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Abstract. We consider the following Gierer-Meinhardt system with a precursor µ(x) for the activator
A in R1: 




At = ε2A
′′ − µ(x)A + A2

H in (−1, 1),

τHt = DH
′′ −H + A2 in (−1, 1),

A′(−1) = A′(1) = H ′(−1) = H ′(1) = 0.

Such an equation exhibits a typical Turing bifurcation of the second kind, i.e., homogeneous uniform
steady states do not exist in the system.

We establish the existence and stability of N−peaked steady-states in terms of the precursor µ(x) and
the diffusion coefficient D. It is shown that µ(x) plays an essential role for both existence and stability
of spiky patterns. In particular, we show that precursors can give rise to instability. This is a new
effect which is not present in the homogeneous case.

Dedicated to Professor M. Mimura on the occasion of his 65th birthday

1. Introduction

Since the work of Turing [43] in 1952, a lot of models have been proposed and studied to explore

the so-called Turing diffusion-driven instability. One of the most famous models in biological pattern

formation is the Gierer-Meinhardt system which after suitable re-scaling can be stated as follows:

(1.1)





At = ε2∆A− A + A2

H
in Ω,

τHt = D∆H −H + A2 in Ω,

∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω,

where Ω ⊂ RK , (K ≤ 3) is a smooth and bounded domain.

Problem (1.1) has been studied by numerous authors. In the one-dimensional case where Ω = (−1, 1),

the existence of symmetric N−peaked solution was first established by I. Takagi [42]. The existence

of asymmetric N−spikes was first shown by Ward-Wei [45] using matched asymptotic analysis and

Doelman-Kaper-van der Ploeg [4] using dynamical system techniques. The stability of symmetric

N−peaks in the one-dimensional case was established by Iron-Ward-Wei [17] using matched asymptotic

expansions. For asymmetric N−spikes in R1, the stability was proved in Ward-Wei [45]. Later we gave

a unified rigorous approach to the existence and stability of both symmetric and asymmetric spikes, [55].

In two dimensions, the existence and stability of symmetric and asymmetric N spots were established

in a series of papers [56], [57], [58].
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Problem (1.1) can be considered as a typical Turing bifurcation of the first kind, i.e., homogeneous

uniform steady states exist in the system. If these states have instabilities which are spatially varying

but no instabilities which are spatially uniform one says that a Turing instability occurs. This behavior

is commonly used to explain the onset of spatial patterns.

Holloway et. al. [13] among others have added precursors to (1.1), i.e. they have added coefficients

which are spatially varying. This dramatically changes the behavior of (1.1) so that now a Turing

bifurcation of the second kind occurs, i.e., homogeneous uniform steady states do not exist in the

system and so they cannot be used to explain the onset of pattern formation.

The existence of precursor gradients in the system also changes its behavior fundamentally. In par-

ticular, in [13] the authors numerically studied the following Gierer-Meinhardt system with a precursor

(inhomogeneity) µ(x) in the variable A:

(1.2)





At = ε2A
′′ − µ(x)A + A2

H
in (−1, 1),

τHt = DH
′′ −H + A2 in (−1, 1),

A′(−1) = A′(1) = H ′(−1) = H ′(1) = 0

They consider two classes of precursors: linear precursors (µ(x) = Ax + B for some constants A,B)

and exponential precursors (µ(x) =
∑m

i=1 Aie
−|x−xi| for some constants Ai > 0 and points xi ∈ (−1, 1)).

As we shall see in this paper, precursors greatly change the profile and other properties of the peaked

solutions.

Precursor gradients have been used in reaction-diffusion models for over thirty years. The original

Gierer-Meinhardt [7] model was introduced with precursor gradients. This was effectively used in their

first application, localization of the head structure in the coelenterate Hydra, and in much subsequent

work. Gradients have also been used in the Brusselator to limit pattern formation to some fraction of

the system [14]. In that example, the gradient carries the system in and out of the pattern-forming

region of the linear parameter space (across the Turing bifurcation), effectively confining the region

wherein peak formation can occur. Such localization has been used to model segmentation patterns in

the fruit fly, Drosophila melanogaster in [22] and [12].

Another important effect of precursors is the appearance of stable asymmetric multi-peak pattern

(with irregular spacing and unequal amplitudes), which is frequently observed for real biological appli-

cations (such as seashells, spots on fish skins, etc.) and seems to be more common than symmetric peak

pattern (with regular spacing and equal amplitudes), which is typical for systems without precursors.

Note that both of these properties are clearly evident in the simulations presented in the last section of

this paper, in particular for confinement see Figure 5 and for asymmetric peaks with irregular amplitudes

and spacing see Figure 6.

An area of particular interest for precursors is ecology where commonly precursors are included into

the model to represent the interaction between the eco-system and its heterogeneous environment.

Typical variables considered include temperature, flow of air and water, movement of soil and chemical

reactions. Reaction-diffusion systems have been successful in modelling some pattern-forming effects
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and stability properties in ecosystems. The interplay of different scales often plays a central role. For

a survey see [39].

Precursors have also been shown to cause the Brusselator to form striped patterns in two dimensions

[20]. We refer to Chapter 4 of the PhD thesis by Holloway [13]. Since we are considering a one-

dimensional system we do not investigate this effect here.

Turing systems have mostly been considered with kinetic parameters and diffusion coefficients con-

stant in space. But even Turing himself stated that “most of an organism, most of the time, is develop-

ing from one pattern to another, rather than from homogeneity into a pattern” [43]. This fundamental

idea can be incorporated into reaction-diffusion models by precursors representing pre-existing spatial

structure within a biological system, e.g. a living organism.

The purpose of this paper is to rigorously study the effect of µ(x) on the existence and stability of

N -peaked solutions. In [46], Ward etc. have studied the pinning phenomena for the following problem

(1.3)





At = ε2∆A− µ1(x)A + A2

H
in Ω,

τHt = D∆H − µ2(x)H + A2 in Ω,

∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω

where Ω is a bounded smooth domain in R1 or R2. There they only considered one-spike solutions. In

this paper we shall consider multiple spikes of (1.2) in the 1-D case. (So we may assume from now on

that N ≥ 2.) Of course, the 2-D case is also very interesting. We shall come to this issue in a future

study.

One can certainly generalize the results of this paper to the Gierer-Meinhardt system with precursors

in both A and H, for example to the following equation:

(1.4)





At = ε2(D1(x)A
′
)
′ − µ1(x)A + ρ1(x)A2

H
in (−1, 1),

τHt = (D2(x)H
′
)
′ − µ2(x)H + ρ2(x)A2 in (−1, 1),

A′(−1) = A′(1) = H ′(−1) = H ′(1) = 0.

But to keep the presentation simple we restrict our attention to (1.2).

The stationary solution to (1.2) satisfies

(1.5)





ε2A
′′ − µ(x)A + A2

H
= 0 in (−1, 1),

DH
′′ −H + A2 = 0 in (−1, 1),

A′(−1) = A′(1) = H ′(−1) = H ′(1) = 0

We remark that even the existence of N -peaked solutions to (1.5) is not easy as µ(x) 6≡ constant.

Recall that in the proof of existence of N -peaked solutions, I. Takagi [42] first studied 1-peaked solutions.

Then by even extension he obtained N -peaked solutions. If there is a precursor in the system, the

symmetry is lost and this method can not be applied. Even in the construction of 1-peaked solutions

Takagi used symmetry – he restricted solutions to be in the class of even functions. Here, again, we do

not have this symmetry. Instead, we have to work on the whole function space (which greatly increases

the difficulty) and then use the method of Liapunov-Schmidt reduction which has been used for the
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1-D Schrödinger equation [6], [37], [38] and then been extended to the higher-dimensional Cahn-Hilliard

equation [52], [53] and semilinear elliptic equations [10], [11]. This method has also been applied to the

2-D Gierer-Meinhardt system [55]-[58].

Before we state our main results in Section 2, we introduce some notation. Throughout this paper,

we always assume that Ω = (−1, 1). With L2(Ω) and H2(Ω) we denote the usual Sobolev spaces. With

the variable w we denote the unique homoclinic solution of the following problem:

(1.6)

{
w
′′ − w + w2 = 0 in R1,

w > 0, w(0) = maxy∈Rw(y), w(y) → 0 as |y| → ∞
Note that w is an even function and w

′
(y) < 0 if y > 0. An explicit representation is

w(y) =
3

2

(
cosh

y

2

)−2

.

Elementary calculations give

(1.7)

∫

R
w2(z) dz = 6,

∫

R
w3(z) dz = 7.2,

∫

R

(
w
′
)2

(z) dz = 1.2.

We assume that the precursor µ(x) satisfies

(1.8) µ(x) ∈ C3(Ω), µ(x) > 0 in Ω.

Let GD(x, z) be Green’s function given by

(1.9)

{
DGD(x, z)

′′ −GD(x, z) + δz = 0 in (−1, 1),

G′
D(−1, z) = G′

D(1, z) = 0.

We can calculate

(1.10) GD(x, z) =

{
A(z) cosh[θ(1 + x)]/ cosh[θ(1 + z)], −1 < x < z,

A(z) cosh[θ(1− x)]/ cosh[θ(1− z)], z < x < 1.

Here

(1.11) A(z) =
1√
D

(tanh[θ(1− z)] + tanh[θ(1 + z)])−1, θ = D− 1
2 .

We set

KD(|x− z|) =
1

2
√

D
e
− 1√

D
|x−z|

to be the singular part of GD(x, z) and by GD = KD −HD we define the regular part HD of GD. Note

that HD is C∞ in both x and z.

We use the notation e.s.t. to denote an exponentially small term of order O(e−d/ε) for some d > 0 in

the corresponding norm. By C we denote a generic constant which may change from line to line.

Acknowledgements: The work of JW is supported by an Earmarked Grant of RGC of Hong Kong.

The work of MW is supported by a BRIEF Award of Brunel University. MW thanks the Department

of Mathematics at CUHK for their kind hospitality. We would like to thank Professor M. J. Ward for

helpful conversations.
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2. Main results: Existence of N−peaked Solutions

Let −1 < t01 < · · · < t0j < · · · < t0N < 1 be N points in (−1, 1) and µ0
i = µ(t0i ), i = 1, . . . , N . We

assume that D < +∞ is a fixed number.

