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1. Introduction

In the past few years many new analytical results have emddrgen Matrix Models (MM)
for the Dirac operator spectrum with non-vanishing chehpogentialpt # 0. There are 3 different
possible chiral symmetry breaking patterfis [1] and in the libture they differ crucially in the
way the eigenvalues are depleted from the imaginary axaugiru # 0 [B]. Today we have
detailed predictions for microscopic Dirac spectra in 2h@fse symmetry classes, both quenched
and unquenched: QCD and the adjoined representation, viherkatter is replaced bgU(2)
colour in the fundamental when using staggered fermionseaw i do. After first approximate
results for quenched QCI|[3] the exact quenched density weaged in [4] and related to chiral
Perturbation Theory in the epsilon reging(PT). Unquenched partition functions were computed
in [f] and related t&xPT, and finally fully unquenched Dirac spectra for QCD becanrelable
[B, []. Results for the adjoint (BU(2) staggered) class followed very recenfly [8] and we confront
its unquenched predictions including dependencg and quark massiwith Lattice data here.

Not all the above MM results have been compared to the Lastickar, precisely due to the
sign problem in unqguenched QCD. Up to now only quenched sitiomis aiu # 0 using staggered
fermions have been successfully described: for Q@D [9] &se [10] in these proceedings) and
for SU(2) [L3], which we will extend here. Previous comparisopd [12}evlacking analytic pre-
dictions at the time, they could only be done in the bulk of spectrum [I3] for MM without
chiral symmetry. Very recently it has been showmat 0 that the previous topology-blindness of
staggered fermions can be cured by improvement, as reviewgd].

In the last years different ways of attacking the sign pnobie QCD were developed: multi-
parameter reweighting, Taylor-expansion and imaginafgee [15] for a review and references).
However, none of these have been applied so far to the regigxRT where a comparison to MM
is expected to hold. We purse a different avenue here, amgasiSU(2) gauge theory without sign
problem where dynamical simulations can be performed iaradstrd way[[16]. This permits us to
extend previous MM comparisor(s [17] 18]o# 0. It is of principle interest to test the validity of
all MM predictions for complex Dirac spectra on the Lattioeluding dynamical fermions.

2. Predictionsfrom Matrix Modelswith pu # 0

In this section we briefly introduce the relevant MM used aive gfs results for the spectral
density. For more details and references we refef] to [8]. MNepartition function is given by

Ny :

&W,\EZNf)({mf};u)E/ddbdwexp[—NTr(dJTCD 1+ why)] Dldet<i¢£fiw "Dr:f’i‘w), 2.1)
wherel is the quaternion unity element. The two rectangyMr- v) x N matrices,® and ¥,
contain quaternion real elements and replace the off-d@ddocks of the Dirac operator, averaged
with a Gaussian matrix weight instead of the gauge actionre W& model theuyy part with a
random matrix of the same symmetry as the kinetic part, asguinis non-diagonal in matrix
space (as in[J6] for QCD). If universality holds this choidebasis should not matter, compared
to W replaced by unity aq][2]. This assertion is true in the QCD retmy class, sed][4] 5] vs.
[B, [{]. The size of the Dirac matrix\e~ V relates to the volume, and we have chosen rectangular
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matrices to be in the fixed sector wf> 0 zero eigenvalues or topological charge. Because of using
unimproved staggered fermions we get 0 in our comparison to the data later.

After transforming the linear combination®(?) 4+ uW(") to be triangular we can change to
complex eigenvaluez_1 . n (rotated to lie on the real axis fpr= 0). All their spectral correlation
functions can be computed using skew orthogonal Laguety@pmials in the complex plang][8].

In the largeN limit the complex eigenvalues, massasl chemical potential have to be rescaled

V2Nz=&, V2Nm=n, and  lim 2Nu a?. (2.2)

N—oo, u—0

This limit is called weakly non-hermitian g8’ is rescaled with the volume. The same scaling is
found in the static part of the chiral Lagrangign][19] dontimg ate x PT. While the latter contains
two parameters, the chiral condensatand the decay constaRf, the MM contains onlyone the
variance fixed to b& = /2 here. Thus the constant multiplyimgis not know and we are left with
1 free fit parameter, in contrast to the parameter-free MMiption atu = 0.

The unquenched microscopic spectral density, normalseéti &)o' (Om(&)) for a — 0,

2
plEin) =Ap6v‘2agf;n> + €2 K (z )| g (€24 80)| 23)

/ ds e*ZS””“Z (320 (2v/5L8) I (2V/5 €7) — Jou(2/5 )Ty (2V/S1E7)) |
splits into the quenched part and a correction tApﬁgak(E;r;) depending on the masgg

ppl (&) =

2
(€2 >|s|2r<2v<'f')exp[ l(ﬁf*?)} (2.4)

32a4 202

{( [as] dt\f 2514002 (3, (21/51 € >|2V+1<2an>—szH(zﬁtn)JzV(Nés)))
(/ ds/ldt 2514007 (3, (0, /StE )|2v<2¢én>—|2v<2¢§m>32v<2¢éé*>>>—<5%*)}

-1
<[ [as [ oty /2 e = (i (2Bl 2v50) - @V a2ven) |

We only give the result foN; = 2 staggered flavours of equal mass here, [§ee [8] for more fiavou
and higher correlation functions, as well [17] for matghMM and staggered flavours. Fig.
[ shows this density in the complex plane at weak non-Heityitias we shall compare to data
below. The eigenvalues are repelled from the real axigufet 0, being a distinct feature of this
symmetry class (compare tfi [9] for QCD). We have observesirgpulsion in the data fqu as
small as 10°. The individual eigenvalues located at the maxima prewoase now split into a
double peak in the complex plane.

