
Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

ESTIMATING THE BENEFIT OF THE PARALLELISATION OF DISCRETE EVENT
SIMULATION

Simon J.E. Taylor
Farshad Fatin

Dept. of Computer Science and Information Systems
at St. John’s

Brunel University, West London
Uxbridge, Middx UB8 3PH, U.K.

ABSTRACT

This paper presents a technique which attempts to aid the
simulationist in the decision as to whether or not a
simulation should be implemented on a multiprocessing
computer. The proposed technique has been used to
estimate the performance of parallel discrete event
simulations. This employs critical path analysis to
determine the lower bound of the execution time of a
parallelised simulation and has been used by other
authors to study the effect that process scheduling and
causality maintenance protocols have on performance.
The contribution of this paper is the extension of this
technique to a class of common simulation models
which demand resource sharing. This forces a parallel
implementation to use some kind of information
exchange protocol. A case study is presented which
illustrates the potential usefulness of this technique.
This employs a performance analysis tool developed for
this purpose which has been implemented using the
simulation package SESiWorkbench.

1 INTRODUCTION

The techniques used to implement a discrete event
simulation on a multiprocessing computer form the field
of Parallel Discrete Event Simulation (PDES). The dual
reasons for parallelising a discrete event simulation are
reduced execution time (by sharing work across many
processors) and increased problem size (in terms of
memory required and completion time). In these terms,
reports of many simulations that have been successfully
implemented can be found in Fujimoto (1993). The
same paper indicates that success cannot be guaranteed
due to the many complex considerations of PDES. This
lack of guarantee makes it difficult for a user to commit
to what could be a high expenditure in terms of hardware
purchase and software development.

Ultimately, the potential success of parallelising a

Thierry Delaitre

Centre for Parallel Computing
University of Westminster
115 New Cavendish Street
London W1M 8JS, U.K.

simulation depends on the amount of parallelism, in
terms of causal and data dependencies, within the model
being simulated. It would be advantageous to be able to
predict the potential speedup that could be expected by
implementing the simulation on a multiprocessing
computer. The question is, “Is the analysis of model
parallelism enough to justify the decision to parallelise ?”

This is then the ultimate goal of work being performed
by the authors of this paper. This paper presents the
current state of work on the approach being taken to
analyse the parallelism of simulation models. This
focuses on simulations which model physical systems
that share resources. An artificial case study is presented
to illustrate these techniques.

It will be assumed that the reader is familiar with the
general approaches used in PDES. Excellent
introductions to the field can be found in Fujimoto
(1993) and Nicol and Fujimoto (1993).

2 PARALLELISM ANALYSIS OF PDES

A useful technique to analyse the parallelism of a model
is critical path analysis (CPA). This technique has been
used to determine a lower bound on the completion time
of a PDES (Berry and Jefferson 1985, Livny 1985, Berry
1986, Jefferson and Reiher 1991, Lin 1992 and
Srinivasan and Reynolds 1993). All apart from Lin
(1992) have studied the effect that the ordering protocols
used in PDES have on the lower bound completion time.
Lin (1992) has also used CPA to study the effect that LP
scheduling policies have on performance. For a
complete derivation of the CPA method, the reader
should consult the treatment given in Lin (1992) or
Taylor (1993).

Operationally, the CPA technique performs a
simulation of a PDES and records each LP’s progress
through time. In a PDES, let event e be scheduled at
LPi. Let e . a be the real time that event e is scheduled

674

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:49:00 UTC from IEEE Xplore. Restrictions apply.

Estimating the Benefit of the Parallelisation 675

at LP ; (the time that the timestamped message
scheduling event e arrives at LPj) and Ti be the real time
that a process LPj has reached. Let e. E be the set of
events scheduled due to the execution of e and let &e)
be the time taken for a timestamped event message
representing an event in the set e.E to be sent from LPi
to another LP. Figure 1 shows the algorithm to find the
critical path execution time. The calculation in line 9
updates the real time clock Ti of LPi to the maximum of
the current value of Ti and e. a plus the real execution
time of event e, q(e). The calculation in line 12
determines the time at which event messages generated
by LPi arrive at their destination LPs. The calculation
in line 14 gives the equivalent sequential execution time.

