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ABSTRACT 

This paper presents a technique which attempts to aid the 
simulationist in the decision as to whether or not a 
simulation should be implemented on a multiprocessing 
computer. The proposed technique has been used to 
estimate the performance of parallel discrete event 
simulations. This employs critical path analysis to 
determine the lower bound of the execution time of a 
parallelised simulation and has been used by other 
authors to study the effect that process scheduling and 
causality maintenance protocols have on performance. 
The contribution of this paper is the extension of this 
technique to a class of common simulation models 
which demand resource sharing. This forces a parallel 
implementation to use some kind of information 
exchange protocol. A case study is presented which 
illustrates the potential usefulness of this technique. 
This employs a performance analysis tool developed for 
this purpose which has been implemented using the 
simulation package SESiWorkbench. 

1 INTRODUCTION 

The techniques used to implement a discrete event 
simulation on a multiprocessing computer form the field 
of Parallel Discrete Event Simulation (PDES). The dual 
reasons for parallelising a discrete event simulation are 
reduced execution time (by sharing work across many 
processors) and increased problem size (in terms of 
memory required and completion time). In these terms, 
reports of many simulations that have been successfully 
implemented can be found in Fujimoto (1993). The 
same paper indicates that success cannot be guaranteed 
due to the many complex considerations of PDES. This 
lack of guarantee makes it difficult for a user to commit 
to what could be a high expenditure in terms of hardware 
purchase and software development. 

Ultimately, the potential success of parallelising a 
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simulation depends on the amount of parallelism, in 
terms of causal and data dependencies, within the model 
being simulated. It would be advantageous to be able to 
predict the potential speedup that could be expected by 
implementing the simulation on a multiprocessing 
computer. The question is, “Is the analysis of model 
parallelism enough to justify the decision to parallelise ?” 

This is then the ultimate goal of work being performed 
by the authors of this paper. This paper presents the 
current state of work on the approach being taken to 
analyse the parallelism of simulation models. This 
focuses on simulations which model physical systems 
that share resources. An artificial case study is presented 
to illustrate these techniques. 

It will be assumed that the reader is familiar with the 
general approaches used in PDES. Excellent 
introductions to the field can be found in Fujimoto 
(1993) and Nicol and Fujimoto (1993). 

2 PARALLELISM ANALYSIS OF PDES 

A useful technique to analyse the parallelism of a model 
is critical path analysis (CPA). This technique has been 
used to determine a lower bound on the completion time 
of a PDES (Berry and Jefferson 1985, Livny 1985, Berry 
1986, Jefferson and Reiher 1991, Lin 1992 and 
Srinivasan and Reynolds 1993). All apart from Lin 
(1992) have studied the effect that the ordering protocols 
used in PDES have on the lower bound completion time. 
Lin (1992) has also used CPA to study the effect that LP 
scheduling policies have on performance. For a 
complete derivation of the CPA method, the reader 
should consult the treatment given in Lin (1992) or 
Taylor (1993). 

Operationally, the CPA technique performs a 
simulation of a PDES and records each LP’s progress 
through time. In a PDES, let event e be scheduled at 
LPi. Let e . a  be the real time that event e is scheduled 
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at LP ;  (the time that the timestamped message 
scheduling event e arrives at LPj) and Ti be the real time 
that a process LPj has reached. Let e. E be the set of 
events scheduled due to the execution of e and let &e) 
be the time taken for a timestamped event message 
representing an event in the set e.E to be sent from LPi 
to another LP. Figure 1 shows the algorithm to find the 
critical path execution time. The calculation in line 9 
updates the real time clock Ti of LPi to the maximum of 
the current value of Ti and e. a plus the real execution 
time of event e, q(e). The calculation in line 12 
determines the time at which event messages generated 
by LPi arrive at their destination LPs. The calculation 
in line 14 gives the equivalent sequential execution time. 

