349.tif
	DX175224_1_0351.tif
	DX175224_1_0353.tif
	DX175224_1_0355.tif
	DX175224_1_0357.tif
	DX175224_1_0359.tif
	DX175224_1_0361.tif
	DX175224_1_0363.tif
	DX175224_1_0365.tif
	DX175224_1_0367.tif
	DX175224_1_0369.tif
	DX175224_1_0371.tif
	DX175224_1_0373.tif
	DX175224_1_0375.tif
	DX175224_1_0377.tif
	DX175224_1_0379.tif
	DX175224_1_0381.tif
	DX175224_1_0383.tif
	DX175224_1_0385.tif
	DX175224_1_0387.tif
	DX175224_1_0389.tif
	DX175224_1_0391.tif
	DX175224_1_0393.tif
	DX175224_1_0395.tif
	DX175224_1_0397.tif
	DX175224_1_0399.tif
	DX175224_1_0401.tif
	DX175224_1_0403.tif
	DX175224_1_0405.tif
	DX175224_1_0407.tif
	DX175224_1_0409.tif
	DX175224_1_0411.tif
	DX175224_1_0413.tif
	DX175224_1_0415.tif
	DX175224_1_0417.tif
	DX175224_1_0419.tif