/* initialisation *I
1. FORALLiDO
2 . Ti : = O
3 . ENDFOR;
4.
5. e . a :=0
6. ENDFOR;

/* main loop */
7. WHILE NOT end of simulation DO

FOR ALL e pre-scheduled in the event list DO

/* Let event e be the next event to be executed in
the sequential simulation */

/* Update the real time clock of LPi */
Ti := max(Ti, e . a) + q(e) ;

8. EXECUTEe;

9.
10. FOR ALL e‘Ee.E DO
1 1. SCHEDULE e‘
12.
13. ENDFOR;
14.
15. ENDWHILE.

e’.a := Ti + &e’)

Ts = Ts + q(e)

Figure 1 : Critical Path Analysis Algorithm
(Lin 1992)

Adding computation and communication times, this
algorithm will give an estimate of the parallelism within
the model in terms of estimated speedup (the estimated
sequential run time Ts divided by the estimated run time
of the PDES (ie. the LP with the largest Ti)).

A criticism of this is that the estimated speedup is not
an estimate of the parallelism within a given model but
an evaluation of the decomposition of the model into
LPs. This is a valid point. However, be it an
evaluation of the parallelism within a simulation model
or an evaluation of the decomposition strategy, this
approach still provides a starting point in the study of
justifying whether or not to go parallel.

3 PERFORMANCE ANALYSIS OF PDES:
A CASE STUDY

To introduce how performance estimates can be
determined, we consider a modelling technique and a
parallelisation strategy. Petri Nets (PNs) provide a
method for conceptualising a problem in terms of the
logical flow of objects in the system (Peterson 1981,
Marsan 1995). The model is represented as a bipartite
multigraph with two types of nodes; places and
transitions.

Places are usually drawn as circles and transitions as
bars (straight lines). Each transition can have input and
output functions that are defined by directed arcs. The net
is executed by defining a marking for the places and then
firing transitions. A marking is a distribution of tokens
to the places of the PN, where tokens can under certain
assumptions represent entities in a physical system. The
marking represents the state of the system.

A transition is enabled when all of its input places
have one or more tokens. A transition fires by removing
one token from each of its input places and adding one
token to each of its output places. The state of the
system (the marking) changes as a result of the
occurrence of events (transition firing).

For our purposes we will use an individual-token net
to illustrate our problem. In individual-token nets every
token represent an entity. The arcs of the net are labelled
with the type of entities they can cany (coloured tokens).

Coloured tokens can represent the system’s objects or
entities in a simulation model. An entity is any
component of the model that can be imagined to retain
its identity through time. Entities are either idle,
represented as places, or engaged in time consuming
activities (represented as timed transitions). This
sequence of idle and active states constitutes the life cycle
of the entity. The model is then created by combining all
of the individual life cycles. Obviously, these models
cannot support token split and merger as tokens represent
entities and not conditions.

This
models a physical system where two entities must spend
time together, co-operating in some activity or with
some shared resource. In terms of the PN, an entity
must be in place Pi and an entity must be in place P2
for the transition Ti to be fired.

Conceptually, once this transition has fired the two
entities are consumed. After the simulated time for the
transition to complete has passed, the transition produces
two entity copies that appear in the places P3 and P4
following the transition.

Decomposing this partial PN model into a PDES
presents several possibilities. For purposes of this case
study, we will use the technique put forward in Taylor

Consider the partial PN model of Figure 2 .

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:49:00 UTC from IEEE Xplore. Restrictions apply.

676 Taylor, Fatin, and Delaitre

(1991) and Taylor (1993). The choice is arbitrary as we
are concerned with illustrating the method by which the
potential performance of a PDES can be estimated rather
than evaluating a given PDES technique.

