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Abstract: This paper introduces new models which approximate the AC loadflow problem, but are able to 

converge (using the Newton Raphson algorithm) from a wider range of starting points. The solution of the 

pseudo-loadflow models can provide a robust starting process for the Newton Raphson solution of the 

conventional loadflow problem. It is also shown that pseudo-loadflow solutions exist in many cases where the AC 

loadflow equations do not appear to have any solution, and in such cases the pseudo-loadflow solution can provide 

useful information to assist in locating the cause of infeasibility of the AC loadflow model. Test results are 

presented for illustrative small network examples and also for larger test networks.  The computational 

requirements of the proposed methods are similar to those of the conventional Newton Raphson loadflow 

algorithm. 

 

 

Index Terms: power flow, Newton Raphson algorithm, starting process. 

 

I. INTRODUCTION 

The Newton Raphson (NR) algorithm and its variants are probably the most widely used approaches to the 

solution of the AC loadflow problem [1,2]. Generally, convergence is obtained in a reasonable number of 

iterations from a „flat start‟ initial point.  However, in a small number of cases divergence occurs and the analyst 
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is faced with a dilemma: either a solution does exist but the numerical method has failed to converge to it from the 

given starting point, or no solution exists and power network operation is infeasible with the specified loading 

conditions. Researchers have made significant contributions to this problem, over many years, either by proposing 

more robust algorithms to converge to a solution more reliably [3-7], or by identifying the conditions under which 

no physical solution exists [8].  A brief review of many of the significant contributions in this area is included by 

Milano [7].  Although loadflow solution is now a routine task in power system analysis, the introduction of new 

system models and new solution methods continues to be of interest [13-17].  

The present paper follows an approach originally suggested by Stott [9], by defining a starting process which can 

provide the conventional Newton Raphson loadflow with an initial set of voltages that are closer to the desired 

solution than the usual flat start. It is notable that the starting process introduced by Stott directly led to the 

development of the Fast Decoupled (FD) method [10]. Many practical loadflow algorithms, today, include the 

option to apply a single iteration of the FD algorithm as a starting process for the NR method. The present paper 

introduces new models, termed pseudo-loadflows, which are intermediate between the well-known DC loadflow 

[2] and the full AC loadflow equations.  In contrast with the Stott starting process, and the FD method, no 

decoupling assumptions are introduced, and quadratic convergence is retained by applying the full NR process to 

the pseudo-loadflow equations.  It will be shown that the application of the NR process to the pseudo-loadflow 

equations allows convergence from a much wider „basin of attraction‟ compared to that of the AC model. The 

pseudo-loadflow solution can then provide a good starting point to obtain convergence of the NR process for the 

AC loadflow equations, in cases which would diverge otherwise.  Pseudo-loadflow solutions also exist in many 

cases where no AC loadflow solution appears to exist.  In such cases the pseudo-loadflow can help the analyst to 

find the likely causes of infeasibility of the AC loadflow, such as errors in the input data.  It is also hoped that the 

proposed methods may be applicable in cases where the introduction of FACTS devices increases the nonlinearity 
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of the loadflow problem [13-15]. 

 

 

II. PROBLEM FORMULATION 

2.1 AC loadflow equations 

The AC loadflow equations, in polar form, can be written as: 

  Pi = Vi  Vj ( Gij cos ( i – j) + Bij sin ( i – j) )          (1) 

Qi = Vi  Vj ( Gij sin ( i – j) – Bij cos ( i – j) )          (2) 

 

Pi = active power injection at busbar i (per unit) 

Qi = reactive power injection at busbar i (per unit) 

Vi = voltage magnitude at busbar i (per unit) 

i = voltage phase angle at busbar i (radians) 

Gij = real part of an element of the admittance matrix (per unit) 

Bij = imaginary part of an element of the admittance matrix (per unit) 

(The summations indicated are over all nodes.) 

 

The AC loadflow equations are solved iteratively from an initial guess, or starting point, usually with all i set to 

zero radians and all Vi (except at the slack node and voltage controlled nodes) set to 1 per unit. This is called a 

„flat start‟. The trigonometric functions (sine and cosine) contribute significantly to the nonlinearity of the AC 

loadflow equations.  Indeed, the maximum and minimum values of sin( i – j), i.e. +1 and –1, account for the 

static stability limit for a two-bus system at | i – j| = /2 radians.  

  

2.2 Pseudo-loadflow equations (type 1) 

By applying the following truncated Taylor series approximations: 

  sin ( i – j)  ~  i – j  

  cos ( i – j)  ~  1 – ( i – j)
2 

/ 2
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we obtain a set of pseudo-loadflow equations, which have a solution which approximates the AC loadflow 

solution for small values of | i – j|. 