Increasing the masg — o moves the density to the left, bringing it back to the quedche
expression, eq[ (3.3) atp\fv‘gak(f;r;) = 0. Decreasing) — 0 pushes the eigenvalues further away
from the origin, approaching the quenched density at 2 approximately. Increasing rapidly
washes out the oscillations and leads to the formation cdite@l. The limith — o takes us to the
MM at strong non-Hermiticity, withu unscaled(see [B]). A comparison to quenched Lattice data
in this regime was given previously in]11], our unquencheslits will be reported elsewhere.

1This observation was missed {f} [9] 11].
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Figure1: TheNs = 2 flavour spectral density at = 0.012 with masseg = 8.74 andv = 0O (left) and a cut
through the density normalised to unity for different maakigs compared to quenched (right).

3. Lattice data with dynamical fermionsat u # 0

Our data were generated for gauge gr@u(2) with coupling 8 = 4/g?> = 1.3 andN; = 2
staggered flavours, using the code[of [16]. In this setupehmibn determinant remains real (as it
does in the MM, seq[8]) and standard Monte Carlo applies. &Ve btudied two different Volumes
6* and & for various values ofi = 10°® — 0.4 and values of the quark massea= 0.025— 20.
Because the eigenvalues lie in the complex plane of the afderlOk configurations are needed.
In order to have a window where a MM description applies festhsmall lattices we have to go
to relatively strong coupling (seg ]10] for a discussionhig issue in QCD).

To compare with the predictiof (2.3) we have taken cuts jinabe density: along the maxima
parallel to the real axis, Fid] 1 right, and perpendiculathiat over the first maximum pair. The
effect of dynamical fermions is most clearly seen in thetshithe first cut where we choose the
valuesn = 14 (blue) andy = 33 (pink) to be used in our data below, compared to quenchadk
Being very costly we did not to go to smallgt

The parameterg and a were obtained as follows from our data with inpoaand u. First,
we determined the rescaling of the masses and eigenvaluesésuring the mean level-spacing
d ~ 1/p(0), using the Banks-Casher relation frqm= 0: 1p(0) = XV wherep(0) is the mean
spectral density. Due tg < 1 the geometric distance between eigenvalues agrees \gitttrs
with the distance obtained by a projection onto the real. &Xigs provides us with the rescaling of
the eigenvalues and masses,

zarr/d =& and marr/d =n . (3.2)

At the same time the spacimjcontains the volume factor for the rescalingidt a? = Cu?m/d.
The constan€ ~ F2/3 of order 1 is obtained by fitting the data to the cut paralleh®imaginary
axis on the first maximum. Since the surface under this cus\venite we can fit to its integral
function, being independent of the choice of histogram kddh imaginary direction. This also
fixes the normalisation. For illustration purposes we shwsvdut and not its integral. We can now
test the scaling hypothesis pf eq. (2:R). For this purpose we have kepV fixed for the two
volumesV =6*and §: u=1-10"2 andu = 5.625- 10, respectively. Since the level spacing
d also depends on the mass we have keaftfixed leading automatically to differemt-values for
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Figure 2: The scalingu?V for dynamical fermionsV = 6% ma= 0.07 andy = 1-10 3 = a = 0.013,
n = 33 (upper plots) vsV = 84 ma=0.07 andu = 5.625-10 % = a = 0.012,n = 102 (lower plots) .

different volume$. The data (histograms) in Fif]. 2 right confirm this scalingywsell: the fitted

a = 0.013 fromV = 6* (blue curve) describes the= 8* data as well (green). Faf = 8* we also
display thea = 0.012 (blue) obtained from an independent fit, they agree wilib. In the cuts

in Fig. [2 left these small variations im cannot be seen. If we were to compare to the quenched
density a different fit value foa ~ 0.0185(6%) anda ~ 0.0175(8*) would be obtained instead,
describing the right curves equally well. However, in thi¢ idots the quenched MM curve (grey)
deviates from the unquenched (blue) one. In the upper6* plot the discrepancy from = 33 to
quenched can be clearly seen in the data as we capture up4thtimaximum, whereas i = 8*
keepingmafixed impliesn = 102, taking us back to almost quenched.

In order to see the difference from quenched at smaller magseompare to data correspond-
ing to a rescaled masp= 14 (blue curve) in Fig[]3 below. Although we can only resoh&lhe
first 2-3 maxima in the left picture, the mismatch with the mgleed curve (grey) is evident.

To summarise we have shown that the MM correctly predictsptex8U(2) Lattice data with
N; = 2 dynamical staggered fermionsat£ 0, describing the effect of small quark masses. We
have also confirmed the scaling pf with the volume at weak non-Hermiticity from unquenched
Lattice data.
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2For the comparison irm.l] the different>> 1 were both close enough to quenched.
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Figure 3: Data (histograms) vs. MM (blue curve=unquenched, greyroed) folV = 6* ma= 0.035 and
u=1-10°= n =14 anda = 0.012.
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