Decomposing the model of Figure 2 in terms of the
event orientation (Derrick, Balci and Nance 1989), we
associate LPs with each place in the model. This
generates four LPs; L P 1 , L P 2 , L P 3 and L P 4
representing P i , P 2 , P 3 and P 4 respectively.
Transitions are represented as event messages; an event
message is sent from one LP to another indicating the
time at which a transition will finish and produce tokens
for another place. For example, LP1 will send an event
message to LP3 to indicate the finish time of transition
T i and the arrival of a token at P3, LP2 will send an
event message to LP4 to indicate the finish time of
transition T i and the arrival of a token at P4.

Figure 2: Model Illustrating Shared
Resources

A problem arises when either LP1 or LP2 receives an
event message from any transitions that precede them.
Given that an event message represents the arrival of an
entity in the place represented by an LP, if LP1 receives
an event message, it must determine if the arriving entity
can be consumed by transition T i . As the firing of T i
depends on the contents of both P i and P2 containing an
entity, LP1 cannot make the decision by itself; it needs
information about the contents of P2. As PDES dictates
that information can only be shared between LPs by
message exchange, to get this information LP1 must
query LP2 about its contents, make the decision as to
whether or not T i can fire and inform LP2 about its
decision. An information sharing protocol is therefore
required to resolve this problem. Using the protocol
discussed in Taylor (1991) and Taylor (1993) LP1 will
send a timestamped query message to LP2 to request
current state information. LP1 will then wait for LP2 to

respond. LP2 responds by sending a reply message to
LP1 containing information about its current contents.
With this information about the combined state of LP1
and LP2, LP1 can now determine if transition T i can
fire. If T i can fire, LP1 has the task of performing the
simulation of T i (determining the entities that transition
T i will produce and the time at which such entities will
enter the places following Ti). Once LP1 has done this
it deletes entities consumed by T i from its own state,
sends an update message back to LP2 and sends a
timestamped event message to LP3 informing the LP
that an entity is scheduled to arrive in place P3 at the
time at which transition T i finishes. On receipt of the
update message, LP2 updates its state (by removing
entities consumed by the transition T i) and sends a
timestamped event message to LP4 informing the LP
that an entity is scheduled to arrive in place P4 at the
time at which transition T i finishes. If T i did not fire,
then the update message must still be sent to complete
the synchronous round of message exchange. However,
no event messages will be sent as the transition did not
fire. Finally, if LP2 had received the event message,
then the roles of the two LPs would be reversed.

The decomposed form of the partial PN model is
shown in Figure 3 and the above discussion of the QRU-
protocol is illustrated in Figure 4.

- - * * - - - - - ~ QRU-protocol Messages

-b Event Message

Figure 3: Decomposed Model
Illustrating Shared Resources

Note that the design approach taken to this protocol
postpones PDES ordering requirements. For purposes of
this study, we will assume that messages will arrive in
the correct order.

Remaining consistent with the terminology of the
QRU-protocol, the requirement to share information
between two or more LPs is the consequence of a
distributed event.

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:49:00 UTC from IEEE Xplore. Restrictions apply.

Estimating the Benefit of the Parallelisation 677

LQ receives Instigant LP, I. A LP receiving an event message
which then instigates execution in the partition.

Non-instigant LP, NI. These are all the other LPs in
the partition.

The LP type has bearing on the real time that a given
LP sends event messages and finishes execution in a
partition. For a partition Mi, let T(Mi) be the earliest
real time partition Mi receives an event message. Let
T(Mi)l and ? (M i) N I be the earliest real times when LPs
of type I and N I finish execution. We assume that a
transition will only fire once for any set of markings.
Let q(Ti) be the execution cost for a transition Ti. Let
ETil, and ETiNI be the set of event messages sent by
LPs of type I and N I for transition T i . Let
ETil.U.andETiNI.01 be the real times at which the event
messages are due to arrive at their destination processes.
Let 6(Q), 6 (R) , &U) and 6 (E) be the
communication times for query, reply, update and event
messages sent from one LP to another when evaluating a
transition. Note that if any transition does not fire, then