  Pi = V’i  V’j ( Gij (1 – ( ’i – ’j)
2 

/ 2) + Bij ( ’i – ’j) )         (3) 

Qi = V’i  V’j ( Gij ( ’i – ’j) – Bij (1 – ( ’i – ’j)
2 

/ 2) )        (4)   

These equations, which will be referred to as pseudo-loadflow type-1 (PL-1), are more linear than the original AC 

equations, but should have solutions V’i , ’i which are quite close to the true AC loadflow solutions Vi , i , up to 

reasonable values of | i – j|. 

 

2.3 Pseudo-loadflow equations (type 2) 

To obtain a further set of pseudo-loadflow equations, which are even less nonlinear, we can introduce the 

relatively coarse approximation for the cosine terms: 

  cos ( i – j)  ~  1    
 

This gives pseudo-loadflow type-2 equations (PL-2): 

  Pi = V’’i  V’’j ( Gij + Bij ( ’’i – ’’j) )            (5) 

Qi = V’’i  V’’j ( Gij ( ’’i – ’’j) – Bij )            (6)  

Although these PL-2 equations only approximate the AC loadflow for quite small | i – j|, they have the advantage 

of having only mild nonlinearity. 

Applying the full Newton Raphson process to either the PL-1 or PL-2 equations results in Jacobian matrices with 

sparsity structures identical to those of the usual AC loadflow Jacobian, and allows quadratic convergence to be 

obtained. An existing polar-form NR loadflow program can easily be adapted by modifying the mismatch 

equations and the Jacobian terms.  The definition of the relevant Jacobian matrix elements is given in Appendix 1.  

It should be noted that applying the full Newton Raphson process to PL-1 or PL-2 results in Jacobian equations 
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which are different to those obtained by applying the sine and cosine approximations within the conventional AC 

loadflow Jacobian equation (a technique which has sometimes been used to reduce computer time).  Examination 

of equation (5) shows the relationship of these models to the DC loadflow, which would be obtained from 

equation (5) by making the further approximations V’’i ~ 1, V’’j ~ 1 and Bij >> Gij.  

 

 

III. TEST RESULTS 

A polar-form NR loadflow program, with sparse matrix solution, has been modified to include options of solving 

the normal AC, PL-1 or PL-2 models defined in the previous section.  A series of computational tests have been 

performed to investigate the properties of these models.   

 

3.1 Wide-angle starting points 

A small 3-node network, for which the AC model can easily be solved from a flat start by the Newton Raphson 

algorithm, is defined in Appendix 2. The convergence of the various models from artificially difficult starting 

points (based on wide-ranging starting angles, but with initial voltage magnitudes at 1 pu) is compared in Table 1, 

which shows the number of iterations required for convergence to a mismatch tolerance of 10
-8

pu. All three 

models (AC, PL-1 and PL-2) converge successfully within 4 iterations from a flat start. As the starting point is 

artificially widened, to explore the range of convergence, it can be seen that the PL-1 and PL-2 models can 

converge when the NR process diverges for the AC model.  It is also interesting to note that in some cases 

(indicated by * in the Table) the AC model and PL-1 models converge to a low voltage solution, whereas PL-2 

consistently finds a normal high-voltage solution.   

The true AC solution (V, ), the PL-1 solution (V’, ’) and PL-2 solution (V’’, ’’) for this test problem are 
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presented in Table 2a.  The angle differences | i – j| in the AC solution are relatively small in this example, and 

the PL-1 and PL-2 solutions are reasonable approximations to the true solution.  The low voltage solutions, 

which were obtained in some cases, are shown in Table 2b. 

  

 

Starting point (radians) Number of iterations required to converge 

   AC PL-1 PL-2 

0.0 0.0 0.0 4 4 4 

0.0 -0.5 -1.0 8 8 4 

0.0 -1.0 -2.0 9* 9* 4 

0.0 -1.5 -3.0 diverges 9* 5 

* indicates a low voltage solution was obtained 

Table 1: Convergence of models from wide-angle starting points for 3-node network 

 

Node V (pu) V’ (pu) V’’ (pu) (rad.) ’ (rad.) ’’ (rad.)

1 1.0 1.0 1.0 0.0 0.0 0.0 

2 0.9140  0.9140 0.9226 -0.0987 -0.0985 -0.0976 

3 0.8725 0.8725 0.8830 -0.1551 -0.1549 -0.1528 

Table 2a: Normal (high voltage) solutions for alternative models for 3-node network 

   

Node V (pu) V’ (pu) (rad.) ’ (rad.)