By a simple scaling argument, the function

(2.1) wa(y) = aw(a1/2y),

where w satisfies (1.6), is the unique solution of the following problem:

(2.2)

{
w
′′
a − awa + w2

a = 0 in R,

wa > 0, wa(0) = maxy∈Rwa(y), wa(y) → 0 as |y| → ∞.

We compute

(2.3)∫

R
w2

a(y) dy = a3/2

∫

R
w2(z) dz,

∫

R
w3

a(y) dy = a5/2

∫

R
w3(z)dz,

∫

R
(w

′
a)

2(y) dy = a5/2

∫

R
(w

′
)2(z) dz

Put

(2.4) ξε :=

(
ε

∫

R
w2(z) dz

)−1

.

We introduce several matrices for later use: For t = (t1, ..., tN) ∈ (−1, 1)N let

(2.5) GD(t) = (GD(ti, tj)).

Recall that

GD(ti, tj) = KD(|ti − tj|)−HD(ti, tj).

Let us denote ∂
∂ti

as ∇ti . When i 6= j, we can define ∇tiG(ti, tj) in the classical way. When i = j,

KD(|ti − tj|) = KD(0) = 1
2
√

D
is a constant and we define

∇tiGD(ti, ti) := − ∂

∂x
|x=tiH(x, ti).

Similarly, we define

(2.6) ∇ti∇tjGD(ti, tj) =

{ − ∂
∂x
|x=ti

∂
∂y
|y=tiHD(x, y) if i = j,

∇ti∇tjGD(ti, tj) if i 6= j.

Now the derivatives of G are defined as follows:

(2.7) ∇GD(t) = (∇tiGD(ti, tj)), ∇2GD(t) = (∇ti∇tjGD(ti, tj)).

We now have our first assumption:

(H1) There exists a solution (ξ̂0
1 , . . . , ξ̂

0
N) of the equation

(2.8)
N∑

j=1

GD(t0i , t
0
j)(ξ̂

0
j )

2(µ0
j)

3/2 = ξ̂0
i , i = 1, ..., N.

Next we introduce the following matrix

(2.9) bij = GD(t0i , t
0
j)(ξ̂

0
j )(µ

0
j)

3/2, B = (bij).

Our second assumption is the following:
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(H2) It holds that

(2.10)
1

2
6∈ σ(B),

where σ(B) is the set of eigenvalues of B.

Remark 2.1. Since the matrix B is of the form GD, where G is symmetric and D is a diagonal matrix,

it follows that the eigenvalues of B are real.

By the assumption (H2), for t = (t1, ..., tN) near t0 = (t01, ..., t
0
N) and µj = µ(tj), i = 1, ..., N , by the

implicit function theorem there exists a (locally) unique solution ξ̂(t) = (ξ̂1(t), ..., ξ̂N(t)) of the following

equation

(2.11)
N∑

j=1

GD(ti, tj)ξ̂
2
j µ

3/2
j = ξ̂i, i = 1, ..., N.

Moreover, ξ̂(t) is C1 in t.

Set

(2.12) H(t) = (ξ̂i(t)δij), µ(t) = (µ(ti)δij), µ
′
(t) = (µ

′
(ti)δij).

We introduce the following vector field:

F (t) = (F1(t), ..., FN(t)),

where

(2.13) Fi(t) =
5

4
ξ̂iµ

−1
i µ

′
(ti) +

N∑

l=1

∇tiGD(ti, tl)ξ̂
2
l µ

3/2
l , i = 1, . . . , N.

Set

(2.14) M(t) =

(
∂Fi(t)

∂tj

)
.

Our final assumption concerns the vector field F (t).

(H3) We assume that at t0 = (t01, ..., t
0
N)

(2.15) F (t0) = 0, det (M(t0)) 6= 0.

Remark 2.2. By the same reasoning as for the matrix B, the eigenvalues of M are all real.

Our first result can be stated as follows:

Theorem 2.1. Assume that assumptions (H1), (H2) and (H2) hold. Then for ε << 1, problem (1.2)

has an N-peaked solution centered at tε1, · · · , tεN . More precisely, it satisfies

(2.16) Aε(x) ∼
N∑

i=1

ξεξ̂
0
i wi

(
x− tεi

ε

)
,

where wi is given by (2.2) for a = µ(t0i ), ξε has been defined in (2.4), ξ̂0
i has been introduced in (H1),

(2.17) Hε(t
ε
i) ∼ ξεξ̂

0
i , i = 1, · · · , N,

(2.18) tεi → t0i , i = 1, · · · , N.
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The next theorem reduces the stability to the conditions on the two matrices B and M.

Theorem 2.2. Let (Aε, Hε) be the solutions constructed in Theorem 2.1. Assume that ε << 1.

(1) (Stability) If

(2.19) min
σ∈σ(B)

σ >
1

2

and

(2.20) σ(M) ⊆ {σ|Re(σ) ≥ c > 0},
there exists τ0 > 0 such that (Aε, Hε) is linearly stable for 0 ≤ τ < τ0.

(2) (Instability) If

(2.21) min
σ∈σ(B)

σ <
1

2
,

then (Aε, Hε) is linearly unstable for all τ > 0.

(3) (Instability) If there exists

(2.22) σ ∈ σ(M), Re(σ) < 0,

then (Aε, Hε) is linearly unstable for all τ > 0.

We end this section with a few remarks.

Remark 2.3. Generally speaking, if µ(x) 6≡ constant, ξ̂0
i 6= ξ̂0

j for i 6= j. Thus the height of different

peaks may be different. This is strikingly different from the symmetric solutions constructed by I.

Takagi in the homogeneous case [42].

Remark 2.4. For the linear gradient case, we have

µ′(t0i ) = c0, µ′′(t0i ) = 0.

Condition (H3) corresponds to a shift of (t01, · · · , t0N) from the centered position since the first term of

Fi(t) in (2.13) is constant.

Let us now calculate M(t0). As a preparation we first compute the derivatives of ξ̂(t). It is easy to

see that ξ̂(t) is C1 in t. Now from (2.11) we calculate:

∇tj ξ̂i = 2
N∑

l=1

GD(ti, tl)ξ̂lµ
3/2
l ∇tj ξ̂l +

∂

∂tj
(GD(ti, tj))ξ̂

2
j µ

3/2
j +

3

2
GD(ti, tj)ξ̂

2
j µ

1/2
j µ

′
j for i 6= j,

∇ti ξ̂i = 2
N∑

l=1

GD(ti, tl)ξ̂lµ
3/2
j ∇ti ξ̂l +

N∑

l=1

∂

∂ti
(GD(ti, tl))ξ̂

2
l µ

3/2
l +

3

2
GD(ti, tj)ξ̂

2
j µ

1/2
j µ

′
j

= 2
N∑

l=1

GD(ti, tl)ξ̂lµ
3/2
j ∇ti ξ̂l +∇tiGD(ti, ti)ξ̂

2
i µ

3/2
i − 5

4
ξ̂iµ

−1
i µ

′
(ti)

+
3

2
GD(ti, tj)ξ̂

2
j µ

1/2
j µ

′
j + O

(
N∑

j=1

|Fj(t)|
)

for i = j,

where we have used the definition of (2.13).
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Note that

(∇tjGD(ti, tj)) = (∇GD)T .

Therefore introducing matrix notation

(2.23) ∇ξ = (∇tj ξ̂i), P = (I − 2GDHµ3/2)−1,

we have

(2.24) ∇ξ(t) = P
[
(∇GD)TH2µ3/2 − 5

4
Hµ−1µ

′
+

3

2
GDH2µ1/2µ

′
]

+ O

(
N∑

j=1

|Fj(t)|
)

.

Let

(2.25) Q = (qij) =

((
1

D
ξ̂−1
i µ

−3/2
i − 1

2D3/2

)
δij

)
.

We can compute M(t0) by using (2.24): we have for i 6= j

(2.26)
N∑

l=1

∇tj (∇tiGD(ti, tl)) ξ̂2
l µ

3/2
l =

(∇tj∇tiGD(ti, tj)
)
ξ̂2
j µ

3/2
j

and for i = j

N∑

l=1

∇ti (∇tiGD(ti, tl)) ξ̂2
l µ

3/2
l =

∑

l=1,...,N,l 6=i

∇ti∇tiGD(ti, tl)ξ̂
2
l µ

3/2
l

−
(

∂2

∂x2

∣∣∣∣
x=ti

HD(x, ti)

)
ξ̂2
i µ

3/2
i −

(
∂2

∂x∂y

∣∣∣∣
x=ti, y=ti

HD(x, y)

)
ξ̂2
i µ

3/2
i

=
1

D

∑

l=1,...,N,l 6=i

GD(ti, tl)ξ̂
2
l µ

3/2
l − 1

D
HD(ti, ti)ξ̂

2
i µ

3/2
i

−
(

∂2

∂x∂y

∣∣∣∣
x=ti, y=ti

HD(x, ti)

)
ξ̂2
i µ

3/2
i

=
1

D

N∑

l=1

GD(ti, tl)ξ̂
2
l µ

3/2
l − 1

D
KD(0)ξ̂2

i µ
3/2
i + (∇ti∇tiGD(ti, ti))ξ̂

2
i µ

3/2
i

=
1

D
ξ̂i − 1

D
KD(0)ξ̂2

i µ
3/2
i + (∇ti∇tiGD(ti, ti))ξ̂

2
i µ

3/2
i(2.27)

by (2.8), and hence

(2.28) M(t0) = (∇2GD +Q)H2µ3/2 + 2∇GDH∇ξµ3/2

+
5

4

[
∇ξ̂µ−1µ

′ −Hµ−2(µ
′
)2

]
+

5

4
Hµ−1µ

′′
+

3

2
∇GDH2µ1/2µ

′
.

Using

(2.29) ∇ξ(t0) = P
[
(∇GD)TH2µ3/2 − 5

4
Hµ−1µ

′
+

3

2
GDH2µ1/2µ

′
]
,

which follows from (H3) and (2.24), we obtain

M(t0) = (∇2GD +Q)H2µ3 + 2∇GDHP(∇GD)TH2µ3
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+
5

4
P

[
(∇GD)TH2µ1/2µ

′ − 5

4
Hµ−2(µ

′
)2 +

3

2
GDH2µ−1/2(µ

′
)2

]

+
5

4
H[µ−1µ

′′ − µ−2(µ
′
)2] + 3∇GDHPGDH2µ2µ

′ − 5

2
∇GDHPHµ1/2µ

′
.