/* initialisation *I 
1. FORALLiDO 
2 .  Ti : = O  
3 .  ENDFOR; 
4. 
5. e . a  :=0 
6. ENDFOR; 

/* main loop */ 
7. WHILE NOT end of simulation DO 

FOR ALL e pre-scheduled in the event list DO 

/* Let event e be the next event to be executed in 
the sequential simulation */ 

/* Update the real time clock of LPi */ 
Ti := max(Ti, e . a )  + q(e) ; 

8. EXECUTEe; 

9. 
10. FOR ALL e‘Ee.E DO 
1 1. SCHEDULE e‘ 
12. 
13. ENDFOR; 
14. 
15. ENDWHILE. 

e’.a := Ti + &e’) 

Ts = Ts + q(e) 

Figure 1 : Critical Path Analysis Algorithm 
(Lin 1992) 

Adding computation and communication times, this 
algorithm will give an estimate of the parallelism within 
the model in terms of estimated speedup (the estimated 
sequential run time Ts divided by the estimated run time 
of the PDES (ie. the LP with the largest Ti)). 

A criticism of this is that the estimated speedup is not 
an estimate of the parallelism within a given model but 
an evaluation of the decomposition of the model into 
LPs. This is a valid point. However, be it an 
evaluation of the parallelism within a simulation model 
or an evaluation of the decomposition strategy, this 
approach still provides a starting point in the study of 
justifying whether or not to go parallel. 

3 PERFORMANCE ANALYSIS OF PDES: 
A CASE STUDY 

To introduce how performance estimates can be 
determined, we consider a modelling technique and a 
parallelisation strategy. Petri Nets (PNs) provide a 
method for conceptualising a problem in terms of the 
logical flow of objects in the system (Peterson 1981, 
Marsan 1995). The model is represented as a bipartite 
multigraph with two types of nodes; places and 
transitions. 

Places are usually drawn as circles and transitions as 
bars (straight lines). Each transition can have input and 
output functions that are defined by directed arcs. The net 
is executed by defining a marking for the places and then 
firing transitions. A marking is a distribution of tokens 
to the places of the PN, where tokens can under certain 
assumptions represent entities in a physical system. The 
marking represents the state of the system. 

A transition is enabled when all of its input places 
have one or more tokens. A transition fires by removing 
one token from each of its input places and adding one 
token to each of its output places. The state of the 
system (the marking) changes as a result of the 
occurrence of events (transition firing). 

For our purposes we will use an individual-token net 
to illustrate our problem. In individual-token nets every 
token represent an entity. The arcs of the net are labelled 
with the type of entities they can cany (coloured tokens). 

Coloured tokens can represent the system’s objects or 
entities in a simulation model. An entity is any 
component of the model that can be imagined to retain 
its identity through time. Entities are either idle, 
represented as places, or engaged in time consuming 
activities (represented as timed transitions). This 
sequence of idle and active states constitutes the life cycle 
of the entity. The model is then created by combining all 
of the individual life cycles. Obviously, these models 
cannot support token split and merger as tokens represent 
entities and not conditions. 

This 
models a physical system where two entities must spend 
time together, co-operating in some activity or with 
some shared resource. In terms of the PN, an entity 
must be in place Pi and an entity must be in place P2 
for the transition Ti to be fired. 

Conceptually, once this transition has fired the two 
entities are consumed. After the simulated time for the 
transition to complete has passed, the transition produces 
two entity copies that appear in the places P3  and P4  
following the transition. 

Decomposing this partial PN model into a PDES 
presents several possibilities. For purposes of this case 
study, we will use the technique put forward in Taylor 

Consider the partial PN model of Figure 2 .  
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(1991) and Taylor (1993). The choice is arbitrary as we 
are concerned with illustrating the method by which the 
potential performance of a PDES can be estimated rather 
than evaluating a given PDES technique. 