LP1 LP2 LP3 LP4 the communication cost due to the QRU protocol is still
incurred. If it is assumed that each LP executes in
parallel then, for a partition with one transition and one
place,

-

Figure 4: Illustration of the QRU-Protocol

A distributed event represents a synchronisation barrier
across the LPs participating in that event. Further,
boundaries can be identified which group together LPs
participating in a series of distributed events. Such a
tightly coupled group of LPs has been termed apartition.
The extent of a partition is defined by the extent of the
distributed events executed within the partition. Event

1 -
Z (M i) I = T(Mi)+ C q(Ti)

i

and

messages are received by, and sent from, the processes in 1
a partition across the partition border. Actions within a ETiI. a = Z(Mi) + q(Ti) + 6(E)
partition are entirely dependent on messages received
across the partition border. For example, LP1 and LP2

1

form a partition.

3.1 A Performance Model

In a PN model there will be a set of places P , consisting
of the queues P I , P 2 , ..., P , and a set of transitions T
consisting of the transitions T i , T2, ..., Ty, where x and
y are the number of places and transitions respectively.
Decomposing such a model into a parallel simulation
under the previously discussed approach will yield a set
of processes L P , such that LP1 = P I , LP2 = P2, ...,
LP, = P,. Each process participates in distributed
events as dictated by the PN model. On the basis of
mutually exclusive sets of transitions the parallel
simulation will have a set of partitions M, consisting of
the partitions M I , M2, ..., Mz, where z is the number of

Each partition Pi can potentially contain two types of
partitions.

LP.

There are no N I processes in such a partition. For
partitions with many transitions and one place,

where i’ is the number of transitions in the partition, and

i”
E T i l . U . = T (P i) + C q (T i) + 6 (E)

i

where i” is the index of the successfully firing partition.
There are no NI processes in such a partition.

For purposes of this case study, when there are many
places and transitions in a partition, we will assume two
possible interconnections. The first is fully sequential
and the second fu l ly parallel. In the first case, all the

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:49:00 UTC from IEEE Xplore. Restrictions apply.

678 Taylor, Fatin, and Delaitre

places are connected to all of the transitions in a
partition. This sequentialises the parallel execution in
such a partition as each transition is dependent on all of
the places in the partition; the LPs of the partition must
continually exchange information. The second case
assumes that all places share one and only one transition
in the partition (a necessary condition). All places then
have equal numbers of transitions connected to them. In
this allocation, each place therefore shares a common
transition and then has exclusive connection to zero or
more transitions. The effect of this is that once the
common transition has been evaluated, each LP can then
evaluate its own transitions independently (and in
parallel) with the other LPs of the partition. As these
other partitions are effectively shared out amongst the
places of the partition, the parallelism in a partition is
maximised.

As will be seen, the choice of this model leads to
fairly expected results. We take this opportunity to
emphasise that the purpose of this paper is to introduce
the reader to the technique rather than to perform
evaluations of realistic models or protocols.

For fully sequential partitions we therefore have

i’

?(Mi),= Z (M i) + x q (T i) + i ’ S (Q)
r

+i’S(R) + (i’ - l)S(U)

and

i”

ETi1.a = Z(Mi) + C q(Ti)+ i”S(Q)
i

+i”S(R) + (i” - l)S(U) + &E)

ET;]. a = Z(Mi)+ 2 q(Ti)+ i”6(Q)
I

+i”6(R) + i”S(U) + 6(E)

where i’ is the number of transitions in the partition and
i” represents the index of the successfully firing
transition. For fully parallel partitions we have,

int((i’-l)/j)+l
-
Z (M i) I = T(Mi)+ C q (T i)

I

+(int((i’- l)/j)+ l)S(Q)

+(int((i’ - l) / j) + 1)6(R)

+(int((i‘ - l) / j >) S (~)

where j is the number of places in the partition, and

int((i’-l)/j)+l -
Z (M i) N I = Z(Mi)+ c q(Ti)

i

+(int((i’- l)/j) + l)S(Q)

+(int((i’- I) / j) + 1)S(R)

+(int((i’ - l) / j) + ~) S (U)

and

i”

ETiI.a= T (k f i) + ~ ~ (T i) f i P 6 (Q)
i

+i”6(R) + (i” - l>S(U) + 6(E)

i”

ETiN1.a = T(Pi)+Cq(Ti)+i”&(Q)
1

+i”&(R)+i”S(U)+ &E)

To determine the estimated execution time, we modify
the algorithm of Figure 1, by replacing line 9 and line
12 with appropriate execution time and communication
time calculations.