Remark 2.5. Let us consider the following special quadratic gradient case

µ(x) = A +
N∑

j=1

Bj(x− t0j)
2, t0j = −1 +

(2j − 1)

N
, j = 1, ..., N.

We take symmetric N−spikes: ξ1 = ξ2 = ... = ξN . For this choice of t0j the assumptions (H1) and

(H2) are satisfied. In fact, we have µ0
i = A. The matrix M becomes

M = (m1
ij + m2

ij) = M1 +M2,

where

M1 =
5

4
Hµ−1µ

′′
,

M2 = (∇2GD +Q)H2µ3/2 + 2∇GDHP(∇GD)TH2µ3.

Note that H = ξ0I, µ = AI. So

m1
ij = c0Biδij.

The second matrix M2 = (m2
ij) does not depend on Bi and its eigenvalues have been computed in [17]

and [55]. Thus if A is fixed and Bi = −B < 0, then for B sufficiently large we have instability. We

conclude that precursors may give rise to instability. This is a new effect which is not present in the

homogeneous case.

Remark 2.6. Numerical studies of the precursor case can be found among others in [13], [40] and [41].

In the last section, we shall perform some numerical experiments to verify our theory.

The proof of both Theorem 2.1 and Theorem 2.2 will follow the same line as in [55], where we

considered the existence, stability and classification of N−symmetric spikes.

3. Some preliminaries

In this section, we study a system of nonlocal linear operators. We first recall

Theorem 3.1. [51]: Consider the following nonlocal eigenvalue problem

(3.1) ∇2φ− φ + 2wφ− γ

∫
Rwφ∫
Rw2

w2 = αφ, φ ∈ H2(R).

(1) If γ < 1, then there is a positive eigenvalue to (3.1).

(2) if γ > 1, then for any nonzero eigenvalue α of (3.1), we have

Re(α) ≤ −c0 < 0 for some c0 > 0.

(3) If γ 6= 1 and α = 0, then

φ = c0
∂w

∂y
for some constant c0.
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Next, we consider the following system of linear operators

(3.2) LΦ := ∇2Φ− Φ + 2wΦ− 2

(∫

R
wBΦ

)(∫

R
w2

)−1

w2,

where

Φ =




φ1

φ2
...
φN


 ∈ (H2(R))N .

Set

L0u := ∇2u− u + 2wu,

where u ∈ H2(R).

Then the conjugate operator of L under the scalar product in L2(R) is

(3.3) L∗Ψ = ∇2Ψ−Ψ + 2wΨ− 2

(∫

R
w2

)−1 (∫

R
w2BT Ψ

)
w,

where

Ψ =




ψ1

ψ2
...
ψN


 ∈ (H2(R))N .

We then have the following

Lemma 3.2. (Lemma 3.2 of [55].) If 1
2
6∈ σ(B), then

(3.4) Ker(L) = X0 ⊕X0 ⊕ · · · ⊕X0,

where

X0 = span

{
∂w

∂y

}

and

(3.5) Ker(L∗) = X0 ⊕X0 ⊕ · · · ⊕X0.

As a consequence of Lemma 3.2, we have

Lemma 3.3. The operator

L : (H2(R))N → (L2(R))N

is an invertible operator if it is restricted as follows

L : (X0 ⊕ · · · ⊕X0)
⊥ ∩ (H2(R))N → (X0 ⊕ · · · ⊕X0)

⊥ ∩ (L2(R))N .

Moreover, L−1 is bounded.

Proof: This follows from the Fredholm Alternative and Lemma 3.2.

¤
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4. Study of approximate solutions

Let −1 < t01 < · · · < t0j < · · · t0N < 1 be the N points satisfying the assumptions (H1) – (H2). Let

ξ̂0 = (ξ̂0
1 , ..., ξ̂

0
N) be the (locally) unique solution of (2.8). Let µ0

i = µ(t0i ) and

t0 = (t01, · · · , t0N).

We now construct an approximate solution to (1.5) which concentrates near these prescribed N

points.

Let −1 < t1 < t2 < · · · < tj < · · · < tN < 1 be such that t = (t1, · · · , tN) ∈ Bε3/4(t0).

Set

(4.1) wj(x) = µjw

(√
µj

(
x− tj

ε

))
.

Let r0 be such that

(4.2) r0 =
1

10

(
min

(
t01 + 1, 1− t0N , min

i 6=j
|t0i − t0j |

))
.

Introduce a smooth cut-off function χ : R→ [0, 1] such that

(4.3) χ(x) = 1 for |x| < 1 and χ(x) = 0 for |x| > 2.

We now define our approximate solution

(4.4) w̃j(x) = wj(x)χ

(
x− tj

r0

)
.

Then w̃j(x) satisfies

(4.5) ε2∇2w̃j − µjw̃j + w̃2
j + e.s.t. = 0.

Recall that, by assumption (H2), for t ∈ Bε3/4(t0) there exists a unique solution ξ̂t = (ξ̂1, ..., ξ̂N) such

that

(4.6)
N∑

j=1

GD(ti, tj)ξ̂
2
j µ

3/2
j = ξ̂i, i = 1, ..., N.

Moreover, such a solution is also C1 in t.

Put

(4.7) wε,t(x) =
N∑

j=1

ξjw̃j(x),

where

(4.8) ξj = ξεξ̂j

and ξε has been introduced in (2.4).

For a function A ∈ H2(−1, 1) we define T [A] to be the solution of

(4.9)

{
D∇2T [A]− T [A] + A2 = 0, −1 < x < 1,

T [A]′(−1) = T [A]′(1) = 0.

The solution T [A] is positive and unique.
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For A = wε,t, where t ∈ Bε3/4(t0), let us now compute

(4.10) τi := T [A](ti).

From (4.9), we have

τi = T [A](ti) =

∫ 1

−1

GD(ti, z)A2(z) dz

=
N∑

j=1

ξ2
j

∫ 1

−1

GD(ti, z)w̃2
j (z) dz

=
N∑

j=1

ξ2
j ε

[
GD(ti, tj)

∫ +∞

−∞
w2

j (y) dy + O(ε)

]

=
N∑

j=1

ξ2
j ε

[
GD(ti, tj)µ

3/2
j

∫ +∞

−∞
w2(y) dy + O(ε)

]
(by (2.3))

= ξε

[
N∑

j=1

GD(ti, tj)ξ̂
2
j µ

3/2
j + O(ε)

]
(by (2.4), (4.8))

= ξε[ξ̂i + O(ε)] (by (4.6)).(4.11)
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Let x = ti + εy, where x ∈ Bε3/4(ti). We calculate for A = wε,t:

T [A](x)− T [A](ti) =

∫ 1

−1

[GD(x, z)−GD(ti, z)]A2(z) dz

= ξ2
i

∫ 1

−1

[GD(x, z)−GD(ti, z)]w̃2
i (z) dz +

∑

j 6=i

ξ2
j

∫ 1

−1

[GD(x, z)−GD(ti, z)]w̃2
j (z) dz

= ξ2
i

∫ 1

−1

[KD(|x− z|)−KD(|ti − z|)]w̃2
i (z) dz − ξ2

i

∫ 1

−1

[HD(x, z)−HD(ti, z)]w̃2
i (z) dz

+
∑

j 6=i

ξ2
j

∫ 1

−1

[GD(x, z)−GD(ti, z)]w̃2
j (z) dz (letting z = tj + εz̃)

= ε2ξ2
i

[∫ +∞

−∞

[
1

2D
|z̃| − 1

2D
|y − z̃|

]
w2

i (z̃) dz̃ + O(εy2 + ε2)

]

+ε2ξ2
i

[
−∇xHD(x, ti)|x=ti y

∫ +∞

−∞
w2

i (z̃) dz̃ + O(εy2 + ε2)

]

+
∑

j 6=i

ε2ξ2
j [∇xGD(x, tj)|x=tiy

∫ +∞

−∞
w2

j (z̃) dz̃ + O(εy2 + ε2)]

= ε2ξ2
i Pi(y) +

∑

j 6=i

ε2ξ2
j

∫ +∞

−∞
w2

i (z̃) dz̃ [∇xGD(x, tj)|x=ti ]y

+ε2ξ2
i

∫ +∞

−∞
w2

i (|z̃|) dz̃ [−∇xHD(x, ti)|x=ti ] y + O(εy2 + ε2)

= εξε

{
ξ̂2
i

Pi(y)∫∞
−∞ w2(z̃) dz̃

+
∑

j 6=i

ξ̂2
j µ

3/2
j [∇xGD(x, tj)|x=ti ] y

+ξ̂2
i µ

3/2
i [−∇xHD(x, ti)|x=ti ] y + O(εy2 + ε2)

}
,(4.12)

by (2.3), (2.4), where

(4.13) Pi(y) =

∫ +∞

−∞

[
1

2D
|z̃| − 1

2D
|y − z̃|

]
w2

i (z̃) dz̃.

Let us define

(4.14) Sε[A] = ε2∇2A− µ(x)A +
A2

T [A]
,
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where T [A] is given by (4.9). We now compute Sε[wε,t]. In fact,

Sε[wε,t] = ε2∇2wε,t − µ(x)wε,t +
w2

ε,t

T [wε,t]

=
N∑

j=1

ξj(ε
2∇2w̃j − µ(x)w̃j) +

w2
ε,t

T [wε,t]
+ e.s.t.

= −
N∑

j=1

ξj(µ(x)− µj)w̃j +

[
(
∑K

j=1 ξjw̃j)
2

T [wε,t]
−

K∑
j=1

ξjw̃
2
j

]
+ e.s.t.

= E1 + E2 + e.s.t.,(4.15)

where

(4.16) E1 = −
N∑

j=1

ξj(µ(x)− µ(tj))w̃j

and

(4.17) E2 =

[
(
∑N

j=1 ξjw̃j)
2

T [wε,t]
−

N∑
j=1

ξjw̃
2
j

]
.

As we shall see, E1 and E2 contribute separately and they are competing with each other.