1 1.0 1.0 0.0 0.0 

2 0.5107  0.5095 -0.1772 -0.1767 

3 0.1375 0.1326 -0.8728 -0.8426 

Table 2b: Low voltage solutions obtained in some cases for 3-node network 

 

3.2 Heavily loaded networks 

The tests presented in the previous section are academic, since the network is reasonably easy to solve from a flat 

start, and the convergence difficulties were created artificially by using wide-angled starting voltages.  This 

section will examine more heavily loaded networks for which practical convergence problems may exist.  
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The 3-node test network used in the previous section has been modified by changing the parameters of both lines 

to R = 0.005pu, X = 0.05pu, B = 0.2pu and increasing the load at node 2 to P2 = -3.0pu, Q2 = -0.5pu. The reactive 

load on node 3 is Q3 = -0.5pu, but the active power load on node 3 will be varied. Table 3 shows the number of 

iterations required to converge, for each model, over a range of active power load levels on node 3. 

 

Active power load  

P3 (per unit) 

Number of iterations required to converge 

AC PL-1 PL-2 Sequential 

( PL-2 + PL-1 + AC ) 

3.0 7 7 4 4 + 5 + 4 

3.03125 8 7 4 4 + 6 + 4 

3.0625 diverges 7 4 4 + 6 + diverges 

3.125 diverges diverges 4 4 + diverges + n.a. 

7.0 diverges diverges 4 4 + diverges + n.a. 

15.0 diverges diverges 6 6 + diverges + n.a. 

17.5 diverges diverges 7 7 + diverges + n.a. 

20.0 diverges diverges diverges diverges + n.a. + n.a. 

Table 3: Convergence of models for heavily-loaded 3-node network 

 

It can be seen that the Newton Raphson process applied to the AC model is able to converge (from a flat start) up 

to a load level of P3 = 3.03125 pu. The PL-1 model is able to converge up to P3 = 3.0625 pu, and the PL-2 model 

can converge up to P3 = 17.5 pu.  These results illustrate that the pseudo-loadflow models have a wider range of 

convergence than the AC model, and could therefore be useful as a diagnostic aid for networks which do not seem 

to have any conventional AC solution.   

For a load level P3 = 3.03125 pu, the true AC solution (V, ), the PL-1 solution (V’, ’) and PL-2 solution 

(V’’, ’’) are presented in Table 4. Under this heavy load condition (which is the maximum load for which the NR 

process converges with the AC model) the pseudo-loadflow solutions are a relatively poor approximation to the 

AC loadflow, but they can be seen to provide an improved starting point for the AC model. 
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Node V (pu) V’ (pu) V’’ (pu) (rad.) ’ (rad.) ’’ (rad.)

1 1.0 1.0 1.0 0.0 0.0 0.0 

2 0.7410  0.7620 0.9250 -0.4129 -0.3903 -0.3220 

3 0.6449 0.6735 0.8840 -0.7305 -0.6812 -0.5047 

Table 4: Model solutions for heavily-loaded 3-node network 

A further test was undertaken to examine whether a converged AC model could be obtained at P3 = 3.0625 pu by 

solving the PL-2, PL-1 and AC models sequentially, using the converged solution from each model as a starting 

point for the subsequent (more accurate) model.  This approach did not improve on the AC result in this case and 

led to the sequence of iterations: (PL-2: 4 iterations, PL-1: 6 iterations, AC: diverges).  The results of applying 

the sequential approach at other loading levels are also shown in Table 3.  The sequential approach was found to 

be beneficial in some other cases considered later, but was never found to give any improvement when 

convergence difficulties were created by heavy loading (over a range of test cases).  One possible explanation is 

that the NR algorithm used incorporates a number of features to encourage convergence (briefly described in 

Appendix 3) and hence the NR process is able to converge the AC loadflow at load levels close to the maximum 

feasible load. 