3 . 2 Results

The modified algorithm in Figure 1 has been
implemented for the fully connected model using a
performance analysis tool implemented under the
simulation package SESIWorkbench (Scientific
Engineering Software Inc. 1992). For purposes of this
case study, several simulation runs were made for
different model parameters. These parameters assumed
uniform partitions, with the number of transitions equal
to the number of places.

Two strategies were employed. The results to one
experiment are shown here; the investigation of the effect
of reducing the communications overhead within a
partition by merging LPs. It was assumed that
communication time remained constant and that the
transition firing cost changed proportionately with the

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:49:00 UTC from IEEE Xplore. Restrictions apply.

Estimating the Benefit of the Parallelisation 679

number of LPs in the partition.
As can be seen in the graphs in Figure 5 and Figure 6,

for the fully connected model, under conditions where
partitions are forced into completely sequential execution
(fully sequential), the worst speedup is obtained when the
overall partition granularity is small (in the case of two
LPs per partition). Increasing granularity by first
increasing the number of LPs and then merging,
generally increases performance. The difference becomes
marginal between 16 LPdPartition (E = 8) and 2
LPsPartition (E = 64). This indicates that if a partition
has largely sequential execution, LPs should be merged
to reduce communications overhead and to increase LP
granularity. When partitions are fully parallel, the best
performances can be expected when there are many LPs
that can be executed simultaneously. This is an intuitive
result and is indeed the case, the best performance being
when there are 128 LPdPartition. The worst
performances are obtained when there are few
LPdPartition.

4 CONCLUSIONS

This paper has presented a potentially powerful
performance analysis tool which could possibly be used
to estimate the worth of parallelising a discrete event
simulation model and the structure thereof. A case study
has been presented which deals with the performance
analysis of a simulation model with distributed events.
The results obtained show that for a fully connected
model speedups are possible under some fully sequential
and fully parallel conditions. At this level of analysis, it
is implied that PN models such as those discussed in the
paper should only be parallelised when good speed up is
expected (in this case, when there are many fully parallel
partitions).

So, on the basis of the case study, can we answer the
question “Is the analysis of model parallelism enough to
justijj the decision to parallelise?” Of course not. The
case study is far too simple to serve as anything else but
an example of how we could go about the analysis of
parallelism in a model. On the basis of this method, our
research is currently formulating a series of more realistic
models which take into account factors such as
aggregation when there are more LPs than processors.
For each model we will obtain the estimate of
performance and then compare this against an actual
implementation of such. The results of this exercise
will be available at the time of the conference.

We expect the likely conclusion of this work to be
that although the estimation of parallelism by
simulation gives an indication of expected performance,
the actual figure is misleading. The reason for this is
that the current method does not take into account actual

processing and communication times, LP to processor
mapping and scheduling and the effect that the ordering
protocol has on performance. It is considered that for
this technique to be successful, these factors must be
taken into account.

We must therefore emphasise that the contents of this
paper represents the first step on a very long road.

REFERENCES

Berry, 0. and D.R. Jefferson. 1985. Critical path
analysis of distributed simulation. In Proceedings of
the 1985 SCS Conference on Distributed Simulation,,
57-60. Society for Computer Simulation, San Diego,
California.

Berry, 0. 1986 Performance evaluation of the Time
Warp distributed simulation mechanism. Ph.D.
dissertation, University of Southern California.