We first estimate E1:

ξ−1
ε E1 = −

N∑
j=1

(
µ′(tj)(x− tj) +

1

2
µ′′(tj)(x− tj)

2 + O(|x− tj|3)
)

(4.18) ×ξ̂jwj

(
x− tj

ε

)
χ

(
x− tj

r0

)
.

Therefore

(4.19) ξ−1
ε ‖E1‖L2(R) = O(ε).
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For E2, we calculate

ξ−1
ε E2 =

(
∑N

j=1 ξjw̃j)
2

T [wε,t]
ξ−1
ε −

N∑
j=1

ξ̂jw̃
2
j(4.20)

=
N∑

j=1

(ξjw̃j)
2

T [wε,t]
ξ−1
ε −

N∑
j=1

ξ̂jw̃
2
j

=
N∑

j=1

(ξjw̃j)
2

T [wε,t](tj)
ξ−1
ε −

N∑
j=1

ξ̂jw̃
2
j −

N∑
j=1

(ξjw̃j)
2

(T [wε,t](tj))2
(T [wε,t]− T [wε,t](tj))ξ

−1
ε

+O

(
N∑

j=1

|T [wε,t]− T [wε,t](tj)|2w̃2
j

)

=
N∑

j=1

w̃2
j

(
ξ̂2
j

ξ̂j

− ξ̂j

)
−

N∑
j=1

ξ̂jw̃
2
j

T [wε,t]− T [wε,t](tj)

T [wε,t](tj)
+ O

(
ε2

N∑
j=1

w̃2
j

)

= −ε

N∑
j=1

w̃2
j

{
ξ̂2
j

Pj(yj)∫∞
−∞ w2(z̃) dz̃

+
∑

k 6=j

ξ̂2
kµ

3/2
k [∇xGD(x, tk)|x=tj ] yj

+ξ̂2
j µ

3/2
j [−∇xHD(x, tj)|x=tj ] yj

}
+ O

(
ε2

N∑
j=1

w̃2
j

)
(by (4.12)),(4.21)

where for x ∈ Bε3/4(tj) we have denoted yj =
x−tj

ε
. This implies that

(4.22) ξ−1
ε ‖E2‖L2(R) = O(ε).

Combining (4.19) and (4.22), we conclude that

(4.23) ξ−1
ε ‖Sε‖L2(R) = O(ε).

The estimates derived in this section will enable us to carry out the existence proof in the next two

sections.

5. The Liapunov-Schmidt Reduction Method

In this section, we study the linear operator defined by

L̃ε,t := S ′ε[A]φ = ε2∇2φ− µ(x)φ +
2Aφ

T [A]
− A2

(T [A])2
(T ′[A]φ),

L̃ε,t : H2(Ω) → L2(Ω),

where A = wε,t and for φ ∈ L2(Ω) the function T ′[A]φ is defined as the unique solution of

(5.1)

{
D∇2(T ′[A]φ)− (T ′[A]φ) + 2Aφ = 0, −1 < x < 1,

(T ′[A]φ)(−1) = (T ′[A]φ)(1) = 0.

We denote Ωε = (−1
ε
, 1

ε
). We define the approximate kernel and co-kernel of the operator L̃ε,t,

respectively, as follows:

Kε,t := span

{
dw̃i

dx

∣∣∣∣ i = 1, . . . , N

}
⊂ H2(Ω),
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Cε,x := span

{
dw̃i

dx

∣∣∣∣ i = 1, . . . , N

}
⊂ L2(Ω).

Recall the definition of the following system of linear operators from (3.2):

(5.2) LΦ := ∇2Φ− Φ + 2wΦ− 2

(∫

R
wBΦ

)(∫

R
w2

)−1

w2,

where

Φ =




φ1

φ2
...
φN


 ∈ (H2(R))N .

By Lemma 3.3, we know that

L : (X0 ⊕ · · · ⊕X0)
⊥ ∩ (H2(R))N → (X0 ⊕ · · · ⊕X0)

⊥ ∩ (L2(R))N

is invertible with a bounded inverse, where X0 = span
{

dw
dy

}

We also introduce the orthogonal projection π⊥ε,t : L2(Ω) → C⊥ε,t and study the operator Lε,t :=

π⊥ε,t ◦ L̃ε,t. By letting ε → 0, we will show that Lε,t : K⊥ε,t → C⊥ε,t is invertible with a bounded inverse

provided ε is sufficiently small. In proving this, we will use the fact that this system is a limit of the

operator Lε,t as ε → 0. This statement is contained in the following proposition, whose proof is given

in Proposition 5.1 of [55].

Proposition 5.1. There exist positive constants ε̄, δ̄, λ such that for all ε ∈ (0, ε̄) and all t ∈ ΩN with

|1 + t1|+ |1− tN |+ mini6=j |ti − tj| > δ̄ we have

(5.3) ‖Lε,tφε‖L2(Ωε) ≥ λ‖φε‖H2(Ωε).

Furthermore, the map

Lε,t = πε,t ◦ L̃ε,t : K⊥ε,t → C⊥ε,t
is surjective.

Now we are in a position to solve the equation

(5.4) π⊥ε,t ◦ Sε(wε,t + φ) = 0.

Since Lε,t : K⊥ε,t → C⊥ε,t is invertible (call the inverse L−1
ε,t ) we can rewrite

(5.5) φ = −(L−1
ε,t ◦ π⊥ε,t)(Sε[wε,t])− (L−1

ε,t ◦ π⊥ε,t)(Nε,t[φ]) ≡ Mε,t[φ],

where

Nε,t[φ] = Sε[wε,t + φ]− Sε[wε,t]− S ′ε[wε,t]φ

and the operator Mε,t is defined by (5.5) for φ ∈ H2
N(Ωε), where

(5.6) Ωε =
Ω

ε
=

(
−1

ε
,
1

ε

)
.

We are going to show that the operator Mε,t is a contraction on

Bε,δ ≡ {φ ∈ H2(Ωε)|‖φ‖H2(Ωε) < δ}
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if δ and ε are sufficiently small. We have by (4.19), (4.22), and Proposition 5.1

ξ−1
ε ‖Mε,t[φ]‖H2(Ωε) ≤ λ−1ξ−1

ε (‖π⊥ε,t(Nε,t[φ])‖L2(Ωε) +
∥∥π⊥ε,t(Sε[wε,t])

∥∥
L2(Ωε)

)

≤ λ−1C

(
ξ−1
ε c(δ)δ + ε

(
N∑

j=1

|µ′(tj)|+
N∑

j=1

N∑

k=1

∣∣∇tjGD(tj, tk)
∣∣
))

,

where λ > 0 is independent of δ > 0, ε > 0 and c(δ) → 0 as δ → 0. Similarly, we show

ξ−1
ε ‖Mε,t[φ]−Mε,t[φ

′]‖H2(Ωε)
≤ λ−1C

(
ξ−1
ε c(δ)δ + ε

(
N∑

j=1

|µ′(tj)|+
N∑

j=1

N∑

k=1

∣∣∇tjGD(tj, tk)
∣∣
))

‖φ−φ′‖H2(Ωε),

where λ > 0 is independent of δ > 0, ε > 0 and c(δ) → 0 as δ → 0. By the previous two estimates, if

we choose δ and ε sufficiently small, then Mε,t is a contraction on Bε,δ. The existence of a fixed point

φε,t now follows from the contraction mapping principle and φε,t is a solution of (5.5).

We have thus proved

Lemma 5.2. There exist ε > 0 δ > 0 such that for every pair of ε, t with 0 < ε < ε and t ∈ Bε3/4(t0),

|ti − tj| > δ there is a unique φε,t ∈ K⊥
ε,t satisfying Sε(wε,t + φε,t) ∈ Cε,t. Furthermore, we have the

estimate

(5.7) ξ−1
ε ‖φε,t‖H2(Ωε) ≤ Cε.

6. The reduced problem

In this section we solve the reduced problem and prove our main existence result, Theorem 2.1.

By Lemma 5.2, for every t ∈ Bε3/4(t0), there exists a unique solution φε,t ∈ K⊥ε,t such that

(6.1) Sε[wε,t + φε,t] = vε,t ∈ Cε,t.

Our idea is to find tε = (tε1, . . . , t
ε
N) ∈ Bε3/4(t0) such that also

(6.2) Sε[wε,tε + φε,tε ] ⊥ Cε,tε .

Then from (6.1) and (6.2) we get that Sε[wε,tε + φε,tε ] = 0. To this end, we let

Wε,i(t) := ξ−1
ε ε−1

∫

Ω

S[wε,t + φε,t]
dw̃i

dx
dx,

Wε(t) := (Wε,1(t), ..., Wε,N(t)) : Bε3/4(t0) → RN .

Then Wε(t) is a map which is continuous in t and (6.2) is reduced to finding a zero of the vector field

Wε(t).

Let us now calculate Wε(t). By (4.18) and (4.21), we have

ξ−1
ε ε−1

∫

Ω

S[wε,t + φε,t]
dw̃i

dx
dx = ξ−1

ε ε−1

∫

Ω

S[wε,t]
dw̃i

dx
dx

+ξ−1
ε ε−1

∫

Ω

S ′ε[wε,t]φε,t
dw̃i

dx
dx + ξ−1

ε ε−1

∫

Ω

Nε(φε,t)
dw̃i

dx
dx + O(ε2)

= I1 + I2 + I3 + O(ε2),
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where I1, I2 and I3 are defined by the last equality.

The computation of I3 is the easiest: note that the first term in the expansion of Nε is quadratic in

φε,t and so

(6.3) I3 = O(ε2).

We will now compute I1 and I2. The result will be that I1 is the leading term and I2 = O(ε).

For I1, we have

I1 = ξ−1
ε ε−1

∫

Ω

(E1 + E2)
dw̃i

dx
dx + O(ε) = I11 + I12,

where E1 and E2 have been defined in (4.16) and (4.17), respectively.

We calculate, using (4.18),

I11 = ξ−1
ε ε−1

∫

Ω

E1
dw̃i

dx
dx

= −µ′(ti)
∫

R
yξ̂iwi(y)w′

i(y) dy + O(ε)

= µ′(ti)ξ̂i

∫

R

1

2
(wi(y))2 dy + O(ε)

= µ′(ti)ξ̂iµ
3/2
i

∫

R

1

2
w2(y) dy + O(ε) (by (2.3)).