    

3.3 Networks with high levels of shunt reactance 

Networks with high levels of reactive compensation may also cause convergence problems for the NR solution of 

the AC loadflow problem. To investigate this aspect, a shunt capacitor was introduced into the modified 3-node 

test network at node 3, with loads P2, P3 = -1.0pu and Q2, Q3 = -0.5pu. Table 5 shows the convergence 

performance, with various shunt capacitor susceptances, of the NR process for the AC model and for the 

sequential approach (in which PL-2 is used to provide a starting point for PL-1, which in turn is used to give a 

starting point for the AC model). In the sequential approach, each model is converged to a mismatch of less than 
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10
-8

pu and there is no attempt to obtain speed improvements by only partially converging the PL-2 and PL-1 

models.  The sequential starting process enables convergence of the AC model for shunt values between 4.48 pu 

and 4.55 pu, where convergence could not be obtained by the conventional AC NR process from a flat start. There 

is an interesting case, for B3 = 4.6 pu, where the conventional process finds a low voltage solution, but the 

sequential process finds the normal high voltage solution.  Interestingly, the conventional process is again able to 

converge successfully over the range B3 = 4.7 pu to B3 = 4.995 pu. It is important to note that in all the cases 

studied (including many additional cases not presented here) the sequential process always converged whenever 

the conventional process converged. 

  

Shunt susceptance  

B3 (per unit) 

Number of iterations required to converge 

AC Sequential  

( PL-2 + PL-1 + AC ) 

2.0 4 4 + 3 + 2 

4.4 9 7 + 3 + 2 

4.45 12 7 + 3 + 2 

4.47 12 7 + 3 + 2 

4.48 diverges 7 + 3 + 2 

4.49 diverges 7 + 3 + 2 

4.5 diverges 7 + 3 + 2 

4.51 diverges 8 + 3 + 2 

4.52 diverges 8 + 3 + 2 

4.55 diverges 8 + 3 + 2 

4.6 16* 8 + 3 + 2 

4.7 8 8 + 3 + 2 

4.8 9 9 + 3 + 2 

4.95 9 9 + 3 + 2 

4.98 10 10 + 3 + 2 

4.99 10 10 + 3 + 2 

4.995 10 10 + 3 + 2 

5.0 diverges diverges + n.a. + n.a. 

5.2 diverges diverges + n.a. + n.a. 

5.5 diverges diverges + n.a. + n.a. 

* indicates a low voltage solution was obtained 

Table 5: Convergence of models for modified 3-node test network 
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To study the effect of high levels of shunt reactance further, the IEEE 30 node test network [12], which includes 

two shunt capacitors, has been modified by artificially increasing the susceptance of these shunts by a factor . 

Table 6 shows the convergence performance of the NR process for the AC model and for the sequential approach.  

This test problem includes effective Q-limits at generators, and the stabilised approach to node type switching 

(described in Appendix 3) results in 7 iterations being required for NR convergence of the AC model with the 

normal shunt parameters ( =1.0). The sequential starting process does not help to achieve AC convergence for 

shunt multiples up to = 180, nor = 205.0 and above. However, there is a range from = 185.0 to = 200.0 

over which the sequential starting process allows an AC solution to be found, where none could be found using the 

conventional AC loadflow from a flat start.   

 

Multiplier for nodal 

shunt susceptances  

Number of iterations required to converge 

AC Sequential  

( PL-2 + PL-1 + AC ) 

1.0 7 5 + 4 + 2 

100.0 10 5 + 3 + 7 

150.0 22 6 + 3 + 18 

155.0 diverges 7 + 3 + diverges 

160.0 diverges 7 + 3 + diverges 

175.0 diverges 7 + 3 + diverges 

180.0 diverges 8 + 3 + diverges 

185.0 diverges 8 + 3 + 13 

190.0 diverges 8 + 3 + 12 

200.0 diverges 9 + 3 + 11 

205.0 diverges 9 + 3 + diverges 

210.0 diverges 10 + 3 + diverges 

220.0 diverges diverges + n.a. + n.a. 

Table 6: Convergence of models for modified IEEE 30 node test network 
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3.4 Large scale networks 

Larger scale test problems [11,12] have also been solved to confirm the performance of the proposed models on 

practical sized networks.  Table 7 presents the convergence performance of the models for larger networks.  

These models do not include node type switching, and hence the NR AC model is able to converge to within 

10
-8

pu in 4 iterations.  The sequential process is able to converge as expected for these larger systems, 

confirming the quadratic convergence of the NR process applied to the pseudo-loadflow models.  No new 

qualitative phenomena were observed in a range of tests on these larger networks.  The computer time (using a 

3.4GHz Pentium IV) needed to solve these networks could not be measured exactly, but was a small fraction of a 

second in each case. 