Decomposing the model of Figure 2 in terms of the 
event orientation (Derrick, Balci and Nance 1989), we 
associate LPs with each place in the model. This 
generates four LPs; L P 1 ,  L P 2 ,  L P 3  and L P 4  
representing P i ,  P 2 ,  P 3  and P 4  respectively. 
Transitions are represented as event messages; an event 
message is sent from one LP to another indicating the 
time at which a transition will finish and produce tokens 
for another place. For example, LP1 will send an event 
message to LP3 to indicate the finish time of transition 
T i  and the arrival of a token at P3, LP2 will send an 
event message to LP4 to indicate the finish time of 
transition T i  and the arrival of a token at P4. 

Figure 2: Model Illustrating Shared 
Resources 

A problem arises when either LP1 or LP2 receives an 
event message from any transitions that precede them. 
Given that an event message represents the arrival of an 
entity in the place represented by an LP, if LP1 receives 
an event message, it must determine if the arriving entity 
can be consumed by transition T i .  As the firing of T i  
depends on the contents of both P i  and P2 containing an 
entity, LP1 cannot make the decision by itself; it needs 
information about the contents of P2. As PDES dictates 
that information can only be shared between LPs by 
message exchange, to get this information LP1 must 
query LP2 about its contents, make the decision as to 
whether or not T i  can fire and inform LP2 about its 
decision. An information sharing protocol is therefore 
required to resolve this problem. Using the protocol 
discussed in Taylor (1991) and Taylor (1993) LP1 will 
send a timestamped query message to LP2 to request 
current state information. LP1 will then wait for LP2 to 

respond. LP2 responds by sending a reply message to 
LP1 containing information about its current contents. 
With this information about the combined state of LP1 
and LP2, LP1 can now determine if transition T i  can 
fire. If T i  can fire, LP1 has the task of performing the 
simulation of T i  (determining the entities that transition 
T i  will produce and the time at which such entities will 
enter the places following Ti). Once LP1 has done this 
it deletes entities consumed by T i  from its own state, 
sends an update message back to LP2 and sends a 
timestamped event message to LP3 informing the LP 
that an entity is scheduled to arrive in place P3 at the 
time at which transition T i  finishes. On receipt of the 
update message, LP2 updates its state (by removing 
entities consumed by the transition T i )  and sends a 
timestamped event message to LP4 informing the LP 
that an entity is scheduled to arrive in place P4 at the 
time at which transition T i  finishes. If T i  did not fire, 
then the update message must still be sent to complete 
the synchronous round of message exchange. However, 
no event messages will be sent as the transition did not 
fire. Finally, if LP2 had received the event message, 
then the roles of the two LPs would be reversed. 

The decomposed form of the partial PN model is 
shown in Figure 3 and the above discussion of the QRU- 
protocol is illustrated in Figure 4. 

- - * * - - - - - ~  QRU-protocol Messages 

-b Event Message 

Figure 3: Decomposed Model 
Illustrating Shared Resources 

Note that the design approach taken to this protocol 
postpones PDES ordering requirements. For purposes of 
this study, we will assume that messages will arrive in 
the correct order. 

Remaining consistent with the terminology of the 
QRU-protocol, the requirement to share information 
between two or more LPs is the consequence of a 
distributed event. 
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LQ receives Instigant LP, I. A LP receiving an event message 
which then instigates execution in the partition. 

Non-instigant LP, NI. These are all the other LPs in 
the partition. 

The LP type has bearing on the real time that a given 
LP sends event messages and finishes execution in a 
partition. For a partition Mi,  let T(Mi) be the earliest 
real time partition Mi receives an event message. Let 
T(Mi)l  and ? ( M i ) N I  be the earliest real times when LPs 
of type I and N I  finish execution. We assume that a 
transition will only fire once for any set of markings. 
Let q(Ti) be the execution cost for a transition Ti. Let 
ETil, and ETiNI be the set of event messages sent by 
LPs of type I and N I  for transition T i .  Let 
ETil.U.andETiNI.01 be the real times at which the event 
messages are due to arrive at their destination processes. 
Let 6(Q),  6 ( R ) ,  &U) and 6 ( E )  be the 
communication times for query, reply, update and event 
messages sent from one LP to another when evaluating a 
transition. Note that if any transition does not fire, then 