Derrick, E.J., Balci, B. and Nance R.E. 1989. A
Comparison of Selected Conceptual Frameworks for
simulation Modelling, The Implementation of Four
Conceptual Frameworks for Simulation Modelling in
High Level Languages. In Proceedings of the 1989
Winter Simulation Conference, 7 11-717. Institute of
Electrical and Electronics Engineers, San Francisco,
California.

Fujimoto, R. 1993. Parallel Discrete Event Simulation:
Will the Field Survive?. ORSA Journal on
Computing 5(3).

Jefferson, D.R. and P. Reiher. 1991. Supercritical
speedup. In Proceedings of the 24th Annual
Simulation Symposium, 159-168.

Lin, Y-B. 1992. Parallelism analysers for parallel
discrete event simulation. ACM Transactions on
Modeling and Computer Simulation 2(3):239-264.

Livny, M. 1985. A study of parallelism in distributed
simulation. In Proceedings of the 1985 SCS
Conference on Distributed Simulation, 94-98. Society
for Computer Simulation, San Diego, California.

Marsan, M.A. 1995. Modeling with General Stochastic
Petri Nets. Chichester: John Wiley and Sons, to
appear.

Nicol, D. and R.M. Fujimoto. 1995. Parallel
Simulation Today. Annals of Operations Research, to
appear.

Peterson J.L. 1981. Petri Net Theory and the Modelling
of Systems, Englewood Cliffs: Prentice-Hall.

Scientific Engineering Software Inc. 1992.
SES/Workbench User’s Manual, Release 2 .1 .
Scientific Engineering Software Inc.

Srinivasan, S. and P.F. Reynolds, Jr. 1993. On critical
path analysis of parallel discrete event simulations.
Computer Science Technical Report No. TR-93-29,
School of Engineering and Applied Science,

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:49:00 UTC from IEEE Xplore. Restrictions apply.

680 Taylor, Fatin, and Delaitre

81

Speedup

7(

6C

50

4c

30

20

I 1 1 1 I I I I I

128 LPs per Partition -b

64 LPs per Partition +-
32 LPs per Partition o -
16 LPs per Partition -*--
8 LPs per Partition . -.e-
4 LPs per Partition + -
2 LPs per Partition -

35oE

Speedup

3m

1500

1500

500

0

Figure 5: Fully Sequential Partitions

128 LPs per Partltron -
64 LPs per Parution --
32 LPs per Parution -D -
16 LPs per Partlaon . H--
8 LPs per Parution 4- -
4 LPs per Pamtion -I- -
2 LPs per Partition 4 -

Panitions Figure 6: Fully Paallel

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:49:00 UTC from IEEE Xplore. Restrictions apply.

Estimating the Benefit of the Parallelisation 681

University of Virginia.
Taylor, S.J.E. 1991. The Development of a Parallel

Activity-based Discrete Event Simulation. In 1991
European Simulation Multiconference. Society for
Computer Simulation, San Diego, California.

Taylor, S.J.E. 1993. The Application of Parallel
Processing to Manufacturing Systems Simulation.
Ph.D. thesis, Leeds Metropolitan University, Leeds,
United Kingdom.

AUTHOR BIOGRAPHIES

SIMON TAYLOR is a lecturer in the Department of
Computer Science and Information Systems at St.
John’s in Brunel University. He received his Ph.D in
Parallel Simulation from Leeds Metropolitan University
in 1993. His main research interests are automatic
parallelisation within which parallel simulation forms
part of a larger research effort. He is also interested in
the application of simulation for problem solving, be the
implementation parallel or sequential.

FARSHAD FATIN is a research student in the same
Department. He is conducting his Ph.D. programme of
study and is developing novel protocols for parallel
simulation.

THIERRY DELAITRE is a research assistant at the
Centre for Parallel Computing in the University of
Westminster. He is registered for a Ph.D and is currently
studying simulation techniques pertaining to the
decomposition of parallel programs. At the time of
writing he is implementing a simulator for parallel
programs utilising PVM.

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:49:00 UTC from IEEE Xplore. Restrictions apply.