Next, we calculate by (4.21)

I12 = ξ−1
ε ε−1

∫

Ω

E2
dw̃i

dx
dx

= −
∫

R
w̃2

i

[∑

k 6=i

ξ̂2
kµ

3/2
k [∇xGD(x, tk)|x=ti ]y + ξ̂2

i µ
3/2
i [−∇xHD(x, ti)|x=ti ]y

]
w̃′

i dy + O(ε)

= −
∫

R

(
yw̃2

i w̃
′
i

)
dy

{
N∑

k=1

ξ̂2
kµ

3/2
k {[∇xGD(x, tk)|x=ti ](1− δik)− [∇xHD(x, ti)|x=ti ]δik}

}
+ O(ε)

= µ
5/2
i

1

3

∫

R
w3dy

{
N∑

k=1

ξ̂2
kµ

3/2
k {[∇xGD(x, tk)|x=ti ](1− δik)− [∇xHD(x, ti)|x=ti ]δik}

}
+ O(ε)

since Pi(y) is an even function. Using (1.7), we have

(6.4) I1 = µ
3/2
i

[
ciµ

′(ti)− dii∇tiHD(ti, ti) +
∑

j 6=i

dij∇tiGD(ti, tj)

]
+ O(ε),

where

ci = 3ξ̂i, dij = 2.4µiξ̂
2
j µ

3/2
j
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For I2, we calculate

I2 = ξ−1
ε ε−1

∫

Ω

S ′ε[wε,t](φε,t)
dw̃i

dx
dx

= ξ−1
ε ε−1

∫

Ω

[
ε2∇2φε,t − µ(x)φε,t +

2wε,tφε,t

T [wε,t]
− w2

ε,t

(T [wε,t])2
(T ′[wε,t]φε,t)

]
dw̃i

dx
dx

= ξ−1
ε ε−1

∫

Ω

[
ε2∇2dw̃i

dx
− µ(ti)

dw̃i

dx
+

2wε,t

T [wε,t](ti)

]
φε,t dx

+ξ−1
ε ε−1

∫

Ω

2
wε,t

T [wε,t](ti)
φε,t

(
T [wε,t](ti)− T [wε,t]

T [wε,t]

)
dx

+ξ−1
ε ε−1

∫

Ω

(µ(ti)− µ(x))φε,t
dw̃i

dx
dx− ξ−1

ε ε−1

∫

Ω

w2
ε,t

(T [wε,t])2
(T ′[wε,t]φε,t)

dw̃i

dx
dx + O(ε2) = O(ε),

by (4.5), (4.11), (4.12) since

|µ′(ti)− µ(x)| = O(ε|y|), ‖φε,t‖H2(Ωε) = O(ε).

Combining I1, I2 and I3, we have

(6.5) Wε,i(t) = µ
3/2
i

[
ciµ

′(ti)− dii∇tiHD(ti, ti) +
∑

j 6=i

dij∇tiGD(ti, tj)

]
+ O(ε),

where

ci = 3ξ̂i, dij = 2.4µiξ̂
2
j µ

3/2
j .

Recall from (2.13) that

F (t) = (F1(t), . . . , FN(t)),

where

Wε,i(t) = 2.4µ
5/2
i Fi(t) + O(ε), i = 1, . . . , N.

By assumption (H3), we have F (t0) = 0 and

det (Dt0F (t0)) 6= 0.

Therefore the vector field Wε(t) = (Wε,1(t), . . . , Wε,N(t)) satisfies Wε(t) = Dt0F (t0)(t− t0) + O(ε).

Thus for ε small enough F (t) has exactly one zero in Bε3/4(t0) and we compute the mapping degree

of Wε(t) for the set Bε3/4(t0) and the value 0 as follows:

deg(Wε, 0, Bε3/4(t0)) = sign det (Dt0F (t0)) 6= 0.

Therefore, standard degree theory implies that, for ε small enough, there exists a tε ∈ Bε3/4(t0) such

that Wε(tε) = 0 and tε → t0 as ε → 0.

Thus we have proved the following proposition.

Proposition 6.1. For ε sufficiently small there exists a point tε ∈ Bε3/4(t0) with tε → t0 such that

Wε(tε) = 0.
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Finally, we prove Theorem 2.1.

Proof of Theorem 2.1: We sketch the main arguments. By Proposition 6.1, there exists a tε ∈
Bε3/4(t0) such that tε → t0 and Wε(tε) = 0. In other words, Sε[wε,tε + φε,tε ] = 0. Let wε = wε,tε + φε,tε .

By the Maximum Principle, wε > 0. Moreover, by its construction, wε has all the properties required

in Theorem 2.1. The proof is finished.

¤

7. Stability Analysis I: Large Eigenvalues

In this section, we study the eigenvalues with λε → λ0 6= 0 as ε → 0. The key ingredient is Theorem

3.1.

We need to analyze the following eigenvalue problem

(7.1) L̃ε,tεφε = ε2∇2φε − µ(x)φε +
2Aφε

T [A]
− A2

(T [A])2
(T ′[A]φε) = λεφε,

where λε is some complex number, A = wε,tε + φε,tε with tε ∈ Bε3/4(t0) determined in the previous

section and

(7.2) φε ∈ H2
N(Ω).

(Recall that T ′[A] was defined in (5.1).)

Because we study the large eigenvalues there exists some small c > 0 such that |λε| ≥ c > 0 for ε

sufficiently small. We are looking for a condition under which Re (λε) < 0 for all eigenvalues λε of (7.1),

(7.2) if ε is sufficiently small. If Re(λε) ≤ −c, then λε is a stable large eigenvalue. Therefore for the rest

of this section we assume that Re(λε) ≥ −c and study the stability properties of such eigenvalues.

In (7.1), (7.2) it is assumed that τ = 0. By a straight-forward perturbation argument all the results

also hold true for τ > 0 sufficiently small.

We first rigorously derive the limiting problem of (7.1), (7.2) as ε → 0 which will be given by a system

of NLEPs. Let us assume that

‖φε‖H2(Ωε) = 1.

We cut off φε as follows: Introduce

(7.3) φε,j(y) = φε(y)χε,P ε
j
(εy),

where y = (x− tj)/ε for x ∈ Ω.

From (7.1), (7.2), using Re(λε) ≥ −c and ‖φε,tε‖H2(Ωε) = O(ε), it follows that

(7.4) φε =
N∑

j=1

φε,j + O(ε2) in H2(Ωε).

Then by a standard procedure we extend φε,j to a function defined on R such that

‖φε,j‖H2(R) ≤ C‖φε,j‖H2(Ωε), j = 1, . . . , N.

Since ‖φε‖H2(Ωε) = 1, ‖φε,j‖H2(Ωε) ≤ C. By taking a subsequence of ε, we may also assume that φε,j → φj

as ε → 0 in H1(R) for j = 1, . . . , N .
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Sending ε → 0 with λε → λ0, (7.1) for x ∈ Bε3/4(ti) can be written as

∇2
yφi − µiφi + 2w̃iφi

−2

(
N∑

k=1

GD(t0i , t
0
k)

∫

R
ξ̂0
kw̃kφk dy

)(
N∑

k=1

GD(t0i , t
0
k)

∫

R

(
ξ̂0
kw̃k

)2

dy

)−1

w̃2
i = λ0φi.

Rewriting this as a system, using the transformation ỹ =
√

µy, this implies (after dropping the tilde)

(7.5) LΦ = ∇2Φ− Φ + 2wΦ− 2

(∫

R
wBΦ dy

)(∫

R
w2 dy

)−1

w2 = λ0Φ,

where

Φ =




φ1

φ2
...
φN


 ∈ (H2(R))N

and (2.3), (H1) have been used.

Then we have

Theorem 7.1. Let λε be an eigenvalue of (7.1) and (7.2) such that Re(λε) > −c for some c > 0.

(1) Suppose that (for suitable sequences εn → 0) we have λεn → λ0 6= 0. Then λ0 is an eigenvalue of

the problem (NLEP) given in (7.5).

(2) Let λ0 6= 0 with Re(λ0) > 0 be an eigenvalue of the problem (NLEP) given in (7.5). Then for ε

sufficiently small, there is an eigenvalue λε of (7.1) and (7.2) with λε → λ0 as ε → 0.

Proof:

(1) of Theorem 7.1 follows by asymptotic analysis similar to Section 5.

To prove (2) of Theorem 7.1, we follow the argument given in Section 2 of [3], where the following

eigenvalue problem was studied:

(7.6)





ε2∇2h− h + pup−1
ε h− qr

s+1+τλε

R
Ω ur−1

ε hR
Ω ur

ε
up

ε = λεh in Ω,

h = 0 on ∂Ω,

where uε is a solution of the single equation
{

ε2∇2uε − uε + up
ε = 0 in Ω,

uε > 0 in Ω, uε = 0 on ∂Ω.

Here 1 < p < n+2
n−2

if n ≥ 3 and 1 < p < +∞ if n = 1, 2, qr
(s+1)(p−1)

> 1 and Ω ⊂ Rn is a smooth bounded

domain. If uε is a single interior peak solution, then it can be shown ([51]) that the limiting eigenvalue

problem is a NLEP

(7.7) ∇2φ− φ + pwp−1φ− qr

s + 1 + τλ0

∫
RN wr−1φ∫
RN wr

wp = λ0φ

where w is the corresponding ground state solution in Rn:

∇2w − w + wp = 0, w > 0 in Rn, w = w(|y|) ∈ H1(Rn).
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Dancer in [3] showed that if λ0 6= 0, Re(λ0) > 0 is an unstable eigenvalue of (7.7), then there exists

an eigenvalue λε of (7.6) such that λε → λ0.

We now follow his idea. Let λ0 6= 0 be an eigenvalue of problem (7.5) with Re(λ0) > 0. We first note

that by(5.1) we can express T ′[A]φε in terms of φε by the Green’s function. Then we rewrite (7.1) as

follows:

(7.8) φε = −Rε(λε)

[
2Aφε

T [A]
− A2

T [A]
T ′[A]φε

]
,

where Rε(λε) is the inverse of −∇2 + (µ(x) + λε) in H2(R) (which exists if Re(λε) > −minx∈R µ(x) or

Im(λε) 6= 0). The important thing is that Rε(λε) is a compact operator if ε is sufficiently small. The

rest of the argument follows in the same way as in [3]. For the sake of limited space, we omit the details

here.