LP1 LP2 LP3 LP4 the communication cost due to the QRU protocol is still 
incurred. If it is assumed that each LP executes in 
parallel then, for a partition with one transition and one 
place, 

- 

Figure 4: Illustration of the QRU-Protocol 

A distributed event represents a synchronisation barrier 
across the LPs participating in that event. Further, 
boundaries can be identified which group together LPs 
participating in a series of distributed events. Such a 
tightly coupled group of LPs has been termed apartition. 
The extent of a partition is defined by the extent of the 
distributed events executed within the partition. Event 

1 - 
Z ( M i ) I  = T(Mi)+ C q(Ti) 

i 

and 

messages are received by, and sent from, the processes in 1 
a partition across the partition border. Actions within a ETiI. a = Z( Mi) + q( Ti) + 6( E )  
partition are entirely dependent on messages received 
across the partition border. For example, LP1 and LP2 

1 

form a partition. 

3.1 A Performance Model 

In a PN model there will be a set of places P ,  consisting 
of the queues P I ,  P 2 ,  ..., P ,  and a set of transitions T 
consisting of the transitions T i ,  T2, ..., Ty, where x and 
y are the number of places and transitions respectively. 
Decomposing such a model into a parallel simulation 
under the previously discussed approach will yield a set 
of processes L P ,  such that LP1 = P I ,  LP2 = P2,  ..., 
LP,  = P,. Each process participates in distributed 
events as dictated by the PN model. On the basis of 
mutually exclusive sets of transitions the parallel 
simulation will have a set of partitions M, consisting of 
the partitions M I ,  M2,  ..., Mz, where z is the number of 

Each partition Pi can potentially contain two types of 
partitions. 

LP. 

There are no N I  processes in such a partition. For 
partitions with many transitions and one place, 

where i’ is the number of transitions in the partition, and 

i” 
E T i l . U . = T ( P i ) + C q ( T i ) + 6 ( E )  

i 

where i” is the index of the successfully firing partition. 
There are no NI processes in such a partition. 

For purposes of this case study, when there are many 
places and transitions in a partition, we will assume two 
possible interconnections. The first is fully sequential 
and the second fu l ly  parallel. In the first case, all the 
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places are connected to all of the transitions in a 
partition. This sequentialises the parallel execution in 
such a partition as each transition is dependent on all of 
the places in the partition; the LPs of the partition must 
continually exchange information. The second case 
assumes that all places share one and only one transition 
in the partition (a necessary condition). All places then 
have equal numbers of transitions connected to them. In 
this allocation, each place therefore shares a common 
transition and then has exclusive connection to zero or 
more transitions. The effect of this is that once the 
common transition has been evaluated, each LP can then 
evaluate its own transitions independently (and in 
parallel) with the other LPs of the partition. As these 
other partitions are effectively shared out amongst the 
places of the partition, the parallelism in a partition is 
maximised. 

As will be seen, the choice of this model leads to 
fairly expected results. We take this opportunity to 
emphasise that the purpose of this paper is to introduce 
the reader to the technique rather than to perform 
evaluations of realistic models or protocols. 

For fully sequential partitions we therefore have 

i’ 

?(Mi),= Z ( M i ) + x q ( T i ) + i ’ S ( Q )  
r 

+i’S(R) + (i’ - l)S(U) 

and 

i” 

ETi1.a = Z(Mi)  + C q(Ti)+ i”S(Q) 
i 

+i”S(R) + (i” - l)S( U )  + &E) 

ET;]. a = Z(Mi)+ 2 q(Ti)+ i”6(Q) 
I 

+i”6( R )  + i”S( U )  + 6( E )  

where i’ is the number of transitions in the partition and 
i” represents the index of the successfully firing 
transition. For fully parallel partitions we have, 

int( (i’-l)/j)+l 
- 
Z ( M i ) I  = T(Mi)+ C q ( T i )  

I 

+(int((i’- l)/j)+ l)S(Q) 