 

Number of network 

nodes 

Number of iterations required to converge 

AC Sequential  

( PL-2 + PL-1 + AC ) 

118 4 3 + 3 + 2 

629 4 3 + 3 + 2 

734 4 3 + 3 + 2 

Table 7: Convergence of models for larger test networks 

 

IV. CONCLUSIONS 

New approximate loadflow models have been presented which are intermediate between the AC and DC loadflow 

models.  These pseudo-loadflows have been demonstrated to provide a useful starting process for the solution of 

AC loadflow models which exhibit convergence difficulties. In particular networks with high levels of reactive 

compensation can be successfully solved where the conventional method diverges.  Since the pseudo-loadflow 

models have a wider range of convergence (for the Newton-Raphson process) than the conventional AC model, 

they may also be useful to diagnose physical, or data-related, problems in difficult networks.  By applying the 
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Newton Raphson process to the pseudo-loadflow models, quadratic convergence can be obtained giving good 

computational efficiency. 
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VI. APPENDIX 1 

The Jacobian elements for the pseudo-loadflow type-1 (PL-1) equations, (3) and (4), are: 

Pi / ’i = - V’i (j=1,n) V’j ( Gij ( ’i ’j) - Bij ) 

Pi / ’j = V’i V’j ( Gij ( ’i ’j) - Bij ) 

Pi / V’i = V’i Gii + Pi / V’i 

Pi / V’j = V’i ( Gij (1 – ( ’i ’j)
2
/2) + Bij ( ’i ’j) ) 
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Qi / ’i =  V’i (j=1,n) V’j ( Gij  + Bij ( ’i ’j)) 

Qi / ’j = - V’i V’j ( Gij  + Bij ( ’i ’j)) 

Qi / V’i = -V’i Bii + Qi / V’i 

Qi / V’j = V’i ( Gij ( ’i ’j) - Bij (1 – ( ’i ’j)
2

/2) ) 

 

The Jacobian elements for the pseudo-loadflow type-2 (PL-2) equations, (5) and (6), are: 

Pi / ’’i = V’’i (j=1,n) V’’j Bij 

Pi / ’’j = -V’’i V’’j Bij 

Pi / V’’i = V’’i Gii + Pi / V’’i 

Pi / V’’j = V’’i ( Gij + Bij ( ’’i ’’j) ) 

Qi / ’’i =  V’’i (j=1,n) V’’j Gij  

Qi / ’’j = - V’’i V’’j Gij 

Qi / V’’i = -V’’i Bii + Qi / V’’i 

Qi / V’’j = V’’i ( Gij ( ’’i ’’j) - Bij ) 

 

 

 

VII. APPENDIX 2 

The three node test network used in section 3.1 has the following data: 

Node Net Active 

Power Injection 

P (per unit) 

Net Reactive 

Power Injection 

Q (per unit) 

Nodal Shunt 

Susceptance 

B (per unit) 

Nodal Shunt 

Conductance 

G (per unit) 

1 (slack) (slack) 0.0 0.0 

2 -1.0 -0.5 0.0 0.0 

3 -1.0 -0.5 0.0 0.0 

Table A2.1: Node data for 3-node Test Network 
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Sending Node Receiving Node Branch Resistance 

R (per unit) 

Branch Reactance 

X (per unit) 

Total Charging 

Susceptance B (per unit) 

1 2 0.01 0.05 0.002 

2 3 0.01 0.05 0.002 

Table A2.2: Branch data for 3-node Test Network 

 

 

VIII.  APPENDIX 3 

The Newton Raphson algorithm which has been used has a number of features which are designed to enhance 

convergence. These are briefly described in the following subsections. 

 

A3.1 Limits on Voltage Magnitude and Angle Increments 

The voltage magnitude increments determined by the NR process are limited to + 0.25per unit, and the voltage 

phase angle increments are limited to + /4 radians.  This tends to reduce the possibility for divergence, 

especially during the initial iterations. 

 

A3.2 Numerical Precision 

All numerical calculations are performed with 64-bit precision. The use of high precision avoids ill-conditioning 

that can arise from Jacobian matrices with widely varying coefficient values (e.g. due to a combination of very 

high and very low per unit impedances in the same network).  

 

A3.3 Node Type Switching 

Switching of PV-type nodes to PQ-type nodes (when Q limits are exceeded) can destabilize the convergence of the 
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NR process if switching decisions are based on non-converged information.  In the present implementation, node 

type switching is only performed in iterations where the maximum mismatch is less than 5.0 x 10
-2

 per unit.   

 

A3.4 Sub-matrix Processing 

The solution of the Jacobian equation, via sparse matrix methods, in loadflow algorithms, usually relies on 

diagonal pivoting for sparsity preservation.  By applying a technique [11], in which each sparse matrix 

element is itself a 2x2 sub-matrix, it is possible to preserve numerical stability in cases where either the P/

coefficient or the Q/ V coefficient (but not both) become too small in magnitude for good numerical stability. 

(This can arise for networks with significant reactive compensation, e.g. series capacitors.) 