¤
We now study the stability of (7.1), (7.2) for large eigenvalues explicitly and prove (2.19) and (2.21)

of Theorem 2.2.

Let σi, i = 1, . . . , N be the eigenvalues of the matrix B. These eigenvalues are real, see Remark 2.1.

Then the system (7.5) can be re-written as

(7.9) Lφi = ∇2φi − φi + 2wφi − 2σi

(∫

R
wφi dy

)(∫

R
w2 dy

)−1

w2 = λ0φi, i = 1, . . . , N,

where

φi ∈ H2(R), i = 1, . . . , N.

Suppose that we have

(7.10) min
σ∈σ(B)

σ <
1

2
,

by Theorem 3.1 (1), there exists a positive eigenvalue of (7.9) and so also of (7.5). By Theorem 7.1 (2),

for ε sufficiently small, there exists an eigenvalue λε of (7.1) and (7.2) such that Re(λε) > c0 for some

positive number c0 > 0. This implies that A = wε,tε + φε,tε is (linearly) unstable.

Suppose now that

(7.11) min
σ∈σ(B)

σ >
1

2
,

is satisfied, then by Theorem 3.1 (2), we know that for any nonzero eigenvalue λ0 in (7.9) and so also

in (7.5) we have

Re(λ0) ≤ c0 < 0 for some c0 > 0.

So by Theorem 7.1 (1), for ε sufficiently small, all nonzero large eigenvalues of (7.1), (7.2) all have

strictly negative real parts. We conclude that in this case all eigenvalues λε of (7.1), (7.2), for which

|λε| ≥ c > 0 holds, satisfy Re(λε) ≤ −c < 0 for ε sufficiently small. This implies that A = wε,tε + φε,tε

is stable.

¤
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In conclusion, we have finished the study of large eigenvalues and derived results on their stability

properties. It remains to study small eigenvalues which will be done in the next section.

8. Stability Analysis II: Small Eigenvalues

Now we study (7.1), (7.2) for small eigenvalues. Namely, we assume that λε → 0 as ε → 0.

Let

(8.1) w̄ε = ξ−1
ε [wε,tε + φε,tε ] , H̄ε = T [wε,tε + φε,tε ],

where tε = (tε1, . . . , t
ε
N).

After re-scaling, the eigenvalue problem (7.1), (7.2) becomes

(8.2) ε2∇2φε − µ(x)φε + 2
w̄ε

H̄ε

φε − w̄2
ε

H̄2
ε

ψε = λεφε,

(8.3) D∇2ψε − ψε + 2ξεw̄εφε = λετψε.

where ξε is given by (2.4).

Our basic idea is the following: the eigenfunction φε can be expanded as

N∑
j=1

aj
∂

∂tj
(wε,t).

Note that wε,t ∼
∑N

j=1 ξj(t)wj(x). So when we differentiate wε,t with respect to tj, we also need to

differentiate ξj and µ(tj) with respect to tj. Thus we have to expand φε up to O(ε2).

Let us define

(8.4) w̃ε,j(x) = χ

(
x− tεj

r0

)
w̄ε(x), j = 1, ..., N,

where r0 and χ(x) are given in (4.2) and (4.3). Similarly as in Section 5, we define

Knew
ε,tε := span {w̃′

ε,j|j = 1, . . . , N} ⊂ H2(Ωε),

Cnew
ε,tε := span {w̃′

ε,j|j = 1, . . . , N} ⊂ L2(Ωε).

Then it is easy to see that

(8.5) w̄ε(x) =
N∑

j=1

w̃ε,j(x) + e.s.t.

and

H̄
′
ε(tl) = ξε

∫ 1

−1

∇tlGD(tl; z)w̄2
ε dz

(8.6) =
N∑

k=1

∇tlGD(tl, tk)ξ̂
2
kµ

3/2
k + O(ε) = −5

4
ξ̂lµ

−1
l µ

′
l + O(ε)

by (H3).
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Note that w̃ε,j(x) = ξ̂jwj

(
x−tεj

ε

)
+ O(ε) in H2

loc(−1, 1) and w̃ε,j satisfies

ε2∇2w̃ε,j − µ(x)w̃ε,j +
(w̃ε,j)

2

H̄ε

+ e.s.t. = 0

Thus w̃
′
ε,j :=

dw̃ε,j

dx
satisfies

(8.7) ε2∇2w̃
′
ε,j − µ(x)w̃

′
ε,j +

2w̃ε,j

H̄ε

w̃
′
ε,j −

w̃2
ε,j

(H̄ε)2
H̄

′
ε − µ

′
(x)w̃ε,j + e.s.t. = 0.

Let us now decompose

(8.8) φε = ε

N∑
j=1

aε
jw̃

′
ε,j + φ⊥ε

with complex numbers aε
j, (the scaling factor ε is introduced to ensure φε = O(1) in H2

loc(Ωε)), where

φ⊥ε ⊥ Knew
ε,tε .

Suppose that ‖φε‖H2(Ωε) = 1. Then |aε
j| ≤ C.

The decomposition of φε implies the following decomposition of ψε:

(8.9) ψε = ε

N∑
j=1

aε
jψε,j + ψ⊥ε ,

where ψε,j satisfies

(8.10) D∇2ψε,j − ψε,j + 2ξεw̄εw̃
′
ε,j = 0,

ψ⊥ε satisfies

(8.11) D∇2ψ⊥ε − ψ⊥ε + 2ξεw̄εφ
⊥
ε = 0.

and both (8.10) and (8.11) are solved with Neumann boundary conditions.

Throughout this section, we denote

µj = µ(tεj), µ
′
j = µ

′
(tεj), µ

′′
j = µ

′′
(tεj).

Substituting the decompositions of φε and ψε into (8.2) we have, using (8.7)

ε

N∑
j=1

aε
j

(
(w̃ε,j)

2

H̄2
ε

H̄
′
ε −

(w̄ε)
2

H̄2
ε

ψε,j

)
+ ε

N∑
j=1

aε
jµ

′
(x)w̃

′
ε,j

+ε2∇2φ⊥ε − µ(x)φ⊥ε + 2
w̄ε

H̄ε

φ⊥ε −
w̄2

ε

H̄2
ε

ψ⊥ε − λεφ
⊥
ε + e.s.t. = λε

(
ε

N∑
j=1

aε
jw̃

′
ε,j

)
.(8.12)
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Let us first compute

I4 := ε

N∑
j=1

aε
j

(
(w̃ε,j)

2

H̄2
ε

H̄
′
ε −

(w̄ε)
2

H̄2
ε

ψε,j

)

= ε

N∑
j=1

aε
j

(
(w̃ε,j)

2

H̄2
ε

(H̄
′
ε − ψε,j)

)
− ε

N∑
j=1

aε
jψε,j

∑

k 6=j

(w̃ε,k)
2

H̄2
ε

+ e.s.t.

= ε

N∑
j=1

aε
j

(w̃ε,j)
2

H̄2
ε

[
−ψε,j + H̄

′
ε

]
− ε

N∑
j=1

∑

k 6=j

aε
kψε,k

(w̃ε,j)
2

H̄2
ε

+ e.s.t..

We can rewrite I4 as follows

(8.13) I4 = −ε

N∑
j=1

N∑

k=1

aε
k

(w̃ε,j)
2

H̄2
ε

(
ψε,k − H̄

′
εδjk

)
+ e.s.t.

Let us also put

(8.14) L̃εφ
⊥
ε := ε2∇2φ⊥ε − µ(x)φ⊥ε +

2w̄ε

H̄ε

φ⊥ε −
w̄2

ε

H̄2
ε

ψ⊥ε

and

(8.15) aε := (aε
1, ..., a

ε
N)T .

Multiplying both sides of (8.12) by w̃
′
ε,l and integrating over (−1, 1), we obtain, using (2.3),

r.h.s. = ελε

N∑
j=1

aε
j

∫ 1

−1

w̃
′
ε,jw̃

′
ε,l dx

= λεa
ε
l ξ̂

2
l

∫

R
(w

′
l(y))2 dy (1 + O(ε))(8.16)

= λεa
ε
l ξ̂

2
l µ

5/2
l

∫

R
(w

′
(z))2 dz (1 + O(ε))(8.17)

and, using (8.13),

l.h.s. = −ε

N∑
j=1

N∑

k=1

aε
k

∫ 1

−1

w̃2
ε,j

H̄2
ε

(
ψε,k − H̄

′
εδjk

)
w̃
′
ε,l dx +

∫ 1

−1

w̃2
ε,l

H̄2
ε

(H̄
′
εφ
⊥
ε ) dx

+ε

N∑
j=1

aε
j

∫ 1

−1

µ
′
w̃ε,jw̃

′
ε,l dx−

∫ 1

−1

w̃2
ε,l

H̄2
ε

(ψ⊥ε w
′
ε,l) dx +

∫ 1

−1

µ
′
φ⊥ε wε,l dx

= (J1,l + J2,l + J3,l + J4,l + J5,l)(1 + O(ε)),

where Ji,l, i = 1, 2, 3, 4, 5 are defined by the last equality.

For J3,l, integrating by parts gives

ε

N∑
j=1

aε
j

∫ 1

−1

µ
′
w̃ε,jw̃

′
ε,l dx = −εaε

l

2

∫ 1

−1

µ
′′
w̃2

ε,l dx + o(ε2)

= −ε2aε
l

2
ξ2
ε,lµ

3/2
l µ

′′
l

∫

R
w2 dy + o(ε2).
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For J4,l, we decompose

J4,l = J6,l + J7,l,

where

(8.18) J6,l = −
∫ 1

−1

w̃2
ε,l

H̄2
ε

(ψ⊥ε (tεl )w
′
ε,l) dx

(8.19) J7,l = −
∫ 1

−1

w̃2
ε,l

H̄2
ε

(ψ⊥ε (x)− ψ⊥ε (tεl ))w
′
ε,l dx.

We define the vectors

(8.20) Ji = (Ji,1, ..., Ji,N)T , i = 1, 2, 3, 4, 5, 6, 7.

The following is the key lemma.