+(int((i’ - l ) / j )  + 1)6(R) 

+(int((i‘ - l ) / j > ) S ( ~ )  

where j is the number of places in the partition, and 

int((i’-l)/j)+l - 
Z ( M i ) N I  = Z(Mi)+ c q(Ti) 

i 

+(int((i’- l)/j) + l)S(Q) 

+(int((i’- I ) / j )  + 1)S(R) 

+(int((i’ - l ) / j )  + ~ ) S ( U )  

and 

i” 

ETiI.a= T ( k f i ) + ~ ~ ( T i ) f i P 6 ( Q )  
i 

+i”6(R) + (i” - l>S(U) + 6( E )  

i” 

ETiN1.a = T(Pi)+Cq(Ti )+i”&(Q)  
1 

+i”&(R)+i”S(U)+ &E)  

To determine the estimated execution time, we modify 
the algorithm of Figure 1, by replacing line 9 and line 
12 with appropriate execution time and communication 
time calculations. 

3 . 2  Results 

The modified algorithm in Figure 1 has been 
implemented for the fully connected model using a 
performance analysis tool implemented under the 
simulation package SESIWorkbench (Scientific 
Engineering Software Inc. 1992). For purposes of this 
case study, several simulation runs were made for 
different model parameters. These parameters assumed 
uniform partitions, with the number of transitions equal 
to the number of places. 

Two strategies were employed. The results to one 
experiment are shown here; the investigation of the effect 
of reducing the communications overhead within a 
partition by merging LPs. It was assumed that 
communication time remained constant and that the 
transition firing cost changed proportionately with the 
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number of LPs in the partition. 
As can be seen in the graphs in Figure 5 and Figure 6, 

for the fully connected model, under conditions where 
partitions are forced into completely sequential execution 
(fully sequential), the worst speedup is obtained when the 
overall partition granularity is small (in the case of two 
LPs per partition). Increasing granularity by first 
increasing the number of LPs and then merging, 
generally increases performance. The difference becomes 
marginal between 16 LPdPartition (E = 8) and 2 
LPsPartition (E = 64). This indicates that if a partition 
has largely sequential execution, LPs should be merged 
to reduce communications overhead and to increase LP 
granularity. When partitions are fully parallel, the best 
performances can be expected when there are many LPs 
that can be executed simultaneously. This is an intuitive 
result and is indeed the case, the best performance being 
when there are 128 LPdPartition. The worst 
performances are obtained when there are few 
LPdPartition. 

4 CONCLUSIONS 

This paper has presented a potentially powerful 
performance analysis tool which could possibly be used 
to estimate the worth of parallelising a discrete event 
simulation model and the structure thereof. A case study 
has been presented which deals with the performance 
analysis of a simulation model with distributed events. 
The results obtained show that for a fully connected 
model speedups are possible under some fully sequential 
and fully parallel conditions. At this level of analysis, it 
is implied that PN models such as those discussed in the 
paper should only be parallelised when good speed up is 
expected (in this case, when there are many fully parallel 
partitions). 

So, on the basis of the case study, can we answer the 
question “Is the analysis of model parallelism enough to 
justijj the decision to parallelise?” Of course not. The 
case study is far too simple to serve as anything else but 
an example of how we could go about the analysis of 
parallelism in a model. On the basis of this method, our 
research is currently formulating a series of more realistic 
models which take into account factors such as 
aggregation when there are more LPs than processors. 
For each model we will obtain the estimate of 
performance and then compare this against an actual 
implementation of such. The results of this exercise 
will be available at the time of the conference. 

We expect the likely conclusion of this work to be 
that although the estimation of parallelism by 
simulation gives an indication of expected performance, 
the actual figure is misleading. The reason for this is 
that the current method does not take into account actual 

processing and communication times, LP to processor 
mapping and scheduling and the effect that the ordering 
protocol has on performance. It is considered that for 
this technique to be successful, these factors must be 
taken into account. 

We must therefore emphasise that the contents of this 
paper represents the first step on a very long road. 
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