Lemma 8.1. We have

J1 = −ε2

(
1

3

∫

R
w3 dy

)
Hµ5/2

[
(∇2GD)H2µ3/2 −QH2µ3/2

]
a0(8.21)

−ε2

(
5

6

∫

R
w3 dy

)
Hµ5/2

[
(∇GD)TH2µ1/2µ

′ − 5

4
Hµ−2(µ

′
)2

]
a0 + o(ε2),

J2 = ε2

(
5

4

∫

R
w3 dy

)
Hµ5/2

[
(∇ξ)µ−1µ

′
+

5

6
Hµ−2(µ

′
)2

]
a0 + o(ε2),(8.22)

J3 = −ε2

(
5

12

∫

R
w3 dy

)
H2µ3/2µ

′′
a0 + o(ε2),(8.23)

J5 = −ε2

(
5

6

∫

R
w3 dy

)
Hµ5/2

∫

R
w2

[
(∇ξ)µ−1µ

′
+

3

4
Hµ−2(µ

′
)2

]
a0 + o(ε2),(8.24)

J6 = −ε2

(
5

6

∫

R
w3 dy

)
Hµ5/2

[
2GDHµ3/2(∇ξ)µ−1µ

′
+

3

2
GDHµ−1/2(µ

′
)2

]
a0 + o(ε2),(8.25)

J7 = −ε2

(
1

3

∫

R
w3 dy

)
Hµ5/2

[
2(∇GD)H(∇ξ)µ3/2 +

3

2
(∇GD)H2µ1/2µ

′
]
a0 + o(ε2),(8.26)

where we recall that GD are H are introduced in (2.5) and (2.12), respectively, aε is given in (8.15)and

(8.27) a0 = lim
ε→0

aε.

By Lemma 8.1, Theorem 2.3 can be proved. Indeed, using the identity

(∇GD)TH2µ1/2µ
′ − (∇ξ)µ−1µ

′ − 5

4
Hµ−2(µ

′
)2 + 2GDHµ3/2(∇ξ)µ−1µ

′
+

3

2
GDHµ−1/2(µ

′
)2 = 0
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which follows from (2.29), we have

J1 + J2 + J6 = −ε2

(
1

3

∫

R
w3 dy

)
Hµ5/2

[
(∇2GD)H2µ3/2 −QH2µ3/2

]
a0

+ε2 5

4

(
1

3

∫

R
w3 dy

)
Hµ5/2

[
(∇ξ)Hµ−1µ

′
+

5

2
Hµ−2(µ

′
)2

]
a0 + o(ε2).

Thus

J1 + J2 + J6 + J5 = −ε2

(
1

3

∫

R
w3 dy

)
Hµ5/2

[
(∇2GD)H2µ3/2 −QH2µ3/2

]
a0

−ε2 5

4

(
1

3

∫

R
w3 dy

)
Hµ5/2

[
(∇ξ)Hµ−1µ

′ −Hµ−2(µ
′
)2

]
a0 + o(ε2).

Combining the above estimate with those of J3 and J7, and using (2.3), we have

l.h.s. = J1 + J2 + J3 + J5 + J6 + J7

= −ε2

(
1

3

∫

R
w3 dy

)
Hµ5/2

[
((∇2GD)−Q)H2µ3/2 + 2(∇GD)H(∇ξ)µ3/2

+
5

4
(∇ξ̂)µ−1µ

′
+

5

4
H

[
µ−1µ

′′ − µ−2(µ
′
)2

]
+

3

2
(∇GD)H2µ1/2µ

′
]

+ o(ε2).

Comparing with r.h.s. and recalling the computation of M(t0) at (2.28), we obtain

(8.28) −2.4ε2Hµ5/2M(tε)aε + o(ε2) = λεµ
5/2H2aε

∫

R
(w

′
(y))2 dy (1 + O(ε)),

using (1.7). Equation (8.28) shows that the small eigenvalues λε of (8.2) are

λε ∼ −2ε2σ
(H−1M(t0)

)

by (1.7).

Arguing as in Theorem 7.1, this shows that if all the eigenvalues of M(t0) are positive, then the small

eigenvalues are stable. On the other hand, if M(t0) has a negative eigenvalue, then we can construct

eigenfunctions and eigenvalues to make the system unstable.

This proves Theorem 2.3.

¤
Lemma 8.1 follows from the following series of lemmas.

We first study the asymptotic behavior of ψε,j.

Lemma 8.2. We have

(8.29) ((ψε,k − H̄
′
εδkl)(t

ε
l )) = −H2µ3/2(∇GD) +

5

4
Hµ−1µ

′
+ O(ε).

Proof:
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Note that for l 6= k, we have

(ψε,k − H̄
′
εδkl)(t

ε
l ) = ψε,k(t

ε
l )

= 2ξε

∫ 1

−1

GD(tεl , z)w̄εw̃
′
ε,k dz

= −∇tεk
GD(tεk, t

ε
l )ξ̂

2
kµ

3/2
k .(8.30)

Next we compute ψε,l − H̄
′
ε near tεl :

H̄ε(x) = ξε

∫ 1

−1

GD(x, z)w̄2
ε dz

= ξε

∫ +∞

−∞
KD(|z|)w̃2

ε,l(x + z)dz − ξε

∫ 1

−1

HD(x, z)w̃2
ε,l dz + ξε

∑

k 6=l

∫ 1

−1

GD(x, z)w̃2
ε,k dz.

So

H̄
′
ε(x) = ξε

∫ +∞

−∞
KD(|z|)(2w̃ε,l(x + z)w̃

′
ε,l(x + z)) dz − ξε

∫ 1

−1

∇xHD(x, z)w̃2
ε,l dz

+ξε

∑

k 6=l

∫ 1

−1

∇xGD(x, z)w̃2
ε,k dz.

Thus

H̄
′
ε − ψε,l = −ξε

∫ 1

−1

∇xHD(x, z)w̃2
ε,l dz + ξε

∑

k 6=l

∫ 1

−1

∇xGD(x, z)w̃2
ε,k dz

−
(
−2ξε

∫ 1

−1

HD(x, z)w̃ε,lw̃
′
ε,l dz

)
.(8.31)

Therefore we have,

H̄
′
ε(t

ε
l )− ψε,l(t

ε
l ) = −ξε

∫ 1

−1

∇tεl
H(tεl , z)w̃2

ε,l + ξε

∑

k 6=l

∫ 1

−1

∇tεl
G(tεl , z)w̃2

ε,k

−∇tεl
HD(tεl , t

ε
l )ξ̂

2
l µ

3/2
l + O(ε)

=
N∑

k=1

∇tεl
GD(tεl , t

ε
k)ξ̂

2
kµ

3/2
k −∇tεl

HD(tεl , t
ε
l )ξ̂

2
l µ

3/2
l + O(ε).

= −5

4
ξ̂lµ

−1
l µ

′
l −∇tεl

HD(tεl , t
ε
l )ξ̂

2
l µ

3/2
l + O(ε).(8.32)

Combining (8.30) and (8.32), we have (8.29).

¤
Similar to the proof of Lemma 8.2, the following result is derived.

Lemma 8.3. We have

(8.33) (ψε,k − H̄
′
εδlk)(t

ε
l + εy)− (ψε,k − H̄

′
εδlk)(t

ε
l )

= −εy∇tεl
∇tεk

GD(tεl , t
ε
k)ξ̂

2
kµ

3/2
k + O(ε2y2), for l 6= k

and

(8.34) (ψε,k − H̄
′
εδlk)(t

ε
l + εy)− (ψε,k − H̄

′
εδlk)(t

ε
l )
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= −εy

N∑
m=1

∇2
tεl
GD(tεl , t

ε
m)ξ̂2

mµ3/2
m + O(ε2y2), for l = k.

Next we study the asymptotic expansion of φ⊥ε . Let us first denote

φ1
ε,j(x) = −

N∑

l=1

(
(∇tεj

ξ̂l)w̃ε,l(x)
)
− ξ̂j

(
µ
′
jwj(

√
µjx) +

1

2
µ

1/2
j µ

′
jxw

′
j(
√

µjx)

)

= −
N∑

l=1

(
(∇tεj

ξ̂l)w̃ε,l(x)
)
− ξ̂jµ

−1
j µ

′
j

(
w̃ε,j(x) +

1

2
xw̃

′
ε,j(x)

)
, φ1

ε := ε

N∑
j=1

aε
jφ

1
ε,j.(8.35)

Now we derive

Lemma 8.4. For ε sufficiently small, we have

(8.36) ‖φ⊥ε − εφ1
ε‖H2(−1/ε,1/ε) = O(ε2).

Proof: As the first step in the proof of Lemma 8.4, we obtain a relation between ψ⊥ε and φ⊥ε . Note

that similar to the proof of Proposition 5.1, L̃ε is invertible from (Knew
ε )⊥ to (Cnew

ε )⊥ with uniformly

bounded inverse for ε small enough. By (8.12), (8.13), Lemma 8.2 and the fact that L̃ε is uniformly

invertible, we deduce that

(8.37) ‖φ⊥ε ‖H2(Ωε) = O(ε).

Let us decompose

(8.38) φ̃ε,j =
φ⊥ε
ε

χ

(
x− tεj

r0

)
.

Then

φ⊥ε = ε

N∑
j=1

φ̃ε,j + O(ε2)

Suppose that

(8.39) φ̃ε,j → φ̂j in H1(Ωε).

Let us also define

φ̂j(y) = µjφj(
√

µjy).

Set

Φ0 = (φ1, ..., φN)T .

Then we have by the equation for ψ⊥ε :

ψ⊥ε (tεj) = 2ε
N∑

k=1

ξε

∫ 1

−1

GD(tεj, z)w̄εφ̃ε,k dz

= 2ε
N∑

k=1

GD(tεj, t
ε
k)ξ̂kµ

3/2
k

∫
Rwφk dy∫
Rw2 dy

+ O(ε2).
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Hence

(8.40) (ψ⊥ε (tε1), ..., ψ
⊥
ε (tεN))T = 2εGDHµ3/2

∫
RwΦ0 dy∫
Rw2 dy

+ O(ε2).

This relation between ψ⊥ε and Φ0 will be important for the rest of the proof.

Now we substitute (8.40) into (8.12) and using Lemma 8.2, we have that the limit Φ0 satisfies

∇2Φ0 − Φ0 + 2wΦ0 − 2GDHµ3/2

∫
RwΦ0∫
Rw2

w2

+(∇GD)TH2µ3/2a0w2 − 5

4
Hµ−1µ

′
a0w2 +Hµ−1µ

′
a0w = 0.

Hence, using the relations

L−1
0 w2 = w, L−1

0 w =
1

2
yw′ + w,

by (2.23), (2.24) we have

Φ0 = −P
[
(∇GD)TH2µ3/2a0 − 5

4
Hµ−1µ

′
a0 +

3

2
GDH2µ1/2µ

′
a0

]
w −Hµ−1µ

′
a0L−1

0 w

= −(∇ξ)a0w −Hµ−1µ
′
a0

(
w +

1

2
yw

′
)

.(8.41)

Now we compare Φ0 with φ1
ε . By definition

φ1
ε = −ε

N∑

l=1

aε
l

N∑
j=1

(
(∇tεl

ξ̂j)w̃ε,j

)
− ε

N∑
j=1

aε
j ξ̂jµ

−1
j µ

′
j

(
w̃ε,j(x) +

1

2
xw̃

′
ε,j(x)

)

= −ε

N∑
j=1

[
N∑

l=1

(
∇tεl

ξ̂j

)
aε

l

]
w̃ε,j − ε

N∑
j=1

aε
j ξ̂jµ

−1
j µ

′
j

(
w̃ε,j(x) +

1

2
xw̃

′
ε,j(x)

)
.(8.42)

On the other hand

(8.43) φ⊥ε = ε

N∑
j=1

φ̃ε,j + O(ε2) = ε

N∑
j=1

φj

(
x− tεj

ε

)
+ O(ε2).

Using (8.41) and comparing (8.42) with (8.43), we obtain (8.36).

¤
From Lemma 8.4 and (8.40), we have that

(8.44) (ψ⊥ε (tε1), ..., ψ
⊥
ε (tεN))T = −2εGDHµ3/2

[
∇ξ +

3

4
Hµ−1µ

′
]
a0 + O(ε2).

Further,

ψ⊥ε (tεj + εy)− ψ⊥ε (tεj) = 2ε2y

N∑

k=1

∇tεj
GD(tεj, t

ε
k)ξ̂kµ

3/2
k

∫
Rwφk dy∫
Rw2 dy

+ O(ε3)(8.45)

(ψ⊥ε (tε1 + εy)− ψ⊥ε (tε1), ..., ψ
⊥
ε (tεN + εy)− ψ⊥ε (tεN))T = −2ε2(∇GD)Hµ3/2

[
∇ξ +

3

4
Hµ−1µ

′
]
a0 + O(ε3).

Finally we prove the key lemma – Lemma 8.1.
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Proof of Lemma 8.1: The computation of J1 follows from Lemmas 8.2 and 8.3: In fact,

J1,l = −ε

N∑

k=1

aε
k

∫ 1

−1

w̃2
ε,l

H̄2
ε

(
ψε,k − H̄

′
εδlk

)
w̃
′
ε,l dx + o(ε2)

= −ε

N∑

k=1

aε
k

∫ 1

−1

w̃2
ε,l

H̄2
ε

(
ψε,k(tl)− H̄

′
ε(tl)δlk

)
w̃
′
ε,l dx + o(ε2)

−ε

N∑

k=1

aε
k

∫ 1

−1

w̃2
ε,l

H̄2
ε

(
[ψε,k(x)− H̄

′
ε(x)δlk]− [ψε,k(tl)− H̄

′
ε(tl)δlk]

)
w̃
′
ε,l dx + o(ε2)

= J8,l + J9,l.

For J8,l, we use Lemma 8.2 to obtain

J8,l = −2

3
ε

N∑

k=1

aε
k

∫ 1

−1

w̃3
ε,l

H̄3
ε

H̄
′
ε

(
ψε,k(tl)− H̄

′
ε(tl)δlk

)
dx + o(ε2)(8.46)

= −2

3
ε2

N∑

k=1

aε
k

(∫

R
w3

l dy

)
H̄

′
ε(t

ε
l )

(
ψε,k(tl)− H̄

′
ε(tl)δlk

)
+ o(ε2).(8.47)

Similarly,

J9,l = ε2ξ̂l

∫

R

(
yw2

l w
′
l(y)

)
dy

N∑

k=1

∇tεl
∇tεk

GD(tεl , t
ε
k)ξ̂

2
kµ

3/2
k aε

k + o(ε2)

= −ε2

(
1

3

∫

R
w3 dy

)
µ

5/2
l ξ̂l

N∑

k=1

(∇tεl
∇tεk

GD(tεl , t
ε
k)− qlkδlk)ξ̂

2
kµ

3/2
k aε

k + o(ε2).(8.48)

Combining (8.47) and (8.48), and using (8.6), Lemma 8.2, Lemma 8.3, (2.26) and (2.27), we obtain

(8.21).

For J2,l, we have by Lemma 8.4

J2,l = εH̄
′
ε(tl)

∫ 1

−1

w2
l φ

1
ε dx + o(ε2),

where

(8.49) H̄
′
ε(tl) =

N∑

k=1

∇tlGD(tl, tk)ξ̂
2
kµ

3/2
k = −5

4
ξ̂lµ

−1
l µ

′
l + O(ε)

by (8.6), and

∫ 1

−1

w2
l φ

1
ε dx = −εµ

5/2
l

(∫

R
w3 dy

) [
N∑

j=1

(∇tεj
ξ̂l)a

ε
j +

5

6
ξ̂lµ

−1
l µ

′
l

]
+ O(ε2)

by (8.41), (8.43), using
∫

R
w2(L−1

0 w) dy =

∫

R

(
w3 +

1

2
yw2w

′
)

dy =
5

6

∫

R
w3 dy,

which proves (8.22).
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For (8.25), we have

J6,l = −ψ⊥ε (tεl )

∫ 1

−1

w̃2
ε,l

H̄2
ε

w̃
′
ε,l dx

= −2

3
ψ⊥ε (tεl )

∫ 1

−1

w̃3
ε,l

H̄3
ε

H̄
′
ε dx + o(ε2)

= −ε
2

3
H̄

′
ε(t

ε
l )ψ

⊥
ε (tεl )µ

5/2
l

(∫

R
w3 dy

)
+ o(ε2).(8.50)

Then (8.25) follows from (8.6) and (8.44).

For J7 we have

(8.51) J7 = −
∫ 1

−1

w̃2
ε,l

H̄2
ε

(ψ⊥ε (x)− ψ⊥ε (tεl ))w
′
ε,l dx + o(ε2).

Now (8.26) follows from (8.41), (8.44) and (8.46).

(8.24) follows from Lemma 8.4.

¤

9. Numerical Simulations

We now show some numerical simulations for effects of precursors in the behavior of system (1.2).

We choose Ω = (−1, 1), τ = 0.1 and varying diffusion constants (first ε2 = 0.001, D = 0.1 and second

ε2 = 0.0001, D = 0.01).

In each situation we always present the final state (for t = 105) which in all cases is numerically stable

(long-time limit). Always A is shown on the left, H on the right.

We first consider the system without precursor µ(x) ≡ 1, ε2 = 0.001, D = 0.1.

Figure 1. Two Spikes for (1.2) with ε2 = 0.001, D = 0.1, µ ≡ 1 (i.e. no precursor). The two spikes are

symmetric: They have the same amplitude and the spacing is regular.

Choosing a precursor with linear gradient we have the following picture.
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Figure 2. Multiple spikes in the precursor case for (1.2) with ε2 = 0.001, D = 0.1 and µ = 1 + 0.1x (top

row), µ = 1+0.5x (middle row), µ = 1+0.9x (bottom row). Note that the number of spikes changes depending

on the strength of the precursor: As the precursor becomes more pronounced the number of spikes decreases
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and they move closer to the left side of the interval where the precursor is smaller. The spikes are asymmetric:

They have different amplitudes and the spacing is irregular.

Choosing a precursor with general gradient we have the following picture. The profile has the shape

of a cosine function which in leading order gives a quadratic profile near the maxima and minima. Again

the spikes move to values of smaller µ.

Figure 3. We simulate (1.2) with ε2 = 0.001, D = 0.1 and µ(x) = 1 + 0.1 cos(2πx) (top row) or µ(x) =

1 + 0.1 cos(4πx) (bottom row). In the first case we have two spikes pushed away from the middle (compared

to Figure 1), in the second case we have an asymmetric pattern of spikes with two different amplitudes.

Finally we do the simulations again with smaller diffusion constants which results in a higher number

of spikes. For the rest of the figures we choose ε2 = 0.0001, D = 0.01.

We first consider the system without precursor µ(x) ≡ 1, ε2 = 0.0001, D = 0.01.
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Figure 4. Two spikes for (1.2) with ε2 = 0.0001, D = 0.01, µ ≡ 1 (i.e. no precursor). The spikes are

symmetric: They have the same amplitude and the spacing is regular.

Choosing a precursor with linear gradient we have the following picture.
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Figure 5. Multiple spikes in the precursor case for (1.2) with ε2 = 0.0001, D = 0.01 and µ = 1 + 0.1x

(top row), µ = 1 + 0.5x (middle row), µ = 1 + 0.9x (bottom row). Note that the number of spikes changes

depending on the strength of the precursor: As the precursor becomes more pronounced the number of spikes

decreases and they move closer to the left side of the interval where the precursor is smaller. The spikes are

asymmetric: They have different amplitudes and the spacing is irregular.

Choosing a precursor with general gradient we have the following picture. The profile has the shape

of a cosine function which in leading order gives a quadratic profile. Again the spikes move to values of

smaller µ.
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Figure 6. We simulate (1.2) with ε2 = 0.0001, D = 0.01 and µ(x) = 1 + 0.1 cos(2πx) (top row) or

µ(x) = 1 + 0.1 cos(3πx) (bottom row). In both cases we have an asymmetric pattern of spikes with two

different amplitudes.

The effects of precursors on spiky solutions explored in this paper such as asymmetric positions or

amplitudes of spikes or movement of spikes to positions with small precursor values play an important

role in a variety of biological models such as animal skin patterns, formation of head structure in hydra,

segmentation in Drosophila melanogaster or ecology. We plan to shed more light on these issues in the

future, in particular in the higher-dimensional case, combining analysis with simulation and applying

the outcomes to biological observations and experiments.
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